NOTICE

Effective October 1, 2012, QUALCOMM Incorporated completed a corporate reorganization in which the assets of certain of its businesses and groups, as well as the stock of certain of its direct and indirect subsidiaries, were contributed to Qualcomm Technologies, Inc. (QTI), a whollyowned subsidiary of QUALCOMM Incorporated that was created for purposes of the reorganization.

Qualcomm Technology Licensing (QTL), the Company's patent licensing business, continues to be operated by QUALCOMM Incorporated, which continues to own the vast majority of the Company's patent portfolio. Substantially all of the Company's products and services businesses, including QCT, as well as substantially all of the Company's engineering, research and development functions, are now operated by QTI and its direct and indirect subsidiaries ¹. Neither QTI nor any of its subsidiaries has any right, power or authority to grant any licenses or other rights under or to any patents owned by QUALCOMM Incorporated.

No use of this website and/or documentation, including but not limited to the downloading of any software, programs, manuals or other materials of any kind or nature whatsoever, and no purchase or use of any products or services, grants any licenses or other rights, of any kind or nature whatsoever, under or to any patents owned by QUALCOMM Incorporated or any of its subsidiaries. A separate patent license or other similar patent-related agreement from QUALCOMM Incorporated is needed to make, have made, use, sell, import and dispose of any products or services that would infringe any patent owned by QUALCOMM Incorporated in the absence of the grant by QUALCOMM Incorporated of a patent license or other applicable rights under such patent.

Any copyright notice referencing QUALCOMM Incorporated, Qualcomm Incorporated, QUALCOMM Inc., Qualcomm Inc., Qualcomm or similar designation, and which is associated with any of the products or services businesses or the engineering, research or development groups which are now operated by QTI and its direct and indirect subsidiaries, should properly reference, and shall be read to reference, QTI.

¹ The products and services businesses, and the engineering, research and development groups, which are now operated by QTI and its subsidiaries include, but are not limited to, QCT, Qualcomm Mobile & Computing (QMC), Qualcomm Atheros (QCA), Qualcomm Internet Services (QIS), Qualcomm Government Technologies (QGOV), Corporate Research & Development, Qualcomm Corporate Engineering Services (QCES), Office of the Chief Technology Officer (OCTO), Office of the Chief Scientist (OCS), Corporate Technical Advisory Group, Global Market Development (GMD), Global Business Operations (GBO), Qualcomm Ventures, Qualcomm Life (QLife), Quest, Qualcomm Labs (QLabs), Snaptracs/QCS, Firethorn, Qualcomm MEMS Technologies (QMT), Pixtronix, Qualcomm Innovation Center (QuIC), Qualcomm iskoot, Qualcomm Poole and Xiam.

AR8035 Integrated 10/100/1000 Mbps Ethernet Transceiver

Data Sheet 80-Y0618-3 Rev A October 25, 2012

Confidential and Proprietary - Qualcomm Atheros, Inc.

Restricted Distribution. Not to be distributed to anyone who is not an employee of either Qualcomm or a subsidiary of Qualcomm without the express approval of Qualcomm's Configuration Management.

Not to be used, copied, reproduced in whole or in part, nor its contents revealed in any manner to others without the express written permission of Qualcomm Atheros, Inc.

QUALCOMM is a registered trademark of QUALCOMM Incorporated. ATHEROS is a registered trademark of Qualcomm Atheros, Inc. All other registered and unregistered trademarks are the property of Qualcomm Incorporated, Qualcomm Atheros, Inc. or their respective owners and used with permission. Registered marks owned by Qualcomm Incorporated and Qualcomm Atheros, Inc. are registered in the United States of America and may be registered in other countries.

This technical data may be subject to U.S. and international export, re-export, or transfer ("export") laws. Diversion contrary to U.S. and international law is strictly prohibited.

Qualcomm Atheros, Inc. 1700 Technology Drive San Jose, CA 95110-1383 U.S.A.

Revision history

Revision	Date	Description		
1.0	April 2011	Initial release		
2.0	April 2011 November 2011	 Initial release Electrical Characteristics 3.2 Recommended Operation Conditions: delete DVDDL/AVDDL, Ψ_{JA}; add VDDH_REG, Ψ_{JT}, AVDDL/DVDDL (industrial and commercial); add thermal conditions 3.6 change title from MDIO DC Characteristics to MDIO/MDC DC; change V_{IH} min value and V_{IL} max value 3.7 table 3-14: change Jitter_{pk-pk} max value to 100 3.11 Digital pin design guide (new) Registers 4.2.3 Status Register – Copper page, change bit[8] reset value to always 1 4.3.4 Hib control and auto-neg test register: change bit[12], [6:5] to 		
		reserved 4.3.5 External loopback selection, change bit[0] to R/W 4.3.7 Power saving control (new)		

Revision	Date	Description
Α	October 2012	System change from SharePoint to Agile. Based on SharePoint document system MKG-15827.
		Introduction
		 Update Features
		 Update figure functional block diagram
		Pin Description
		 Update Table Mode definition
		 Update Table Signal to pin descriptions
		Function Descriptioin
		 Update Auto-negotiation
		 Update Function Wake on LAN
		Electrical Characteristics
		 Absolute maximum ratings: add symbol Vmin
		 Update RGMII characteristics: Table RGMII DC characteristics — 2.5/3/3V I/O supply: add GND - 0.3 to Min of symbol V_{IL}
		□ Table RGMII DC characteristics — 1.8V I/O supply: add 2.1 to Max for symbol V _{IH} , add GND - 0.3 to Min for symbol V _{IL} , and add 1.9 to Max for symbol V _{OH}
		$\hfill\Box$ Table RGMII DC characteristics — 1.5V I/O supply: add 1.8 to Max for symbol V $_{\rm IH}$, add GND - 0.3 to Min for symbol V $_{\rm IL}$, and add 1.57 to Max for symbol V $_{\rm OH}$
		 Update RGMII characteristics and AC timing diagrams
		 MDIO timing: change Min from 10 to 0, add Typ 4, and remove Max of symbol tmdelay in Table MDIO AC characteristic
		 Clock characteristics: remove symbol Fs and Fo in table Recommended crystal parameters
		■ Power pin current consumption: update the voltage range from "3.3V ±10%" to "3.3V ±5%" for symbol AVDD33 in table Power pin consumption
		Update Registers
		Add a note to table Register summary
		■ Control register
		Status register
		Auto-negotiation advertisement register
		■ 1000BASE-T status register
		 Extended status register
		■ Function control register
		Smart speed register: add bit[8]: GIGA_DIS_QUAL
		■ Remove registers Auto-negotiation status, Auto-negotiation XNP transmit, Auto-negotiation XNP transmit1, Auto-negotiation XNP transmit2, Auto-negotiation LP XNP ability, Auto-negotiation LP XNP ability1, Auto-negotiation LP XNP ability2
		 Add registers PHY control debug register 0, Green feature configure 2, AZ control2, Cld control3,

Contents

1	Intr	oduction	9
	1.1	Features	9
	1.2	Functional block diagram	11
2	Pin	Descriptions	12
	2.1	Pinout diagram	
	2.2	Pin descriptions	
	2.3	Power-on strapping	
		2.3.1 Mode definition	
3	Fun	ction Description	18
	3.1	Transmit functions	18
	3.2	Receive functions	19
		3.2.1 Decoder modes	19
		3.2.2 Analog-to-Digital converter	19
		3.2.3 Echo canceller	19
		3.2.4 NEXT canceller	20
		3.2.5 Baseline wander canceller	20
		3.2.6 Digital adaptive equalizer	20
		3.2.7 Auto-negotiation	20
		3.2.8 Smartspeed	21
		3.2.9 Automatic MDI/MDIX crossover	21
		3.2.10 Polarity correction	22
	3.3	Loopback modes	22
		3.3.1 Digital loopback	22
		3.3.2 External cable loopback	22
		3.3.3 Remote PHY loopback	23
	3.4	Cable diagnostic test	24
	3.5	LED interface	25
	3.6	Power supplies	26
	3.7	Management interface	28
	3.8	Green ETHOS feature	29
		3.8.1 Low power modes	29
		3.8.2 Short cable power mode	29

		3.8.3	Hibernation mode	30
	3.9	IEEE 802	2.3az	. 30
	3.10	SmartEEl	Е	31
	3.11	Wake-on-	·LAN	. 32
4	Flec	trical Ch	naracteristics	34
7	4.1		maximum ratings	
	4.2		ended operating conditions	
	4.3		haracteristics	
	4.4		ning	
	4.5		DC DC characteristic	
	4.6		aracteristics	
	4.7		a current consumption	
	4.8	•	ower consumption parameters	
	4.9		sequence, reset and clock	
	,	4.9.1	Power-on sequence	
		4.9.2	Reset and clock timing	
	4.10		n design guide	
		8 ··· F	0	
5	Reg			
	5.1	Register b	pit type	. 44
	5.2	MII regis	ters	
		5.2.1	Control register	
		5.2.2	Status register	
		5.2.3	PHY identifier 1 register	
		5.2.4	PHY identifier 2 register	
		5.2.5	Auto-negotiation advertisement register	
		5.2.6	Auto-negotiation link partner ability register	
		5.2.7	Auto-negotiation expansion register	
		5.2.8	Auto-negotiation next page transmit register	
		5.2.9	Auto-negotiation link partner next page register	
		5.2.10	1000BASE-T control register	
		5.2.11	1000BASE-T status register	
		5.2.12	MMD access control register	
		5.2.13	MMD access data register	
		5.2.14	Extended status register	
		5.2.15	PHY specific function control register	
		5.2.16	PHY specific status register	
		5.2.17	Interrupt enable register	
		5.2.18	Interrupt status register	
		5.2.19	Smart speed register	
		5.2.20	Cable diagnostic test control register	
		5.2.21	LED control register	
		5.2.22	Manual LED override register	68

	5.2.23	Cable diagnostic test status register	9
	5.2.24	Debug port — address offset register 6	9
	5.2.25	Debug port — dataport register	0
5.3	Debug re	gisters	0
	5.3.1	Analog test control register	0
	5.3.2	SerDes test and system mode control register	1
	5.3.3	Hibernate control register	1
	5.3.4	100BASE-TX test mode select register	2
	5.3.5	External loopback selection register	3
	5.3.6	10BASE-Tetest mode select register	3
	5.3.7	PHY control debug register 0	4
	5.3.8	Power saving control register	4
	5.3.9	Green feature configure 2 register	5
5.4	MDIO in	terface registers	5
	5.4.1	MMD3 — PCS control register	6
	5.4.2	MMD3 — PCS status register	7
	5.4.3	MMD3 — EEE capability register	7
	5.4.4	MMD3 — EEE wake error counter register	
	5.4.5	MMD3 — Cld control 3 register	8
	5.4.6	MMD3 — AZ control 2 register	
	5.4.7	MMD3 — PTP1588 control register	9
	5.4.8	MMD3 — Internal MAC address 1 register	9
	5.4.9	MMD3 — Internal MAC address 2 register	0
	5.4.10	MMD3 — Internal MAC address 3 register	0
	5.4.11	MMD3 — RemotePHY loopback register	0
	5.4.12	MMD3 — SmartEEE control 1 register	0
	5.4.13	MMD3 — SmartEEE control 2 register	1
	5.4.14	MMD3 — SmartEEE control 3 register	1
	5.4.15	MMD7 — Auto-negotiation control register	2
	5.4.16	MMD7 — EEE advertisement register	2
	5.4.17	MMD7 — EEE LP advertisement register	3
	5.4.18	MMD7 — EEE ability auto-negotiation result register	4
	5.4.19	MMD7 — CLK_25M clock select register	4
Pac	kage Din	nensions8	6
Ord	ering Inf	ormation 8	8
Top	-side Ma	rking8	9

8

Tables

Table 2-1 Signal to pin descriptions	13
Table 2-2 Power-on strapping pins	16
Table 2-3 Mode definition	16
Table 3-1 AR8031, AR8033, and AR8035 comparison	18
Table 3-2 Transmit function encoder modes	19
Table 3-3 Receive function decoder mode	19
Table 3-4 Supported MDI pair combinations	21
Table 3-5 Default LED status	26
Table 3-6 Management interface frame fields	28
Table 3-7 Management interface field definitions	29
Table 4-1 Absolute maximum ratings	34
Table 4-2 Recommended operating conditions	34
Table 4-3 RGMII DC characteristics — 2.5/3.3V I/O supply	35
Table 4-4 RGMII DC characteristics — 1.8V I/O supply	35
Table 4-5 RGMII DC characteristics — 1.5 I/O supply	36
Table 4-6 RGMII AC characteristics — no internal delay	
Table 4-7 RGMII AC characteristics — with internal delay added (default)	37
Table 4-8 MDIO AC characteristic	38
Table 4-9 MDIO/MDC DC characteristic	38
Table 4-10 Recommended crystal parameters	39
Table 4-11 External clock input characteristic	39
Table 4-12 CLK_25M output characteristics	40
Table 4-13 Power pin consumption	40
Table 4-14 Total system power	40
Table 4-15 Digital pin designs	42
Table 5-1 Register bit types	44
Table 5-2 Register summary	45
Table 5-3 Debug register summary	70
Table 5-4 MMD3 register summary	75
Table 5-5 MMD7 register summary	76
Table 6-1 Package dimensions	87
Table 7-1 Ordering information	88
Table 8-1 Top-side markings	89

Figures

Figure 2-1	AR8035 48-pin QFN pinout (top view)	. 13
Figure 3-1	Digital loopback	. 22
Figure 3-2	External cable loopback	. 23
Figure 3-3	Remote PHY loopback	. 24
Figure 3-4	Reference design for LED, active high	. 25
Figure 3-5	Reference design for LED, active low	. 25
Figure 3-6	Reference design, 2.5/3.3 V RGMII I/O	. 27
Figure 3-7	Reference design, 1.5/1.8 V RGMII I/O	. 28
Figure 3-8	Operating states — 802.3az LPI mode	. 31
Figure 3-9	Operating power modes — 802.3az LPI mode	. 31
Figure 3-10	WoL system application structure	. 33
Figure 4-1	RGMII input timing diagram	. 36
Figure 4-2	RGMII output AC timing diagram with internal delay added	. 37
Figure 4-3	MDIO AC timing diagram	. 37
Figure 4-4	External crystal	. 39
Figure 4-5	Reset timing diagram	. 42
Figure 6-1	Packag view	. 86
Figure 8-1	Top-side markings	. 89

1 Introduction

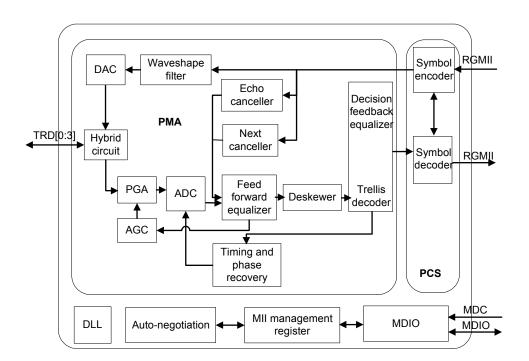
The AR8035 Ethernet transceiver is a single port, 10/100/1000 Mbps tri-speed Ethernet PHY. The AR8035 Ethernet transceiver supports RGMII to the MAC. The AR8035 Ethernet transceiver belongs to the Arctic[™] PHY family which provides a low power, low BOM cost solution for comprehensive applications including enterprise, carrier and home networks such as CPE, home gateway, enterprise switch, carrier switch/router, mobile base station and base station controller, optical module and media converter, industrial automation and measurement.

The AR8035 Ethernet transceiver integrates Green ETHOS® power saving technologies which significantly save power in both active operation and idle condition. Green ETHOS power saving schemes include ultra-low power in cable unplugged mode or port power down mode, as well as automatically optimized power saving based on cable length. The AR8035 Ethernet transceiver supports standard IEEE 802.3az Energy Efficient Ethernet (EEE) and Qualcomm Atheros proprietary SmartEEETM. SmartEEE allows legacy MAC and SoC devices without IEEE 802.3az support to cowork with AR8035 to provide full IEEE 802.3az support. Furthermore, the AR8035 Ethernet transceiver supports Wake-on-LAN (WoL) feature to manage and regulate total system power requirements.

The AR8035 Ethernet transceiver embeds Cable Diagnostics Test (CDT) technology for measuring cable length, detecting the cable status, and identifying remote and local PHY malfunctions, bad or marginal patch cord segments or connectors.

The AR8035 Ethernet transceiver requires only a single 3.3 V power supply. Embedded regulators are used to generate other required voltages. The AR8035 Ethernet transceiver integrates the termination circuitry at the line side.

The AR8035 Ethernet transceiver supports IEEE 802.3az standard. The key features include:


- 10BASE-Te PHY uses reduced transmit amplitude.
- 100BASE-TX and 1000BASE-T use Low Power Idle (LPI) mode to turn off unused analog and digital blocks to save power when data traffic is idle.

