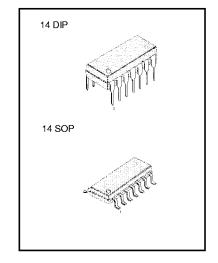
QUAD OPERATIONAL AMPLIFIERS

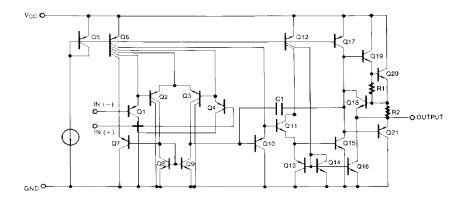

The KA224 series consists of four independent, high gain, internally frequency compensated operational amplifiers which were designed specifically to operate from a single power supply over a wide voltage range.

Operation from split power supplies is also possible so long as the difference between the two supplies is 3 volts to 32 volts.

Application areas include transducer amplifier, DC gain blocks and all the conventional OP amp circuits which now can be easily implemented in single power supply systems.

FEATURES

- Internally frequency compensated for unity gain
- Large DC voltage gain: 100dB
- Wide power supply range: KA224/A, KA324/A: 3V 32V (or± 1.5 ~ 15V)
 KA2902: 3V~26V (or ± 1.5V ~ 13V)
- Input common-mode voltage range includes ground
- $\bullet~$ Large output voltage swing: 0V DC to V_{CC} -1.5V DC
- · Power drain suitable for battery operation.


BLOCK DIAGRAM

ORDERING INFORMATION

Device	Package	Operating Temperature
KA324	14 DIP	
KA324A	14 DIF	0 ~ + 70 ℃
KA324D	14 SOP	0~+700
KA324AD	14 30F	
KA224	14 DIP	
KA224A	14 011	-25 ~ +85℃
KA224D	14 SOP	-23 - +03 (
KA224AD	14 30F	
KA2902	14 DIP	-40 ~ + 85 ℃
KA2902D	14 SOP	-40 ~ + 65 (

SCHEMATIC DIAGRAM (One Section Only)

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	KA224/KA224A	KA324/KA324A	KA2902	Unit
Power Supply Voltage	Vcc	± 18 or 32	± 18 or 32	± 13 or 26	٧
Differential Input Voltage	V _{I(DIFF)}	32	32	26	V
Input Voltage	V _I	-0.3 to + 32	-0.3 to +32	-0.3 to +26	V
Output Short Circuit to GND		Continuous	Continuous	Continuous	
V _{CC} ≤ 15V T _A =25 °C (One Amp)		Continuous	Continuous	Continuous	
Power Dissipation	P₀	570	570	570	m W
Operating Temperature Range	T _{OPR}	-25 ~ +85	0 ~ + 70	-40 ~ + 85	$^{\circ}$
Storage Temperature Range	T _{STG}	-65 ~ + 150	-65 ~ + 150	-65 ~ + 150	$^{\circ}$

