

CMOSIC

PLL Frequency Synthesizer

Overview

The LC72131K and LC72131KMA are PLL frequency synthesizers for use in tuners in radio/cassette players. They allow high-performance AM/FM tuners to be implemented easily.

Features

- High speed programmable dividers
 - FMIN: 10 to 160MHz pulse swallower (built-in divide-by-two prescaler)
 - AMIN: 2 to 40MHz pulse swallower 0.5 to 10MHz direct division
- IF counter
 - IFIN: 0.4 to 12MHz AM/FM IF counter
- Reference frequencies
- Twelve selectable frequencies (4.5 or 7.2MHz crystal)
- 100, 50, 25, 15, 12.5, 6.25, 3.125, 10, 9, 5, 3, 1kHz
- Phase comparator
 - Dead zone control
 - Unlock detection circuit
 - Deadlock clear circuit
- Built-in MOS transistor for forming an active low-pass filter
- I/O ports
 - Dedicated output ports: 4 Input or output ports: 2 Support clock time base output
- Serial data I/O
 - Support CCB format communication with the system controller.

Continued on next page.

• CCB is ON Semiconductor® 's original format. All addresses are managed by ON Semiconductor® for this format.

• CCB is a registered trademark of Semiconductor Components Industries, LLC.

Continued from preceding page.

- Operating ranges
 - Supply voltage4.5 to 5.5V
- Operating temperature -40 to +85°C

- Packages
 - DIP22S(300mil) / MFP20J(300mil)

Specifications

Absolute Maximum Ratings at $Ta=25^{\circ}C,\ V_{SS}=0V$

Parameter	Symbol	Pins	Conditions	Ratings	Unit
Supply voltage	V _{DD} max	V_{DD}		-0.3 to +7.0	٧
Maximum input voltage	V _{IN} 1 max	CE, CL, DI, AIN		-0.3 to +7.0	V
	V _{IN} 2 max	XIN, FMIN, AMIN, IFIN		-0.3 to V _{DD} +0.3	V
	V _{IN} 3 max	ĪO1, ĪO2		-0.3 to +15	V
Maximum output voltage	V _O 1 max	DO		-0.3 to +7.0	V
	V _O 2 max	XOUT, PD		-0.3 to V _{DD} +0.3	V
	V _O 3 max	BO1 to BO4, IO1, IO2, AOUT		-0.3 to +15	V
Maximum output current	I _O 1 max	BO1		0 to 3.0	mA
	I _O 2 max	DO, AOUT		0 to 6.0	mA
	I _O 3 max	BO2 to BO4, IO1, IO2		0 to 10	mA
Allowable power dissipation	Pd max		Ta≤85°C [LC72131K]	350	mW
			Ta≤85°C [LC72131KMA]	180	mW
Operating temperature	Topr			-40 to +85	°C
Storage temperature	Tstg			-55 to +125	°C

Note 1: Power pins V_{DD} and V_{SS} : Insert a capacitor with a capacitance of 2,000pF or higher between these pins when using the IC.

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

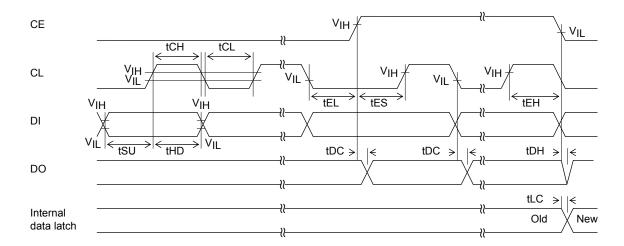
Allowable Operating Ranges at $Ta = -40^{\circ}C$ to $+85^{\circ}C$, $V_{SS} = 0V$

					Ratings		
Parameter	Symbol	Pins	Conditions	min	typ	max	unit
Supply voltage	V_{DD}	V _{DD}		4.5		5.5	V
Input high-level voltage	V _{IH} 1	CE, CL, DI		0.7V _{DD}		6.5	V
	V _{IH} 2	ĪO1, ĪO2		0.7V _{DD}		13	V
Input low-level voltage	V _{IL}	CE, CL, DI, $\overline{\text{IO1}}$, $\overline{\text{IO2}}$		0		0.3V _{DD}	V
Output voltage	V _O 1	DO		0		6.5	V
	V _O 2	BO1 to BO4, IO1, IO2, AOUT		0		13	V
Input frequency	fIN1	XIN	V _{IN} 1	1.0		8.0	MHz
	fIN2	FMIN	V _{IN} 2	10		160	MHz
	fIN3	AMIN	V _{IN} 3	2.0		40	MHz
	fIN4	AMIN	V _{IN} 4	0.5		10	MHz
	fIN5	IFIN	V _{IN} 5	0.4		12	MHz
Supported crystals	X'tal	XIN, XOUT	Note 1	4.0		8.0	MHz
Input amplitude	V _{IN} 1	XIN	fIN1	400		1500	mVrms
	V _{IN} 2-1	FMIN	f=10 to 130MHz	40		1500	mVrms
High-level clock pulse width tφH CL [Figure 1][Figure 2] 160 ns	V _{IN} 2-2	FMIN	f=130 to 160MHz	70		1500	mVrms
Low-level clock pulse width	V _{IN} 3	AMIN	fIN3	40		1500	mVrms
	V _{IN} 4	AMIN	fIN4	40		1500	mVrms
	V _{IN} 5	IFIN	fIN5 (IFS=1)	40		1500	mVrms
	V _{IN} 6	IFIN	fIN5 (IFS=0)	70		1500	mVrms
Data setup time	tSU	DI, CL	Note 2	0.75			μs
Data hold time	tHD	DI, CL	Note 2	0.75			μs
Clock low-level time	tCL	CL	Note 2	0.75			μs
Clock high-level time	tCH	CL	Note 2	0.75			μs
CE wait time	tEL	CE, CL	Note 2	0.75			μs
CE setup time	tES	CE, CL	Note 2	0.75			μs
CE hold time	tEH	CE, CL	Note 2	0.75			μs
Data latch change time	tLC		Note 2			0.75	μs
Data output time	tDC	DO, CL	Differs depending				
	1511 50, 62		on the value of the pull-up resistor. Note 2			0.35	μs

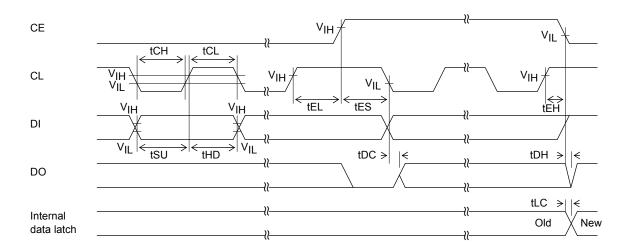
Note 1: Recommended crystal oscillator CI values:

CI≤120Ω (For a 4.5MHz crystal)

CI≤70Ω (For a 7.2MHz crystal)

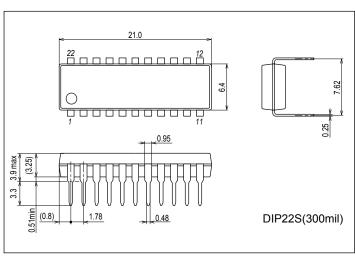

The characteristics of the oscillation circuit depends on the printed circuit board, circuit constants, and other factors. Therefore we recommend consulting with the anufacturer of the crystal for evaluation and reliability.

Note 2: Refer to "Serial Data Timing".