1.1 Features

- 10BASE-Te/100BASE-TX/1000BASE-T IEEE 802.3 compliant
- 1000BASE-T PCS and auto-negotiation with next page support
- RGMII to MAC devices
- RGMII timing modes support internal delay and external delay on Rx path
- Green ETHOS power saving modes with internal automatic DSP power saving scheme
- IEEE 802.3az EEE

- SmartEEE which allows legacy MAC and SoC devices without IEEE 802.3az support to cowork with AR8035 to provide full IEEE 802.3az support
- Wake-on-LAN (WoL) to detect magic packet and notify the sleeping system to wake up
- Fully integrated digital adaptive equalizers, echo cancellers, and Near End Crosstalk (NEXT) cancellers
- Robust Cable Discharge Event (CDE) protection of ±6 kV
- Robust operation over up to 140 meters of CAT5 cable
- Automatic Channel Swap (ACS)
- Automatic MDI/MDIX crossover
- Automatic polarity correction
- IEEE 802.3u compliant auto-negotiation
- Jumbo frame support up to 10 KB (full-duplex)
- Multiple loopback modes for diagnostics
- Robust surge protection with ±750 V/line-to-line mode and ±4 kV/line-to-ground mode IEC61000-4-5(2001)
- Cable Diagnostic Test (CDT)
- Single power supply: 3.3 V, optional for external regulator for core voltage
- 6 mm × 6 mm, 48-pin QFN package
- Industry temperature (I-temp) option available

1.2 Functional block diagram

2 Pin Descriptions

This section includes a package pinout and signal descriptions.

Nomenclatures for signal names

NC	No signal connection from this pin
_n	Signal name suffix indicating active low signals
_P	Signal name suffix indicating the positive side of a differential signal
_N	Signal name suffix indicating the negative side of a differential signal

Nomenclatures for signal types

D	Open drain
IA	Analog input signal
I	Digital input signal
I/O	Digital bidirectional signal
OA	Analog output signal
0	Digital output signal
P	Power or ground signal
PD	Internal pull-down for input
PU	Internal pull-up for input

2.1 Pinout diagram

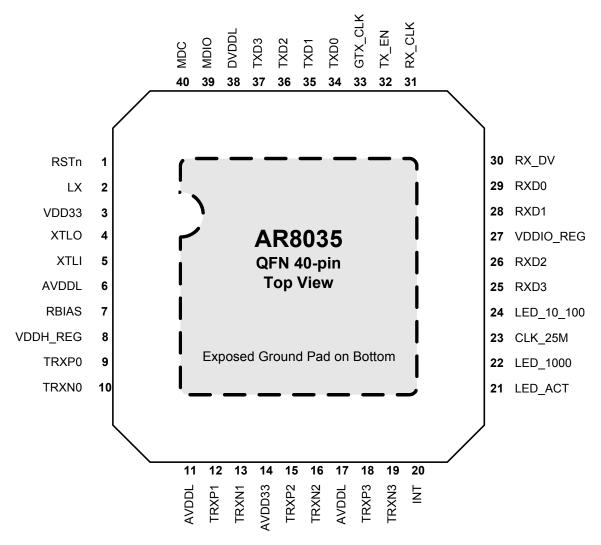


Figure 2-1 AR8035 48-pin QFN pinout (top view)

NOTE An exposed ground pad is on the back side of the package.

2.2 Pin descriptions

Table 2-1 Signal to pin descriptions

Symbol	Pin	Type	Description	
MDI				
TRXP0	9	IA, OA	Media-dependent interface 0, differential 100 Ω transmission line	
TRXN0	10			

Table 2-1 Signal to pin descriptions (cont.)

TRXP1 TRXN1 TRXP2 TRXN2 TRXN2 TRXP3 TRXN3 RGMII	12 13 15 16 18 19	IA, OA IA, OA	Media-dependent interface 1, differential 100 Ω transmission line Media-dependent interface 2, differential 100 Ω transmission line Media-dependent interface 3, differential 100 Ω transmission line		
TRXP2 TRXN2 TRXP3 TRXN3	15 16 18 19				
TRXN2 TRXP3 TRXN3	16 18 19				
TRXP3 TRXN3	18 19	IA, OA	Media-dependent interface 3, differential 100 Ω transmission line		
TRXN3	19	IA, OA	Media-dependent interface 3, differential 100 Ω transmission line		
RGMII	33				
	33				
GTX_CLK	55	I, PD	RGMII transmit clock, 125 MHz @ 1000 Mbps, 25 MHz @ 100 Mbps, and 2.5 MHz @ 10 Mbps digital clock input. Adding a 22 Ω damping resistor is recommended near MAC side.		
RX_CLK	31	I/O, PD	RGMII receive clock, 125 MHz @1000 Mbps, 25 MHz @ 100 Mbps, and 2.5 MHz @ 10 Mbps digital clock output. Adding a 22 Ω damping resistor is recommended near PHY side. Power-on strapping input		
RX_DV	30	I/O, PD	RGMII receive data valid, RGMII output. Adding a 22 Ω damping resistor is recommended near PHY side.		
			Power-on strapping input		
RXD0	29	I/O, PD	RGMII receive data 0, RGMII output. Adding a 22 Ω damping resistor is recommended near PHY side.		
			Power-on strapping input		
RXD1	28	I/O, PD	RGMII receive data 1, RGMII output. Adding a 22 Ω damping resistor is recommended near PHY side.		
			Power-on strapping input		
RXD2	26	I/O, PD	RGMII receive data 2, RGMII output. Adding a 22 Ω damping resistor is recommended near PHY side. Power-on strapping input		
RXD3	25	I/O, PD	RGMII receive data 3, RGMII output. Adding a 22 Ω damping resistor is recommended near PHY side.		
			Power-on strapping input		
TX_EN	32	I, PD	RGMII transmit enable, RGMII input		
TXD0	34	I, PD	RGMII transmit data 0, RGMII input		
TXD1	35	I, PD	RGMII transmit data 1, RGMII input		
TXD2	36	I, PD	RGMII transmit data 2, RGMII input		
TXD3	37	I, PD	RGMII transmit data 3, RGMII input		
Management interl	face				
MDC	40	I, PU	Management data clock reference		
MDIO	39	I/O, D, PU	Management data, 1.5 kΩ pull-up resistor to 3.3 V/2.5 V		
LED	ļ				

Table 2-1 Signal to pin descriptions (cont.)

Symbol	Pin	Туре	Description			
LED_ACT	21	I/O, PU	Parallel LED output for 10BASE-Te/100BASE-TX/1000BASE-T activity; LED active based on power-on strapping. If pulled up, active low; if pulled down, active high.			
LED_1000	22	I/O, PU	power-on stra	apping.	00BASE-T link; LED active based on pulled down, active high.	
LED_10_100	24	I/O, PU	Parallel LED output for 10BASE-Te/100BASE-TX link. LED active based on power-on strapping of LED_1000. If LED_1000 is pulled up, this pin is active low; if LED_1000 is pulled down, this pin is active high.			
				High	10 Mbps	
			External PU	Low	100 Mbps	
				Low	10 Mbps	
			External PD	High	100 Mbps	
For detailed inform	mation o	f LED, see	"LED interface	e" on page 2	5.	
System signal g	roup/re	ference				
CLK_25M	23	O, PD	.The clock output that references the local clock. The frequency, configured by the register, can be 25 MHz, 50 MHz, 62.5 MHz or 125 MHz.			
RSTn	1	I		System reset, active low. This pin requires an external pull-up resistor to 2.5 V or 3.3 V.		
XTLI	5	IA	Crystal oscillator input; typical 27 pF capacitor to GND. Support external 25 MHz 1.2 V swing clock input through this pin.			
XTLO	4	OA	Crystal oscilla	ator output; t	ypical 27 pF capacitor to GND	
RBIAS	7	OA	External 2.37 kΩ 1% resistor to GND to set bias current			
INT	20	I/O, D, PD	System interrupt output. This pin is OD-gate by default and requires external 10 $k\Omega$ pull-up resistor, active low.			
Power	1		1			
LX	2	OA	Power induct		n external 4.7 μH/500 mA power inductor to	
VDDH_REG	8	OA	2.5 V internal regulator output. Adding a 1 µF capacitor parallel with this pin and GND is recommended.			
VDDIO_REG	27	OA	Regulator output for the RGMII I/O voltage. It can be either 1.5 V (default) or 1.8 V. If 2.5 V is intended for the RGMII I/O, connect this pin with the 2.5 V regulator output at pin 10 (VDDH_REG).			
AVDDL	6, 11, 17	Р	1.1 V analog input. Connect to pin 38 through a bead.			
DVDDL	38	Р	1.1 V digital core power input. Connect to power inductor directly and 10 μF+0.1 μF ceramic capacitors to GND.			
VDD33	3	Р	3.3 V input for internal switching regulator			

Table 2-1 Signal to pin descriptions (cont.)

Symbol	Pin	Type	Description	
AVDD33	14	Р	3.3 V input for PHY, from VDD33 through a bead	
In the Type column, PU and PD indicates the pin includes internal weak pull-up and pull-down resistor respectively.				

2.3 Power-on strapping

Table 2-2 lists the pin-to-PHY core power-on strapping configurations.

Table 2-2 Power-on strapping pins

PHY pin	PHY core configuration signal	Description	Default internal weak pull-up/down
RXD0	PHYADDRESS0	LED_ACT and RXD[1:0] set the lower	0
RXD1	PHYADDRESS1	three bits of the physical address. The upper two bits of the physical address are	
LED_ACT	PHYADDRESS2	set to 00.	1
RX_DV	MODE[0]	Mode select bit 0	0
RXD2	MODE[1]	Mode select bit 1	0
LED_1000	MODE[2]	Mode select bit 2	1
RXD3	MODE[3]	Mode select bit 3	0
RX_CLK	1.8V/1.5V	Select the RGMII I/O voltage level	0
		1 = 1.8 V I/O	
		0 = 1.5 V I/O	

- 1. 0 = Pull-down, 1 = Pull-up.
- 2. Power-on strapping pins are latched during power-up reset or warm hardware reset.
- 3. Because the MAC device input pins can be driven high or low during power-up or reset, PHY power-on strapping status can be affected by the MAC side. In this case, an external 10 k Ω pull-down or pull-up resistor is required to ensure stable status.
- 4. When using 2.5 V RGMII I/O voltage level, RX CLK can be pull-up or pull-down.

2.3.1 Mode definition

Table 2-3 lists the mode definition.

Table 2-3 Mode definition

Mode [3:0]	Description
1100	RGMII, PLL OFF, INT
1110	RGMII, PLL ON, INT

Table 2-3 Mode definition (cont.)

Mode [3:0]	Description
Others	Reserved

PLLOFF indicates that AR8035 can shut down internal PLL in power saving mode. In PLL OFF mode, when AR8035 enters power saving mode (hibernation), CLK_25M output drops periodically, which saves more power. In PLL ON mode, CLK_25M outputs continuously.

3 Function Description

The AR8035 Ethernet transceiver is an low cost GbE PHY. The highly integrated Analog Front End (AFE) and Digital Signal Processing (DSP) architecture ensures robust performance combined with substantial cost reduction. The AR8035 Ethernet transceiver provides physical layer functions for half/full-duplex 10BASE-Te, 100BASE-TX and full-duplex 1000BASE-T Ethernet to transmit and receive high-speed data over standard Category 5 (CAT5) un-shielded twisted pair cable.

The AR8035 10/100/1000 PHY is fully IEEE 802.3ab compliant, and supports Reduced Gigabit Media-Independent Interface (RGMII) to connect to a Gigabit-capable MAC.

The AR8035 Ethernet transceiver combines echo canceller, Near End Cross Talk (NEXT) canceller, feed-forward equalizer, joint Viterbi, feedback equalizer, and timing recovery, to enhance signal performance in noisy environments.

Table 3-1 lists feature comparison among the AR8031, AR8033, and AR8035 family.

Table 3-1 AR8031, AR8033, and AR8035 comparison

Feature	AR8031	AR8033	AR8035
RGMII	Yes	Yes	Yes
SGMII	Yes	Yes	_
Cu Ethernet ⁽²⁾	Yes	Yes	Yes
EEE (IEEE 802.3az)	Yes	Yes	Yes
Wake-on-LAN	Yes	Yes	Yes
SerDes/Fiber ⁽³⁾	Yes	Yes	_
1588v2	Yes	_	_
Sync-E	Yes	Yes	_
Packaging	48-pin	48-pin	40-pin

^{1.} AR8031 and AR8033 are pin-to-pin compatible.

3.1 Transmit functions

Table 3-2 lists the transmit function encoder modes.

^{2. 10}BASE-Te, 100BASE-TX, and 1000BASE-T are supported.

^{3. 100}BASE-FX and 1000BASE-X are supported.

Table 3-2 Transmit function encoder modes

Mode	Description
1000BASE-T	In 1000BASE-T mode, AR8035 scrambles Tx data bytes from the MAC interfaces and encodes them into 4D five-level PAM signals over the four pairs of CAT5 cable.
100BASE-TX	In 100BASE-TX mode, 4-bit data from the MII is 4B/5B serialized, scrambled, and encoded to a 3-level MLT3 sequence transmitted by the PMA.
10BASE-Te	In 10BASE-Te mode, AR8035 transmits and receives Manchester-encoded data.

3.2 Receive functions

3.2.1 Decoder modes

Table 3-3 lists the receive function decoder modes.

Table 3-3 Receive function decoder mode

Mode	Description
1000BASE-T	In 1000BASE-T mode, the PMA recovers the 4D PAM signals after accounting for the cabling conditions such as skew among the four pairs, the pair swap order, and the polarity of the pairs. The resulting code group is decoded into 8-bit data values. Data stream delimiters are translated appropriately and data is output to the MAC interfaces.
100BASE-TX	In 100BASE-TX mode, the receive data stream is recovered and descrambled to align to the symbol boundaries. The aligned data is then parallelized and 5B/4B decoded to 4-bit data. This output runs to the MII receive data pins after data stream delimiters have been translated.
10BASE-Te	In 10BASE-Te mode, the recovered 10BASE-Te signal is decoded from Manchester then aligned.

3.2.2 Analog-to-Digital converter

Each Rx channel includes an advanced high speed ADC with high resolution for better Signal-to-Noise Ratio (SNR) and lower error rates.

3.2.3 Echo canceller

Because hybrid circuit is used to transmit and receive simultaneously on each pair, echo occurs when the transmitter is not perfectly matched to the line. Connector or cable imperfections, such as patch panel discontinuity and variations in cable impedance along the twisted pair cable, can also result in drastic SNR degradation on the Rx signal.

The adaptive digital echo canceller is used to compensate for the varied channel conditions that result in SNR degradation on the Rx signal.

3.2.4 NEXT canceller

The 1000BASE-T physical layer uses all four twisted pairs to transmit data which incurs significant high frequency crosstalk occurs between adjacent pairs.

Three parallel NEXT cancellers are thus integrated on each Rx channel to cancel high frequency crosstalk by subtracting an estimate noise signals from the equalizer output.

3.2.5 Baseline wander canceller

Baseline wander occurs on Ethernet links AC-coupled to the transceiver. When the AC-coupling cannot maintain voltage levels for a specific time, the transmitted pulses are distorted which results in erroneous sampled values for affected pulses.

The baseline wander cancellation circuit continuously monitors and compensates for this issue, minimizing the impact of DC baseline shift on the overall error rate.

3.2.6 Digital adaptive equalizer

The digital adaptive equalizer, using a combination of Feedforward Equalizer (FFE) and Decision Feedback Equalizer (DFE), removes inter-symbol interference at the receiver by filtering unequalized signals from ADC output for optimized SNR.

3.2.7 Auto-negotiation

The auto-negotiation function for 10BASE-Te/100BASE-TX/1000BASE-T Copper complies with IEEE 802.3 clauses 28 and 40.

Auto-negotiation provides a mechanism to exchange information between a pair of link partners to choose the optimized mode of operation in terms of speed, duplex modes, and master/slave preference. Auto-negotiation is initiated upon any of the following scenarios:

- Power-on reset
- Hardware reset
- Software reset
- Auto-negotiation restart
- Transition from power-down to power-up
- Link down

When auto-negotiation is disabled, the operation speed mode can be manually selected using the IEEE MII register 0.

NOTE In 10BASE-Te/100BASE-TX, when one end disables auto-negotiation (force mode) and the other end enables auto-negotiation (advertise half-duplex), the link can be established and the end with auto-negotiation enabled works in half-duplex mode. So if the end in force mode is in half-duplex mode, the information transmission between

the two link partners works normally; if the end in force mode is in full-duplex mode,

mismatch occurs between the two link partners. The link cannot be established in 1000BASE-T under similar situation.

3.2.8 Smartspeed

The Smartspeed function is an enhanced feature of auto-negotiation that allows the AR8035 device to downgrade in speed based on cabling conditions. With Smartspeed enabled, after a configurable number (MII Register 14.4:2) of failed attempts, the PHY automatically downgrades the highest ability it advertises to the next lower speed: from 1000 to 100 to 10.

The Smartspeed feature is enabled by default. See "Smart speed register" on page 65 for detailed information.

- Bit[5]: SMARTSPEED EN
 - □ 1 = Enables Smartspeed (default)
 - \Box 0 = Disables Smartspeed
- Bits[4:2]: SMARTSPEED_RETRY_LIMIT
 Sets the number of link attempts before adjusting
- Bit[1]: BYPASS_SMARTSPEED_TIMER

Timer to determine the stable link condition

NOTE The Smartspeed enable bit requires a software reset to take effect after writing bit[15] in Control register (0x0) to 1. When Smartspeed function is disabled, write bit[8] in Smart speed register (0x14) to 1, rather than change bit[9] in 1000BASE-T control register (0x9), to disable 1000BASE-T full-duplex link ability.