ELECTRICAL CHARACTERISTICS

Ob a wa at a wintin	Symbol	. soc comanions		ı	(A 22	4	KA324			KA2902			
Characteristic	Syllibol			Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage	V _{IO}	$V_{CM} = 0V \text{ to } V_{CC}$ $V_{O(P)} = 1.4V, R_S$			1.5	5.0		1.5	7.0		1.5	7.0	mV
Input Offset Current	I _{IO}				2.0	30		3.0	50		3.0	50	n A
Input Bias Current	I _{BIAS}				40	150		40	250		40	250	n A
Input Common-Mode Voltage Range	V _{I(R)}	$V_{CC} = 30$ \ $(V_{CC} = 26V \text{ for K})$		0		V _{cc} -1.5	0	V _{cc} -1.5		0		V _{cc} -1.5	٧
		$R_L = ,V_{CC} = 30V$	(all A mps)		1.0	3		1.0	3		1.0	3	m A
Supply Current	lcc	$R_L = ,V_{CC} = 5V ($ $(V_{CC} = 26V \text{ for } K)$, ,		0.7	1.2		0.7	1.2		0.7	1.2	mA
Large Signal Voltage Gain	Gv	$V_{CC} = 15V$, $R_L \ge V_{O(P)} = 1V$ to		50	100		25	100			100		V/mV
	.,	V _{CC} = 30V	$R_L = 2K\Omega$	26			26			22			٧
Output Voltage Swing	V _{O(H)}	V _{CC} =26V for 2902	R _L = 10KΩ	27	28		27	28		23	24		٧
	$V_{O(L)}$	$V_{CC} = 5V, R_L \ge 10K\Omega$			5	20		5	20		5	100	mV
Common-Mode Rejection Ratio	CMRR			70	85		65	75		50	75		dB
Power Supply Rejection Ratio	PSRR			65	100		65	100		50	100		dB
Channel Separation	CS	f = 1KHz to 20	OKHz		120			120			120		dB
Short Circuit to GND	Isc				40	60		40	60		40	60	m A
	Isource	$V_{I(+)} = 1V, V_{I(-)}$ $V_{CC} = 15V, V_{O(1)}$		20	40		20	40		20	40		mA
Output Current	Isink	$V_{I(+)} = 0V, V_{I(-)}$ $V_{CC} = 15V, V_{O(i)}$		10	13		10	13		10	13		m A
	NNICI	$V_{I(+)} = 0V, V_{I(-)} = 1V$ $V_{CC} = 15V, V_{O(R)} = 200mV$		12	45		12	45					μ A
Differential Input Voltage	V _{I(DIFF)}					Vcc			Vcc			Vcc	V

ELECTRICAL CHARACTERISTICS

(V_{CC} = 5.0V, V_{EE} = GND, unless otherwise specified) The following specification apply over the range of -25 °C \le T_A \le +85 °C for the KA224; and the 0 °C \le T_A \le +70 °C for the KA324; and the -40 °C \le T_A \le +85 °C for the KA2902

Characteristic Symbol		Test Conditions		KA224			KA324			K	Unit		
Characteristic	Symbol	rest Cond	rest Conditions		Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage	V _{IO}	$V_{ICM} = 0V \text{ to } V_{CC} = V_{O(P)} = 1.4V, R_S = 0$				7.0			9.0			10.0	m V
Input Offset Voltage Drift	Δ V _{IO} /Δ Τ				7.0			7.0			7.0		μ V /℃
Input Offset Current	lio					100			150			200	n A
Input Offset Current Drift	Δ I ₁₀ /Δ Τ				10			10			10		p A /℃
Input Bias Current	IBIAS					300			500			500	n A
Input Common-Mode Voltage Range	V _{IC(R)}	$V_{CC} = 30V$ $(V_{CC} = 26V \text{ for KA2})$	902)	0		V _{cc} -2.0	0		V _{cc} -2.0	0		V _{cc} -2.0	٧
Large Signal Voltage Gain	G _V	$V_{CC} = 15V, R_L \ge 2.0$ $V_{O(P)} = 1V \text{ to } 11V$	OKΩ	25			15			15			V/mV
	W	$V_{CC} = 30V$	$R_L = 2K\Omega$	26			26			22			٧
Output Voltage Swing	V _{O(H)}	V _{CC} =26V for 2902	$R_L = 10K\Omega$	27	28		27	28		23	24		V
	V _{O(L)}	V _{CC} = 5V, R _L ≥ 10K	Ω		5	20		5	20		5	100	mV
0.4404	Isource	$V_{I(+)} = 1V, V_{I(-)} = 0V$ $V_{CC} = 15V, V_{O(P)} = 3$	2V	10	20		10	20		10	20		m A
Output Current	Isink	$V_{I(+)} = 0V, V_{I(-)} = 1V$ $V_{CC} = 15V, V_{O(P)} =$	1	10	13		5	8		5	8		mA
Differential Input Voltage	V _{I(DIFS)}					Vcc			Vcc			Vcc	٧