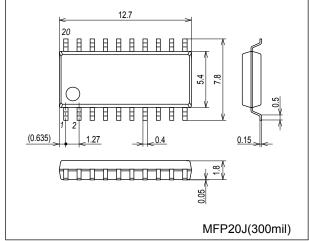

Electrical Characteristics in the Allowable Operating Ranges

Parameter	Symbol	Pins	Conditions		Ratings		unit
i didilicici	Gymbol	1 1113	Conditions	min	typ	max	unit
Built-in feedback resistance	Rf1	XIN			1.0		МΩ
	Rf2	FMIN			500		kΩ
	Rf3	AMIN			500		kΩ
	Rf4	IFIN			250		kΩ
Built-in pull-down resistor	Rpd1	FMIN			200		kΩ
	Rpd2	AMIN			200		kΩ
Hysteresis	VHYS	CE, CL, DI, $\overline{\text{IO1}}$, $\overline{\text{IO2}}$			0.1V _{DD}		V
Output high-level voltage	VOH	PD	I _O =1mA	V _{DD} -0.1	55		V
Output low-level voltage	V _{OL} 1	PD	I _O =1mA	00 -		1.0	V
	V _{OL} 2	BO1	I _O =0.5mA			0.5	V
	- OL-		I _O =1mA			1.0	V
	V _{OL} 3	DO	I _O =1mA				
	VOLS					0.2	V
	<u> </u>	<u> </u>	I _O =5mA			1.0	V
	V _{OL} 4	BO2 to BO4, IO1, IO2	I _O =1mA			0.2	V
			I _O =5mA			1.0	V
			I _O =8mA			1.6	V
	V _{OL} 5	AOUT	I _O =1mA AIN=1.3V			0.5	V
Input high-level current	I _{IH} 1	CE, CL, DI	V _I =6.5V			5.0	μΑ
	I _{IH} 2	ĪO1, ĪO2	V _I =13V			5.0	μΑ
	I _{IH} 3	XIN	V _I =V _{DD}	2.0		11	μΑ
	I _{IH} 4	FMIN, AMIN	V _I =V _{DD}	4.0		22	μΑ
	I _{IH} 5	IFIN	V _I =V _{DD}	8.0		44	μΑ
	I _{IH} 6	AIN	V _I =6.5V			200	nA
Input low-level current	I _{IL} 1	CE, CL, DI	V _I =0V			5.0	μА
,	I _{IL} 2	101, 102	V _I =0V			5.0	μΑ
	I _{IL} 3	XIN	V _I =0V	2.0		11	μΑ
		FMIN, AMIN	V _I =0V				
	I _{IL} 4	IFIN	· ·	4.0		22	μΑ
	I _{IL} 5		V _I =0V	8.0		44	μΑ
0	I _{IL} 6	AIN	V _I =0V			200	nA
Output off leakage current	IOFF1	BO1 to BO4, AOUT, IO1, IO2	V _O =13V			5.0	μΑ
	IOFF2	DO	V _O =6.5V			5.0	μΑ
High-level three-state off leakage current	IOFFH	PD	V _O =V _{DD}		0.01	200	nA
Low-level three-state off leakage current	IOFFL	PD	V _O =0V		0.01	200	nA
Input capacitance	CIN	FMIN			6		pF
Current drain	I _{DD} 1	V _{DD}	X'tal=7.2MHz				-
			f _{IN} 2=130MHz		5	10	mA
			V _{IN} 2=40mVrms				
	I _{DD} 2	V _{DD}	PLL block stopped				
			(PLL INHIBIT) X'tal oscillator		0.5		m A
			operating		0.5		mA
			(X'tal=7.2MHz)				
	I _{DD} 3	V _{DD}	PLL block stopped				
	50.		X'tal oscillator			10	μΑ
			operating				

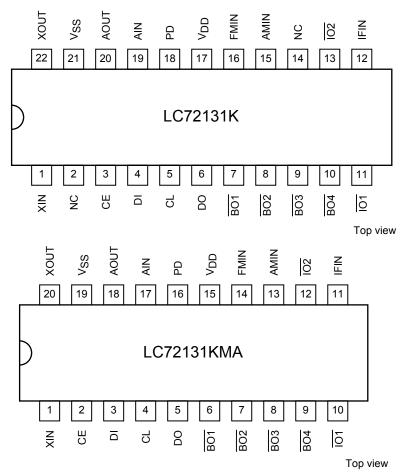
Serial Data Timing


When stopped with CL low

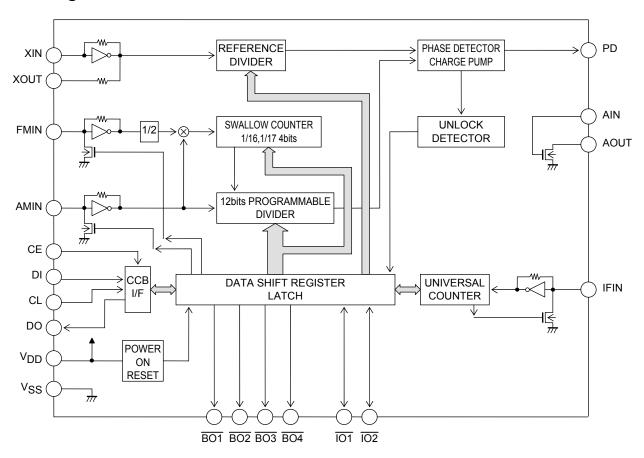
When stopped with CL high


Package Dimensions

unit : mm (typ) 3059A [LC72131K]



Package Dimensions

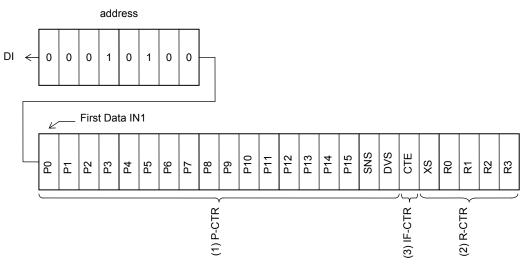

unit : mm (typ) 3445 [LC72131KMA]

Pin Assignments

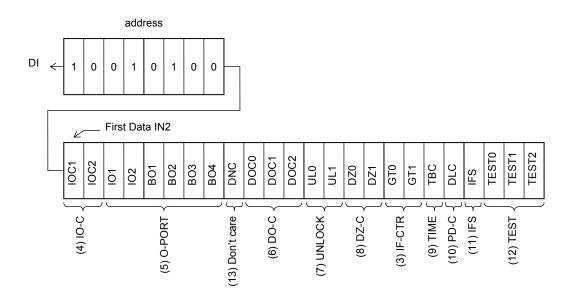
Block Diagram

Pin Functions

Cumbal	Pin	No.	Turno	Functions	Circuit configuration
Symbol	LC72131K	LC72131KMA	Туре	Functions	Circuit configuration
XIN XOUT	1 22	1 20	X'tal OSC	Crystal resonator connection (4.5MHz/7.2MHz)	
FMIN	16	14	Local oscillator signal input	FMIN is selected when the serial data input DVS bit is set to 1. The input frequency range is from 10 to 160MHz. The input signal passes through the internal divide-by-two prescaler and is input to the swallow counter. The divisor can be in the range 272 to 65535. However, since the signal has passed through the divide-by-two prescaler, the actual divisor is twice the set value.	
AMIN	15	13	Local oscillator signal input	AMIN is selected when the serial data input DVS bit is set to 0. When the serial data input SNS bit is set to 1: • The input frequency range is 2 to 40MHz. • The signal is directly input to the swallow counter. • The divisor can be in the range 272 to 65535, and the divisor used will be the value set. When the serial data input SNS bit is set to 0: • The input frequency range is 0.5 to 10MHz. • The signal is directly input to a 12-bit programmable divider. • The divisor can be in the range 4 to 4095, and the divisor used will be the value set.	
CE	3	2	Chip enable	Set this pin high when inputting (DI) or outputting (DO) serial data.	
DI	4	3	Input data	Inputs serial data transferred from the controller to the LC72131K/KMA.	
CL	5	4	Clock	Used as the synchronization clock when inputting (DI) or outputting (DO) serial data.	
DO	6	5	Output data	Outputs serial data transferred from the LC72131K/KMA to the controller. The content of the output data is determined by the serial data DOC0 to DOC2.	— -
V_{DD}	17	15	Power supply	The LC72131K/KMA power supply pin (V _{DD} =4.5 to 5.5V) The power on reset circuit operates when power is first applied.	-
V _{SS}	21	19	Ground	The LC72131K/KMA ground	=
BO1 BO2 BO3 BO4	7 8 9 10	6 7 8 9	Output port	Dedicated output pins The output states are determined by $\overline{BO1}$ to $\overline{BO4}$ bits in the serial data. Data: 0=open, 1=low A time base signal (8Hz) can be output from the $\overline{BO1}$ pin. (When the serial data TBC bit is set to 1.) Care is required when using the $\overline{BO1}$ pin, since it has a higher on	
IO1 IO2	11 13	10 12	I/O port	impedance that the other output ports (pins \$\overline{BO2}\$ to \$\overline{BO4}\$). I/O dual-use pins The direction (input or output) is determined by bits IOC1 and IOC2 in the serial data. Data: 0=input port, 1=output port When specified for use as input ports: The state of the input pin is transmitted to the controller over the DO pin. Input state: low=0 data value high=1 data value When specified for use as output ports: The output states are determined by the IO1 and IO2 bits in the serial data. Data: 0=open, 1=low These pins function as input pins following a power on reset.	


