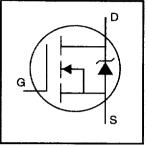
Distributed by:

The content and copyrights of the attached material are the property of its owner.

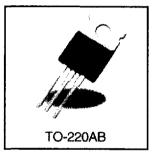
Jameco Part Number 669943


International **TOR** Rectifier

PD - 9.1307B

IRLZ34N

HEXFET® Power MOSFET


- Logic-Level Gate Drive
- Advanced Process Technology
- Dynamic dv/dt Rating
- 175°C Operating Temperature
- Fast Switching
- Fully Avalanche Rated

Description

Fifth Generation HEXFET® Power MOSFETs from International Rectifier utilize advanced processing techniques to achieve the lowest possible onresistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design for which HEXFET Power MOSFETs are well known, provides the designer with an extremely efficient device for use in a wide variety of applications.

The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts.)The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry.

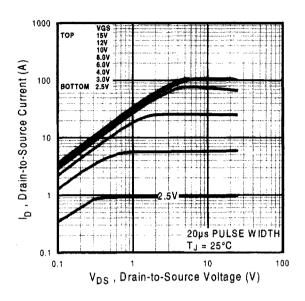
Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, VGS @ 10V	30	
I _D @ T _C = 100°C	Continuous Drain Current, VGS @ 10V	21	A
IDM	Pulsed Drain Current ①	110	-1
P _D @T _C = 25°C	Power Dissipation	68	W
	Linear Derating Factor	0.45	W/°C
V _{GS}	Gate-to-Source Voltage	±16	V
EAS	Single Pulse Avalanche Energy 2	110	mJ
AR	Avalanche Current ①	16	A
E _{AR}	Repetitive Avalanche Energy ①	6.8	mJ
dv/dt	Peak Diode Recovery dv/dt 3	5.0	V/ns
Tj	Operating Junction and	-55 to + 175	
Т _{STG}	Storage Temperature Range		_ °C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting torque, 6-32 or M3 screw.	10 lbf•in (1.1N•m)	

Thermal Resistance

	Parameter	Min.	Тур.	Max.	Units
R _{0JC}	Junction-to-Case	—		2.2	
R _{ecs}	Case-to-Sink, Flat, Greased Surface		0.50		°C/₩
R _{8JA}	Junction-to-Ambient			62]

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	55		-	V	$V_{GS} = 0V, I_D = 250 \mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.065		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.035		V _{GS} = 10V, I _D = 16A ④
				0.046	Ω	V _{GS} = 5.0V, I _D = 16A ④
				0.060		$V_{GS} = 4.0V, I_D = 14A$ (4)
V _{GS(th)}	Gate Threshold Voltage	1.0	-	2.0	V	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$
g fs	Forward Transconductance	11			S	V _{DS} = 25V, I _D = 16A
t	Drain to Source Lookage Current			25	μΑ	$V_{DS} = 55V, V_{GS} = 0V$
DSS	Drain-to-Source Leakage Current			250	"	$V_{DS} = 44V, V_{GS} = 0V, T_J = 150^{\circ}C$
1	Gate-to-Source Forward Leakage		-	100		V _{GS} = 16V
GSS	Gate-to-Source Reverse Leakage			-100	nA	$V_{GS} = -16V$
Qg	Total Gate Charge		-	25		I _D = 16A
Q _{gs}	Gate-to-Source Charge		-	5.2	nC	$V_{DS} = 44V$
Q _{gd}	Gate-to-Drain ("Miller") Charge			14		V_{GS} = 5.0V, see figure 6 and 13 \oplus
t _{d(on)}	Turn-On Delay Time		8.9			V _{DD} = 28V
t _r	Rise Time		100		ns	I _D = 16A
t _{d(off)}	Turn-Off Delay Time		21		1 115	$R_{G} = 6.5\Omega, V_{GS} = 5.0V$
t _f	Fall Time		29			$R_D = 1.8\Omega$, see figure 10 ④
			4.5		nH	Between lead,
L _D	Internal Drain Inductance	-	4.5	-		6mm (0.25in.)
Ls	Internal Source Inductance		7.5	-		from package e
						and center of die contact
Ciss	Input Capacitance		880	-		$V_{GS} = 0V$
Coss	Output Capacitance		220		pF	$V_{\rm DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		94]	f = 1.0MHz, see figure 5


Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current		30	A	MOSFET symbol	
	(Body Diode)				showing the	
ISM	Pulsed Source Current			110	110	integral reverse
	(Body Diode) ①	- 110		p-n junction diode.		
V _{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C, I_S = 16A, V_{GS} = 0V ④$
t _{rr}	Reverse Recovery Time		76	110	ns	$T_{\rm J} = 25^{\circ} {\rm C}, \ {\rm I_F} = 16 {\rm A}$
Q _{rr}	Reverse Recovery Charge		190	290	nC	di/dt = 100A/µs ④
ton	Forward Turn-On Time	Inti	Intrinsic turn-on time is negligible (turn-on is dominated by $L_{S}+L_{D}$)			