3.2.9 Automatic MDI/MDIX crossover

During auto-negotiation, the automatic MDI/MDIX crossover function automatically determines and sets the required MDI configuration, eliminating the need for external crossover cable.

The algorithm described in IEEE 802.3 clause 40.4.4 ensures that only one device performs the required crossover when the remote device implements automatic MDI crossover as well.

For 1000BASE-T, swap can happen only between pair A and pair B, or pair C and pair D. See Table 3-4.

A (1, 2)	B (3, 6)	C (4, 5)	D (7, 8)	Normal MDI
B (3, 6)	A (1, 2)	D (7, 8)	C (4, 5)	Normal MDI-X
A (1, 2)	B (3, 6)	D (7, 8)	C (4, 5)	Normal MDI with pair swap on C and D pair
B (3, 6)	A (1, 2)	C (4, 5)	D (7, 8)	Normal MDI-X with pair swap on C and D pair

Table 3-4 Supported MDI pair combinations

3.2.10 Polarity correction

If cable polarity is incorrectly wired, the polarity correction function automatically corrects polarity errors on the receive pairs in 1000BASE-T, 100BASE-TX, and 10BASE-Te modes.

3.3 Loopback modes

3.3.1 Digital loopback

Digital loopback loops transmitted data back to the receiver using digital circuit in the AR8035 device. Figure 3-1 shows the block diagram for the digital loopback.

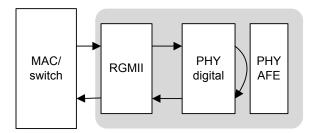


Figure 3-1 Digital loopback

Configuring internal loopback

MII register settings for PHY internal digital loopback mode selection:

- 1000M loopback: register 0x0 = 0x4140
- 100M loopback: register 0x0 = 0x6100
- 10M loopback: register 0x0 = 0x4100

3.3.2 External cable loopback

External cable loopback loops RGMII Tx to RGMII Rx through complete digital and analog path and an external cable. This function is used to test the digital data paths and the analog circuits. Figure 3-2 shows a block diagram of external cable loopback.

Figure 3-2 External cable loopback

Configuring external cable loopback

To configure external cable loopback:

- 1. Plug in an external loopback cable (1 wiring 3, 2 wiring 6, 4 wiring 7, and 5 wiring 8).
- 2. Set bit[15] PS_HIB_EN of External loopback selection register (Debug Register offset 0xB) to 0 to disable hibernate (power saving) mode.
- 3. Set bit[0] EXT_LPBK of External loopback selection register (Debug Register offset 0x11) to 1 to enable external loopback.
- 4. Set MII Register 0x0 to select loopback modes:
 - \Box 1000M loopback: register 0x0 = 0x8140
 - \Box 100M loopback: register 0x0 = 0xA100
 - \Box 10M loopback: register 0x0 = 0x8100

NOTE When cable is removed and reconnected to 1000M mode, the register 0x0 must be configured to 0x8140 again to establish PHY link.

3.3.3 Remote PHY loopback

In remote PHY loopback mode, the data from MDI Rx is looped back to MDI Tx to enable the remote link partner to detect the connectivity in the loop.

Figure 3-3 shows the block diagram of the remote PHY loopback.

Figure 3-3 Remote PHY loopback

Configuring remote PHY loopback

To enable remote PHY loopback, set bit[0] of MMD3 — RemotePHY loopback register (MMD3 Register offset 0x805A) to 1.

NOTE When remote loopback is enabled, packets from link partner still appear at RGMII.

3.4 Cable diagnostic test

The Cable Diagnostic Test (CDT) feature uses Time Domain Reflectometry (TDR) technology to identify malfunctions in remote and local PHYs, bad or marginal cable, patch cord segments and connectors.

The following are the problems that can be possibly diagnosed using CDT:

- Open
- Short
- Cable impedance mismatch
- Bad connector
- Termination mismatch
- Bad magnetic

The CDT can be performed when no link partner is present or the link partner is auto-negotiating.

Configuring CDT

To perform the cable diagnostic test:

- 1. Set bits[9:8] MDI PAIR SELECT of Cable diagnostic test control register (offset 0x16) to select the MDI pair to be tested.
- 2. Set bit[0] ENABLE TEST of Cable diagnostic test control register (offset 0x16) to 1 to enable CDT.
- 3. Check bits[9:8] STATUS of Cable diagnostic test status register (offset 0x1C) for cable status.

4. Check bits[7:0] DELTA_TIME of Cable diagnostic test status register (offset 0x1C) for delta time. The distance between the faulty point and PHY is [delta time] × 0.824.

3.5 LED interface

The LED interface can be controlled by the PHY or manually, independent of the state of the PHY. The LED pins can be programmed to indicate the following status:

- Operation speed
- Traffic mode
- Link

Figure 3-4 and Figure 3-5 show the reference designs for the LED interface.

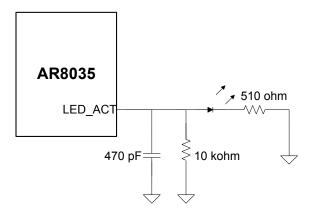


Figure 3-4 Reference design for LED, active high

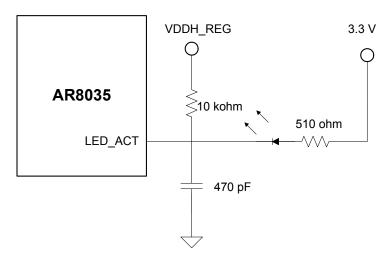


Figure 3-5 Reference design for LED, active low

The active status of LED_ACT and LED_1000 depends on power-on strapping mode. When the interface is strapped high, the LED interface is active low; when strapped low, the LED interface is active high.

The active status of LED_10_100 depends on LED_1000 power-on strapping mode and thus LED_10_100 and LED_1000 use the same LED reference design.

The default LED functions are listed in Table 3-5.

Table 3-5 Default LED status

Symbol	10M link	10M active	100M link	100M active	1000M link	1000M active
LED_10_100	OFF	OFF	ON	ON	OFF	OFF
LED_1000	OFF	OFF	OFF	OFF	ON	ON
LED_ACT	ON	BLINK	ON	BLINK	ON	BLINK
ON = active; OFF = inactive						

3.6 Power supplies

One external power supply is required:

■ 3.3 V

Internal power rails are:

- 3.3 V
- 2.5 V
- 1.1 V
- 1.8/1.5 V

AR8035 integrates a switch regulator to convert 3.3 V to 1.1 V with high efficiency for core power rail.

Two embedded LDOs are integrated to support 2.5, 1.5/1.8 V RGMII I/O voltages. When working at 2.5 V RGMII I/O, connect the VDDH_REG pin to VDDIO_REG pin directly. The 2.5 V to 1.5/1.8 V regulator can be set to any mode because the output voltage is same as input which causes regulator shutdown. When working at 2.5 V RGMII I/O, AR8035 can connect with 3.3 V RGMII I/O. Because the input can bear 3.3 V logic signal, the output logic VoH and VoL can satisfy the 3.3 V LVCMOS/LVTTL requirements. See "Electrical Characteristics" on page 34 for parameter details.

Figure 3-6 shows the reference design for 2.5/3.3 V RGMII voltage level.

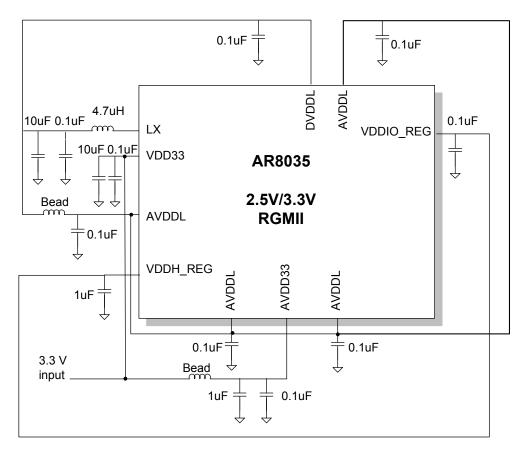


Figure 3-6 Reference design, 2.5/3.3 V RGMII I/O

When working at 1.5/1.8 V RGMII I/O, disconnect VDDH_REG and VDDIO_REG and set the internal LDO to output the right voltage. The 1.5 V or 1.8 V selection is configured by bit[3] in PHY control debug register 0 (debug register 0x1F).

Figure 3-7 shows the reference design for 1.5/1.8 V RGMII voltage level.

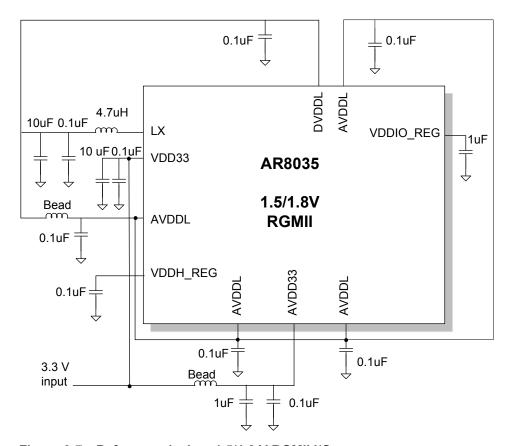


Figure 3-7 Reference design, 1.5/1.8 V RGMII I/O

3.7 Management interface

The management interface, compliance with IEEE 802.3u clause 22, provides access to the internal registers of PHYs via the MDC and MDIO pins. MDC is sourced by the station management entity to the PHY as the timing reference for transfer of information on the MDIO signal.

MDIO is a bidirectional signal between the PHY and the STA. It is used to transfer control information and status between the PHY and the STA. Control information is driven by the STA synchronously with respect to MDC and is sampled synchronously by the PHY. Status information is driven by the PHY synchronously with respect to MDC and is sampled synchronously by the STA.

MDIO is an open-drain I/O and requires an external 1.5 k Ω pull-up resistor.

Table 3-6 and Table 3-7 describe the management interface format.

Table 3-6 Management interface frame fields

PRE	ST	OP	PHYAD	REGAD	TA	DATA	IDLE

Table 3-6 Management interface frame fields (cont.)

READ	11	01	10	AAAAA	RRRRR	Z0	DDDDDDDDDDDDDD	Z
WRITE	11	01	01	AAAAA	RRRRR	10	DDDDDDDDDDDDDD	Z

Table 3-7 Management interface field definitions

Field	Definition
PRE	A sequence of 32 contiguous single logic bits on MDIO with corresponding cycles on MDC to provide PHY with a pattern for synchronization.
ST	2-bit start of frame
OP	2-bit operation code. 10 = read transaction, 01 = write transaction
PHYAD	5-bit PHY device address. The bits[2:0] in the PHY address are configured by power-on strapping, thus eight PHYs can be connected to a single management interface. The PHYs connected to the same bus have unique PHY addresses. The first PHY address bit transmitted and received is the MSB of the address.
REGAD	5-bit register address. The 5-bit register address allows 32 registers to be addressed at each PHY. The first register address bit transmitted and received is the MSB of the address.
TA	2-bit field to avoid contention during a read operation.
	In read operation, both MAC and PHY are at high-impedance state for the first bit time. The PHY drives a zero during the second bit time of the turnaround.
	In write operation, the MAC must drive 10.
DATA	16-bit data from accessed register. MSB is transmitted first.
IDLE	High-impedance without driving state of the MDIO. At least one clocked idle state is required between frames.

3.8 Green ETHOS feature

3.8.1 Low power modes

The AR8035 device supports the low power mode with software power-down.

To enter the standard IEEE power-down mode, set the bit[11] POWER_DOWN of Control register to 1. In this mode, AR8035 ignores all MAC interface signals except the MDC/MDIO and does not respond to any activity on the media side.

AR8035 cannot wake up on its own and is only waken up by setting the POWER DOWN bit to 0.

3.8.2 Short cable power mode

Given cable length of less than 30 meters, Qualcomm Atheros proprietary Green ETHOS power saving technology saves 25% power consumption over standard consumption on 100-meter CAT5 cable.

3.8.3 Hibernation mode

Hibernation mode yields very low power consumption compared with normal operation mode.

When cable is unplugged, AR8035 enters hibernation mode in about 10 seconds. When cable is reconnected, AR8035 wakes up to restore normal function.

3.9 IEEE 802.3az

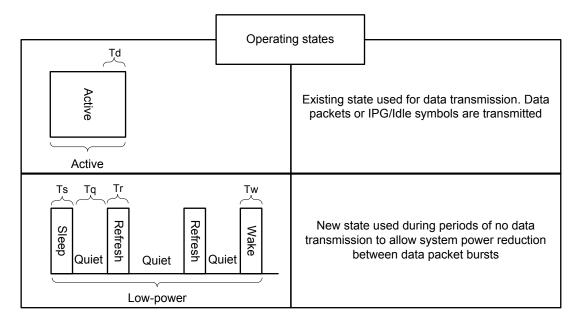
IEEE 802.3az provides a mechanism to reduce power consumption between data packets bursts. Two operating states are supported: active state for normal data transfer, and Low Power Idle (LPI) state for power saving between the data packet bursts.

The link partners enter LPI state by sending short refresh signals to maintain the link. In the low-power state, PHY shuts down most of the analog and digital blocks. In Ethernet network where systems stay in non-burst mode most of time, therefore over 90% power can be saved with LPI enabled.

During link establishment, both link partners exchange information through auto-negotiation to determine if both parties are LPI-capable.

Legacy Ethernet products are supported.

The link states for IEEE 802.3az include:


- Active: Act in regular mode for transmitting or receiving data.
- Sleep: Send specific signal to inform remote link partner of entering low-power state.
- Quiet: No signal transmitted on media. Most of the analog and digital blocks are shut down.
- Refresh: Periodically send specific training signal to maintain timing recovery and equalizer coefficients.
- Wake: Send specific wake-up signal to remote link partner to inform of entering Active state.

IEEE 802.3az LPI is supported on 100BASE-TX and 1000BASE-T.

100BASE-TX EEE allows asymmetrical operation that allows Tx or Rx to enter the LPI mode independently.

1000BASE-T EEE requires symmetrical operation that both Tx and Rx must enter the LPI mode simultaneously.

Figure 3-8 shows the IEEE 802.3az operating states for AR8035.

Td: Decision time, higher-layer control policy timing

Ts: Sleep time, Min. duration Sleep symbols sent before going to Quiet

Tq: Quiet duration, Max. duration PHY remains Quiet before Refresh

Tr: Refresh duration, Min. duration HY sends Refresh symbols

Tw: Wake time, Max. period to permit the receiving system to wake up

Figure 3-8 Operating states — 802.3az LPI mode

Figure 3-9 shows the IEEE 802.3az operating power modes for AR8035.

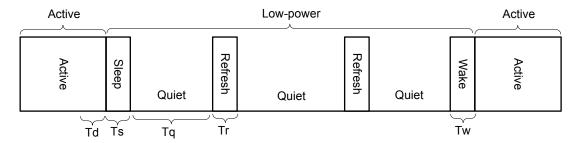


Figure 3-9 Operating power modes — 802.3az LPI mode

3.10 SmartEEE

Qualcomm Atheros proprietary SmartEEE is compatible with IEEE 802.3az and allows legacy MAC devices (without IEEE 802.az support) into systems providing full IEEE 802.3az support. SmartEEE is enabled by default after power-on or hardware reset.

SmartEEE checks egress data flow at a specific interval to see if any packets being transmitted. If no packet is detected, SmartEEE enters LPI mode. When packets come while the PHY is at LPI mode, AR8035 takes $16.5 \,\mu s$ (typical) to wake up (as defined by IEEE 802.3az) and sends out the

data after the time configured in the register. AR8035 provides internal buffer for caching egress data to ensure no packet loss before wakeup.

In SmartEEE mode, the RGMII Rx direction does not generate LPI pattern, thus only normal packets and idle packets can appear on the RGMII. No Tx LPI pattern is generated for MACs without EEE capability because LPI is generated inside PHY according to SmartEEE mechanism. For MACs with EEE capability, SmartEEE control registers can be set to bypass SmartEEE function MMD3 Register 0x805D[8].

NOTE

- □ For typical application, adjusting the default register setting is not recommended.
- □ The wait time before entering LPI mode is configured by MMD3 SmartEEE control 2 register and bits[7:0] LPI TIMER of MMD3 SmartEEE control 3 register.
- □ The wakeup time from LPI mode to sending out data can be configured by MMD3 SmartEEE control 1 register. This setting is used for collaboration with link partner for customized purpose.

3.11 Wake-on-LAN

Wake-on-LAN (WoL) is a mechanism to manage and regulate the total network power consumption. AR8035 supports the following WoL features:

For example, to write a specific MAC address (0xAAAABBBBCCCC) to PHY, write MMD3 0x804A = 0xAAAA, 0x804B = 0xBBBB, and 0x804C = 0xCCCC. The PHY internal MAC address can be set to any value.

NOTE The MAC address is not a real MAC address and is only a symbol to indicate the content of the frame.

Figure 3-10 shows the WoL system application structure.

Figure 3-10 WoL system application structure

- One hardware pin can be used for triggering WoL interrupt:
 - \Box Active low signal through the INT pin. When the interrupt bit in register 0x12[0] is set to 1, AR8035 generates interrupt at the reception of WoL packet.