ELECTRICAL CHARACTERISTICS

Characteristic	Currente est		P	(A 224	Α		Unit			
Characteristic	Symbol	Test Conditions		Тур	Max	Min	Тур	Max	Oill	
Input Offset Voltage	V _{IO}	$V_{CM} = 0V \text{ to } V_{CC} = 1.5V$ $V_{O(P)} = 1.4V, R_S = 0$		1.0	3.0		1.5	3.0	mV	
Input Offset Current	lio			2	15		3.0	30	n A	
Input Bias Current	IBIAS			40	80		40	100	n A	
Input Common-Mode Voltage Range	V _{I(R)}	V _{CC} = 30V	0		V _{cc} -1.5	0		V _{cc} -1.5	٧	
Summly Commant (All Amona)	Icc	V _{CC} = 30V		1.5	3		1.5	3	mA	
Supply Current (All Amps)	I ICC	V _{CC} = 5V		0.7	1.2		0.7	1.2	mA	
Large Signal Voltage Gain	Gv	$V_{CC} = 15V$, $R_L \ge 2K\Omega$ $V_{O(P)} = 1V$ to 11V	50	100		25	100		V/mV	
	V _{O(H)}	$V_{CC} = 30V$ $R_L = 2K\Omega$	26			26			٧	
Output Voltage Swing		V _{CC} = 26V for 2902 R _L = 10KΩ	27	28		27	28		٧	
	V _{O(L)}	V _{CC} = 5V, R _L ≥ 10KΩ		5	20		5	20	mV	
Common-Mode Rejection Ratio	CMRR		70	85		65	85		dB	
Power Supply Rejection Ratio	PSRR		65	100		65	100		dB	
Channel Separation	CS	f = 1KHz to 20KHz		120			120		dB	
Short Circuit to GND	Isc			40	60		40	60	mA	
	Isource	$V_{I(+)} = 1V, V_{I(-)} = 0V$ $V_{CC} = 15V$	20	40		20	40		m A	
Output Current	I _{SINK}	$V_{I(+)} = 0V, V_{I(-)} = 1V$ $V_{CC} = 15V, V_{O(P)} = 2V$	10	20		10	20		m A	
	ISINK	$V_{I(+)} = 0v, V_{I(-)} = 1V$ $V_{CC} = 15V, V_{O(P)} = 200mV$	12	50		12	50		μ А	
Differential Input Voltage	V _{I(DIFF)}				V_{CC}			Vcc	V	

ELECTRICAL CHARACTERISTICS

(Vcc = 5.0V, VEE = GND, unless otherwise specified) The following specification apply over the range of -25 °C \leq T_A \leq +85 °C for the KA224A; and the 0 °C \leq T_A \leq +70 °C for the KA324A

Characteristic	Ī	Test Conditions			(A224	Α	ı	KA324	A	
Characteristic	Symbol	Test Con	ditions	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage	V _{IO}		$V_{CM} = 0V \text{ to } V_{CC} = 1.5V$ $V_{O(P)} = 1.4V, R_S = 0\Omega$			4.0			5.0	mV
Input Offset Voltage Drift	∆ V _{IO} /∆ T				7.0	20		7.0	30	μ V /°C
Input Offset Current	lıo					30			75	n A
Input Offset Current Drift	Δ I _{IO} /Δ T				10	200		10	300	p A /℃
Input Bias Current	I _{BIAS}				40	100		40	200	n A
Input Common-Mode Voltage Range	V _{I(R)}	V _{CC} = 30V		0		V _{cc} -2.0	0		V _{cc} -2.0	٧
Large Signal Voltage Gain	G√	V _{CC} = 15V, I	R _L ≥ 2.0KΩ	25			15			V/mV
)/ 20)/	$R_L = 2K\Omega$	26			26			
Output Voltage Swing	V _{O(P-P)}	V _{CC} = 30V	$R_L = 10 K\Omega$	27	28		27	28		V
		V _{CC} = 5V, R _L ≤ 10KΩ			5	20		5	20	m A
	Isource	$V_{l(+)} = 1V, V_{l(-)} = 0V$ $V_{CC} = 15V$		10	20		10	20		mA
Output Current	I _{SINK}	$V_{I(+)} = 0V, V_{I(-)} = 1V$ $V_{CC} = 15V$		5	8		5	8		mA
Differential Input Voltage	V _{I(DIFF)}					Vcc			Vcc	٧

