

GO2951

CWDM OPTICAL TRANSCEIVER MODULE (NON-MSA)

Datasheet name: GO2951-57365_doc1.pdf Contact information: <u>info@embrionix.com</u>

www.embrionix.com

GO2951 CWDM Optical Transceiver

Features

- Best-in-class optical receiver sensitivity: -22dBm (over all supported video rates with pathological data)
- Robust error free transmission of signals from 50Mbps to 3Gbps
- Up to 50km reach in a 3Gbps CWDM installation
- Supports video pathological patterns for SD-SDI, HD-SDI and 3G-SDI
- Hot-pluggable
- Laser disable pin
- User writeable EEPROM
- Digital diagnostics and control via I²C interface including:
 - Monitoring of the laser bias current, average output power, receive optical power, supply voltage and temperature
 - Alarm reporting
 - Module ID polling
- Single +3.3V power supply
- RoHS compliant
- Operating temperature range: 0°C to 70°C
- 56.5mm x 13.4mm x 8.6mm SFP Package
- SMPTE 297-2006 compliant

Applications

SMPTE 297-2006 compliant optical-to-electrical interfaces

Description

The GO2951 is an optical transceiver module engineered for exceptional performance in the presence of SDI pathological patterns. The transceiver features best-in-class optical receiver sensitivity for SMPTE 259M, SMPTE 344M, SMPTE 292M and SMPTE 424M serial rates, thus providing superior optical link budget and robustness.

The GO2951 contains a PIN photodiode receiver and a DFB laser transmitter designed to provide error-free transmission of signals from 50Mbps to 3Gbps over single mode fiber (9/125). It is also hot-pluggable.

The GO2951 provides extensive operational status monitoring through an I^2C interface. Input optical power is monitored in the receiver; output optical power and bias current are monitored in the transmitter. Other operating conditions, such as power supply and operating temperature, are also monitored. If a monitored parameter falls outside the pre-defined range, an alarm flag associated with the parameter will be raised.

Figure A: GO2951 Optical Transceiver Module

Revision History

Version	ECR	Date	Changes and/or Modifications
0	157039	November 2011	New document.
1	157987	April 2012	Updated extinction ratio in Table 3-2.

Contents

Features	1
Description	1
Revision History	2
1. Functional Block Diagram	3
2. Pin Specifications	4
2.1 Pin Configuration	4
2.2 Pin Descriptions	5
2.3 Host Board Power Supply Requirements	6
2.4 Optical Connector Requirements	6
3. Product Specifications	7
3.1 Absolute Maximum Ratings	7
3.2 Optical Performance Specifications	7
3.3 DC Electrical Specifications	9
3.4 AC Electrical Specifications	10
3.5 Supporting Circuit Specifications	10
3.5.1 In-Rush Current Control Circuit	10
4. Digital Diagnosis	11
4.1 I ² C Bus Interface	11
4.2 Serial Interface Memory Map	13
5. Application Reference Design	21
5.1 Typical Application Circuit	21
6. References and Relevant Standards	22
7. Package Information	23
7.1 Package Dimensions	23
7.2 PCB Layout Recommendations	24
7.3 Marking Information	25
7.4 Ordering Information	26

1. Functional Block Diagram

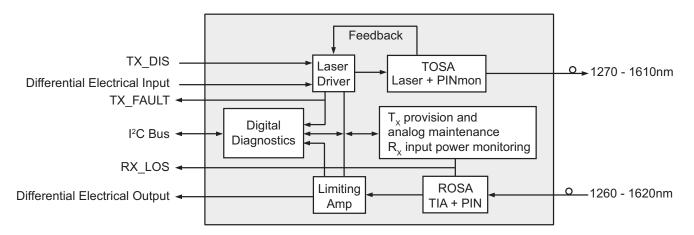


Figure 1-1: GO2951 Functional Block Diagram

2. Pin Specifications

2.1 Pin Configuration

Figure 2-1 shows the host board pad configuration for the GO2951. Figure 2-3 shows the edge connector pad configuration for the GO2951.

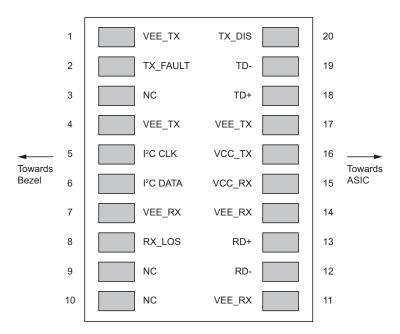


Figure 2-1: GO2951 Host Board Pad Configuration

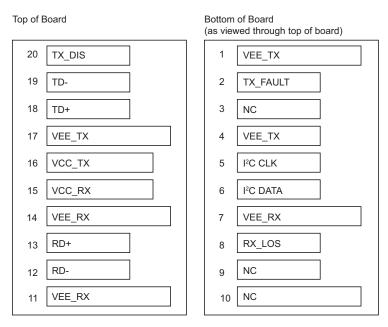


Figure 2-2: GO2951 Edge Connector Pad Configuration

2.2 Pin Descriptions

Table 2-1 lists the pin descriptions.