When WoL interrupt occurs, the bit[0] INT WOL PTP in Interrupt status register (MII Register 0x13) is set to 1. This bit is cleared after read operation.

When the bit[0] INT WOL PTP in Interrupt enable register is set to 1, the external INT pin is triggered when interrupt occurs.

NOTE

- Because PHY requires to receive packets from the line side, PHY cannot be powered down. If the link partner supports Energy Efficient Ethernet function, both ends can use EEE mode to save more power.
- □ In LPI mode, the controller can use WoL function to turn off unused circuits to save power. When receiving WoL interrupt from PHY, the controller can wake up to work.
 - Control register (MII Register 0x0)
 - Bit[10] ISOLATE: When this bit is set to 1, the RGMII output pins are tri-stated. The RGMII inputs are ignored. This bit can be used to save more power of PHY in system power saving mode. When receiving WoL packet, this bit is cleared automatically.
- □ The bit[5] WOL EN in MMD3 PTP1588 control register (MMD3 0x8012) is used to enable or disable WoL function.
- \Box Write MMD7 0x801A[13] = 0 to set interrupt active high (by default the value is 1, active low).

4 Electrical Characteristics

4.1 Absolute maximum ratings

Table 4-1 summarizes the absolute maximum ratings for the AR8035 Ethernet transceiver. Absolute maximum ratings are those values beyond which damage to the device can occur. Functional operation under these conditions, or at any other condition beyond those indicated in the operational sections of this document, is not recommended.

Table 4-1 Absolute maximum ratings

Symbol	Parameter	Max rating	Unit
VDD33/AVDD33	3.3 V supply voltage	3.8	V
AVDDL	1.1 V analog supply voltage	1.6	V
DVDDL	1.1 V digital core supply voltage	1.6	V
T _{store}	Storage temperature	-65 to 150	°C
HBM	Electrostatic discharge tolerance — human body model	±2000	V
MM	Machine model	±200	V
Vmin	Supply voltage min	-0.3	V

4.2 Recommended operating conditions

Table 4-2 lists the recommended operating conditions for the AR8035 Ethernet transceiver.

Table 4-2 Recommended operating conditions

Symbol	Parameter	Min	Тур	Max	Unit
VDD33/AVDD33	3.3 V supply voltage	3.15	3.3	3.45	V
VDDH_REG	2.5 V analog/digital	2.4	2.62	2.75	V
AVDDL/DVDDL	1.1 V analog/digital with on-chip regulator	1.04	1.1	1.17	V
T _{ambient}	Ambient temperature for normal operation — Commercial chip version AR8035-AL1A	0	_	70	°C
	Ambient temperature for normal operation — Industrial chip version AR8035-AL1B	-40	-	85	°C

Table 4-2 Recommended operating conditions (cont.)

T _J	Junction temperature	-40	_	125	°C
Ψ_{JT}	Thermal Dissipation Coefficient	-	3.8	_	°C/W

NOTE

External regulators are optional for supplying AVDDL/DVDDL. For industrial version, external AVDDL/DVDDL inputs must be within the range of $1.2 \text{ V} \pm 5\%$. For commercial version, external AVDDL/DVDDL inputs must be within the range of 1.1 V - 5% and 1.2 V + 5%.

NOTE The following condition must be satisfied:

$$T_{Jmax} > T_{Cmax} + \Psi_{JT} \times P_{Typical}$$

Where:

 T_{Imax} = Maximum allowable junction temperature

 T_{Cmax} = Maximum allowable case temperature

 Ψ_{JT} = Thermal dissipation coefficient

P_{Typical} = Typical power dissipation

4.3 RGMII characteristics

Table 4-3 shows the RGMII DC characteristics with 2.5/3.3V I/O supply.

Table 4-3 RGMII DC characteristics — 2.5/3.3V I/O supply

Symbol	Parameter	Min	Max	Unit
I _{IH}	Input high current	-	15	μА
I _{IL}	Input low current	-15	_	μА
V _{IH}	Input high voltage	1.7	3.5	V
V _{IL}	Input low voltage	GND - 0.3	0.7	V
V _{OH}	Output high voltage	2.4	2.8	V
V _{OL}	Output low voltage	GND - 0.3	0.4	V

Table 4-4 shows the RGMII DC characteristics with 1.8 V I/O supply.

Table 4-4 RGMII DC characteristics — 1.8V I/O supply

Symbol	Parameter	Min	Max	Unit
V _{IH}	Input high voltage	1.4	2.1	V
V _{IL}	Input low voltage	GND - 0.3	0.4	V

Table 4-4 RGMII DC characteristics — 1.8V I/O supply (cont.)

V _{OH}	Output high voltage	1.5	1.9	V
V _{OL}	Output low voltage	_	0.3	V

Table 4-5 shows the RGMII DC characteristics with 1.5 V I/O supply.

Table 4-5 RGMII DC characteristics — 1.5 I/O supply

Symbol	Parameter	Min	Max	Unit
V _{IH}	Input high voltage	1.2	1.8	V
V _{IL}	Input low voltage	GND - 0.3	0.3	V
V _{OH}	Output high voltage	1.3	1.57	V
V _{OL}	Output low voltage	_	0.2	V

Figure 4-1 shows the RGMII input AC timing diagram.

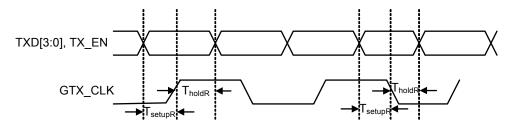


Figure 4-1 RGMII input timing diagram

Table 4-6 shows the RGMII input AC characteristics.

Table 4-6 RGMII AC characteristics — no internal delay

Symbol	Parameter	Min	Тур	Max	Unit
T _{setupR}	Data to clock input setup time (at receiver)	1.0	2.0	_	ns
T _{holdR}	Data to clock input hold time (at receiver)	1.0	2.0	_	ns

- If the transmitter side (MAC) does not add internal delay or PCB trace delay for GTX_CLK, the input setup and hold time minimum must be within ±0.5 ns. GTX_CLK precise 2.4 ns delay can be added in PHY internal by setting bit[8] RGMII_TX_CLK_DLY = 1 in SerDes test and system mode control register (Debug Register 0x5).
- 2. For 1000BASE-T, both the rising and falling edges are used to sample the data.
- 3. For 10BASE-Te/100BASE-TX, only the rising edge is used to sample the data.

RX_CLK hardware reset adds typical 2 ns delay internally by default, so the MAC side has sufficient setup and hold time for sampling. Figure 4-2 shows the RGMII output AC timing with internal delay added diagram.

Figure 4-2 RGMII output AC timing diagram with internal delay added

Table 4-7 shows the RGMII AC characteristics with delay added.

Table 4-7 RGMII AC characteristics — with internal delay added (default)

Symbol	Parameter	Min	Тур	Max	Unit
T _{setupT}	Data to clock output setup (at transmitter — integrated delay)		2.0	-	ns
T _{holdT}	Clock to data output hold (at transmitter — integrated delay)	1.2	2.0	_	ns

^{1.} RX_CLK delay can be disabled by setting bit[15] SEL_CLK125M_DSP = 0 in Analog test control register (Debug Register 0x0).

4.4 MDIO timing

Figure 4-3 shows the MDIO AC timing diagram.

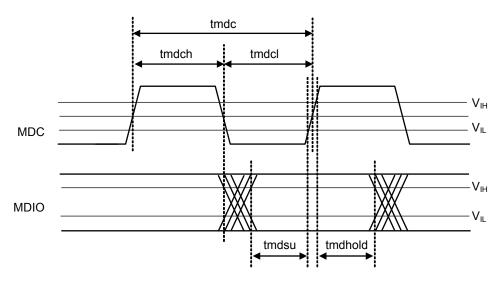


Figure 4-3 MDIO AC timing diagram

^{2.} If RX_CLK delay is disabled in PHY, the RX_CLK to RXD edge delay is within ±500 ps requiring the MAC side to add internal delay or PCB trace delay.

Table 4-8 MDIO AC characteristic

Symbol	Parameter	Min	Тур	Max	Unit
tmdc	MDC period	40	_	_	ns
tmdcl	MDC low period	16	_	_	ns
tmdch	MDC high period	16	-	_	ns
tmdsu	MDIO to MDC rising setup time	10	_	_	ns
tmdhold	MDIO to MDC rising hold time	10	_	_	ns
tmdelay	MDC to MDIO output delay	0	4	-	ns

4.5 MDIO/MDC DC characteristic

Table 4-9 MDIO/MDC DC characteristic

Symbol	Parameter	Min	Max	Unit
V _{OH}	Output high voltage	2.4	_	V
V _{OL}	Output low voltage	_	0.4	V
V _{IH}	Input high voltage	1.7	_	V
V _{IL}	Input low voltage	_	0.7	V
I _{IH}	Input high current	_	0.4	mA
I _{IL}	Input low current	-0.4	ı	mA

4.6 Clock characteristics

AR8035 supports both crystal and external clock input as reference. The basic principle for selecting crystal and load capacitance is to make the oscillation stable at 25 MHz \pm 50 ppm. Crystal with 25 MHz \pm 30 ppm frequency tolerance is preferred with two 27 pF NPO ceramic capacitors. The capacitors can be changed according to actual crystal selection and board level test results under full application temperature and voltage ranges.

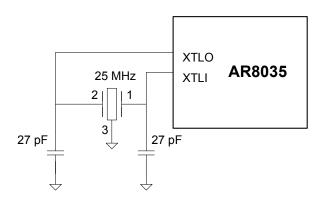


Figure 4-4 External crystal

Table 4-10 Recommended crystal parameters

Symbol	Parameter	Min	Тур	Max	Unit
Ff	Crystal fundamental frequency	_	25	_	MHz
Ft	Frequency tolerance	-30ppm	_	+30ppm	MHz
Cs	Shunt capacitance	_	7	_	pF
CI	Load capacitance	_	15	_	pF
Vo	I/O voltage level (for drive level evaluation)	_	1.2	_	V
DL	Drive level	_	300	_	μW
ESR	Equivalent series resistance	-	30	50	Ω

Table 4-11 External clock input characteristic

Symbol	Parameter	Min	Тур	Max	Unit
T_XI_PER	XI Clock Period	40.0 - 50ppm	40.0	40.0 + 50ppm	ns
T_XI_HI	XI Clock High	14	20.0	_	ns
T_XI_LO	XI Clock Low	14	20.0	_	ns
T_XI_RISE	XI Clock Rise Time, VIL (max) to VIH (min)	_	-	4	ns
T_XI_FALL	XI Clock Fall time, VIL (max) TO VIH (min)	_	_	4	ns
V_IH_XI	The XI input high level	0.8	1.2	1.5	V
V_IL_XI	The XI input low level voltage	-0.3	0	0.15	V
C _{IN}	Load capacitance	_	1	2	pF
Jitter _{RMS}	Period broadband RMS jitter	_	_	15	ps
Jitter _{pk-pk}	Period broadband peak to peak jitter	_	-	100	ps

Min Unit **Symbol** Тур Max Frequency -50ppm 25, 50, 62.5, 125 +50ppm MHz 2.8 2.3 2.62 ٧ Output high voltage Output low voltage GND - 0.3 0.4 V 680 Clock period jitter (peak-to-peak)¹⁾ ps Clock cycle to cycle period jitter 400 ps (peak-to-peak)1)

Table 4-12 CLK_25M output characteristics

- 1. Jitter characteristics is for 125 MHz output.
- 2. Jitter is broadband period jitter with 1000000 samples.
- 3. Output frequency stability depends on the crystal circuit oscillation frequency or input clock frequency stability.
- 4. If CLK_25M is not used, it can be left floated. If it is used, external 22 Ω serial resistor is required for signal integrity.
- 5. If it is used as a chip reference clock, pay attention to the input requirement, especially the jitter. For reliable application such as Giga switch/PHY reference clock, a jitter attenuation circuit is required.

4.7 Power pin current consumption

Table 4-13 shows the current consumption for the power pins.

Table 4-13 Power pin consumption

Symbol	Voltage range	Current (max)
AVDDL	1.1 V ± 5%	50.8 mA
DVDDL	1.1 V ± 5%	113.7 mA
AVDD33	3.3 V ± 5%	63.8 mA
VDDIO_REG	Connect VDDH_REG 2.5 V	20.9 mA

4.8 Typical power consumption parameters

The following conditions apply to the typical characteristics unless otherwise specified:

VCC = 3.3 V (1.1 V switching regulator integrated and 50 mW RGMII power included).

Table 4-14 Total system power

Symbol	Condition	Total current (mA)	LED consumption (mA)	Total power consumption without LED (mW)
P _{LDPS}	Link down, power saving mode	3	0	9.9
P _{PWD}	Power down mode	2.5	0	8.25
P _{1000F}	1000BASE-T full-duplex line speed	119	2.7	392.7
P _{1000idle}	1000BASE-T idle	109	4	359.5

Table 4-14 Total system power (cont.)

Symbol	Condition	Total current (mA)	LED consumption (mA)	Total power consumption without LED (mW)		
P _{100F}	100BASE-TX full-duplex line speed	33.9	3.5	111.9		
P _{100idle}	100BASE-TX idle	32.6	4	107.6		
P _{10F}	10BASE-Te full-duplex line speed	31.5	1	104.0		
P _{10idle}	10BASE-Te idle	9.4	1.5	31.0		
802.az enabled	802.az enabled					
P _{1000idle}	1000BASE-T idle	20.0	4	66.0		
P _{100idle}	100BASE-TX idle	14.7	4	48.5		
Qualcomm Ati	heros Proprietary Green ETHOS® Po	wer Savings P	er Cable Length			
P _{1000F 20m}	1000BASE-T full-duplex 20m cable	92	2.7	303.6		
P _{1000idle 20m}	1000BASE-T idle 20m cable	85	4	280.5		
P _{1000F 100m}	1000BASE-T full-duplex 100m cable	119	2.7	392.7		
P _{1000idle 100m}	1000BASE-T idle 100m cable	109	4	359.7		
P _{1000F 140m}	1000BASE-T full-duplex 140m cable	137	2.7	452.1		
P _{1000idle 140m}	1000BASE-T idle 140m cable	128	4	422.4		

NOTE Power consumption test results are based on the demo board.

4.9 Power-on sequence, reset and clock

4.9.1 Power-on sequence

AR8035 only requires a single 3.3 V power supply input. The 1.1 V core and 2.5 V, 1.8/1.5 V voltages are generated by AR8035 internal regulators. So the AR8035 power-on sequence to establish the power rails stability is met internally.

4.9.2 Reset and clock timing

The AR8035 hardware reset requires the clock to take effect. Input clock including the crystal and external input clock must be stable for at least 1 ms before RESET can be de-asserted. For chip reliability, an external clock must be input after the power-on sequence.

Figure 4-5 shows the reset timing diagram.

Figure 4-5 Reset timing diagram

NOTE When using crystal, clock is generated internally after the power is stable. To get reliable power-on reset, keep asserting the reset low signal long enough to ensure that the clock is stable and clock-to-reset (1 ms) requirement is satisfied.

4.10 Digital pin design guide

Table 4-15 Digital pin designs

Pin type	Pin description	Reset asserted	Reset de-asserted (Normal working level)
Input	TXD[3:0] TX EN	Input, internal weak PD	Input, based on RGMII I/O voltage level set
	GTX_CLK		
I/O	RXD[3:0] RX_DV RX_CLK	Input, internal weak PD	Output, based on RGMII I/O voltage level set
I/O	LED_1000 LED_ACT LED_10_100	Input, internal weak PU	Output, 2.5 V (VDDH_REG)
Input	MDC	Input, internal weak PU	Input, 2.5 V (3.3 V tolerant)
I/O	MDIO	Input, internal weak PU	I/O, 2.5 V (3.3 V tolerant)
Input	RSTn	Input, no weak PU	Input, 2.5 V (3.3 V tolerant)

Table 4-15 Digital pin designs (cont.)

Pin type	Pin description	Reset asserted	Reset de-asserted (Normal working level)
Output	INT	Output, kept driving low	Open drain output (default), based on external PU voltage level

- 1. When MDC/MDIO/RESET acts as an input, V_{IH} min is 1.7 V, V_{IL} max is 0.7 V, thus the chip supports 2.5/3.3 V LVTTL/LVCMOS level signal input.
- 2. Power-on strapping pins are input when reset is asserted. They are output during normal operation. External pull-up to VDDIO_REG for RGMII signal, and to 2.5 V (VDDH_REG) for LED are recommended.
- 3. RESET and MDIO can be pulled up to 2.5 V (VDDH_REG) or 3.3 V.

5 Registers

Three types of registers are present on AR8035:

- IEEE defined 32 MII registers, referred to as "MII Registers" in this document
 - □ MII registers are accessed directly through the management frame.
- Debug registers defined by Qualcomm Atheros, referred to as "Debug Registers" in this document
 - \Box Write the offset address of debug register to 0x1D.
 - \square Read/write the data from/to 0x1E.
- IEEE defined MDIO Manageable Device (MMD) register, referred to as "MDIO Interface (MMD3/MMD7) Registers" in this document
 - □ MMD registers are accessed by reading/writing MMD access control register (MII register 0xD) and MMD access data register (MII register 0xE).