Notes:

- Repetitive rating; pulse width limited by max. junction temperature. (see figure 11)
- $(\texttt{3} \ I_{SD} \leq 16A, \, di/dt \leq 270A/\mu s, \, V_{DD} \leq V_{(BR)DSS}, \, T_J \leq 175^\circ C$
- ④ Pulse width \leq 300µs; duty cycle \leq 2%.
- 2 V_{DD} = 25V, starting T_J = 25°C, L = 610 \mu H, R_G = 25\Omega, I_{AS} = 16A. (see figure 12)

IRLZ34N

International

ICR Rectifier

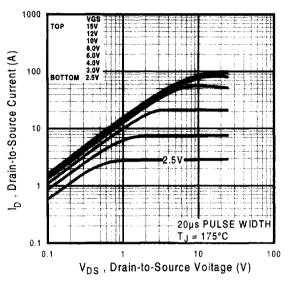


Fig 2. Typical Output Characteristics

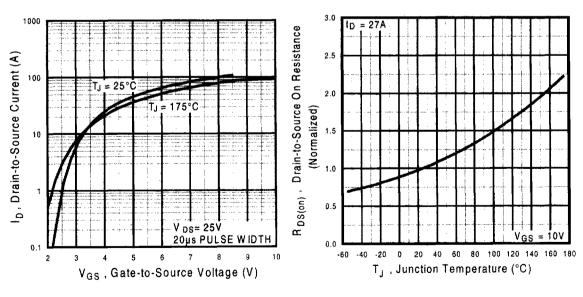
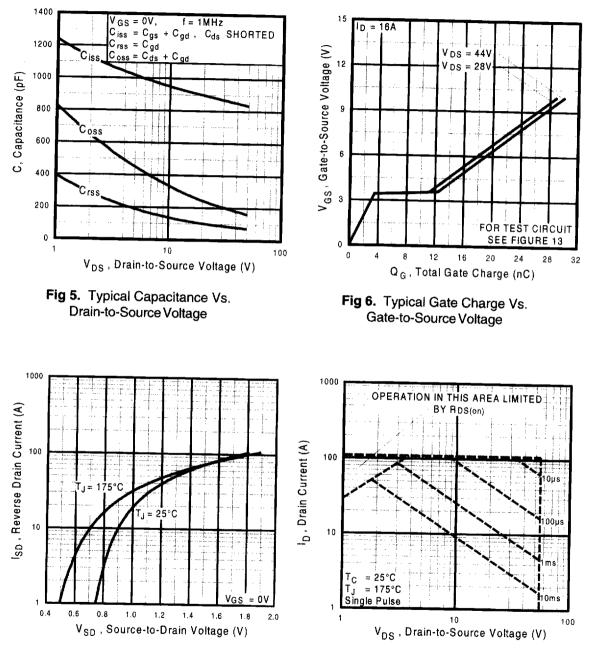



Fig 3. Typical Transfer Characteristics

IRLZ34N

International **IOR** Rectifier

www.irf.com

IRLZ34N

International **IGR** Rectifier

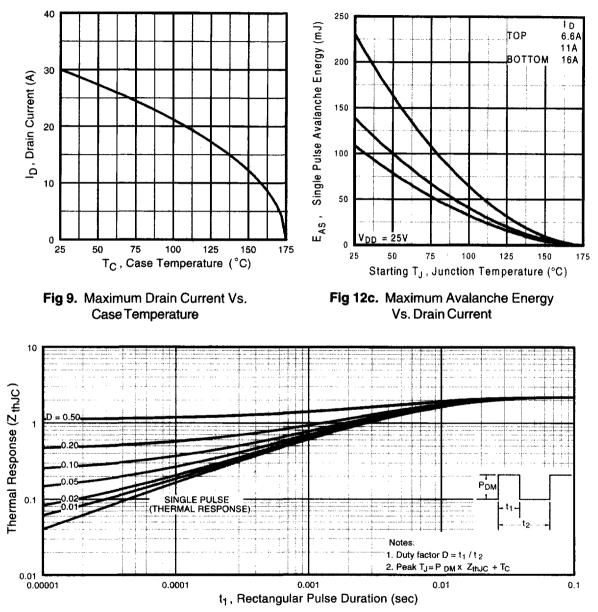


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Mechanical drawings, Appendix A Part marking information, Appendix B Test Circuit diagrams, Appendix C www.irf.com