Table 2-1: Pin Descriptions

Number	Name	Туре	Description	Notes
1	VEE_TX	Ground	Transmitter ground connection	1
2	TX_FAULT	Output	Transmitter fault indicator (Active high, open-drain)	-
3	NC	No Connect	No Connection	-
4	VEE_TX	Ground	Transmitter ground connection	1
5	I ² C CLK	Digital (Input)	I ² C Clock	-
6	I ² C DATA	Digital (Bi-Directional)	I ² C Data	-
7	VEE_RX	Ground	Receiver ground connection	1
8	RX_LOS	Output	Output Receiver loss of signal indicator (Active high, open-drain)	
9	NC	No Connect	No Connection	-
10	NC	No Connect	No Connection	-
11	VEE_RX	Ground	Receiver ground connection	1
12	RD-	Output	Negative differential input (AC-coupled internally)	-
13	RD+	Output	Positive differential output (AC-coupled internally)	-
14	VEE_RX	Ground	Receiver ground connection	1
15	VCC_RX	Power	Receiver power supply	2
16	VCC_TX	Power	Transmitter power supply	2
17	VEE_TX	Ground	Transmitter ground connection	1
18	TD+	Input	Positive differential input (AC-coupled internally)	-
19	TD-	Input	Negative differential input (AC-coupled internally)	-
20	TX_DIS	Digital (Input)	Transmitter Disable. Laser is disabled when high. Internal 6kΩ pull-up.	-

NOTE:

^{1.} All VEE signals are connected together inside the module.

^{2.} VCC_TX and VCC_RX are independent supplies.

2.3 Host Board Power Supply Requirements

The host board is required to provide a regulated and filtered power supply of 3.3V +/-5% for the GO2951 via the on board SFP connector. Figure 2-3 shows the recommended board supply filtering. When the host board is loaded with a resistive load in place of the SFP module and sourcing the maximum rated current, the peak-to-peak power supply noise measured on the SFP connector should comply to Table 2-2.

Figure 2-3: Recommended Host Board Supply Filtering

Table 2-2: Host Board Power Supply Noise Requirement at VCC_TX and VCC_RX

Frequency (MHz)	Peak-to-Peak Noise Amplitude (%)
0.02-1	2
1-10	3

2.4 Optical Connector Requirements

An LC connector with PC/UPC polish is required for each port.

3. Product Specifications

3.1 Absolute Maximum Ratings

Table 3-1 lists the absolute maximum ratings for the GO2951. Conditions exceeding the limits listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions outside those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 3-1: Absolute Maximum Ratings

Parameter	Value
Supply Voltage	4V
Operating Case Temperature	-20°C to 80°C
Storage Temperature	-40°C ≤ T _{STG} ≤ 85°C
ESD tolerance on all pins	±1kV HBM
Relative Humidity (non-condensing)	5% - 95% RH

3.2 Optical Performance Specifications

Table 3-2 lists the optical performance specifications for the transmitter of the GO2951.

Table 3-3 lists the optical performance specifications for the receiver of the GO2951.

Table 3-2: Transmitter Optical Performance Specifications

Parameter	Symbol	Condition	Min	Тур	Max	Units	Notes
Wavelength	λ	-	x - 6.5	х	x + 6.5	nm	1
Spectral Line Width (RMS)	-	-	-	0.2	1	nm	_
Average Optical Output Power	P _{OUT}	-	0	+2.5	+5	dBm	_
Extinction Ratio	ER	-	7	-	_	dB	_

Table 3-2: Transmitter Optical Performance Specifications (Continued)

Parameter	Symbol	Condition	Min	Тур	Max	Units	Notes
Optical Signal Intrinsic Jitter	-	2.97Gbps, 1.485Gbps, 270Mbps PRBS	-	30	60	ps	-
		2.97Gbps SMPTE 424M Pathological	-	50	70	ps	-
		1.485Gbps SMPTE 292M Pathological	-	60	100	ps	-
		270Mbps SMPTE 259M Pathological	-	110	180	ps	-
Optical Signal Rise Time (20% to 80%)	t _r	2.97Gbps SMPTE 424M	-	-	135	ps	_
Optical Signal Fall Time (20% to 80%)	t _f	2.97Gbps SMPTE 424M	_	_	135	ps	_
Laser Power Monitoring Accuracy	-	-	-1	-	+1	dB	

NOTE

Table 3-3: Receiver Optical Performance Specifications

Parameter	Symbol	Condition	Min	Тур	Max	Units	Notes
Wavelength	λ	-	1260	_	1620	nm	_
Sensitivity	-	ER = 9dB	_	-25	-22	dBm	1
Overload	-	-	0	_	-	dBm	1
Loss of Signal Asserted	-	2.97Gbps PRBS ER = 9dB	-31	-	-	dBm	-
Loss of Signal De-asserted	-	2.97Gbps PRBS ER = 9dB	-	-	-23	dBm	_
Loss of Signal Optical Hysteresis	-	2.97Gbps PRBS ER = 9dB	0.5	_	-	dB	-
Maximum Back Reflection	_	_	_	_	-27	dB	_

^{1.} x = center wavelength: 1271nm, 1291nm, 1311nm, 1331nm, 1351nm, 1371nm, 1391nm, 1411nm, 1431nm, 1451nm, 1471nm, 1491nm, 1511nm, 1531nm, 1551nm, 1571nm, 1591nm, 1611nm.