Example: Writing 0x8000 to register 0x0 of MMD3

- 1. Write 0x3 to MII register 0xD to set the device address of the MMD register.
- 2. Write 0x0 to MII register 0xE to set the offset address of the MMD register.
- 3. Write 0x4003 to MII register 0xD to keep the device address.
- 4. Read MII register 0xE to check the data from register 0x0 of MMD3.
- 5. Write 0x8000 to MII register 0xE, that is register 0x0 of MMD3.

NOTE Read operation follows the process 1 to 4.

5.1 Register bit type

Table 5-1 shows the register bit types.

Table 5-1 Register bit types

Туре	Description
LH	Register field with latching high function. If status is high, then the register is set to one and remains set until a read operation is performed through the management interface or a reset occurs.
LL	Register field with latching low function. If status is low, then the register is cleared to a zero and remains cleared until a read operation is performed through the management interface or a reset occurs.

Table 5-1 Register bit types (cont.)

Туре	Description
Retain	Value written to a register field takes effect without a software reset.
SC	Self-clear. Writing a one to this register causes the desired function to execute immediately, and the register field clears to zero when the function is complete.
Update	The value written to the register field does not take effect until a software reset is executed. The value can still be read after it is written.

5.2 MII registers

Table 5-2 Register summary

Offset	Register
0x00	"Control register" on page 46
0x01	"Status register" on page 47
0x02	"PHY identifier 1 register" on page 49
0x03	"PHY identifier 2 register" on page 49
0x04	"Auto-negotiation advertisement register" on page 50
0x05	"Auto-negotiation link partner ability register" on page 52
0x06	"Auto-negotiation expansion register" on page 54
0x07	"Auto-negotiation next page transmit register" on page 54
0x08	"Auto-negotiation link partner next page register" on page 55
0x09	"1000BASE-T control register" on page 56
0x0A	"1000BASE-T status register" on page 58
0x0B	Reserved
0x0C	Reserved
0x0D	"MMD access control register" on page 59
0x0E	"MMD access data register" on page 59
0x0F	"Extended status register" on page 59
0x10	"PHY specific function control register" on page 60
0x11	"PHY specific status register" on page 61
0x12	"Interrupt enable register" on page 63
0x13	"Interrupt status register" on page 64
0x14	"Smart speed register" on page 65
0x15	Reserved
0x16	"Cable diagnostic test control register" on page 66
0x17	Reserved
0x18	"LED control register" on page 67

Table 5-2 Register summary (cont.)

Offset	Register
0x19	"Manual LED override register" on page 68
0x1A	Reserved
0x1B	"Cable diagnostic test status register" on page 69
0x1C	"Cable diagnostic test status register" on page 69
0x1D	"Debug port — address offset register" on page 69
0x1E	"Debug port — dataport register" on page 70
0x1F	"Debug registers" on page 70
	The state of the s

For typical application, poll the PHY specific status register to get link/speed/duplex information and then configure MAC before sending and receiving packets.

5.2.1 Control register

Bit	Name	Туре		Description
15	RESET	Mode	R/W	PHY Software Reset. Writing 1 to this bit causes
		HW Rst.	0	immediate PHY reset. When the operation is done, this bit is cleared automatically.
		SW Rst.	SC	1 = PHY reset
				0 = Normal operation
14	LOOPBACK	Mode	R/W	When loopback is activated, the transmitter data on TXD is looped back to RXD internally.
		HW Rst.	0	1 = Enable loopback
		SW Rst.	0	0 = Disable loopback
13	SPEED	Mode	R/W	Force speed = {bit[6] SPEED SELECTION (MSB),
HVV RSt. 1	bit[13] SPEED SELECTION (LSB)} 00 = 10 Mbps			
		SW Rst.	Retain	01 = 100 Mbps
				10 = 1000 Mbps
				11 = Reserved
12	AUTO-	Mode	R/W	1 = Enable auto-negotiation process
	NEGOTIATION	HW Rst.	1	0 = Disable auto-negotiation process
		SW Rst.	Retain	
11	POWER DOWN	Mode	R/W	When the port is switched from power down to normal
		HW Rst.	0	operation, software reset and restart Auto-negotiation are performed even when bit[15] RESET and bit[9]
		SW Rst.	0	RESTART AUTO-NEGOTIATION are not set.
				1 = Power-down
				0 = Normal operation

Bit	Name	Туре		Description
10	ISOLATE	Mode	R/W	The RGMII output pins are tri-stated when this bit is 1.
		HW Rst.	0	The RGMII inputs are ignored. 1 = Isolate
		SW Rst.	0	0 = Normal operation
9	RESTART AUTO- NEGOTIATION	Mode	R/W, SC	Auto-negotiation automatically restarts after hardware or software reset regardless of whether this bit is set or
		HW Rst.	0	not. 1 = Restart auto-negotiation process
		SW Rst.	0	0 = Normal operation
8	DUPLEX MODE	Mode	R/W	1 = Full-duplex
	HW Rst. 1 0 = Half-duplex	0 = Half-duplex		
		SW Rst.	Retain	
7	COLLISION TEST	Mode	R/W	Setting this bit to 1 asserts the COL pin whenever the
		HW Rst.	0	TX_EN pin is asserted. 1 = Enable COL signal test
		SW Rst.	0	0 = Disable COL signal test
6	SPEED	Mode	R/W	See bit[13] SPEED SELECTION (LSB)
	SELECTION (MSB)	HW Rst.	0	
		SW Rst.	0	
5:0	RESERVED	Mode	R/O	Always 0
		HW Rst.	0	
		SW Rst.	0	

5.2.2 Status register

Name	Туре		Description
100BASE-T4	Mode	RO	100BASE-T4
	HW Rst.	0	Always 0
	SW Rst.	0	This protocol is not available.
			1 = PHY supports 100BASE-T4.
		0 = PHY does not support 100BASE-T4.	0 = PHY does not support 100BASE-T4.
14 100BASE-TX FULL-DUPLEX	Mode	RO	Always 1
	HW Rst.	1	1 = PHY supports 100BASE-TX full-duplex.
		•	0 = PHY does not support 100BASE-TX full-duplex.
	SW Rst.	1	
13 100BASE-TX	Mode	RO	Always 1
HALF-DUPLEX	HW Rst.	1	1 = PHY supports 100BASE-TX half-duplex.
	SW Rst.	1	0 = PHY does not support 100BASE-TX half-duplex.
	100BASE-TX FULL-DUPLEX	100BASE-T4 Mode HW Rst. SW Rst. 100BASE-TX FULL-DUPLEX HW Rst. SW Rst. 100BASE-TX HODE HW Rst. HW Rst. HW Rst. HW Rst.	100BASE-T4 Mode RO HW Rst. 0 SW Rst. 0 100BASE-TX FULL-DUPLEX Mode RO HW Rst. 1 SW Rst. 1 100BASE-TX HALF-DUPLEX Mode RO HW Rst. 1

Bit	Name	Ту	pe	Description
12	10BASE-T FULL-	Mode	RO	Always 1
	DUPLEX	HW Rst.	1	1 = PHY supports 10BASE-T full-duplex.
		SW Rst.	1	0 = PHY does not support 10BASE-T full-duplex.
11	10BASE-T HALF-	Mode	RO	Always 1
	DUPLEX	HW Rst.	1	1 = PHY supports 10BASE-T half-duplex.
		SW Rst.	1	0 = PHY does not support 10BASE-T half-duplex.
10	100BASE-T2	Mode	RO	Always 0
	FULL-DUPLEX	HW Rst.	0	1 = PHY supports 100BASE-T2.
		SW Rst.	0	0 = PHY does not support 100BASE-T2.
9	100BASE-T2	Mode	RO	Always 0
	HALF-DUPLEX	HW Rst.	0	1 = PHY supports 100BASE-T2.
		SW Rst.	0	0 = PHY does not support 100BASE-T2.
8	EXTENDED	Mode	RO	Always 1
	STATUS	HW Rst.	1	Extended status information in Extended status register
		SW Rst.		registor
7	RESERVED	Mode	RO	Always 0
		HW Rst.	0	
		SW Rst.	0	
6	MF PREAMBLE	Mode	RO	Always 1
	SUPPRESSION	HW Rst.	1	1 = PHY accepts management frames with preamble suppressed.
		SW Rst.	1	0 = PHY does not accept management frames with preamble suppressed.
5	AUTO-	Mode	RO	1 = Auto-negotiation process completed
	NEGOTIATION COMPLETE	HW Rst.	0	0 = Auto-negotiation process not completed
	OOMI EETE	SW Rst.	0	
4	REMOTE FAULT	Mode	RO, LH	1 = Remote fault condition detected
		HW Rst.	0	0 = Remote fault condition not detected
		SW Rst.	0	
3	AUTO-	Mode	RO	1 = PHY supports auto-negotiation.
	NEGOTIATION ABILITY	HW Rst.	1	0 = PHY does not support auto-negotiation.
	ADILITI	SW Rst.	1	
2	LINK STATUS	Mode	RO, LL	This bit indicates whether the link was lost since the
		HW Rst.	0	last read. For the current link status, see bit[10] LINK (REAL-TIME) of register PHY specific status register.
		SW Rst.	0	1 = Link is up
				0 = Link is down

5.2.3 PHY identifier 1 register

Offset: 0x02

Bit	Name	Туре		Description
15:0	ORGANIZATIONALLY	Mode	RO	Always 0x004D
	UNIQUE IDENTIFIER BIT 3:18	HW Rst.	0x004D	Organizationally unique identifier bits[18:3]
		SW Rst.	0x004D	

5.2.4 PHY identifier 2 register

Bit	Name	Туре		Description
15:0	ORGANIZATIONALLY	Mode	RO	Always 0xD072
	UNIQUE IDENTIFIER LSB. MODEL NUMBER	HW Rst.	0xD072	Organizationally unique identifier bits[19:24]
	REVISION NUMBER	SW Rst.	0xD072	

5.2.5 Auto-negotiation advertisement register

Bit	Name	Туре		Description
15	NEXT PAGE	Mode	R/W	The value of this bit is updated immediately after
		HW Rst.	0	writing this register. The value written to this bit takes effect only when any one of the following occurs:
		SW Rst.	Update	 Software reset is asserted (bit[15] RESET of Control register)
				 Restart Auto-Negotiation is asserted (bit[9] RESTART AUTO-NEGOTIATION of Control register)
				 Power-down (bit[11] POWER DOWN of Control register) transitions from power down to normal operation
				■ Link goes down
				If 1000BASE-T is advertised, the required next pages are automatically transmitted. Bit[15] NEXT PAGE of Auto-negotiation advertisement register must be set to 0 if no additional next pages are required.
				1 = Advertise
				0 = Not advertised
14	ACK	Mode	RO	Always 0
		HW Rst.	0	
		SW Rst.	0	
13	REMOTE FAULT	Mode	R/W	1 = Set Remote Fault bit
		HW Rst.	0	0 = Do not set Remote Fault bit
		SW Rst.	Update	
12	XNP_ABLE	Mode	R/W	Extended next page enable control bit:
		HW Rst.	Always 1	1 = Local device supports transmission of extended next pages.
		SW Rst.	Retain	0 = Local device does not support transmission of extended next pages.
11	ASYMMETRIC	Mode	R/W	The value of this bit is updated immediately after
	PAUSE	HW Rst.	1	writing this register. The value written to this bit takes effect only when any one of the following occurs:
		SW Rst.	Update	 Software reset is asserted (bit[15] RESET of Control register)
				 Restart Auto-Negotiation is asserted (bit[9] RESTART AUTO-NEGOTIATION of Control register)
				 Power-down (bit[11] POWER DOWN of Control register) transitions from power down to normal operation
				■ Link goes down
				1 = Asymmetric pause
				0 = No asymmetric pause

Bit	Name	Ту	pe	Description
10	PAUSE	Mode	R/W	The value of this bit is updated immediately after
		HW Rst.	1	writing this register. The value written to this bit takes effect only when any one of the following occurs:
		SW Rst.	Update	 Software reset is asserted (bit[15] RESET of Control register)
				 Restart Auto-Negotiation is asserted (bit[9] RESTART AUTO-NEGOTIATION of Control register)
				 Power-down (bit[11] POWER DOWN of Control register) transitions from power down to normal operation
				■ Link goes down
				1 = MAC PAUSE implemented
				0 = MAC PAUSE not implemented
9	100BASE-T4	Mode	RO	Always 0
	HW Rst. 0 SW Rst. 0	HW Rst.	0	1 = PHY supports 100BASE-T4. 0 = PHY does not support 100BASE-T4.
		0	TTTT dods not support 100B/10E TT.	
8	100BASE-TX FULL DUPLEX	Mode	R/W	The value of this bit is updated immediately after writing this register. The value written to this bit takes
	FULL DUPLEX	HW Rst.	1	effect only when any one of the following occurs:
		SW Rst.	Update	 Software reset is asserted (bit[15] RESET of Control register)
				 Restart Auto-Negotiation is asserted (bit[9] RESTART AUTO-NEGOTIATION of Control register)
				 Power-down (bit[11] POWER DOWN of Control register) transitions from power down to normal operation
				■ Link goes down
				1 = Advertise
	400DAOE TV	NA- 1	D.044	0 = Not advertised
7	100BASE-TX HALF DUPLEX	Mode	R/W	The value of this bit is updated immediately after writing this register. The value written to this bit takes
		HW Rst.	1	effect only when any one of the following occurs:
		SW Rst.	Update	 Software reset is asserted (bit[15] RESET of Control register)
				 Restart Auto-Negotiation is asserted (bit[9] RESTART AUTO-NEGOTIATION of Control register)
				 Power-down (bit[11] POWER DOWN of Control register) transitions from power down to normal operation
				■ Link goes down
				1 = Advertise
				0 = Not advertised

Bit	Name	Ту	ре	Description
6	10BASE-T FULL DUPLEX	Mode	R/W	The value of this bit is updated immediately after writing this register. The value written to this bit takes
		HW Rst.	1	effect only when any one of the following occurs:
		SW Rst.	Update	 Software reset is asserted (bit[15] RESET of Control register)
				 Restart Auto-Negotiation is asserted (bit[9] RESTART AUTO-NEGOTIATION of Control register)
				 Power-down (bit[11] POWER DOWN of Control register) transitions from power down to normal operation
				■ Link goes down
				1 = Advertise
				0 = Not advertised
5	5 10BASE-T HALF DUPLEX	Mode	R/W	The value of this bit is updated immediately after
		HW Rst.	1	writing this register. The value written to this bit takes effect only when any one of the following occurs:
		SW Rst.	Update	 Software reset is asserted (bit[15] RESET of Control register)
				 Restart Auto-Negotiation is asserted (bit[9] RESTART AUTO-NEGOTIATION of Control register)
				 Power-down (bit[11] POWER DOWN of Control register) transitions from power down to normal operation
				■ Link goes down
				1 = Advertise
				0 = Not advertised
4:0	SELECTOR FIELD	Mode	RO Selector field mode	Selector field mode
		HW Rst.	1	Always 1
		SW Rst.	1	1 = IEEE 802.3

5.2.6 Auto-negotiation link partner ability register

Bit	Name	Туре		Description
15	NEXT PAGE	Mode	RO	Received code word bit[15]
		HW Rst.	1 = Link partner supports Next Page	
		SW Rst.	0	0 = Link partner does not support Next Page
14	ACK	Mode	RO	Acknowledge
		HW Rst.		
		SW Rst.	0	1 = Link partner successfully received link code word 0 = Link partner failed to receive link code word

Bit	Name	Тур	е	Description
13	REMOTE FAULT	Mode	RO	Remote fault
		HW Rst.	0	Received code word bit[13]
		SW Rst.	0	1 = Link partner detects remote fault 0 = Link partner does not detect remote fault
12	RESERVED	Mode	RO	Technology ability field
12	RESERVED	HW Rst.	0	Received code word bit[12]
44	A COVAMA ET DIO	SW Rst.	0	To also also as ability Cald
11	ASYMMETRIC PAUSE	Mode	RO	Technology ability field Received code word bit[11]
		HW Rst.	0	1 = Link partner requests asymmetric pause
		SW Rst.	0	0 = Link partner does not request asymmetric pause
10	PAUSE	Mode	RO	Technology ability field
		HW Rst.	0	Received code word bit[10]
		SW Rst.	0	1 = Link partner supports pause operation 0 = Link partner does not support pause operation
9	100BASE-T4	Mode	RO	
9	9 100BASE-14	HW Rst.		Technology ability field Received code word bit[9]
			0	1 = Link partner supports 100BASE-T4
		SW Rst.	0	0 = Link partner does not support 100BASE-T4
8	100BASE-TX FULL DUPLEX	Mode	RO	Technology ability field
	DOFLEX	HW Rst.	0	Received code word bit[8] 1 = Link partner supports 100BASE-TX full-duplex
		SW Rst.	0	0 = Link partner supports 100BASE-TX full-
				duplex
7	100BASE-TXHALF	Mode	RO	Technology ability field
	DUPLEX	HW Rst.	0	Received code word bit[7]
		SW Rst.	0	1 = Link partner supports 100BASE-TX half-duplex 0 = Link partner does not support 100BASE-TX half-
				duplex
6	10BASE-T FULL	Mode	RO	Technology ability field
	DUPLEX	HW Rst.	0	Received code word bit[6]
		SW Rst.	0	1 = Link partner support 10BASE-T full-duplex 0 = Link partner does not support 10BASE-T full-duplex
5	10BASE-T HALF	Mode	RO	Technology ability field
	DUPLEX	HW Rst.	0	Received code word bit[5]
		SW Rst.	0	1 = Link partner supports 10BASE-T half-duplex 0 = Link partner does not support 10BASE-T half-duplex
4:0	SELECTOR FIELD	Mode	RO	Selector field
		HW Rst.	0	Received code word bit[4:0]
		SW Rst.	0	

