

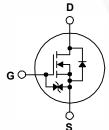
August 2014

FCPF650N80Z N-Channel SuperFET[®] II MOSFET

800 V, 8 A, 650 mΩ

Features

- $R_{DS(on)} = 530 \text{ m}\Omega \text{ (Typ.)}$
- Ultra Low Gate Charge (Typ. Q_q = 27 nC)
- Low E_{oss} (Typ. 2.8 uJ @ 400V)
- Low Effective Output Capacitance (Typ. C_{oss(eff.)} = 124 pF)
- · 100% Avalanche Tested
- · RoHS Compliant
- · ESD Improved Capability


Applications

- · AC DC Power Supply
- · LED Lighting

Description

SuperFET[®] II MOSFET is Fairchild Semiconductor's brand-new high voltage super-junction (SJ) MOSFET family that is utilizing charge balance technology for outstanding low on-resistance and lower gate charge performance. This technology is tailored to minimize conduction loss, provide superior switching performance, dv/dt rate and higher avalanche energy. In addition, internal gate-source ESD diode allows to withstand over 2kV HBM surge stress.Consequently, SuperFET II MOSFET is very suitable for the switching power applications such as Audio, Laptop adapter, Lighting, ATX power and industrial power applications.

Absolute Maximum Ratings T_C = 25°C unless otherwise noted.

Symbol		Parameter		FCPF650N80Z	Unit	
V_{DSS}	Drain to Source Voltage			800	V	
V	Cata to Sauras Valtage	- DC		±20	V	
V_{GSS}	Gate to Source Voltage	- AC	(f > 1 Hz)	±30	7 V	
	Drain Current	- Continuous (T _C = 25°C)		8*	Α	
I _D	Drain Current	- Continuous (T _C = 100°C)		5.1*	7 A	
I _{DM}	Drain Current	- Pulsed	(Note 1)	24*	Α	
E _{AS}	Single Pulsed Avalanche Energy (Note 2)			204	mJ	
I _{AR}	Avalanche Current (Note 1)		1.6	Α		
E _{AR}	Repetitive Avalanche Energy	Repetitive Avalanche Energy (Note 1)		0.305	mJ	
dv/dt	MOSFET dv/dt			100	V/ns	
άν/αι	Peak Diode Recovery dv/dt		(Note 3)	20	V/115	
D	Power Dissipation	(T _C = 25°C)		30.5	W	
P_{D}	Power Dissipation - Derate Above 25°C			0.24	W/°C	
T _J , T _{STG}	Operating and Storage Temperature Range			-55 to +150	°C	
T _L	Maximum Lead Temperature t	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 Seconds			°C	

^{*}Drain current limited by maximum junction temperature.

Thermal Characteristics

Symbol	Parameter FCPF650N80Z		Unit
$R_{\theta JC}$	Thermal Resistance, Junction to Case, Max. 4.1		°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient, Max. 62.5		*C/VV

Package Marking and Ordering Information

Part Number	Top Mark	Package	Packing Method	Reel Size	Tape Width	Quantity
FCPF650N80Z	FCPF650N80Z	TO-220F	Tube	N/A	N/A	50 units

Electrical Characteristics $T_C = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Off Charac	cteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}, T_J = 25^{\circ}\text{C}$	800	-	-	V
ΔBV _{DSS} / ΔT _J	Breakdown Voltage Temperature Coefficient	I _D = 1 mA, Referenced to 25°C	-	0.8	-	V/°C
I	Zero Gate Voltage Drain Current	V _{DS} = 800 V, V _{GS} = 0 V	-	-	25	μА
IDSS	Zero Gate Voltage Drain Guirent	$V_{DS} = 640 \text{ V}, V_{GS} = 0 \text{ V}, T_{C} = 125^{\circ}\text{C}$	-	-	250	μΛ
I _{GSS}	Gate to Body Leakage Current	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$	-	-	±10	μΑ