Continued on next page.

Continued from preceding page.


Oh. al	Pin	No.	T	Functions	Cinc. it as a firm and in a
Symbol	LC72131K	LC72131KMA	Туре	Functions	Circuit configuration
PD	18	16	Charge pump output	PLL charge pump output When the frequency generated by dividing the local oscillator frequency by N is higher than the reference frequency, a high level is output from the PD pin. Similarly, when that frequency is lower, a low level is output. The PD pin goes to the high impedance state when the frequencies match.	
AIN AOUT	19 20	17 18	LPF amplifier transistors	The n-channel MOS transistor used for the PLL active low-pass filter.	
IFIN	12	11	IF counter	Accepts an input in the frequency range 0.4 to 12MHz. The input signal is directly transmitted to the IF counter. The result is output starting the MSB of the IF counter using the DO pin. Four measurement periods are supported: 4, 8, 32, and 64ms.	

DI Control Data (Serial Data Input) Structure

[1] IN1 mode

[2] IN2 mode

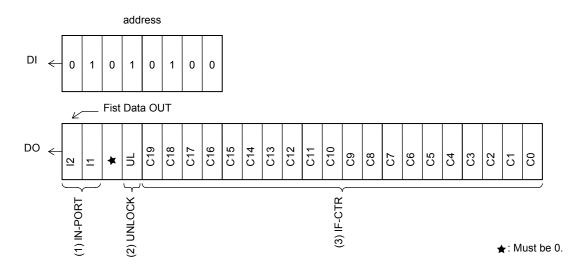
Control Data Functions

No.	Control block/data		Functions												
(1)	Programmable	Data that	sets the div	isor of the	programm	able divider.									
	divider data	A binary v	alue in whi	ch P15 is	the MSB. T	he LSB changes de	epending on								
	P0 to P15	DVS and S	SNS. (*: do	on't care)											
		DVS	SNS	LSB	Divi	sor setting (N)	Actual divisor								
		1	*	P0	2	72 to 65535	Twice the value of the setting								
		0	1	P0	2	72 to 65535	The value of the setting								
		0	0	P4		4 to 4095	The value of the setting								
		Note: P0 t	o P3 are ig	nored whe	en P4 is the	LSB.									
	DVS, SNS	Selects the	•	able divider, switches											
		DVS	SNS		Input pin		Input frequency range								
		1	*		FMIN		10 to 160MHz								
		0	1		AMIN		2 to 40MHz								
		0	0		AMIN		0.5 to 10MHz								
		Note: See	the "Progr	ammable	Divider Stru	cture" item for more	e information.								
(2)	Reference divider				ection data.										
	data R0 to R3	R3	R2	R1	R0	Ref	erence frequency								
	RU IU KS	0	0	0	0		100kHz								
		0	0	0	1		50								
		0 0	0 0	1	0		25 25								
			1	1 0	0										
			1	0	1										
			1	1	0		6.25 3.125								
		0	1	1	1		3.125								
		1	0	0	0										
			0	0	1		10 9								
		1	0	1	0		5								
		1	0	1	1		1								
		1	1	0	0		3								
		1	1	0	1		15								
		1	1	1	0	* PLL IN	HIBIT + X'tal OSC STOP								
		1	1	1	1	* [PLL INHIBIT								
		Note *: PLL INHIBIT The programmable divider block and the IF counter block are stopped, the FMIN, AMIN, and IFIN pins are set to the pull-down state (ground), and the charge pump goes to the high impedance state.													
	XS	Crystal res		ection											
		XS=0: 4													
		XS=1: 7													
<i>(</i> -)						the power-on reset.									
(3)	IF counter control	IF counter			data			IFS							
	data	CTE=1: Counter start													
	CTE	=0: Counter reset Determines the IF counter measurement period.													
	GT0, GT1	Determine	s the IF co	ounter mea	surement p	eriod.									
		GT1	G	T0	Measure	ment time (ms)	Wait time (ms)								
		0		0		4	3 to 4								
		0		1		8	3 to 4								
		1 1		0		32 64	7 to 8 7 to 8								
	1	 				for more information									

Continued on next page.

Continued from preceding page.