5.2.7 Auto-negotiation expansion register

Offset: 0x06

Bit	Name	Тур	е	Description
15:5	RESERVED	Mode	RO	Always 0
		HW Rst.	0	
		SW Rst.	0	
4	PARALLEL	Mode	RO	1 = A fault is detected
	DETECTION FAULT	HW Rst.	0	0 = No fault is detected
		SW Rst.	0	
3	LINK PARTNER	Mode	RO	1 = Link partner supports Next Page
	NEXT PAGE ABLE	HW Rst.	0	0 = Link partner does not support Next Page
		SW Rst.	0	
2	_	Mode	RO	1 = Local device supports Next Page
	PAGE ABLE	HW Rst.	1	0 = Local device does not support Next Page
		SW Rst.	1	
1	PAGE RECEIVED	Mode	RO,	1 = A new page is received
			LH	0 = No new page is received
		HW Rst.	0	
		SW Rst.	0	
0	0 LINK PARTNER AUTO- NEGOTIATION	Mode	RO	1 = Link partner supports auto-negotiation
		HW Rst.	0	0 = Link partner does not support auto-negotiation
	ABLE	SW Rst.	0	

5.2.8 Auto-negotiation next page transmit register

Bit	Name	Тур	е	Description
15	NEXT PAGE	Mode	R/W	Transmit code word bit[15]
		HW Rst.	0	
		SW Rst.	0	
14	RESERVED	Mode	R/W	Transmit code word bit[14]
		HW Rst.	0	
		SW Rst.	0	
13	MESSAGE PAGE MODE	Mode	R/W	Transmit code word bit[13]
		HW Rst.	1	
		SW Rst.	1	

Bit	Name	Тур	е	Description
12	ACK2	Mode	R/W	Transmit code word bit[12]
		HW Rst.	1	
		SW Rst.	1	
11	TOGGLE	Mode	RO	Transmit code word bit[11]
		HW Rst.	0	
		SW Rst.	0	
10:0	MESSAGE/UNFORMATTED	Mode	R/W	Transmit code word bits[10:0]
	FIELD		1	
		SW Rst.	1	

5.2.9 Auto-negotiation link partner next page register

Bit	Name	Тур	е	Description
15	NEXT PAGE	Mode	RO	Received code word bit[15]
		HW Rst.	0	
		SW Rst.	0	
14	RESERVED	Mode	RO	Received code word bit[14]
		HW Rst.	0	
		SW Rst.	0	
13	MESSAGE PAGE MODE	Mode	RO	Received code word bit[13]
		HW Rst.	0	
		SW Rst.	0	
12	ACK2	Mode	RO	Received code word bit[12]
		HW Rst.	1	
		SW Rst.	1	
11	TOGGLE	Mode	RO	Received code word bit[11]
		HW Rst.	1	
		SW Rst.	1	
10:0	MESSAGE/UNFORMATTED	Mode	RO	Received code word bits[10:0]
	FIELD	HW Rst.	0	
		SW Rst.	0	

5.2.10 1000BASE-T control register

Bit	Name	Туре		Description	
15:13	TEST MODE	Mode	R/W	After exiting the test mode, hardware reset or software reset (bit[15] RESET of Control register) must be issued	
		HW Rst.	0	to ensure normal operation.	
		SW Rst.	Retain	000 = Normal Mode	
				001 = Test mode 1 – Transmit waveform test	
				010 = Test mode 2 – Transmit jitter test (master mode)	
				011 = Test mode 3 – Transmit jitter test (slave mode)	
				100 = Test mode 4 – Transmit distortion test	
				101, 110, 111 = Reserved	
12	MASTER/SLAVE MANUAL	Mode	R/W	The value of this bit is updated immediately after writing this register. The value written to this bit takes effect	
	CONFIGURATION	HW Rst.	0	only when any one of the following occurs:	
	ENABLE	SW Rst.	Update	 Software reset is asserted (bit[15] RESET of Control register) 	
				 Restart Auto-Negotiation is asserted (bit[9] RESTART_AUTO_NEGOTIATION of Control register) 	
				 Power-down (bit[11] POWER_DOWN of Control register) transitions from power down to normal operation 	
				■ Link goes down	
				1 = Manual master/slave configuration	
				0 = Automatic master/slave configuration	
11	MASTER/SLAVE	Mode	R/W	The value of this bit is updated immediately after writ this register. The value written to this bit takes effect	
	CONFIGURATION	HW Rst.	0	only when any one of the following occurs:	
		SW Rst.	Update	 Software reset is asserted (bit[15] RESET of Control register) 	
				 Restart Auto-Negotiation is asserted (bit[9] RESTART_AUTO_NEGOTIATION of Control register) 	
				 Power-down (bit[11] POWER_DOWN of Control register) transitions from power down to normal operation 	
				■ Link goes down	
				Bit[11] MASTER/SLAVE CONFIGURATION is ignored if bit[12] MASTER/SLAVE MANUAL CONFIGURATION ENABLE = 0.	
				1 = Manual configure as master	
				0 = Manual configure as slave	

Bit	Name	Тур	е	Description
10	PORT TYPE	Mode HW Rst.	R/W 0	The value of this bit is updated immediately after writing this register. The value written to this bit takes effect
		SW Rst.	Update	 only when any one of the following occurs: Software reset is asserted (bit[15] RESET of Control register)
				 Restart Auto-Negotiation is asserted (bit[9] RESTART_AUTO_NEGOTIATION of Control register)
				 Power-down (bit[11] POWER_DOWN of Control register) transitions from power down to normal operation
				■ Link goes down
				Bit[10] PORT TYPE is ignored if bit[12] MASTER/SLAVE MANUAL CONFIGURATION ENABLE = 1.
				1 = Prefer multi-port device (master)
				0 = Prefer single-port device (slave)
9	1000BASE-T	Mode	R/W	The value of this bit is updated immediately after writing
	FULL DUPLEX HW Rst. SW Rst.	HW Rst.	1	this register. The value written to this bit takes effect only when any one of the following occurs:
		SW Rst.	Update	 Software reset is asserted (bit[15] RESET of Control register)
				 Restart Auto-Negotiation is asserted (bit[9] RESTART_AUTO_NEGOTIATION of Control register)
			 Power-down (bit[11] POWER_DOWN of Control register) transitions from power down to normal operation 	
				■ Link goes down
				1 = Advertise
				0 = Not advertised
8	1000BASE-T HALF-DUPLEX	Mode	R/W	The value of this bit is updated immediately after writing this register. The value written to this bit takes effect
		HW Rst.	0	only when any one of the following occurs:
		SW Rst.	Update	 Software reset is asserted (bit[15] RESET of Control register)
				 Restart Auto-Negotiation is asserted (bit[9] RESTART_AUTO_NEGOTIATION of Control register)
				 Power-down (bit[11] POWER_DOWN of Control register) transitions from power down to normal operation
			■ Link goes down	
				1 = Advertise
				0 = Not advertised
				Note: The 1000BASE-T/half-duplex is not advertised by default.
7:0	RESERVED	Mode	R/W	_
		HW Rst.	0	
		SW Rst.	0	

5.2.11 1000BASE-T status register

Bit	Name	Ту	pe	Description
15	MASTER/SLAVE	Mode	RO, LH	This bit is cleared on a read operation.
	CONFIGURATION FAULT	HW Rst.	0	1 = Master/Slave configuration fault detected
		SW Rst.	0	0 = No fault detected
14	14 MASTER/SLAVE CONFIGURATION RESOLUTION	Mode	RO	This bit is valid only when bit[1] PAGE RECEIVED of
		HW Rst.	0	Auto-negotiation expansion register = 1. 1 = Local PHY configuration resolved to master
		SW Rst.	0	0 = Local PHY configuration resolved to slave
13	LOCAL RECEIVER	Mode	RO	1 = Local receiver OK
	STATUS	HW Rst.	0	0 = Local receiver not OK
		SW Rst.	0	
12	REMOTE	Mode	RO	1 = Remote receiver OK
	RECEIVER STATUS	HW Rst.	0	0 = Remote receiver not OK
		SW Rst.	0	
11	LINK PARTNER 1000 BASE-T FULL	Mode	RO	This bit is valid only when bit[1] PAGE RECEIVED of Auto-negotiation expansion register = 1.
	DUPLEX	HW Rst.	0	1 = Link partner supports 1000BASE-T full-duplex
	CAPABILITY	SW Rst.	0	0 = Link partner does not support 1000BASE-T full- duplex
10	LINK PARTNER	Mode	R/W	This bit is valid only when bit[1] PAGE RECEIVED of
	1000 BASE-T HALF DUPLEX	HW Rst.	0	Auto-negotiation expansion register = 1. 1 = Link partner supports 1000 BASE-T half-duplex
	CAPABILITY	SW Rst.	0	0 = Link partner does not support 1000 BASE-T half- duplex
9:8	RESERVED	Mode	RO	Always 0
		HW Rst.	0	
		SW Rst.	0	
7:0	IDLE ERROR	Mode	RO, SC	MSB of idle error counter
	COUNT	HW Rst.	0	Report the idle error count since the last time this register was read. The counter counts up to
		SW Rst.	0	11111111 and does roll over.

5.2.12 MMD access control register

Offset: 0x0D

Bit	Name	Туј	ре	Description
15:14	FUNCTION	Mode	R/W	00 = Address
		HW Rst.	0	01 = Data, no post increment
		SW Rst.	0	10 = Data, post increment on read and write operations 11 = Data, post increment on write operation only
13:5	RESERVED	Mode	RO	-
		HW Rst.	0	
		SW Rst.	0	
4:0	DEVAD	Mode	R/W	Device address
		HW Rst.	0	
		SW Rst.	Update	

5.2.13 MMD access data register

Offset: 0x0E

Bit	Name	Тур	е	Description
15:14	ADDRESS DATA	Mode		If bits[15:14] FUNCTION = 00 in MMD access control register, MMD DEVAD is address register.
	DATA	HW Rst.	0	Otherwise, MMD DEVAD is data register indicated by the
		SW Rst.	Retain	contents of its address register.
				See "MII registers" on page 45 for detailed information of accessing MMD registers.
13:0	RESERVED	_		-

5.2.14 Extended status register

Bit	Name	Ту	pe	Description
15	RESERVED	Mode	RO	Always 1
		HW Rst.	1	
		SW Rst.	1	
14	RESERVED	Mode	RO	Always 0
		HW Rst.	0	
		SW Rst.	0	

Bit	Name	Туре		Description
13	1000BASE-T	Mode	RO	Always 1
	FULL-DUPLEX	HW Rst.	1	1 = PHY supports 1000BASE-T full-duplex.
	3	SW Rst.	1	0 = PHY does not support 1000BASE-T full-duplex.
12	HALF-DUPLEX H	Mode	R/W	Always 0
		HW Rst.	0	1 = PHY supports 1000BASE-T half-duplex.
		SW Rst.	0	0 = PHY does not support 1000BASE-T half-duplex.
11:0	RESERVED	Mode	RO	Always 0
		HW Rst.	0	
		SW Rst.	0	

5.2.15 PHY specific function control register

Bit	Name	Тур	е	Description
15:12	RESERVED	Mode	R/W	-
		HW Rst.	0	
		SW Rst.	Retain	
11	ASSERT CRS ON	Mode	R/W	This bit is valid only in 10BASE-T half-duplex mode:
	TRANSMIT	HW Rst.	1	1 = Assert on Transmitting or receiving
		SW Rst.	Retain	0 = Never assert on transmitting, only assert on receiving
10	FORCE_LINK	Mode	R/W	1 = When bit[12] AUTO-NEGOTIATION of Control
		HW Rst.	0	register = 1, force 10BASE-T link up 0 = Normal mode
		SW Rst.	Retain	
9:7	RESERVED	Mode	R/W	-
HW Rst. 0				
		SW Rst.	Retain	
6:5	MDI CROSSOVER	Mode	R/W	Changes to these bits are disruptive to the normal
	MODE	HW Rst.	11	operation, therefore any changes to these registers must be followed by a software reset to take effect.
		SW Rst.	Update	00 = Manual MDI configuration
				01 = Manual MDIX configuration
				10 = Reserved
				11 = Enable automatic crossover for all modes
4:3	RESERVED	Mode	RO	_
		HW Rst.	0	
		SW Rst.	0	

5.2.16 PHY specific status register

Bit	Name	Тур	е	Description
15:14	SPEED	Mode	RO	These status bits are valid only when bit[11] SPEED
		HW Rst.	Auto-negotiation is completed or Auto-negotiat	
		SW Rst.	Retain	disabled.
				11 = Reserved
				10 = 1000 Mbps
				01 = 100 Mbps
				00 = 10 Mbps
13	DUPLEX	Mode	RO	This status bit is valid only when bit[11] SPEED AND
		HW Rst.	0	DUPLEX RESOLVED = 1. Bit[11] is set when Autonegotiation is completed or Autonegotiation is
		SW Rst.	Retain	disabled.
				1 = Full-duplex
				0 = Half-duplex
12	PAGE RECEIVED	Mode	RO	1 = Page received
	(REAL-TIME)	HW Rst.	0	0 = Page not received
		SW Rst.	Retain	
11	SPEED AND	Mode	RO	When Auto-negotiation is not enabled, set this bit = 1
	DUPLEX RESOLVED	HW Rst.	0	for force speed mode. 1 = Resolved
		SW Rst.	0	0 = Not resolved
10	LINK (REAL-TIME)	Mode	RO	1 = Link up
		HW Rst.	0	0 = Link down
		SW Rst.	0	

Bit	Name	Тур	e	Description
9:7	RESERVED	Mode	RO	Always 0
		HW Rst.	0	
		SW Rst.	0	
6	MDI CROSSOVER	Mode	RO	This status bit is valid only when bit[11] SPEED AND
	STATUS	HW Rst.	0	DUPLEX RESOLVED = 1. Bit[11] is set when Auto- Negotiation is completed or Auto-negotiation is
		SW Rst.	Retain	disabled.
				The value of this bit depends on what is written to bits[6:5] MDI CROSSOVER MODE of PHY specific function control register in manual configuration mode. Bits[6:5] MDI CROSSOVER MODE of PHY specific function control register are updated with software reset.
				1 = MDIX 0 = MDI
5	WIRESPEED	Mode	RO	When Smartspeed function is enable:
3	DOWNGRADE	HW Rst.	0	1 = Downgrade
		SW Rst.	Retain	0 = No Downgrade
4	RESERVED	Mode	RO	
	TREGETIVES	HW Rst.	1	
		SW Rst.	Retain	
3	TRANSMIT PAUSE	Mode	RO	This is a reflection of the MAC pause resolution. This
	ENABLED	HW Rst.	0	bit is for information purposes and is not used by the
		SW Rst.	Retain	device. This status bit is valid only when bit[11] SPEED AND DUPLEX RESOLVED = 1. Bit[11] is set when Auto-
				negotiation is completed; while in force mode, this bit is set to 0.
				1 = Transmit pause enabled
				0 = Transmit pause disabled
2	RECEIVE PAUSE ENABLED	Mode	RO	This is a reflection of the MAC pause resolution. This bit is for information purposes and is not used by the
	LIVIBLED	HW Rst.	0	device.
		SW Rst.	Retain	This status bit is valid only when bit[11] SPEED AND DUPLEX RESOLVED = 1. Bit[11] is set when Auto-
				negotiation is completed; while in force mode, this bit is set to 0.
				1 = Receive pause enabled
4	DOLADITY (DEAL	NA. 4:	D0	0 = Receive pause disabled
1	POLARITY (REAL- TIME)	Mode	RO	1 = Reverted. 0 = Normal
		HW Rst.	0	-
	MDDED (25.1)	SW Rst.	Retain	
0	JABBER (REAL- TIME)	Mode	RO	1 = Jabber 0 = No jabber
	1 11VIL)	HW Rst.	0	0 - NO Jabbei
		SW Rst.	Retain	