Table 3-3: Receiver Optical Performance Specifications (Continued)

Parameter	Symbol	Condition	Min	Тур	Max	Units	Notes
Input Power Monitoring Accuracy	-	-	-2	-	2	dB	-

NOTES

3.3 DC Electrical Specifications

Table 3-4 lists the DC electrical specifications of the GO2951. Figure 3-1 shows the definition of the differential signal level.

Table 3-4: DC Electrical Specifications

Parameter	Symbol	Condition	Min	Тур	Max	Units	Notes
Operating Temperature Range	T _{CASE}	_	0	_	70	°C	1
Power Supply Voltage	V _{CC}	_	3.13	3.3	3.47	V	1
Total Power Consumption	_	_	_	650	940	mW	_
Differential Input Data Amplitude	$V_{p-pDiff}$	-	0.4	-	2.4	Vpp	2
Differential Output Data Amplitude	V _{p-pDiff}	_	0.550	0.660	0.850	Vpp	3
Digital Input Low	V _{IL}	_	0		0.8	V	-
Digital Input High	V _{iH}	-	2		V _{CC}	V	-

NOTES

- 1. Outside the specified range, performance is not guaranteed.
- 2. Signals are AC coupled internally within the module and terminated to a 50Ω single-ended termination.
- 3. Each leg must be terminated to a 50Ω (single-ended) termination. Signals are AC coupled internally within the module.

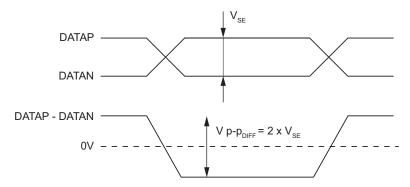


Figure 3-1: Definition of Differential Signal Level

^{1.} The sensitivity and the overload specifications refer to the input power levels for BER = 1E-12 against both PRBS and pathological pattern at SMPTE 259, SMPTE 292M and SMPTE 424M rates.

3.4 AC Electrical Specifications

Table 3-5 lists the AC electrical specifications for the GO2951.

Table 3-5: AC Electrical Specifications

Parameter	Symbol	Condition	Min	Max	Units
Bit Rate	BR	-	50	3000	Mbps
Time to Initialize	t_init	From power on	-	300	ms
Rise/Fall Time	t _r / t _f	20% to 80%	-	135	ps
Tx_Disable Assert Time	t_off	Time from rising edge of Tx_Disable to when the optical output falls below 10% of nominal.	-	10	μs
Tx_Disable Negate Time	t_on	Time from falling edge of Tx_Disable to when the modulated optical output rises above 90% of nominal.	-	1	ms
Rx_LOS Assert Time	t_loss_on	Time from Rx_LOS state to Rx_LOS assert.	_	10	ms
Rx_LOS De-assert Time	t_loss_off	Time from non-Rx_LOS state to Rx_LOS de-assert.	_	10	ms
Serial ID Clock Rate	f_serial_clock	-	_	400	kHz

3.5 Supporting Circuit Specifications

3.5.1 In-Rush Current Control Circuit

Due to the hot-pluggable requirement, the GO2951 has built-in circuits to limit the in-rush current upon hot insertion. The specifications of the in-rush limiting circuits are summarized in Table 3-6.

Table 3-6: In-rush Current Limiting Circuits Specifications

Parameter	Value		
Maximum in-rush current ramp rate	50mA/ms		
Maximum in-rush current	30mA over steady state		

4. Digital Diagnosis

4.1 I²C Bus Interface

The I^2C interface allow reading of diagnostic information from the module. It is comprised of I^2C DATA and I^2C CLK pins. All address and data bytes are transmitted through the I^2C DATA pin. The I^2C DATA and I^2C CLK pins are open-collector and they must be pulled high (4.75k Ω recommended) externally to the module. Data on the I^2C DATA pin may only change during I^2C CLK 'low' time periods. Data changes during I^2C CLK 'high' periods will indicate either a START or STOP condition. Operations and conditions are described as follows:

START Condition

The START condition is originated by the host. A high-to-low transition of I^2C DATA while I^2C CLK 'high' defines a START condition that must precede any other command, see Figure 4-1.

STOP Condition

The STOP condition is originated by the host. A low-to-high transition of I^2C DATA while I^2C CLK 'high' defines a STOP condition, see Figure 4-1.

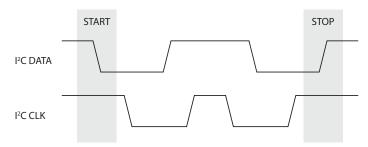


Figure 4-1: I²C START and STOP Condition

Acknowledge or ACK Condition

The acknowledge condition occurs when the I^2C DATA pin is pulled 'low' during the ninth clock pulse following an address or data byte. The module originates this condition after it has received a block or data address. The host originates this condition during a sequential address read operation.

Addressing Operation

The module must receive a block address following a START condition to enable a read operation. The block address is clocked into the module MSB to LSB. There are three read operations: current address read, random read, and sequential address read.

Note that by the convention specified in the SFP MSA, 7-bit block addresses are left shifted by one bit when expressing them in hex. Block addresses for the different

memory regions are specified in Section 4.2. Block addresses A0h, A2h, and B2h would therefore be transmitted defined as binary 1010000, 1011001 and 1011001 respectively.