(4) I/O port specification data	No.	Control block/data				Functions	3		Related data							
IOC1, IOC2 Duty port data Bot to BO4 Data: that determines the output from the BOT to BO4, IOT and IOZ output ports IOC1 DoC2 Doc ion Doc ion IOC2 Doc ion Doc ion IOC2 Doc ion Do	(4)	I/O port specification	Specifies the	e I/O direction	on for the bidir	ectional pins IC	1 and IO2.									
Deta that determines the output from the BO1 to BO4, IOT and IOZ output ports IOC1 IOC2 IOC3			Data: 0=ir	put mode,	1=output mode	•										
BO1 to BO4																
(6) DO pin control data DOC2 DOC2 DOC2 DOC3 DOC3 DOC3 DOC2 DOC3 DOC4 DOC3 DOC4 DOC5 DOC5 DOC5 DOC5 DOC6 DOC6 DOC6 DOC6 DOC7 DOC7 DOC7 DOC7 DOC8 DOC9 DOPEN Low when the unlock state is detected end of under the unlock state is detected end in unlock end of under the unlock state is detected end in unlock end of under the unlock state is detected end in unlock end of under the unlock state is detected end of under the unlock end of under th	(5)				e output from t	the BO1 to BO2	I, IO1 and IO2 output ports									
Do pin control data DoC0 DoC1 DoC0 Do pin state DOC1 DOC2 DOC1 DOC0 Dopen Dopin state DOC2 DOC1 DOC2 DOC1 DOC2 DOC1 DOC2 DOC1 DOC2 DOC1 DOC2 DOC2 DOC1 DOC2 D					is salested at	tor the newer c	un recet		10C2							
DOC2 DOC1 DOC2 DOC1 DOC0 Do pin state	(6)	·					iii leset.		111.0 111.1							
DOC1 DOC2 Doc	(0)	1 '			1 1	JI.	Do nin state									
DOC2 Docation Doc		DOC1					Do pin state									
1		DOC2		-		•	on the unlock state is detected									
1			11	-					IOC1							
1			_				•		IOC2							
1			1	0	0	Onen										
The open state is selected after the power-on reset. Note: 1. end-UC: Check for IF counter measurement completion DO pin (1) Count start (2) Count end (3)CE: High (1) When end-UC is set and the IF counter is started (i.e., when CTE is changed from zero to one), the DO pin automatically goes to the open state. (2) When the IF counter measurement completes, the DO pin goes low to indicate the measurement completion state. (3) Depending on serial data I/O (CE: high) the DO pin goes to the open state. Note: 2. Goes to the open state if the I/O pin is specified to be an output port. Caution: The state of the DO pin during a data input period (an IN1 or IN2 mode period with CE high) will output the contents of the internal DO serial data in synchronization with the CL pin signal, regardless of the state of the DO control data (DOC0 to DOC2). Also, the DO pin during a data output period (an IN1 or IN2 mode period with CE high) will output the contents of the internal DO serial data in synchronization with the CL pin signal, regardless of the state of the DO control data (DOC0 to DOC2). Selects the phase error (éE) detection width for checking PLL lock. A phase error in excess of the specified detection width is seen as an unlocked state. DOC1 UL1 UL0				-		· —	pin state *2									
The open state is selected after the power-on reset. Note: 1. end-UC: Check for IF counter measurement completion DO pin (1) Count start (2) Count end (3)CE: High (1) When end-UC is set and the IF counter is started (i.e., when CTE is changed from zero to one), the DO pin automatically goes to the open state. (2) When the IF counter measurement completes, the DO pin goes low to indicate the measurement completion state. (3) Depending on serial data I/O (CE: high) the DO pin goes to the open state. Note: 2. Goes to the open state if the I/O pin is specified to be an output port. Caution: The state of the DO pin during a data input period (an INT) or IN2 mode period with CE high) will be open, regardless of the state of the DO control data (DOC0 to DOC2). Also, the DO pin during a data output period (an OUT mode period with CE high) will output the contents of the internal DO serial data in synchronization with the CL pin signal, regardless of the state of the DO control data (DOC0 to DOC2). A phase error (se) detection width for checking PLL lock. A phase error in excess of the specified detection width is seen as an unlocked state. DOC0 ULO, UL1 UL1 UL0 Selects the phase error (se) detection width Detector output DOC2 DOC2				-			•									
Note: 1. end-UC: Check for IF counter measurement completion DO pin (1) Count start (2) Count end (3)CE: High (1) When end-UC is set and the IF counter is started (i.e., when CTE is changed from zero to one), the DO pin automatically goes to the open state. (2) When the IF counter measurement completes, the DO pin goes low to indicate the measurement completion state. (3) Depending on serial data I/O (CE: high) the DO pin goes to the open state. Note: 2. Goes to the open state if the I/O pin is specified to be an output port. Caution: The state of the DO pin during a data input period (an IN1 or IN2 mode period with CE high) will be open, regardless of the state of the DO control data (DOC0 to DOC2). Also, the DO pin during a data output period (an OUT mode period with CE high) will output the contents of the internal DO serial data in synchronization with the CL pin signal, regardless of the state of the DO control data (DOC0 to DOC2). (7) Unlock detection data UL0, UL1 UL1 UL0 ØE detection width for checking PLL lock. A phase error in excess of the specified detection width is seen as an unlocked state. DOC1 DOC2 UL1 UL0 ØE detection width Detector output DOC2			1	1	1	Open										
Note: 1. end-UC: Check for IF counter measurement completion DO pin (1) Count start (2) Count end (3)CE: High (1) When end-UC is set and the IF counter is started (i.e., when CTE is changed from zero to one), the DO pin automatically goes to the open state. (2) When the IF counter measurement completes, the DO pin goes low to indicate the measurement completion state. (3) Depending on serial data I/O (CE: high) the DO pin goes to the open state. Note: 2. Goes to the open state if the I/O pin is specified to be an output port. Caution: The state of the DO pin during a data input period (an IN1 or IN2 mode period with CE high) will be open, regardless of the state of the DO control data (DOC0 to DOC2). Also, the DO pin during a data output period (an OUT mode period with CE high) will output the contents of the internal DO serial data in synchronization with the CL pin signal, regardless of the state of the DO control data (DOC0 to DOC2). (7) Unlock detection data UL0, UL1 UL1 UL0 ØE detection width for checking PLL lock. A phase error in excess of the specified detection width is seen as an unlocked state. DOC1 DOC2 UL1 UL0 ØE detection width Detector output DOC2			The open state is selected after the power-on reset.													
(1) Count start (2) Count end (3)CE: High (1) When end-UC is set and the IF counter is started (i.e., when CTE is changed from zero to one), the DO pin automatically goes to the open state. (2) When the IF counter measurement completes, the DO pin goes low to indicate the measurement completion state. (3) Depending on serial data I/O (CE: high) the DO pin goes to the open state. Note: 2. Goes to the open state if the I/O pin is specified to be an output port. Caution: The state of the DO pin during a data input period (an IN1 or IN2 mode period with CE high) will be open, regardless of the state of the DO control data (DOC0 to DOC2). Also, the DO pin during a data output period (an OUT mode period with CE high) will output the contents of the internal DO serial data in synchronization with the CL pin signal, regardless of the state of the DO control data (DOC0 to DOC2). (7) Unlock detection data ULO, UL1 UL1 UL0 ØE detection width for checking PLL lock. A phase error in excess of the specified detection width is seen as an unlocked state. DOC1 DOC2 UL1 UL1 UL0 ØE detection width Detector output ØD ØPen ØE is output directry ØE is extended by 1 to 2ms ### DOC0 ### DOC0 DOC2 DOC2				·												
(1) Count start (2) Count end (3)CE: High (1) When end-UC is set and the IF counter is started (i.e., when CTE is changed from zero to one), the DO pin automatically goes to the open state. (2) When the IF counter measurement completes, the DO pin goes low to indicate the measurement completion state. (3) Depending on serial data I/O (CE: high) the DO pin goes to the open state. Note: 2. Goes to the open state if the I/O pin is specified to be an output port. Caution: The state of the DO pin during a data input period (an IN1 or IN2 mode period with CE high) will be open, regardless of the state of the DO control data (DOC0 to DOC2). Also, the DO pin during a data output period (an OUT mode period with CE high) will output the contents of the internal DO serial data in synchronization with the CL pin signal, regardless of the state of the DO control data (DOC0 to DOC2). (7) Unlock detection data ULO, UL1 ULO		Total Co. Strong Co. S														
(1) Count start (2) Count end (3) CE: High (1) When end-UC is set and the IF counter is started (i.e., when CTE is changed from zero to one), the DO pin automatically goes to the open state. (2) When the IF counter measurement completes, the DO pin goes low to indicate the measurement completion state. (3) Depending on serial data I/O (CE: high) the DO pin goes to the open state. Note: 2. Goes to the open state if the I/O pin is specified to be an output port. Caution: The state of the DO pin during a data input period (an IN1 or IN2 mode period with CE high) will be open, regardless of the state of the DO control data (DOC0 to DOC2). Also, the DO pin during a data output period (an OUT mode period with CE high) will output the contents of the internal DO serial data in synchronization with the CL pin signal, regardless of the state of the DO control data (DOC0 to DOC2). Selects the phase error (\$\phi\$E) detection width for checking PLL lock. A phase error in excess of the specified detection width is seen as an unlocked state. DOC1 UL1 UL0 \$\phi\$E detection width Detector output \[\begin{array}{cccccccccccccccccccccccccccccccccccc			DO pin		\1	—\!\	¬ " 1									