5.2.17 Interrupt enable register

Bit	Name	Тур	е	Description
15	AUTO-	Mode	R/W	1 = Interrupt enable
	NEGOTIATION ERROR	HW Rst.	0	0 = Interrupt disable
		SW Rst.	Retain	
14	SPEED CHANGED	Mode	R/W	1 = Interrupt enable
		HW Rst.	0	0 = Interrupt disable
		SW Rst.	Retain	
13	RESERVED	Mode	R/W	-
		HW Rst.	0	
		SW Rst.	Retain	
12	PAGE RECEIVED	Mode	R/W	1 = Interrupt enable
		HW Rst.	0	0 = Interrupt disable
		SW Rst.	Retain	
11	LINK FAIL	Mode	R/W	1 = Interrupt enable
	INTERRUPT	HW Rst.	0	0 = Interrupt disable
		SW Rst.	Retain	
10	LINK SUCCESS	Mode	R/W	1 = Interrupt enable
	INTERRUPT	HW Rst.	0	0 = Interrupt disable
		SW Rst.	Retain	
9	FAST LINK DOWN[1]	Mode	R/W	1 = Interrupt enable, must be enabled with
		HW Rst.	0	bit[6] FAST LINK DOWN[0] together 0 = Interrupt disable
		SW Rst.	Retain	o - interrupt disable
8	LINK_FAIL_BX	Mode	R/W	1 = Interrupt enable
		HW Rst.	0	0 = Interrupt disable
		SW Rst.	Retain	
7	LINK_SUCCESS_BX	Mode	R/W	1 = Interrupt enable
		HW Rst.	0	0 = Interrupt disable
		SW Rst.	Retain	
6	FAST LINK DOWN[0]	Mode	R/W	Must be enabled together with bit[9] FAST LINK
		HW Rst.	0	DOWN[1] 1 = Interrupt enable
		SW Rst.	Retain	0 = Interrupt disable
5	WIRESPEED-	Mode	R/W	1 = Interrupt enable
	DOWNGRADE INTERRUPT	HW Rst.	0	0 = Interrupt disable
	INTENNO!- I	SW Rst.	Retain	
			1	

Bit	Name	Туре		Description
4	INT_10MS_PTP	Mode	R/W	1 = Interrupt enable
		HW Rst.	0	0 = Interrupt disable
		SW Rst.	Retain	
3	INT_RX_PTP	Mode	R/W	1 = Interrupt enable
		HW Rst.	0	0 = Interrupt disable
		SW Rst.	Retain	
2	INT_TX_PTP	Mode	R/W	1 = Interrupt enable
		HW Rst.	0	0 = Interrupt disable
		SW Rst.	Retain	
1	POLARITY	Mode	R/W	1 = Interrupt enable
	CHANGED	HW Rst.	0	0 = Interrupt disable
		SW Rst.	Retain	
0	INT_WOL_PTP	Mode	R/W	Wake-on-LAN interrupt
		HW Rst.	0	1 = Interrupt enable
		SW Rst.	Retain	0 = Interrupt disable

5.2.18 Interrupt status register

Bit	Name	Тур	е	Description
15	15 AUTO- NEGOTIATION ERROR	Mode	RO, LH	An error can occur if either MASTER/SLAVE does not
		HW Rst.	0	resolve, or no common HCD, or link does not come up after negotiation is completed.
		SW Rst.	Retain	1 = Auto-negotiation error
				0 = No auto-negotiation error
14	SPEED CHANGED	Mode	RO, LH	1 = Speed changed
		HW Rst.	0	0 = Speed unchanged
		SW Rst.	Retain	
13	13 RESERVED	Mode	RO, LH	-
		HW Rst.	0	
		SW Rst.	Retain	
12	PAGE RECEIVED	Mode	RO, LH	1 = Page received
		HW Rst.	0	0 = Page not received
		SW Rst.	Retain	
11	11 LINK FAIL INTERRUPT	Mode	RO, LH	1 = BASE-T Link down occurs.
		HW Rst.	0	0 = No link is down.
		SW Rst.	Retain	

5.2.19 Smart speed register

Bit	Name	Туре		Description
15:9	RESERVED	Mode RO		Always 0
		HW Rst.	0	
		SW Rst.	0	

Bit	Name	Тур	е	Description
8	8 GIGA_DIS_QUAL	Mode RO		Make PHY to disable GIGA mode. After writing this
		HW Rst.	0	bit to 1, bit[9] 1000BASE-T FULL DUPLEX of 1000BASE-T control register = 0.
		SW Rst.	0	
7:6	RESERVED	Mode	RO	Always 0
		HW Rst.	0	
		SW Rst.	0	
5	SMARTSPEED_EN	Mode	R/W	The default value is 1.
		HW Rst.	1	When this bit is set to 1, the PHY enables smartspeed function.
		SW Rst.	Update	Writing this bit requires a software reset to update.
4:2	SMARTSPEED_	Mode	R/W	The default value is 3.
	RETRY_LIMIT	HW Rst.	011	If these bits are set to 3, the PHY attempts five times (set value 3 + additional 2) before downgrading. The
		SW Rst.	Update	number of attempts can be changed by these bits.
1	BYPASS_	Mode	R/W	The default value is 0.
	SMARTSPEED_ TIMER	HW Rst.	0	If this bit is set to 1, the Smartspeed FSM bypasses the timer used for stability.
		SW Rst.	Update	the timer assarts stability.
0	RESERVED	Mode	RO	Always 0
		HW Rst.	0	
		SW Rst.	0	

5.2.20 Cable diagnostic test control register

Bit	Name	Туре		Description
15:10	RESERVED	Mode	RO	Always 0
		HW Rst.	0	
		SW Rst.	0	
9:8	MDI PAIR	Mode	R/W	CDT control registers.
	SELECT	HW Rst.	00	Use the CDT control registers to select which MDI pair is shown in the CDT status register.
		SW Rst.	Retain	00 = MDI[0] pair
				01 = MDI[1] pair
				10 = MDI[2] pair
				11 = MDI[3] pair
7:1	RESERVED	Mode	R/W	Always 0
		HW Rst.	0	
		SW Rst.	0	

Bit	Name	Туре		Description
0	ENABLE TEST	Mode	R/W	When set, hardware automatically disables this bit
		HW Rst.	0	when CDT is done. 1 = Enable CDT Test
		SW Rst.	Retain	0 = Disable CDT Test

5.2.21 LED control register

Bit	Name	Тур	е	Description
15	DISABLE LED	Mode	R/W	Control LED_10_100, LED_ACT
		HW Rst.	0	0 = Enable
		SW Rst.	Retain	1 = Disable
14:12	LED ON TIME	Mode	R/W	LED_ACT active duty cycle.
		HW Rst.	011	000 = 5 ms
		SW Rst.	Retain	001 = 10 ms
				010 = 21 ms 011 = 42 ms
				100 = 84 ms
				101 = 168 ms
				110 to 111 = 42 ms
11	RESERVED	Mode	RO	-
		HW Rst.	0	
		SW Rst.	0	
10:8	LED OFF TIME	Mode	R/W	LED_ACT active duty cycle.
		HW Rst.	010	000 = 21 ms
		SW Rst.	Retain	001 = 42 ms
				010 = 84 ms
				011 = 168 ms
				100 = 330 ms 101 = 670 ms
				110 to 111 = 168 ms
7:5	RESERVED	Mode	RO	_
7.0				
		HW Rst.	000	
		SW Rst.	Always 0	
4:3	LED_LINK	Mode	R/W	00 = Direct LED mode (default)
	CONTROL	HW Rst.	00	11 = Disable LED_10_100 only
		SW Rst.	Retain	01, 10 = Reserved

Bit	Name	Тур	е	Description
2	LED_ACT	Mode	R/W	0 = Normal
	CONTROL	HW Rst.	0	1 = LED_ACT blinks when linked
		SW Rst.	Retain	
1	RESERVED	Mode	R/W	-
		HW Rst.	0	
		SW Rst.	Retain	
0	RESERVED	Mode	R/W	-
		HW Rst.	0	
		SW Rst.	Retain	

5.2.22 Manual LED override register

Bit	Name	Тур	е	Description
15:13	RESERVED	Mode	R/W	_
		HW Rst.	001	
		SW Rst.	Retain	
12	LED_ACT	Mode	R/W	1 = link/active. When link is established, LED_ACT is
	CONTROL	HW Rst.	1	on. When link is active, LED_ACT blinks. 0 = active. When link is established, LED ACT is off.
		SW Rst.	Retain	When link is active, LED_ACT blinks.
				The blink duty cycle is controlled by LED control register.
11:8	RESERVED	Mode	R/W	-
		HW Rst.	0	
		SW Rst.	Retain	
7:6	LED_LINK10_100	Mode	R/W	00 = normal
	CONTROL	HW Rst.	00	01 = LED_ACT blinks
		SW Rst.	Retain	10 = LED off 11 = LED on
				LED_ACT can be turned off by bits[3:0] of Manual LED override register.
5:4	RESERVED	Mode	R/W	-
		HW Rst.	00	
		SW Rst.	Retain	

Bit	Name	Тур	е	Description
3:2	LED_RX	Mode	R/W	00 = Normal
		HW Rst.	00	01 = Blink
		SW Rst.	Retain	10 = LED off
		OW Not.	Retain	11 = LED on
				LED_ACT status = LED_TX LED_RX
				When both LED_RX and LED_TX are set to 10, LED_ACT is turned off; when either is set to 01, LED_ACT blinks; when either is set to 11, LED_ACT is on.
1:0	LED_TX	Mode	R/W	00 = Normal
		HW Rst.	00	01 = Blink
		SW Rst.	Retain	10 = LED off
		OW Not.	Retain	11 = LED on
				When both LED_RX and LED_TX are set to 10, LED_ACT is turned off; when either is set to 01, LED_ACT blinks; when either is set to 11, LED_ACT is on.

5.2.23 Cable diagnostic test status register

Offset: 0x1C

Bit	Name	Ту	ре	Description
15:10	RESERVED	Mode	RO	Always 0
		HW Rst.	0	
		SW Rst.	0	
9:8	STATUS	Mode	RO	The content of the CDT status registers applies to the
		HW Rst.	0	cable pair selected in the CDT control registers. 11 = Test fail
		SW Rst.	0	00 = Valid test, normal cable (no short or open in cable) 10 = Valid test, open in cable (impedance > 333 Ω) 01 = Valid test, short in cable (impedance < 33 Ω)
7:0	DELTA_TIME	Mode	RO	Delta time to indicate distance
		HW Rst.	0	
		SW Rst.	0	

5.2.24 Debug port — address offset register

Bit	Name	Туре		Description
15:6	RESERVED	Mode	RO	-
		HW Rst.	0	
		SW Rst.	0	

Bit	Name	Тур	9	Description
5:0	ADDRESS	Mode	R/W	The address index of the register to be written or read.
	OFFSET	HW Rst.	0	
		SW Rst.	0	

5.2.25 Debug port — dataport register

Offset: 0x1E

Bit	Name	Туре		Description
15:0	DEBUG DATA	Mode	R/W	The data port of debug register.
	PORT	HW Rst.	0	Set the address offset in register "Debug port — address offset register" on page 69 before accessing
		SW Rst.		this register.

5.3 Debug registers

Table 5-3 Debug register summary

Offset	Register
0x00	"Analog test control register" on page 70
0x05	"SerDes test and system mode control register" on page 71
0xB	"Hibernate control register" on page 71
0x10	"100BASE-TX test mode select register" on page 72
0x11	"External loopback selection register" on page 73
0x12	"10BASE-Tetest mode select register" on page 73
0x1F	"PHY control debug register 0" on page 74
0x29	"Power saving control register" on page 74
0x3D	"Green feature configure 2 register" on page 75

5.3.1 Analog test control register

Bit	Name	Туре		Description
15	SEL_CLK125M_DSP	Mode	R/W	Control bit for RGMII interface Rx clock delay:
		HW Rst.	1	1 = RGMII Rx clock delay enable
		SW Rst.	Retain	0 = RGMII Rx clock delay disable

Bit	Name	Туре		Description
14:0	RESERVED	Mode	RO	_
		HW Rst.	0x2EE	
		SW Rst.	Retain	

5.3.2 SerDes test and system mode control register

Offset: 0x05

Bit	Name	Туре		Description
15	RESERVED	Mode	R/W	Always 0
		HW Rst.	See Desc.	
		SW Rst.	Retain	
14:9	RESERVED	Mode	RO	_
		HW Rst.	0	
		SW Rst.	0	
8	RGMII_TX_CLK_DLY	Mode	R/W	RGMII Tx clock delay control bit:
		HW Rst.	0	1 = RGMII Tx clock delay enable
		SW Rst.	0	0 = RGMII Tx clock delay disable
7:0	RESERVED	Mode	R/W	-
		HW Rst.	0	
		SW Rst.	0	

5.3.3 Hibernate control register

Bit	Name	Туре		Description
15	PS_HIB_EN	Mode	R/W	Power hibernate control bit for copper interface only 1 = Hibernate enable 0 = Hibernate disable
		HW Rst.	1	
		SW Rst.	Retain	
14:13	RESERVED	Mode	RO	_
		HW Rst.	1	
		SW Rst.	Retain	
12	RESERVED	Mode	R/W	_
		HW Rst.	1	
		SW Rst.	Retain	

Bit	Name	Туре	9	Description
11:7	RESERVED	Mode	R/W	_
		HW Rst.	0x18	
		SW Rst.	Retain	
6:5	RESERVED	Mode	RO	_
		HW Rst.	10	
		SW Rst.	Retain	
4:0	RESERVED	Mode	R/W	_
		HW Rst.	0	
		SW Rst.	Retain	

5.3.4 100BASE-TX test mode select register

Offset: 0x10

Bit	Name	Тур	9	Description
15:8	RESERVED	Mode	RO	-
		HW Rst.	0	
		SW Rst.	Retain	
7	JITTER_TEST	Mode	R/W	100BASE-TX jitter test
		HW Rst.	0	
		SW Rst.	Retain	
6	OS_TEST	Mode	R/W	100BASE-TX over shoot test
		HW Rst.	0	
		SW Rst.	Retain	
5	DCD_TEST	Mode	R/W	100BASE-TX DCD test
		HW Rst.	0	
		SW Rst.	Retain	
4:0	RESERVED	Mode	RO	-
		HW Rst.	0	
		SW Rst.	0	

5.3.5 External loopback selection register

Offset: 0x11

Bit	Name	Тур	ре	Description
15:1	RESERVED	Mode	R/W	-
		HW Rst.	0x3AA9	
		SW Rst.	Retain	
0	EXT_LPBK	Mode	R/W	1 = Enable the PHY's external loopback, namely channel
		HW Rst.	0	0<-> channel 1, channel 2 <-> channel 3. 0 = Disable the PHY's external loopback.
		SW Rst.	Retain	

5.3.6 10BASE-Tetest mode select register

Offset: 0x12

Bit	Name	Тур	9	Description
15:6	RESERVED	Mode	RO	_
		HW Rst.	010011 0000	
		SW Rst.	Retain	
5	TEST_MODE[2]	Mode	RO	Bit[2] of TEST_MODE, used together with TEST_
		HW Rst.	0	MODE[1:0]
		SW Rst.	Retain	
4	RESERVED	Mode	RO	_
		HW Rst.	0	
		SW Rst.	Retain	
3	RGMII_MODE	Mode	RO	Upon hardware reset, this bit depends on CHIP_
		HW Rst.	1	SEL and MODE_CFG: 1 = select RGMII interface with MAC.
		SW Rst.	Retain	0 = select GMII/MII interface with MAC.
2	RESERVED	Mode	R/W	-
		HW Rst.	1	
		SW Rst.	1	

Bit	Name	Туре	9	Description
1:0	TEST_MODE[1:0]	Mode	R/W	Bit[0] and bit[1] of TEST_MODE, used together
		HW Rst. 0 with TEST_MODE[2]		
		SW Rst.	0	001= Packet with all 1, 10 MHz sine wave, for
		SW KSL	U	harmonic test.
				010 = Pseudo random, for TP_ IDLE/Jitter/Differential voltage test
				011 = Normal link pulse only
				100 = 5 MHz sine wave
				Others: Normal mode

5.3.7 PHY control debug register 0

Offset: 0x1F

Bit	Name	Туре		Description
15:4	RESERVED	Mode	-	-
		HW Rst.	_	
		SW Rst.	_	
3:0	RESERVED	Mode	_	-
		HW Rst.	_	
		SW Rst.	_	

5.3.8 Power saving control register

Offset: 0x29

Bit	Name	Туре		Description
15	TOP_PS_EN	Mode	R/W	1 = Top level power saving enable
		HW Rst.	0	0 = Top level power saving disable
		SW Rst.	Retain	
14:0	RESERVED	Mode	R/W	_
		HW Rst.	36DD	
		SW Rst.	Retain	

5.3.9 Green feature configure 2 register

Offset: 0x3D

Bit	Name	Тур	9	Description
15	BP_GREEN	Mode	R/W	1 = Bypass green feature, all ec/nc/dfe blocks are
		HW Rst.	0	enabled. 0 = Enable green feature
		SW Rst.	Retain	2 - Linable green leatere
14:8	RESERVED	Mode	-	_
		HW Rst.	_	
		SW Rst.	-	
7	GATE_DFSE_EN	Mode	R/W	1 = When cable is very short, shut down Decision-
		HW Rst.	1	Feedback Sequence Estimation (DFSE). 0 = Always open DFSE.
		SW Rst.	Retain	,, o opon 2. o <u>_</u> .
6:0	RESERVED	Mode	_	_
		HW Rst.	_	
		SW Rst.	_	

5.4 MDIO interface registers

MDIO interface registers are categorized to two groups:

- MMD3 MDIO Manageable Device Address 3 for PCS
- MMD7 MDIO Manageable Device Address 7 for auto-negotiation

Table 5-4 MMD3 register summary

Bit	Name
0x0	"MMD3 — PCS control register" on page 76
0x1	"MMD3 — PCS status register" on page 77
0x14	"MMD3 — EEE capability register" on page 77
0x16	"MMD3 — EEE wake error counter register" on page 78
0x8003	"MMD3 — Cld control 3 register" on page 78
0x8009	"MMD3 — AZ control 2 register" on page 79
0x8012	"MMD3 — PTP1588 control register" on page 79
0x804A	"MMD3 — Internal MAC address 1 register" on page 79
0x804B	"MMD3 — Internal MAC address 2 register" on page 80
0x804C	"MMD3 — Internal MAC address 3 register" on page 80
0x805A	"MMD3 — RemotePHY loopback register" on page 80
0x805B	"MMD3 — SmartEEE control 1 register" on page 80

Table 5-4 MMD3 register summary (cont.)