On Characteristics

V _{GS(th)}	Gate Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = 0.8 \text{ mA}$	2.5	-	4.5	V
R _{DS(on)}	Static Drain to Source On Resistance	$V_{GS} = 10 \text{ V}, I_D = 4 \text{ A}$	-	530	650	mΩ
9 _{FS}	Forward Transconductance	V _{DS} = 20 V, I _D = 4 A	-	7.8	-	S

Dynamic Characteristics

C _{iss}	Input Capacitance	V - 400 V V - 0 V	-	1178	1565	pF
C _{oss}	Output Capacitance	V _{DS} = 100 V, V _{GS} = 0 V, f = 1 MHz	- \	36	48	pF
C _{rss}	Reverse Transfer Capacitance	1 10112	- \	0.84	-	pF
Coss	Output Capacitance	V_{DS} = 480 V, V_{GS} = 0 V, f = 1 MHz	-	18	-	pF
Coss (eff.)	Effective Output Capacitance	V_{DS} = 0 V to 480 V, V_{GS} = 0 V	-	124	-	pF
Q _{g(tot)}	Total Gate Charge at 10V	V _{DS} = 640 V, I _D = 8 A,	-	27	35	nC
Q_{gs}	Gate to Source Gate Charge	V _{GS} = 10 V	-	6	-	nC
Q _{gd}	Gate to Drain "Miller" Charge	(Note 4)	-	11	-	nC
ESR	Equivalent Series Resistance	f = 1 MHz	-	1.9	-	Ω

Switching Characteristics

$t_{d(on)}$	Turn-On Delay Time		-	17	44	ns
t _r		$V_{DD} = 400 \text{ V}, I_{D} = 8 \text{ A},$	- /	11	32	ns
t _{d(off)}	Turn-Off Delay Time	$V_{GS} = 10 \text{ V}, R_g = 4.7 \Omega$	- /	40	90	ns
t _f	Turn-Off Fall Time	(Note 4)	_	3.4	17	ns

Drain-Source Diode Characteristics

I _S	Maximum Continuous Drain to Source Diode Forward Current		-	-	8	Α
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current		-	-	24	Α
V_{SD}	Drain to Source Diode Forward Voltage	V _{GS} = 0 V, I _{SD} = 8 A	-	-	1.2	V
t _{rr}	Reverse Recovery Time	V _{GS} = 0 V, I _{SD} = 8 A,	-	365	-	ns
Q _{rr}	Reverse Recovery Charge	$dI_F/dt = 100 A/\mu s$	-	5.9	-	μС

Notes:

^{1.} Repetitive rating: pulse width limited by maximum junction temperature.

^{2.} I_{AS} = 1.6 A, R_{G} = 25 Ω , Starting T_{J} = 25°C

^{3.} I_{SD} ≤ 8 A, di/dt ≤ 200 A/µs, V_DD \leq BV_DSS, Starting T_J = 25°C

^{4.} Essentially independent of operating temperature typical characteristics.

Typical Performance Characteristics

Figure 1. On-Region Characteristics

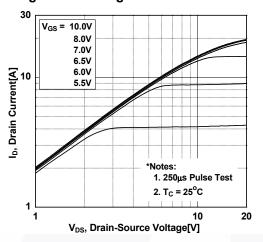
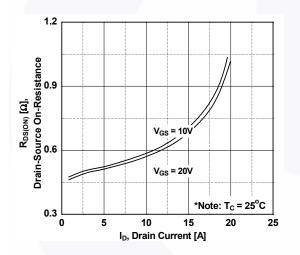



Figure 3. On-Resistance Variation vs.