(1) When end-UC is set and the IF counter is started (i.e., when CTE is changed from zero to one), the DO pin automatically goes to the open state. (2) When the IF counter measurement completes, the DO pin goes low to indicate the measurement completion state. (3) Depending on serial data I/O (CE: high) the DO pin goes to the open state. Note: 2. Goes to the open state if the I/O pin is specified to be an output port. Caution: The state of the DO pin during a data input period (an IN1 or IN2 mode period with CE high) will be open, regardless of the state of the DO control data (DOC0 to DOC2). Also, the DO pin during a data output period (an OUT mode period with CE high) will output the contents of the internal DO serial data in synchronization with the CL pin signal, regardless of the state of the DO control data (DOC0 to DOC2). Selects the phase error (\$\phi\$E) detection width for checking PLL lock. A phase error in excess of the specified detection width is seen as an unlocked state. DOC1 UL1 UL0 \$\phi\$E detection width Detector output 0 0 \$\phi\$ stopped Open 0 1 0 \$\phi\$D \$\phi\$D.55\pis\$ \$\phi\$E is extended by 1 to 2ms 1 1 1 \$\phi\$D.55\pis\$ \$\phi\$E is extended by 1 to 2ms					_ v											
zero to one), the DO pin automatically goes to the open state. (2) When the IF counter measurement completes, the DO pin goes low to indicate the measurement completion state. (3) Depending on serial data I/O (CE: high) the DO pin goes to the open state. Note: 2. Goes to the open state if the I/O pin is specified to be an output port. Caution: The state of the DO pin during a data input period (an IN1 or IN2 mode period with CE high) will be open, regardless of the state of the DO control data (DOC0 to DOC2). Also, the DO pin during a data output period (an OUT mode period with CE high) will output the contents of the internal DO serial data in synchronization with the CL pin signal, regardless of the state of the DO control data (DOC0 to DOC2). (7) Unlock detection data ULO, UL1 Selects the phase error (\(\phi \) Detection width for checking PLL lock. A phase error in excess of the specified detection width is seen as an unlocked state. DOC1 UL1 UL0 \(\phi \) E detection width Detector output 0 0 stopped Open 0 1 0 \(\phi \) E is output directry 1 0 \(\phi \) E is extended by 1 to 2ms 1 1 1 \(\phi \) ±1.11 \(\phi \) ±1.11				(1)	Count start	(2) C	ount end (3)CE: High									
(2) When the IF counter measurement completes, the DO pin goes low to indicate the measurement completion state. (3) Depending on serial data I/O (CE: high) the DO pin goes to the open state. Note: 2. Goes to the open state if the I/O pin is specified to be an output port. Caution: The state of the DO pin during a data input period (an IN1 or IN2 mode period with CE high) will be open, regardless of the state of the DO control data (DOC0 to DOC2). Also, the DO pin during a data output period (an OUT mode period with CE high) will output the contents of the internal DO serial data in synchronization with the CL pin signal, regardless of the state of the DO control data (DOC0 to DOC2). (7) Unlock detection data ULO, UL1 UL1 UL0 \$\int \text{ detection width for checking PLL lock.} \text{ DOC0} \text{ DOC1} \text{ DOC1} \text{ DOC1} \text{ DOC2} \text{ DOC2} \text{ DOC2} \text{ DOC2} \text{ DOC1} \text{ DOC2} \text{ DOC2} \text{ DOC2} \text{ DOC2} \text{ DOC3} \text{ DOC1} \text{ DOC2} \text{ DOC3} \text{ DOC3} \text{ DOC4} \text{ DOC2} \text{ DOC2} \text{ DOC3} \text{ DOC4} \text{ DOC4} \text{ DOC5} \text{ DOC5} \text{ DOC5} \text{ DOC5} \text{ DOC6}			(1)	When end-l	UC is set and	the IF counter is	s started (i.e., when CTE is change	d from								
measurement completion state. (3) Depending on serial data I/O (CE: high) the DO pin goes to the open state. Note: 2. Goes to the open state if the I/O pin is specified to be an output port. Caution: The state of the DO pin during a data input period (an IN1 or IN2 mode period with CE high) will be open, regardless of the state of the DO control data (DOC0 to DOC2). Also, the DO pin during a data output period (an OUT mode period with CE high) will output the contents of the internal DO serial data in synchronization with the CL pin signal, regardless of the state of the DO control data (DOC0 to DOC2). (7) Unlock detection data ULO, UL1 UL1 UL0 ΦE detection width for checking PLL lock. A phase error in excess of the specified detection width is seen as an unlocked state. DOC1 DOC2 UL1 UL1 UL0 ΦE detection width Detector output O				zero to one), the DO pin a	automatically go	pes to the open state.									
(3) Depending on serial data I/O (CE: high) the DO pin goes to the open state. Note: 2. Goes to the open state if the I/O pin is specified to be an output port. Caution: The state of the DO pin during a data input period (an IN1 or IN2 mode period with CE high) will be open, regardless of the state of the DO control data (DOC0 to DOC2). Also, the DO pin during a data output period (an OUT mode period with CE high) will output the contents of the internal DO serial data in synchronization with the CL pin signal, regardless of the state of the DO control data (DOC0 to DOC2). (7) Unlock detection data ULO, UL1 ULO be detection width for checking PLL lock. A phase error in excess of the specified detection width is seen as an unlocked state. DOC1 DOC2 UL1 ULO be detection width Detector output O o stopped Open Open Open Open Open Open Open Open			` ,			•	pletes, the DO pin goes low to indica	ate the								
Note: 2. Goes to the open state if the I/O pin is specified to be an output port. Caution: The state of the DO pin during a data input period (an IN1 or IN2 mode period with CE high) will be open, regardless of the state of the DO control data (DOC0 to DOC2). Also, the DO pin during a data output period (an OUT mode period with CE high) will output the contents of the internal DO serial data in synchronization with the CL pin signal, regardless of the state of the DO control data (DOC0 to DOC2). (7) Unlock detection data UL0, UL1 UL1 UL0 ΦE detection width for checking PLL lock. A phase error in excess of the specified detection width is seen as an unlocked state. DOC1 DOC2 UL1 UL0 ΦE detection width Detector output O φE is output directry ΦE is extended by 1 to 2ms 1 1 1 1 ±1.11 ↑					-		the DO nin goes to the open state									
Caution: The state of the DO pin during a data input period (an IN1 or IN2 mode period with CE high) will be open, regardless of the state of the DO control data (DOC0 to DOC2). Also, the DO pin during a data output period (an OUT mode period with CE high) will output the contents of the internal DO serial data in synchronization with the CL pin signal, regardless of the state of the DO control data (DOC0 to DOC2). (7) Unlock detection data UL0, UL1 UL1 UL0 ØE detection width for checking PLL lock. A phase error in excess of the specified detection width is seen as an unlocked state. DOC1 DOC2 UL1 UL0 ØE detection width Detector output O pen ØE is output directry \$\partial \text{ is extended by 1 to 2ms}\$ \$\partial \text{ is extended by 1 to 2ms}\$ \$\partial \text{ is extended by 1 to 2ms}\$			` ,			,										
high) will be open, regardless of the state of the DO control data (DOC0 to DOC2). Also, the DO pin during a data output period (an OUT mode period with CE high) will output the contents of the internal DO serial data in synchronization with the CL pin signal, regardless of the state of the DO control data (DOC0 to DOC2). (7) Unlock detection data UL0, UL1 UL1 UL0 ΦE detection width for checking PLL lock. A phase error in excess of the specified detection width is seen as an unlocked state. DOC1 DOC2 UL1 UL0 ΦE detection width Detector output O pen ΦE is output directry ↑ 0 ψE is extended by 1 to 2ms ↑ 1 1 1 ±1.11 ↑							···	with CE								
output the contents of the internal DO serial data in synchronization with the CL pin signal, regardless of the state of the DO control data (DOC0 to DOC2). (7) Unlock detection data UL0, UL1 UL1 UL0 © © © © © © © © © © © © ©																
signal, regardless of the state of the DO control data (DOC0 to DOC2). (7) Unlock detection data UL0, UL1 UL1 UL0 ΦE detection width Detector output UL1 UL0 ΦE is output directry 1 0 ±0.55μs ΦE is extended by 1 to 2ms 1 1 1 DOC0 DOC0 DOC1 DOC2 DOC3 DOC0 DOC1 DOC2			Als	o, the DO p	in during a dat	a output period	(an OUT mode period with CE hig	h) will								
(7) Unlock detection data UL0, UL1 UL1 UL0 ΦE detection width is seen as an unlocked state. DOC1 DOC2 UL1 UL0 ΦE detection width Detector output O O Stopped O Pen O H is output directry 1 O ±0.55μs ΦE is extended by 1 to 2ms 1 1 1 ±1.11 DOC3			out	put the cont	tents of the int	ernal DO serial	data in synchronization with the Cl	_ pin								
data UL0, UL1			sig	nal, regardle	ess of the state	e of the DO cor	trol data (DOC0 to DOC2).									
UL0, UL1	(7)				. ,		•									
UL1 UL0 φE detection width Detector output 0 0 stopped Open 0 1 0 φE is output directry 1 0 ±0.55μs φE is extended by 1 to 2ms 1 1 ±1.11 ↑			A phase erro	or in excess	of the specifie	ed detection wid	Ith is seen as an unlocked state.									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		ULO, UL1	UL1	UL0	φE detec	tion width	Detector output		DOC2							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			0	0	sto	pped	Open									
1 1 ±1.11 ↑			0	1		0	φE is output directry									
				1		•	1									
Note: In the unlocked state the DO pin goes low and the UL bit in the serial data becomes zero				1	±	1.11	Ť									
			Note: In the	unlocked st	ate the DO pir	goes low and	the UL bit in the serial data become	es zero.								