Bit	Name
0x805C	"MMD3 — SmartEEE control 2 register" on page 81
0x805D	"MMD3 — SmartEEE control 3 register" on page 81

Table 5-5 MMD7 register summary

Bit	Name
0x0	"MMD7 — Auto-negotiation control register" on page 82
0x1	"MMD7 — EEE advertisement register" on page 82
0x16	"MMD7 — EEE advertisement register" on page 82
0x17	"MMD7 — EEE advertisement register" on page 82
0x18	"MMD7 — EEE advertisement register" on page 82
0x19	"MMD7 — EEE advertisement register" on page 82
0x1A	"MMD7 — EEE advertisement register" on page 82
0x1B	"MMD7 — EEE advertisement register" on page 82
0x3C	"MMD7 — EEE advertisement register" on page 82
0x3D	"MMD7 — EEE LP advertisement register" on page 83
0x8000	"MMD7 — EEE ability auto-negotiation result register" on page 84
0x8016	"MMD7 — CLK_25M clock select register" on page 84

5.4.1 MMD3 — PCS control register

Device Address = 3; Offset = 0x0

Bit	Name	Тур	е	Description
15	PCS_RST	Mode	R/W	Reset bit, self-clears.
		HW Rst.	0	When this bit = 1:
		SW Rst.	0	Non-vendor specific registers in MMD3/MMD7 are reset.
				Software reset in MII register 0 bit[15].
14:11	RESERVED	Mode	RO	Always 0
		HW Rst.	0	
		SW Rst.	0	
10	CLOCK_	Mode	R/W	Not implement.
	STOPPABLE	HW Rst.	0	
		SW Rst.	Retain	

Bit	Name	Туре		Description
9.0	RESERVED	Mode	RO	Always 0
		HW Rst.	0	
		SW Rst.	0	

5.4.2 MMD3 — PCS status register

Device Address = 3; Offset = 0x1

Bit	Name	Туре)	Description
15:12	RESERVED	Mode	RO	Always 0
		HW Rst.	0	
		SW Rst.	0	
11	TX LP IDLE	Mode	RO	1 = The transmit PCS has received low power idle
	RECEIVED	HW Rst.	0	signaling one or more times since the register was last read. Latch High.
		SW Rst.	0	
10	RX LP IDLE RECEIVED	Mode	RO	1 = The receive PCS has received low power idle
	RECEIVED	HW Rst.	0	 signaling one or more times since the register w last read. Latch High.
		SW Rst.	0	
9	TX LP IDLE INDICATION	Mode	RO	1 = The transmit PCS is currently receiving low
	INDICATION	HW Rst.	0	power idle signals.
		SW Rst.	0	
8	RX LP IDLE INDICATION	Mode	RO	1 = The receive PCS is currently receiving low
	INDICATION	HW Rst.	0	power idle signals.
		SW Rst.	0	
7:0	RESERVED	Mode	RO	Always 0
		HW Rst.	0	
		SW Rst.	0	

5.4.3 MMD3 — EEE capability register

Device address = 3; Offset = 0x14

Bit	Name	Туре	9	Description
15:3	RESERVED	Mode	RO	Always 0
		HW Rst.	0	
		SW Rst.	0	

Bit	Name	Туре	9	Description
2	1000BT EEE	Mode	RO	EEE is supported for 1000 BASE-T.
		HW Rst.	1	
		SW Rst.	1	
1	100BT EEE	Mode	RO	EEE is supported for 100 BASE-T.
		HW Rst.	1	
		SW Rst.	1	
0	RESERVED	Mode	RO	Always 0
		HW Rst.	0	
		SW Rst.	0	

5.4.4 MMD3 — EEE wake error counter register

Device address = 3; Offset = 0x16

Bit	Name			Description
15:0	EEE WAKE	Mode	RO	Count wake time faults where the PHY fails to complete its
	ERROR COUNTER	HW Rst.	0	normal wake sequence within the time required for the specific PHY type.
		SW Rst.	0	This counter is cleared after read operation, and held at all 1 in the case of overflow.

5.4.5 MMD3 — Cld control 3 register

Device address = 3; Offset = 0x8003

Bit	Name			Description
15	BP_CABLE_	Mode	RO	In 1000BASE-T mode, cable length detect to analog:
	LTH_DET_GT	HW Rst.	0	1 = Bypass cable length detect. 0 = Enable cable length detect.
		SW Rst.	Retain	0 – Ellable Cable length detect.
14:0	RESERVED	Mode	_	-
		HW Rst.	_	
		SW Rst.	_	

5.4.6 MMD3 — AZ control 2 register

Device address = 3; Offset = 0x8009

Bit	Name	Туре		Description
15:8	WAKE_TRAINING_	Mode	RO	Wake training timer. The default value is 0x20
	DEBUG	HW Rst.	0x20	(4.096 µs).
		SW Rst.	Retain	
7:0	RESERVED	Mode	_	-
		HW Rst.	_	
		SW Rst.	-	

5.4.7 MMD3 — PTP1588 control register

Device Address = 3; Offset = 0x8012

Bit	Name	Тур	е	Description
15:7	RESERVED	Mode	RO	_
		HW Rst.	0	
		SW Rst.	0	
6	RESERVED	Mode	R/W	-
		HW Rst.	0	
		SW Rst.	Retain	
5	WOL_EN	Mode	R/W	0 = Disable wake-on-Lan function.
		HW Rst.	1	1 = Enable wake-on-Lan function.
		SW Rst.	Retain	
4:0	RESERVED	Mode	_	-
		HW Rst.	_	
		SW Rst.	_	

5.4.8 MMD3 — Internal MAC address 1 register

Device Address = 3; Offset = 0x804A

Bit	Name	Туре		Description
15:0	LOC_MAC_	Mode	R/W	Bits[47:32] of internal address, used in Wake-on-LAN.
	ADDR[47:32]	HW Rst.	0	
		SW Rst.	Retain	

5.4.9 MMD3 — Internal MAC address 2 register

Device Address = 3; Offset = 0x804B

Bit	Name	Туре		Description
15:0	LOC_MAC_	Mode	R/W	Bits[31:16] of internal address, used in Wake-on-LAN.
	ADDR[31:16]	HW Rst.	0	
		SW Rst.	Retain	

5.4.10 MMD3 — Internal MAC address 3 register

Device Address = 3; Offset = 0x804C

Bit	Name	Туре		Description
15:0	LOC_MAC_	Mode	R/W	Bits[15:0] of internal address, used in Wake-on-LAN.
	ADDR[15:0]	HW Rst.	0	
		SW Rst.	Retain	

5.4.11 MMD3 — RemotePHY loopback register

Device Address = 3; Offset = 0x805A

Bit	Name	Туре		Description
15:1	RESERVED	Mode	RO	-
		HW Rst.	0	
		SW Rst.	0	
0	REM_PHY_LPBK	Mode	R/W	Loopback received data packets to link partner
		HW Rst.	0	
		SW Rst.	Retain	

5.4.12 MMD3 — SmartEEE control 1 register

Device Address = 3; Offset = 0x805B

Bit	Name	Туре		Description	
15:8	LPI_WT	Mode	R/W	1000BASE-T Tw timer. Buffered data is sent after time	
		HW Rst.	0x11	LSB vs time: 1 µs	
		SW Rst.	Retain	Default value: 17 μs	

Bit	Name	Туре		Description
7:0	LPI_WT	Mode	R/W	100BASE-T Tw timer. Buffered data is sent after
		HW Rst.	0x17	timeout. LSB vs time: 1 µs
		SW Rst.	Retain	Default value: 17 μs

5.4.13 MMD3 — SmartEEE control 2 register

Device Address = 3; Offset = 0x805C

Bit	Name	Туре		Description	
15:0	LPI_TIMER	Mode	R/W	LPI_TIMER[15:0]	
		HW Rst.	0x800	The LPI_TIMER configures the duration from when no data is being transmitted to entering LPI mode. At	
		SW Rst.	Retain	timeout, PHY enters LPI mode.	
				LSB vs time: 163.84 µs	
				Default value: 335.544 ms	

5.4.14 MMD3 — SmartEEE control 3 register

Device Address = 3; Offset = 0x805D

Bit	Name	Тур	е	Description
15:14	RESERVED	Mode	RO	_
		HW Rst.	0	
		SW Rst.	0	
13:12	LPI_TX_DELAY_	Mode	R/W	Select IPG length inserted between packets (for
	SEL	HW Rst.	01	debug use).
		SW Rst.	Retain	
11:9	RESERVED	Mode	RO	-
		HW Rst.	0	
		SW Rst.	0	
8	LPI_EN	Mode	R/W	Enables or disables SmartEEE
		HW Rst.	1	1 = Enable
		SW Rst.	Retain	0 = Disable If MMD7 register (0x3C) bits[2:1] = 2'b00, this bit is internally disabled automatically even it is set to 1.
7:0	LPI_TIMER	Mode	R/W	LPI_TIMER[23:16]
			The LPI_TIMER configures the duration from when no data is being transmitted to entering LPI mode. At	
		SW Rst.	Retain	timeout, PHY enters LPI mode.

5.4.15 MMD7 — Auto-negotiation control register

Device Address = 7; Offset = 0x0

Bit	Name	Тур	е	Description
15	AN_RST	Mode	R/W, SC	This bit restores the MMD3/MMD7 registers to default states and triggers a software reset.
		HW Rst.	0	1 = Augo-negotiation reset
		SW Rst.	0	0 = Normal operation
14	RESERVED	Mode	RO	Always 0.
		HW Rst.	0	
		SW Rst.	0	
13	XNP_CTRL	Mode	R/W	If MII register 4 bit[12] is set to 0, setting of this bit has
		HW Rst.	1	no effect. 1 = Local device intends to enable the exchange of
		SW Rst.	Retain	extended next page.
				0 = Local device does not intend to enable the exchange of extended next page.
12:0	RESERVED	Mode	RO	Always 0.
		HW Rst.	0	
		SW Rst.	0	

5.4.16 MMD7 — EEE advertisement register

Device Address = 7; Offset = 0x3C

Bit	Name	Тур	е	Description	
15:3	RESERVED	Mode	RO	Always 0	
		HW Rst.	0		
		SW Rst.	0		
2	EEE_1000BT	Mode	R/W	If Local device supports EEE operation for	
		HW Rst.	1	1000BASE-T, and EEE operation is required, this b must be set to 1.	
		SW Rst.	Retain	The value of this bit is updated immediately after writing this register. The value written to this bit takes effect only when any one of the following occurs:	
				 Software reset is asserted (bit[15] RESET of Control register) 	
				 Restart Auto-Negotiation is asserted (bit[9] RESTART AUTO-NEGOTIATION of Control register) 	
				 Power-down (bit[11] POWER DOWN of Control register) transitions from power down to normal operation 	
				■ Link goes down	

Bit	Name	Тур	е	Description	
1	EEE_100BT	Mode	R/W	If Local device supports EEE operation for	
		HW Rst.	1	100BASE-T, and EEE operation is required, this bit must be set to 1. The value of this bit is updated immediately after writing this register. The value written to this bit take effect only when any one of the following occurs:	
		SW Rst.	Retain		
				 Software reset is asserted (bit[15] RESET of Control register) 	
				 Restart Auto-Negotiation is asserted (bit[9] RESTART AUTO-NEGOTIATION of Control register) 	
				 Power-down (bit[11] POWER DOWN of Control register) transitions from power down to normal operation 	
				■ Link goes down	
0	RESERVED	Mode	RO	Always 0	
		HW Rst.	0		
		SW Rst.	0		

5.4.17 MMD7 — EEE LP advertisement register

Device Address = 7; Offset = 0x3D

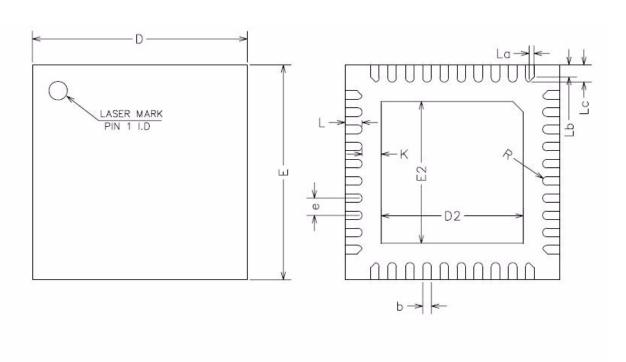
Bit	Name	Тур	е	Description
15:3	RESERVED	Mode	RO	Always 0
		HW Rst.	0	
		SW Rst.	0	
2	EEE_1000BT	Mode	RO	1 = Link partner supports EEE operation for
		HW Rst.	0	1000BASE-T, and EEE operation is desired. 0 = Link partner does not support EEE operation for
		SW Rst.	0	1000BASE-T, or EEE operation is not desired.
1	EEE_100BT	Mode	RO	1 = Link partner supports EEE operation for
		HW Rst.	0	100BASE-T, and EEE operation is desired. 0 = Link partner does not support EEE operation for
		SW Rst.	0	100BASE-T, or EEE operation is not desired.
0	RESERVED	Mode	RO	Always 0
		HW Rst.	0	
		SW Rst.	0	

5.4.18 MMD7 — EEE ability auto-negotiation result register

Device Address = 7; Offset = 0x8000

Bit	Name	Тур	е	Description
15:3	RESERVED	Mode	RO	Always 0
		HW Rst.	0	
		SW Rst.	0	
2	EEE_1000BT_EN	Mode	RO	1 = 1000BASE-T 802.3az enabled. Both sides
		HW Rst.	0	support EEE operation for 1000BASE-T and EEE operation is preferred.
		SW Rst.	0	0 = 1000BASE-T 802.3az disabled. Either side does not support EEE operation for 1000BASE-T or EEE operation is not preferred.
1	EEE_100BT_EN	Mode	RO	1 = 100BASE-T 802.3az enabled. Both sides support
		HW Rst.	0	EEE operation for 100BASE-T and EEE operation is preferred.
		SW Rst.	0	0 = 100BASE-T 802.3az disabled. Either side does not support EEE operation for 100BASE-T or EEE operation is not preferred.
0	RESERVED	Mode	RO	Always 0
		HW Rst.	0	
		SW Rst.	0	

5.4.19 MMD7 — CLK_25M clock select register


Device Address = 7; Offset = 0x8016

Bit	Name	Тур	е	Description
15:9	RESERVED	Mode	_	-
		HW Rst.	_	
		SW Rst.	-	
8:7	DR[0]	Mode	R/W	Driver strength
		HW Rst.	1	00 = Full
		SW Rst.	Retain	01 = Half 10/11 = One quarter
6:5	RESERVED	Mode	_	-
		HW Rst.	_	
		SW Rst.	-	
4:3	SELECT_CLK25M	Mode	R/W	CLK_25M outputs clock select bits.
		HW Rst.	0	00 = 25 MHz from crystal XOUT pad
		SW Rst.	Retain	01 = 25 MHz divided down from DSP 1G clock 10 = 50 MHz from local PLL source 01 = 50 MHz from DSP source

Bit	Name	Туре		Description
2:0	RESERVED	Mode	_	_
		HW Rst.	_	
		SW Rst.	_	

6 Package Dimensions

The AR8035 is packaged in a 48-pin 6×6 mm QFN package. See Figure 6-1 and Table 6-1 for the package drawings and dimensions.

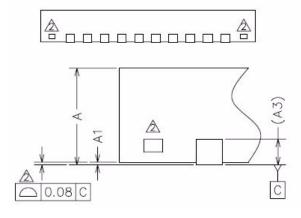


Figure 6-1 Packag view

Table 6-1 Package dimensions

Dimension label	Min.	Тур.	Max.	Unit						
Α	0.70	0.75	0.80	mm						
A1	0.00	0.02	0.05	mm						
A3		0.20 F	REF	II.						
b	0.15	0.20	0.25	mm						
D	4.90	5.00	5.10	mm						
E	4.90	5.00	5.10	mm						
D2	3.15	3.30	3.50	mm						
E2	3.15	3.30	3.50	mm						
е	0.35	0.40	0.45	mm						
K	0.20	_	_	mm						
L	0.30	0.40	0.50	mm						
R	0.09	_	_	mm						
La	0.12	0.15	0.18	mm						
Lb	0.23	0.26	0.29	mm						
Lc	0.30	0.39	0.50	mm						

7 Ordering Information

Table 7-1 Ordering information

Ordering number	Version	Default ordering unit
AR8035-AL1A	Commercial	Tray pack
AR8035-AL1A-R	Commercial	Tape and reel
AR8035-AL1B-R	Industrial	Tape and reel

8 Top-side Marking

Table 8-1 Top-side markings

Ordering number	Marking
AR8035-AL1A	AR8035-A
AR8035-AL1A-R	
AR8035-AL1B-R	8035-AL1B

Figure 8-1 Top-side markings