Current Address Read Operation

The module has an internal register that maintains the data address used during the last read operation, incremented by one. If the most recent data address was FFh, then the register resets to 00h. Once the block address is clocked in by the host with the R/W bit set 'high', the module follows with an ACK condition, and the data byte located at the current data address is serially clocked out of the module MSB to LSB. The operation is terminated when the host does not provide an ACK condition and initiates a STOP condition. See Figure 4-2.

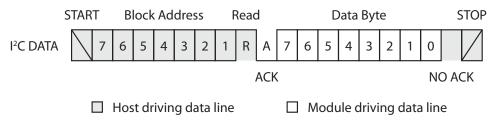


Figure 4-2: I²C Current Address Read Operation

Random Address Read Operation

A random read operation requires a dummy write sequence to load in the data address. Once the block and data addresses are clocked in by the host followed by an ACK condition provided by the module, the host must generate another START condition. The host now initiates a current address read operation by sending the block address with the R/W bit set 'high'. The module provides an ACK condition and serially clocks out the data byte. The operation is terminated when the host does not provide an ACK condition and initiates a STOP condition. See Figure 4-3.

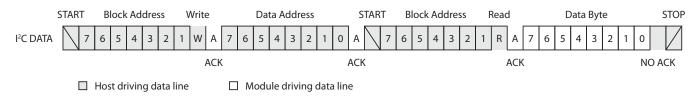


Figure 4-3: I²C Random Access Read Operation

Sequential Address Read Operation

The sequential address read operation is initiated by either a current address read or random address read operation. After the host receives the first data byte, it responds with an ACK condition. As long as the module receives the ACK condition after a data byte is read, the host can clock out additional data bytes from the module. After the data address reaches FFh, it resets to 00h. The operation is terminated when the host does not provide an ACK condition and initiates a STOP condition. See Figure 4-4.

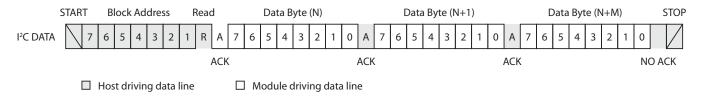


Figure 4-4: I²C Sequential Read Access Operation

4.2 Serial Interface Memory Map

Module identification and digital diagnostic monitoring information is accessible through the memory map addresses shown in this section. The bullet items below outline the different block addresses of the module:

- Block address A0h contains serial ID information of the module.
- Block address A2h contains alarm and warning flags, thresholds and real-time digital diagnostic features set.

The 16-bit digital diagnostic monitoring information is internally calibrated over Gennum's specified operating temperature and voltage. Alarm and warning threshold values are calibrated in the same manner and can be interpreted as defined below.

Internally measured module temperature is represented as a 16-bit signed two's complement value in increments of 1/256°C, yielding a total range of -128°C to +128°C. To calculate the temperature, treat the two's complement value as a 16-bit unsigned integer and divide it by 256. If the result is greater or equal to 128, subtract 256 from the result. See Table 4-1 for temperature conversion examples.

Table 4-1: Temperature Conversion Examples

MSB (BIN)	LSB (BIN)	Temperature (°C)
01000000	00000000	64°C
01000000	00001111	64.059°C
01011111	00000000	95°C
11110110	00000000	-10°C
11011000	00000000	-40°C

Internally measured module supply voltage is represented as a 16-bit unsigned integer with the voltage defined as the full 16-bit value with the LSB equal to 100 μ V, yielding a total range of 0 to +6.55V. To calculate the supply voltage, multiply the 16-bit unsigned integer by 100 μ V.

Internally measured laser bias current is represented as a 16-bit unsigned integer with the current defined as the full 16-bit value with the LSB equal to $2\mu A$, yielding a total range of 0 to 131 mA. To calculate the laser bias current, multiply the 16-bit unsigned integer by $2\mu A$.

Internally measured Tx and Rx optical power are represented as a 16-bit unsigned integer with the power defined as the full 16-bit value with the LSB equal to 0.1 μ W, yielding a total range of 0 to 6.5535 mW (~ -40 to +8.2 dBm). To calculate the Tx and Rx optical power, multiply the 16-bit unsigned integer by 0.1 μ W.

Table 4-2: Modules Identification Fields

Block Address: A0h

Address	Size	Name	Description and Value of the Field
0	1	Identifier	Type of serial transceiver. 85h
1	1	Ext. Identifier	Extended identifier of type of serial transceiver. 04h
2	1	Connector	Code for connector type. 07h for LC connectors.
3	1	Standards Compliance	41h, for SMPTE259M/344M/292M/424M and SMPTE 297.
4-10	8	Transceiver Code	Code for electronic compatibility or optical compatibility. Not applicable for GO2951.
11	1	Encoding	Code for serial encoding algorithm. Value: 03H for NRZ.
12	1	BR, Nominal	Nominal bit rate, units of 100Mbps, 1Eh for 3Gbps.
13	1	Reserved	Xxh
14	1	Length(9µm) - km	Link length supported for standard SMF, units of km, 1Eh for 30km (at HD-SDI).
15	1	Length(9μm)	Link length supported for standard SMF, units of 100m, 00h
16	1	Length (50μm)	Link length supported for 50/125 μm fiber, units of 10m, 00h
17	1	Length (62.5μm)	Link length supported for 62.5/125 μm fiber, units of 10 m. 00h
18	1	Length (Copper)	Link length supported for copper, units of meters. 00h
19	1	Reserved	Xxh
20-35	16	Vendor name	SFP with OM transceiver vendor name (ASCII). G E N N U M
20	1	G	47h
21	1	E	45h
22	1	N	4Eh
23	1	N	4Eh
24	1	U	55h
25	1	М	4Dh