Continued on next page.

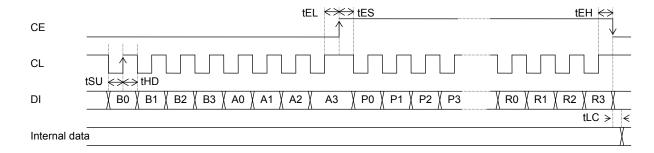
Continued from preceding page.

No.	Control block/data			F	Functions	Related data							
(8)	Phase comparator control data	Controls	the phas	e comparator dead zone.									
	DZ0, DZ1	DZ1	DZ0	Dead zone mode									
	,	0	0	DZA									
		0	1	DZB									
		1											
		Dead zone width: DZA <dzb<dzc<dzd< td=""></dzb<dzc<dzd<>											
(9)	Clock time base	"	Setting TBC to one causes an 8Hz, 40% duty clock time base signal to be output from the BO1 pin. (BO1 data is invalid in this mode.)										
(10)	Charge pump control	• `	Forcibly controls the charge pump output.										
	data	DLC											
	DLC	0		Normal operation	7								
		1 Forced low											
		Note: If de	eadlock o	ccurs due to the VCO cor	ntrol voltage (Vtune) going to zero and the VCO								
		oscillator stopping, deadlock can be cleared by forcing the charge pump output to low and											
		sett	ing Vtune	to $V_{\hbox{\footnotesize CC}}$. (This is the dea	dlock clearing circuit.)								
(11)	IF counter control	This data	must be s	set 1 in normal mode.									
	data	IFS The	ough if this	s value is set to zero, the	system enters input sensitivity degradation mode,								
	IFS	and the	sensitivit	y is reduced to 10 to 30m	Vrms.								
		* See th	ne "IF Cou	unter Operation" item for	details.								
(12)	LSI test data	LSI test d											
	TEST0 to 2	TESTO 7											
		TEST1 These values must all be set to 0.											
		TEST2 _	_										
		These tes	t data are	set to 0 automatically af	er the power-on reset.								
(13)	DNC	Don't care	e. This da	ta must be set to 0.									

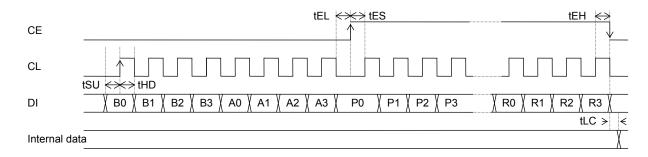
DO Control Data (Serial Data Output) Structure

[3] OUT Mode

Control Data Functions

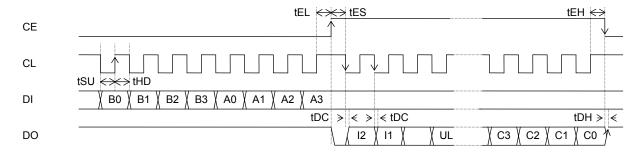

No.	Control block/data	Functions	Related data
(1)	I/O port data	Latched from the pin states of the $\overline{\rm IO1}$ and $\overline{\rm IO2}$ I/O ports.	IOC1
	12, 11	These values follow the pin states regardless of the input or output setting.	IOC2
		I1 ← $\overline{\text{IO1}}$ pin state	
		$12 \leftarrow \overline{102}$ pin state \Box Low: 0	
(2)	PLL unlock data	Latched from the state of the unlock detection circuit.	UL0
	UL	UL ← 0: Unlocked	UL1
		$UL \leftarrow 1$: Locked or detection stopped mode	
(3)	IF counter binary	Latched from the value of the IF counter (20-bit binary counter).	CTE
	counter	C19 \leftarrow MSB of the binary counter	GT0
	C19 to C0	C0 ← LSB of the binary counter	GT1

Serial Data I/O Methods

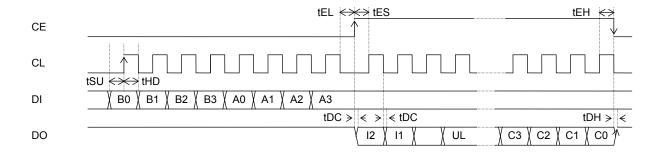

The LC72131K/KMA inputs and outputs data using Our CCB (computer control bus) audio LSI serial bus format. This

LSI ad	opts an 8-bi	t addı	ess fo	ormat	CCE	3.											
	I/O mode	В0	B1	B2		ress	A1	A2	A3	Function							
[1]	IN1 (82)	0	0	0	1 1	0 0	1	0	0	Control data input mode (serial data input) 24 data bits are input. See the "DI Control Data (serial data input) Structure" item for details on the meaning of the input data.							
[2]	IN2 (92)	1	0	0	1	0	1	Control data input mode (serial data input) 24 data bits are input. See the "DI Control Data (serial data input) Structure" item for detail on the meaning of the input data.									
[3]	OUT (A2)	0	1	Data output mode (serial data output) The number of bits output is equal to the number of clock cycles. See the "DO Control Data (serial data output) Structure" item for details on the meaning of the output data.													
C	$ \begin{array}{c} \text{TE} \\ \text{(1)} \\ \text{(2)} \\ \text{(3)} \\ \text{(4)} \\ \text{(5)} \\ \text{(6)} \\ \text{(1)} \\ \text{(2)} \\ \text{(3)} \\ \text{(4)} \\ \text{(5)} \\ \text{(5)} \\ \text{(6)} \\ \text{(6)} \\ \text{(7)} \\ \text{(7)} \\ \text{(8)} \\ \text{(1)} \\ \text{(1)} \\ \text{(2)} \\ \text{(3)} \\ \text{(4)} \\ \text{(5)} \\ \text{(5)} \\ \text{(6)} \\ \text{(6)} \\ \text{(7)} \\ \text{(7)} \\ \text{(8)} \\ \text{(8)} \\ \text{(8)} \\ \text{(9)} \\ \text{(9)} \\ \text{(1)} \\ \text{(1)} \\ \text{(2)} \\ \text{(2)} \\ \text{(2)} \\ \text{(2)} \\ \text{(2)} \\ \text{(3)} \\ \text{(4)} \\ \text{(4)} \\ \text{(5)} \\ \text{(5)} \\ \text{(6)} \\ \text{(6)} \\ \text{(7)} \\ \text{(7)} \\ \text{(8)} \\ (8)$		1) CL:	B1 Norm		Λ h				A1 A2 A3 N First Data IN1/2 N First Data OUT N N N First Data OUT N N N N N N N N N							

- 1. Serial Data Input (IN1/IN2) tSU, tHD, tES, tEH≥0.75µs tLC<0.75µs
 - (1) CL: Normal high

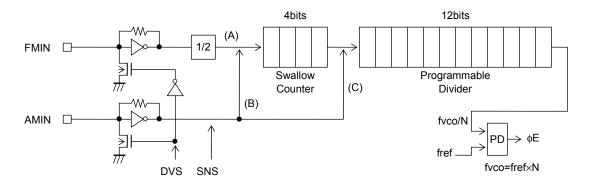


(2) CL: Normal low



2. Serial Data Output (OUT) tSU, tHD, tEL, tES, tEH≥0.75μs tDC, tDH<0.35μs

(1) CL: Normal high



(2) CL: Normal low

Note: Since the DO pin is an N-channel open-drain pin, the time for the data to change (tDC and tDH) will differ depending on the value of the pull-up resistor and printed circuit board capacitance.

Programmable Divider Structure

	DVS	SNS	Input pin	Set divisor	Actual divisor: N	Input frequency range
(A)	1	*	FMIN	272 to 65535	Twice the set value	10 to 160MHz
(B)	1	1	AMIN	272 to 65535	The set value	2 to 40MHz
(C)	0	0	AMIN	4 to 4095	The set value	0.5 to 10MHz

^{*:} Don't care

Programmable Divider Calculation Examples

(1) FM, 50kHz steps (DVS=1, SNS=*: FMIN selected)

FM RF=90.0MHz (IF=+10.7MHz)

FM VCO=100.7MHz

PLL fref=25kHz (R0 to R1=1, R2 to R3=0)

100.7MHz (FMVCO)÷25kHz (fref) ÷2 (FMIN: divide-by-two prescaler) =2014→07DE (HEX)

	E	Ξ			[)			7	7			(0									
_		_	$\overline{}$	_		_	$\overline{}$	_		_	_	_			_								
0	1	1	1	1	0	1	1	1	1	1	0	0	0	0	0	*	1			1	1	0	0
0	_	2	က	4	2	9	2		6	9	-	12	13	4	15	SN	ςΛ	世	တ	0	_	2	က
ď	À	ď	Ģ,	4	ď	ď	Ъ	<u>~</u>	۵	À	À	À	À	À	À	S		Ö	×	2	2	2	2

(2) SW 5kHz steps (DVS=0, SNS=1: AMIN high-speed side selected)

SW RF=21.75MHz (IF=+450kHz)

SW VCO=22.20MHz

PLL fref=5kHz (R0=R2=0, R1=R3=1)