TYPICAL PERFORMANCE CHARACTERISTICS

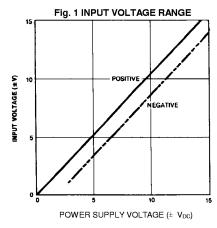


Fig. 2 INPUT CURRENT

90

80

70

40

V_{CC} = +30V

40

V_{CC} = +15V

20

10

-50

-25

0

25

50

75

100

TEMPERATURE (°C')

Fig. 3 SUPPLY CURRENT

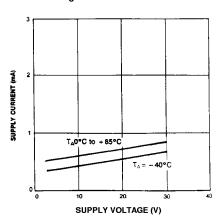


Fig. 4 VOLTAGE GAIN

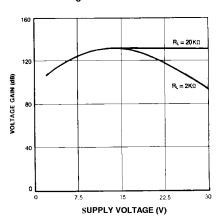


Fig. 5 OPEN LOOP FREGUENCY RESPONSE

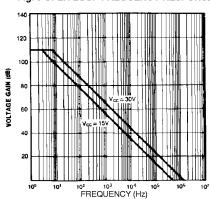


Fig. 6 COMMON.MOOE REJECTION RATIO

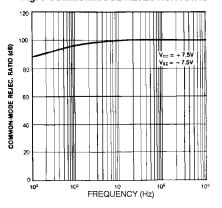


Fig.7 SLEW RATE

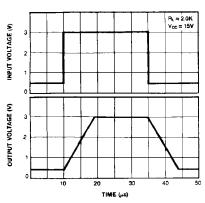


Fig. 8 VOLTAGE FOLLOWER PULSE RESPONSE (SMALL SIGNAL)

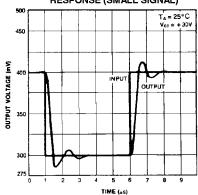


Fig. 9 LARGE SIGNAL FREQUECY RESPONSE

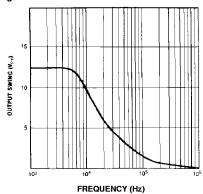


Fig. 10 OUTPUT CHARACTERISTICS CURRENT SOURCING

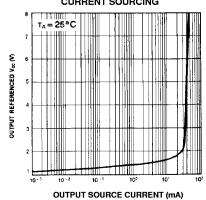


Fig. 11 OUTPUT CHARACTERISTICS CURRENT SINKING

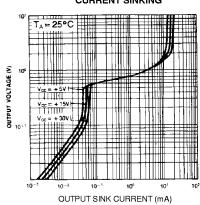
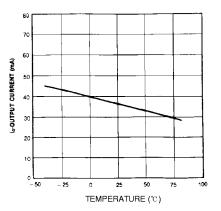



Fig. 12 CURRENT LIMITING

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

CROSSVOLT™ POP™

E²CMOS[™] PowerTrench[™]

FACTTM QSTM

 $\begin{array}{lll} \text{FACT Quiet Series}^{\text{TM}} & \text{Quiet Series}^{\text{TM}} \\ \text{FAST}^{\text{\tiny{\$}}} & \text{SuperSOT}^{\text{TM}}\text{-3} \\ \text{FASTr}^{\text{TM}} & \text{SuperSOT}^{\text{TM}}\text{-6} \\ \text{GTO}^{\text{TM}} & \text{SuperSOT}^{\text{TM}}\text{-8} \\ \text{HiSeC}^{\text{TM}} & \text{TinyLogic}^{\text{TM}} \\ \end{array}$

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.