Table 4-2: Modules Identification Fields (Continued)

Block Address: A0h

Address	Size	Name	Description and Value of the Field
26-35	10	-	20h for each byte
36	1	Reserved	-
37-39	3	Vendor OUI	SFP with OM transceiver vendor IEEE company ID. 00 0A DF
40-55	16	Vendor PN	Part number provided by SFP with OM transceiver vendor. GO2951-XXCH
40	1	G	47h
41	1	0	4Fh
42	1	2	32h
43	1	9	39h
44	1	5	35h
45	1	1	31h
46	1	-	2Dh
47	1	Х	Model dependent.
48	1	Х	Model dependent.
49	1	С	43h
50	1	Н	48h
51-55	6	-	20h
56-58	3	Reserved	Reserved field.
59	1	Vendor Rev	Revision level for part number provided by vendor.
60	1	Wavelength	XX for middle two digits of wavelength.
61-62	2	Reserved	Xxh
63	1	CC_BASE	Check code for Base ID fields. (The value of the lower 8 bits of the sum of the contents from address 0 to 62.)
64-65	2	Options	Indicates which optional SFP with OM signals are implemented.
64	1	_	Xxh
65	1	_	xx01101xh (1Ah)
66	1	BR, max	Upper bit rate margin, units of %, 5h.
67	1	BR, min	Lower bit rate margin, units of %, 5Fh.
68-83	16	Vendor SN	Serial number provided by vendor (ASCII)
84-85	2	Year	Manufacturing date code (ASCII).

Table 4-2: Modules Identification Fields (Continued)

Block Address: A0h

Address	Size	Name	Description and Value of the Field
86-87	2	Month	Manufacturing date code (ASCII).
88-89	2	Day	Manufacturing date code (ASCII).
90-91	2	Blank	-
92	1	Calibration flag	28h for calibrated average output power
93	1	-	F0h, Enhanced alarm/warning flags.
94	1	Reserved	Xxh
95	1	CC_EXT	Check code for the Extended ID fields. (The value of the lower 8 bits of the sum of the contents from address 64 to 94.)
96-255	160	Reserved	-

Table 4-3: Alarm and Warning Thresholds

Block Address: A2h

Address	Size	Name	Description and Value of the Field
0-1	2	Temp High Alarm	MSB at lower address. 70°C case temp.
2-3	2	Temp Low Alarm	MSB at lower address. 0°C case temp.
4-5	2	Temp High Warning	MSB at lower address. 65°C case temp.
6-7	2	Temp Low Warning	MSB at lower address. 5°C case temp.
8-9	2	Supply Voltage High Alarm	MSB at lower address. 3.6V
10-11	2	Supply Voltage Low Alarm	MSB at lower address. 3.0V
12-13	2	Supply Voltage High Warning	MSB at lower address. 3.47V
14-15	2	Supply Voltage Low Warning	MSB at lower address. 3.14V
16-17	2	Laser Bias High Alarm	MSB at lower address. 100mA.
18-19	2	Laser Bias Low Alarm	MSB at lower address. 5mA
20-21	2	Laser Bias High Warning	MSB at lower address. 90mA.
22-23	2	Laser Bias Low Warning	MSB at lower address. 10mA

Table 4-3: Alarm and Warning Thresholds (Continued)

Block Address: A2h

Address	Size	Name	Description and Value of the Field
24-25	2	Tx Power High Alarm	MSB at lower address. 5.5dBm
26-27	2	Tx Power Low Alarm	MSB at lower address0.5dBm
28-29	2	Tx Power High Warning	MSB at lower address. 5dBm
30-31	2	Tx Power Low Warning	MSB at lower address. 0dBm
32-33	2	Rx Power High Alarm	MSB at lower address. 0dBm
34-35	2	Rx Power Low Alarm	MSB at lower address24dBm
36-37	2	Rx Power High Warning	MSB at lower address1dBm
38-39	2	Rx Power Low Warning	MSB at lower address23dBm
40-95	56	Reserved.	-

Table 4-4: Alarms and Real time Diagnostic information

Block Address: A2h

Address	Size	Name	Description and Value of the Field
96	1	Temperature MSB	Internally measured module temperature (approximately equal to case temperature)
97	1	Temperature LSB	Internally measured module temperature (approximately equal to case temperature)
98	1	V _{CC} MSB	Internally measured module supply voltage
99	1	V _{CC} LSB	Internally measured module supply voltage
100	1	Laser Bias MSB	Internally measured laser bias current
101	1	Laser Bias LSB	Internally measured laser bias current
102	1	Tx Power MSB	Internally measured Tx power
103	1	Tx Power LSB	Internally measured Tx power
104	1	Rx Power MSB	Internally measured Rx power
105	1	Rx Power LSB	Internally measured Rx power
106-109	9	Reserved	-