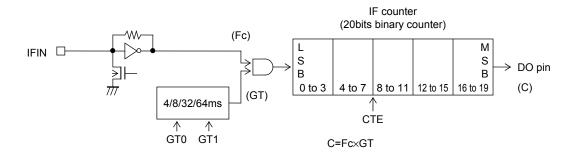
22.2MHz (SW VCO) ÷5kHz (fref) =4440→1158 (HEX)

	8	8			į	5			•	1				1									
		_	$\overline{}$	_		_		_		_		_		_									
0	0	0	1	1	0	1	0	1	0	0	0	1	0	0	0	1	0			0	1	0	1
P0	7	P2	P3	P4	P5	P6	Ь7	P8	P3	P10	P11	P12	P13	P14	P15	SNS	DVS	CTE	XS	R0	۲ <u>۲</u>	R2	R3

(3) MW 10kHz steps (DVS=0, SNS=0: AMIN low-speed side selected)

MW RF=1000kHz (IF=+450kHz)

MW VCO=1450kHz

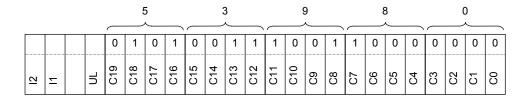

PLL fref=10kHz (R0 to R2=0, R3=1)

1450kHz (MW VCO) ÷10kHz (fref)=145→091 (HEX)

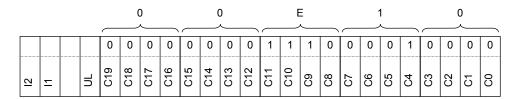
						1			(9			()									
				_		_	_	_		_	_	_		_	_								
*	*	*	*	1	0	0	0	1	0	0	1	0	0	0	0	0	0			0	0	0	1
	l															١							
ြ	7	2	က္က	4	2	စ္ပ	7	ω	စ	10	7	12	13	4	15	SNS	S/S	븼	S	l	~	S	ဗ္ဗ
	ш.	ш.	ъ	ш.	ш.			ш.	ဟ			_		ш.		ш.							

IF Counter Structure

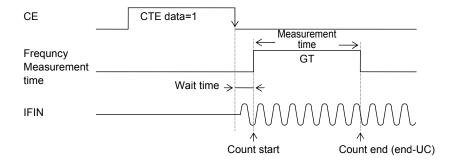
The LC72131K/KMA IF counter is a 20-bit binary counter. The result, i.e., the counter's msb, can be read serially from the DO pin.


074	OTO	Measurement time								
GT1	GT0	Measurement time (GT) (ms)	Wait time (twu) (ms)							
0	0	4	3 to 4							
0	1	8	3 to 4							
1	0	32	7 to 8							
1	1	64	7 to 8							

The IF frequency (Fc) is measured by determining how many pulses were input to an IF counter in a specified measurement period, GT.


$$Fc = \frac{C}{GT}$$
 (C=Fc×GT) C: Count value (number of pulses)

IF Counter Frequency Calculation Examples


(1) When the measurement period (GT) is 32ms, the count (C) is 53980 hexadecimal (342400 decimal): IF frequency (Fc) = $342400 \div 32$ ms=10.7MHz

(2) When the measurement period (GT) is 8ms, the count (C) is E10 hexadecimal (3600 decimal): IF frequency (Fc) = $3600 \div 8ms = 450kHz$

IF Counter Operation

Before starting the IF count, the IF counter must be reset in advance by setting CTE in the serial data to 0. The IF count is started by changing the CTE bit in the serial data from 0 to 1. The serial data is latched by the LC72131K/KMA when the CE pin is dropped from high to low. The IF signal must be supplied to the IFIN pin in the period between the point the CE pin goes low and the end of the wait time at the latest. Next, the value of the IF counter at the end of the measurement period must be read out during the period that CTE is 1. This is because the IF counter is reset when CTE is set to 0.

Note: When operating the IF counter, the control microprocessor must first check the state of the IF-IC SD (station detect) signal and only after determining that the SD signal is present turn on IF buffer output and execute an IF count operation. Autosearch techniques that use only the IF counter are not recommended, since it is possible for IF buffer leakage output to cause incorrect stops at points where there is no station.

IFIN minimum input sensitivity standard f [MHz]											
IFS	0.4≤f<0.5	0.5≤f<8	8≤f≤12								
1: Normal mode	40mVrms (0.1 to 3mVrms)	40mVrms	40mVrms (1 to 10mVrms)								
0: Degradation mode	70mVrms (10 to 15mVrms)	70mVrms	70mVrms (30 to 40mVrms)								

Note: Values in parentheses are actual performance values presented as reference data.

Unlock Detection Timing

Unlock Detection Determination Timing

Unlocked state detection is performed in the reference frequency (fref) period (interval). Therefore, in principle, unlock determination requires a time longer than the period of the reference frequency. However, immediately after changing the divisor N (frequency) unlock detection must be performed after waiting at least two periods of the reference frequency.

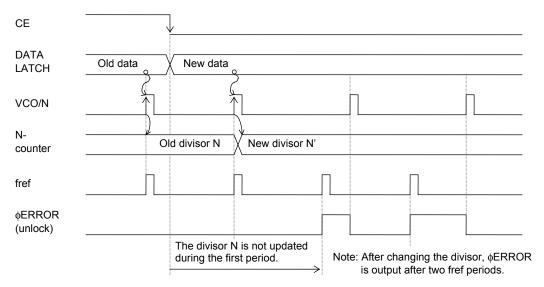


Figure 1 Unlocked State Detection Timing

For example, if fref is 1kHz, i.e., the period is 1ms, after changing the divisor N, the system must wait at least 2ms before checking for the unlocked state.

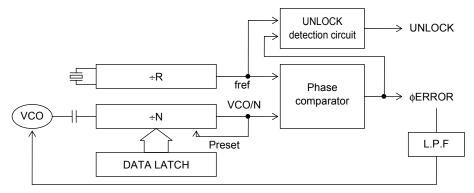
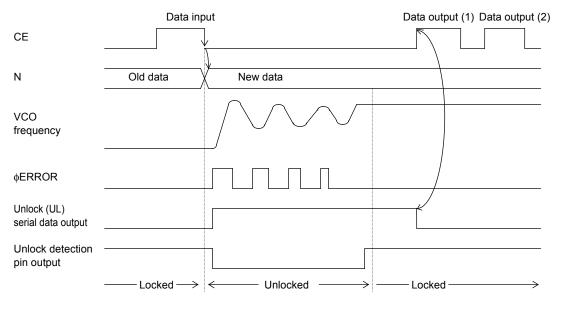
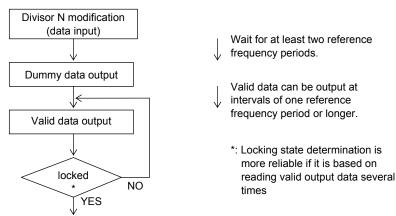


Figure 2 Circuit Structure

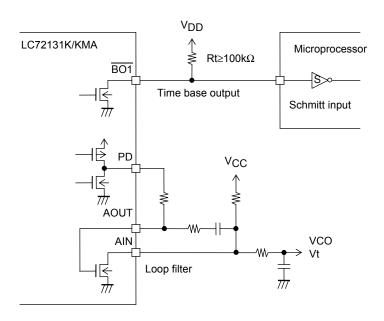



Figure 3

Unlocked State Data Output Using Serial Data Output

In the LC72131K/KMA, once an unlocked state occurs, the unlocked state serial data (UL) will not be reset until a data input (or output) operation is performed. At the data output (1) point in Figure 3, although the VCO frequency has stabilized (locked), since no data output has been performed since the divisor N was changed the unlocked state data remains in the unlocked state. As a result, even though the frequency has stabilized (locked), the system remains (from the standpoint of the data) in the unlocked state.

Therefore, the unlocked state data acquired at data output (1), which occurs immediately after the divisor N was changed, should be treated as a dummy data output and ignored. The second data output (data output (2)) and following outputs are valid data.


< Locked State Determination Flowchart Example>

Directly Outputting Unlocked State Data from the DO Pin (Set by the DO pin control data)
Since the unlocked state (high=locked, low=unlocked) is output directly from the DO pin, the dummy data processing described in section 3 above is not required. After changing the divisor N, the locking state can be checked after waiting at least two reference frequency periods.