Table 4-4: Alarms and Real time Diagnostic information

Block Address: A2h (Continued)

Address	Size	Name	Description and Value of the Field
110	1	Tx Disable State	Bit 7: State of TX_DIS input pin
		Tx Disable Select	Bit 6: Read/write bit that allows software disable of laser. Writing "1" disables laser.
		Reserved	Bit 5-3
		Tx Fault	Bit 2: State of TX_FAULT output
		Rx LOS	Bit 1: State of RX_LOS output
		Data_Ready	Bit 0
111	1	Temp Update	Bit 7 goes to high after a temperature update
		V _{CC} Update	Bit 6 goes to high after a V_{CC} update
		Tx bias Update	Bit 5 goes to high after a Tx bias current update
		Tx power Update	Bit 4 goes to high after a Tx power update
		Rx power Update	Bit 3 goes to high after a Rx input power update
		Reserved	Bit 0 to Bit 2
112	1	Temp High Alarm Flag	Bit 7, set when the internal temperature exceeds the high temp alarm threshold
		Temp Low Alarm Flag	Bit 6, set when the internal temperature goes below the low temp alarm threshold
		Supply Voltage High Alarm Flag	Bit 5, set when the internal V_{CC} exceeds the supply voltage high alarm threshold
		Supply Voltage Low Alarm Flag	Bit 4, set when the internal V_{CC} goes below the supply voltage low alarm threshold
		Laser Bias High Alarm Flag	Bit 3, set when the monitored laser bias current exceeds the laser bias high alarm threshold
		Laser Bias Low Alarm Flag	Bit 2, set when monitored laser bias current goes below the laser bias low alarm threshold
		Tx Power High Alarm Flag	Bit 1, set when the monitored Tx power exceeds the Tx power high alarm threshold
		Tx Power Low Alarm Flag	Bit 0, set when monitored Tx power current goes below the Tx power low alarm threshold

Table 4-4: Alarms and Real time Diagnostic information

Block Address: A2h (Continued)

Address	Size	Name	Description and Value of the Field
113	1	Rx Power High Alarm Flag	Bit 7, set when the monitored Rx power exceeds the Rx power high alarm threshold
		Rx Power Low Alarm Flag	Bit 6, set when the monitored Rx power goes below the Rx power low alarm threshold
		Reserved	Bit 0 - 5
114-115	2	Reserved	-
116	1	Temp High Warning Flag	Bit 7, set when the internal temperature exceeds the high temp warning threshold
		Temp Low Warning Flag	Bit 6, set when the internal temperature goes below the low temp warning threshold
		Supply Voltage High Warning Flag	Bit 5, set when the internal V _{CC} exceeds the supply voltage high warning threshold
		Supply Voltage Low Warning Flag	Bit 4, set when the internal V _{CC} goes below the supply voltage low warning threshold
		Laser Bias High Warning Flag	Bit 3, set when the monitored laser bias current exceeds the laser bias high warning threshold
		Laser Bias Low Warning Flag	Bit 2, set when monitored laser bias current goes below the laser bias low warning threshold
		Tx Power High Warning Flag	Bit 1, set when the monitored Tx power exceeds the Tx power high warning threshold
		Tx Power Low Warning Flag	Bit 0, set when monitored Tx power current goes below the Tx power low warning threshold
117	1	Rx Power High Warning Flag	Bit 7, set when the monitored Rx power exceeds the Rx power high warning threshold
		Rx Power Low Warning Flag	Bit 6, set when the monitored Rx power goes below the Rx power low warning threshold
		Reserved	Bit 0 - 5
118-127	10	Reserved	-

Table 4-5: Writeable Area

Block Address: A2h

Address	Size	Name	Description and Value of the Field
128-247	120	User Writeable Area	-
248-255	8	Reserved	-

5. Application Reference Design

5.1 Typical Application Circuit

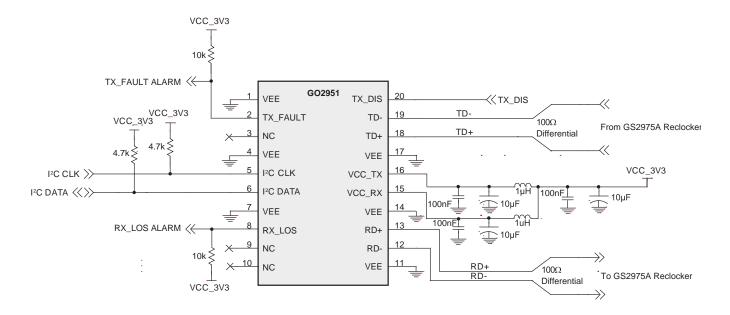


Figure 5-1: Typical Application Circuit

6. References and Relevant Standards

Table 6-1: References and Relevant Standards

	The state of the s
INF-8074i Rev 1.0	SFP (Small Formfactor Pluggable) Transceiver
SMPTE 259M-2008	SDTV Digital Signal/Data – Serial Digital Interface
SMPTE 292M-2008	1.5 Gbps Signal / Data Serial Interface
SMPTE 297-2006	Serial Digital Fiber Transmission System for SMPTE 259M, SMPTE 344M, SMPTE 292 and SMPTE 424M Signals
SMPTE 344M-2000	540 Mbps Serial Digital Interface
SMPTE 424M-2006	3 Gbps Signal/Data Serial Interface

7. Package Information

7.1 Package Dimensions

A common mechanical outline, as shown in Figure 7-1, is used for all SFP modules.

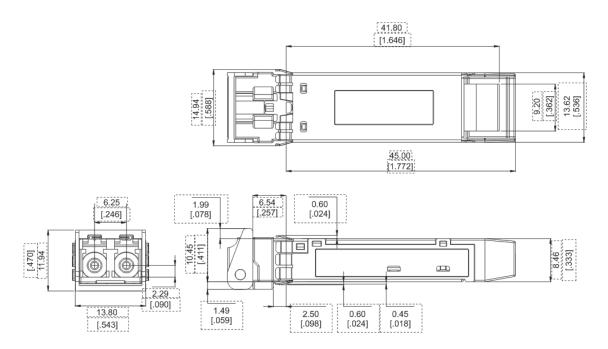


Figure 7-1: Common SFP Package Outline

7.2 PCB Layout Recommendations

Notes:

- 1. All dimensions in mm.
- 2. Datum and basic dimensions established by customer
- 3. Pads and vias are chassis-ground in 11 places

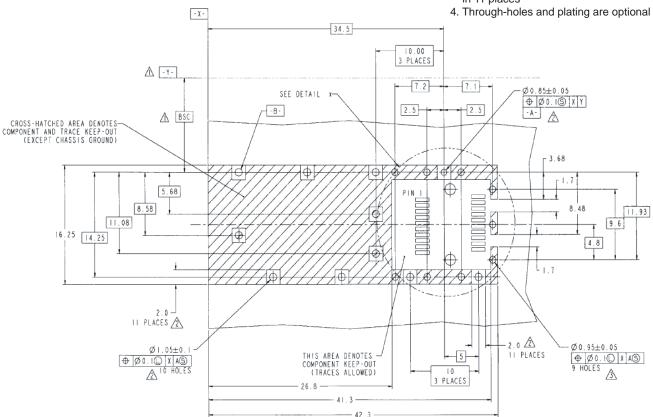


Figure 7-2: Host PCB Layout - Part 1

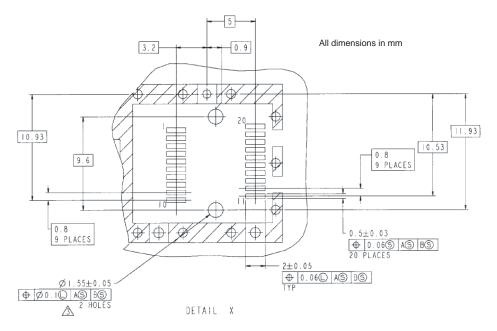


Figure 7-3: Host PCB Layout - Part 2

7.3 Marking Information

Table 7-1: Marking Information

Label Code	Description
XX	2-digit wavelength code
ZZZZZZZ	7-digit serial number
UUUU	Laser wavelength in nanometers
YYYY	Year of manufacture
WW	Week of manufacture

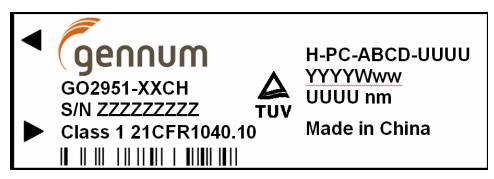


Figure 7-4: GO2951 Marking Information

7.4 Ordering Information

Table 7-2: Ordering Information

Part Number	Package	Wavelength	Temperature Range
GO2951-27CH	SFP	1271nm	0°C to 70°C
GO2951-29CH	SFP	1291nm	0°C to 70°C
GO2951-31CH	SFP	1311nm	0°C to 70°C
GO2951-33CH	SFP	1331nm	0°C to 70°C
GO2951-35CH	SFP	1351nm	0°C to 70°C
GO2951-37CH	SFP	1371nm	0°C to 70°C
GO2951-39CH	SFP	1391nm	0°C to 70°C
GO2951-41CH	SFP	1411nm	0°C to 70°C
GO2951-43CH	SFP	1431nm	0°C to 70°C
GO2951-45CH	SFP	1451nm	0°C to 70°C
GO2951-47CH	SFP	1471nm	0°C to 70°C
GO2951-49CH	SFP	1491nm	0°C to 70°C
GO2951-51CH	SFP	1511nm	0°C to 70°C
GO2951-53CH	SFP	1531nm	0°C to 70°C
GO2951-55CH	SFP	1551nm	0°C to 70°C
GO2951-57CH	SFP	1571nm	0°C to 70°C
GO2951-59CH	SFP	1591nm	0°C to 70°C
GO2951-61CH	SFP	1611nm	0°C to 70°C

DOCUMENT IDENTIFICATION DATA SHEET

The product is in production. Gennum reserves the right to make changes to the product at any time without notice to improve reliability, function or design, in order to provide the best product possible.