Clock Time Base Usage Notes

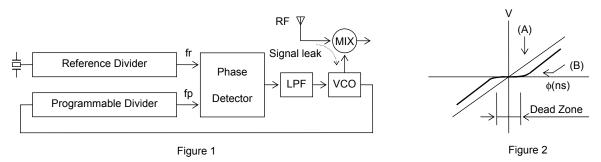
The pull-up resistor used on the clock time base output pin $(\overline{BO1})$ should be at least $100k\Omega$. This is to prevent degrading the VCO C/N characteristics when a loop filter is formed using the built-in low-pass filter transistor. Since the clock time base output pin and the low-pass filter have a common ground internal to the IC, it is necessary to minimize the time base output pin current fluctuations and to suppress their influence on the low-pass filter. Also, to prevent chattering we recommend using a Schmitt input at the controller (microprocessor) that receives this signal.

Other Items

[1] Notes on the Phase Comparator Dead Zone

DZ1	DZ0	Dead zone mode	Charge pump	Dead zone
0	0	DZA	ON/ON	0s
0	1	DZB	ON/ON	-0s
1	0	DZC	OFF/OFF	+0s
1	1	DZD	OFF/OFF	++0s

Since correction pulses are output from the charge pump even if the PLL is locked when the charge pump is in the ON/ON state, the loop can easily become unstable. This point requires special care when designing application circuits.


The following problems may occur in the ON/ON state.

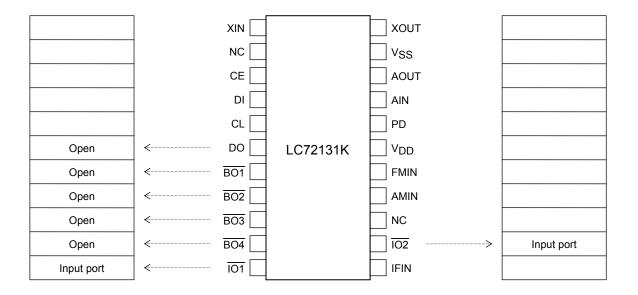
- (1) Side band generation due to reference frequency leakage
- (2) Side band generation due to both the correction pulse envelope and low frequency leakage Schemes in which a dead zone is present (OFF/OFF) have good loop stability, but have the problem that acquiring a high C/N ratio can be difficult. On the other hand, although it is easy to acquire a high C/N ratio with schemes in which there is no dead zone, it is difficult to achieve high loop stability. Therefore, it can be effective to select DZA or DZB, which have no dead zone, in applications which require an FM S/N ratio in excess of 90 to 100dB, or in which an increased AM stereo pilot margin is desired. On the other hand, we recommend selecting DZC or DZD, which provide a dead zone, for applications which do not require such a high FM signal-to-noise ratio and in which either AM stereo is not used or an adequate AM stereo pilot margin can be achieved.

Dead Zone

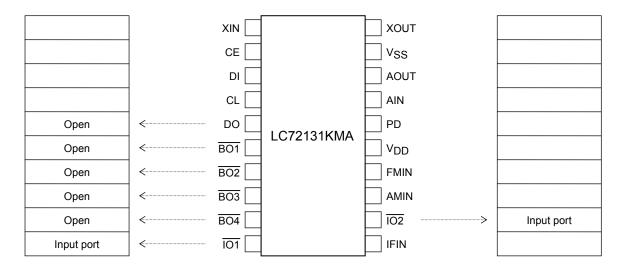
The phase comparator compares fp to a reference frequency (fr) as shown in Figure 1. Although the characteristics of this circuit (see Figure 2) are such that the output voltage is proportional to the phase difference \emptyset (line A), a region (the dead zone) in which it is not possible to compare small phase differences occurs in actual ICs due to internal circuit delays and other factors (line B). A dead zone as small as possible is desirable for products that must provide a high S/N ratio.

However, since a larger dead zone makes this circuit easier to use, a larger dead zone is appropriate for popularlypriced products. This is because it is possible for RF signals to leak from the mixer to the VCO and modulate the VCO in popularly-priced products in the presence of strong RF inputs. When the dead zone is narrow, the circuit outputs correction pulses and this output can further modulate the VCO and generate beat frequencies with the RF signal.

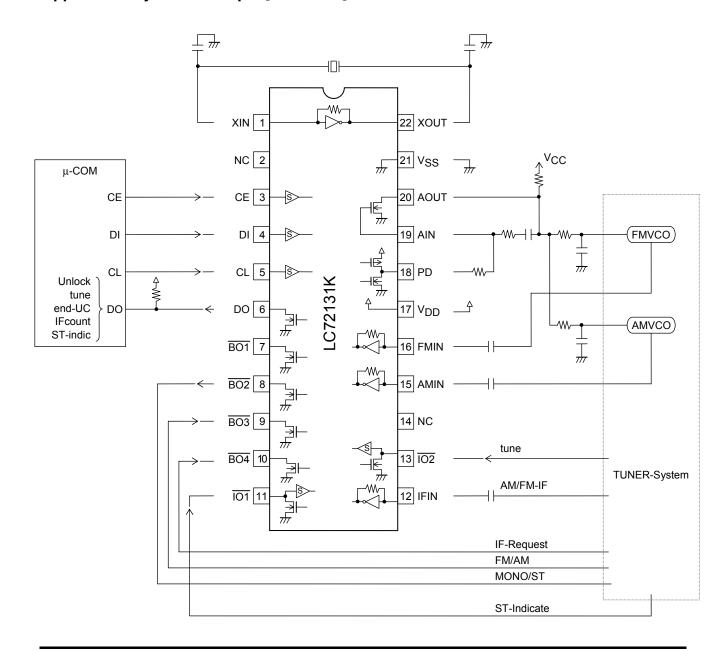
[2] Notes on the FMIN, AMIN, and IFIN Pins

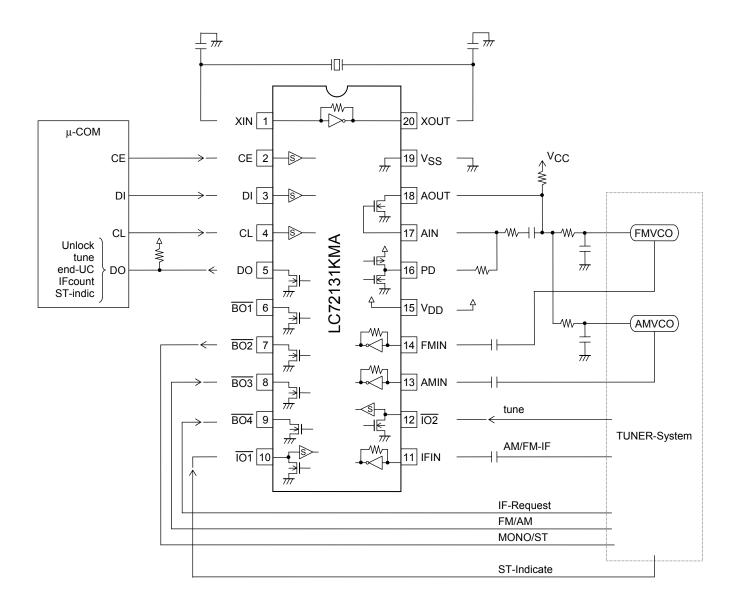

Coupling capacitors must be placed as close as possible to their respective pin. A capacitance of about 100pF is desirable. In particular, if a capacitance of 1000pF or over is used for the IF pin, the time to reach the bias level will increase and incorrect counting may occur due to the relationship with the wait time.

[3] Notes on IF Counting—SD must be used in conjunction with the IF counting time
When using IF counting, always implement IF counting by having the microprocessor determine the presence of
the IF-IC SD (station detect) signal and turn on the IF counter buffer only if the SD signal is present. Schemes in
which auto-searches are performed with only IF counting are not recommended, since they can cause false
detection where there is no signal due to overflow from the IF counter buffer.


[4] DO Pin Usage Techniques

In addition to data output mode times, the DO pin can also be used to check for IF counter count completion and for unlock detection output. Also, an input pin state can be output unchanged through the DO pin and input to the controller.


Pin States After the Power ON Reset [LC72131K]


Pin States After the Power ON Reset [LC72131KMA]

Application System Example [LC72131K]

Application System Example [LC72131KMA]

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equa

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ON Semiconductor: LC72131KMA-AE