CAUTION

Phone: +1 (905) 632-2996

E-mail: corporate@gennum.com

ELECTROSTATIC SENSITIVE DEVICES

DO NOT OPEN PACKAGES OR HANDLE EXCEPT AT A STATIC-FREE WORKSTATION

Fax: +1 (905) 632-2055

www.gennum.com

GENNUM CORPORATE HEADQUARTERS

4281 Harvester Road, Burlington, Ontario L7L 5M4 Canada

CANADA

Suite 320, 3553 31st St. N.W. Calgary, Alberta T2L 2K7 Canada

Phone: +1 (403) 284-2672 Fax: +1 (905) 632-2055

415 Legget Drive, Suite 200 Kanata, Ontario K2K 2B2 Canada

Phone: +1 (613) 270-0458 Fax: +1 (613) 270-0429

GERMANY

Gennum Canada Limited Niederlassung Deutschland München, Germany

Phone: +49 89 309040 290 Fax: +49 89 309040 293

E-mail: gennum-germany@gennum.com

INDIA

#208(A), Nirmala Plaza, Airport Road, Forest Park Square Bhubaneswar 751009

Phone: +91 (674) 65304815 Fax: +91 (674) 259-5733

JAPAN KK

Shinjuku Green Tower Building 27F 6-14-1, Nishi Shinjuku Shinjuku-ku, Tokyo, 160-0023 Japan

Phone: +81 (03) 3349-5501 Fax: +81 (03) 3349-5505

E-mail: gennum-japan@gennum.com Web Site: http://www.gennum.co.jp

MEXICO

Venustiano Carranza 122 Int. 1 Centro, Aguascalientes Mexico CP 20000 Phone: +1 (416) 848-0328

NORTH AMERICA WESTERN REGION

691 South Milpitas Blvd., Suite #200 Milpitas, CA 95035 United States

Phone: +1 (408) 934-1301 Fax: +1 (408) 934-1029 E-mail: naw_sales@gennum.com

NORTH AMERICA EASTERN REGION

4281 Harvester Road Burlington, Ontario L7L 5M4 Canada

Phone: +1 (905) 632-2996 Fax: +1 (905) 632-2055 E-mail: nae_sales@gennum.com

TAIWAN

6F-4, No.51, Sec.2, Keelung Rd. Sinyi District, Taipei City 11052 Taiwan R.O.C.

Phone: (886) 2-8732-8879 Fax: (886) 2-8732-8870

E-mail: gennum-taiwan@gennum.com

UNITED KINGDOM

South Building, Walden Court Parsonage Lane, Bishop's Stortford Hertfordshire, CM23 5DB United Kingdom

Phone: +44 1279 714170 Fax: +44 1279 714171

2, West Point Court, Great Park Road Bradley Stoke, Bristol BS32 4PY Great Britain

Phone: +44 1454 462200

Fax: +44 1454 462200 Fax: +44 1454 462201

SNOWBUSH IP - A DIVISION OF GENNUM

439 University Ave. Suite 1700 Toronto, Ontario M5G 1Y8 Canada

Phone: +1 (416) 925-5643 Fax: +1 (416) 925-0581 E-mail: sales@snowbush.com

Web Site: http://www.snowbush.com

Gennum Corporation assumes no liability for any errors or omissions in this document, or for the use of the circuits or devices described herein. The sale of the circuit or device described herein does not imply any patent license, and Gennum makes no representation that the circuit or device is free from patent infringement.

All other trademarks mentioned are the properties of their respective owners.

GENNUM and the Gennum logo are registered trademarks of Gennum Corporation.

© Copyright 2011 Gennum Corporation. All rights reserved.

www.gennum.com

IMPORTANT NOTICE

Embrionix Design inc. and its subsidiaries (Embrionix) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Embrionix's terms and conditions of sale supplied at the time of order acknowledgment.

Embrionix warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Embrionix's standard warranty. Testing and other quality control techniques are used to the extent Embrionix deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

Embrionix assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using Embrionix SFP and emSFP. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

Embrionix does not warrant or represent that any license, either express or implied, is granted under any Embrionix patent right, copyright, mask work right, or other Embrionix intellectual property right relating to any combination, machine, or process in which Embrionix products or services are used. Information published by Embrionix regarding third-party products or services does not constitute a license from Embrionix to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from Embrionix under the patents or other intellectual property of Embrionix.

Reproduction of Embrionix information in Embrionix data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Embrionix is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of Embrionix products or services with statements different from or beyond the parameters stated by Embrionix for that product or service voids all express and any implied warranties for the associated Embrionix product or service and is an unfair and deceptive business practice. Embrionix is not responsible or liable for any such statements.

Embrionix products are not authorized for use in safety-critical applications (such as life support) where a failure of the Embrionix product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Embrionix products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by Embrionix. Further, Buyers must fully indemnify Embrionix and its representatives against any damages arising out of the use of Embrionix products in such safety-critical applications.

Embrionix products are neither designed nor intended for use in military/aerospace applications or environments unless the Embrionix products are specifically designated by Embrionix as military-grade. Only products designated by Embrionix as military-grade meet military specifications. Buyers acknowledge and agree that any such use of Embrionix products which Embrionix has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

Embrionix products are neither designed nor intended for use in automotive applications or environments unless the specific Embrionix products are designated by Embrionix as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, Embrionix will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Embrionix products and Embrionix contact information:

General website:

http://www.embrionix.com

Contact information:

http://www.embrionix.com/Contact.aspx

Sales contact information:

sales@embrionix.com

Telephone:

1,450,688,8171