Drain Current and Gate Voltage

Figure 5. Capacitance Characteristics

Figure 2. Transfer Characteristics

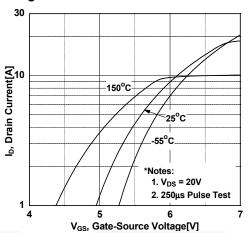


Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

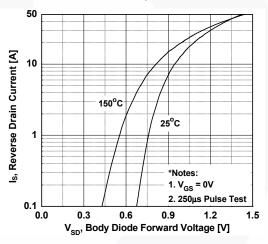
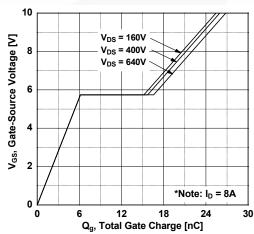



Figure 6. Gate Charge Characteristics

Typical Performance Characteristics (Continued)

Figure 7. Breakdown Voltage Variation vs. Temperature

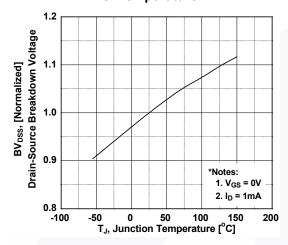


Figure 9. Maximum Safe Operating Area

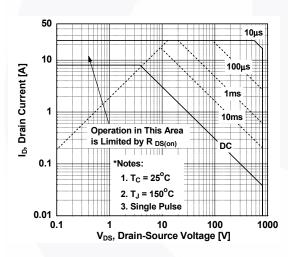


Figure 11. Eoss vs. Drain to Source Voltage

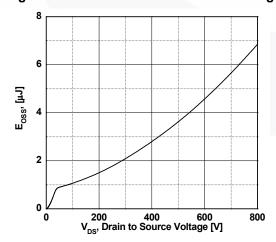
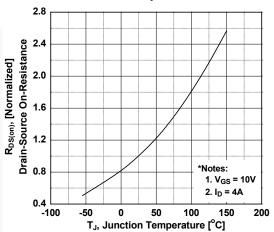
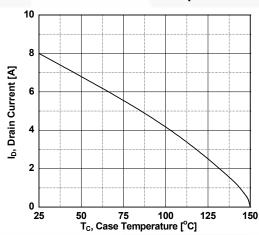
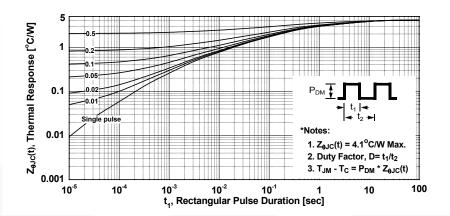


Figure 8. On-Resistance Variation vs. Temperature


Figure 10. Maximum Drain Current vs. Case Temperature

Typical Performance Characteristics (Continued)

Figure 12. Transient Thermal Response Curve

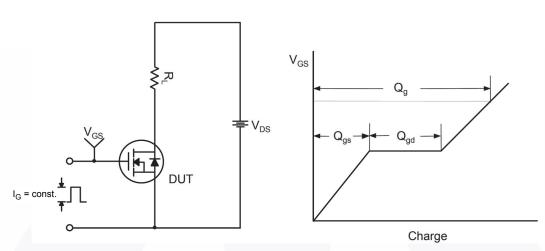


Figure 13. Gate Charge Test Circuit & Waveform

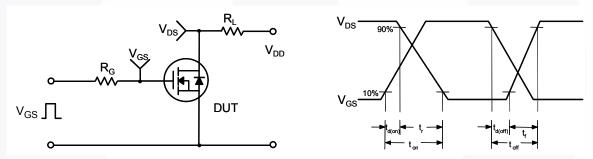


Figure 14. Resistive Switching Test Circuit & Waveforms

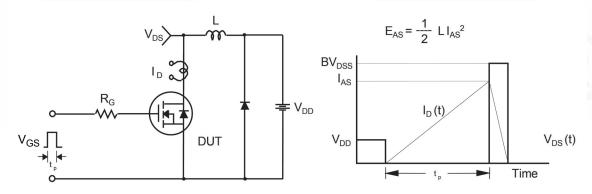


Figure 15. Unclamped Inductive Switching Test Circuit & Waveforms

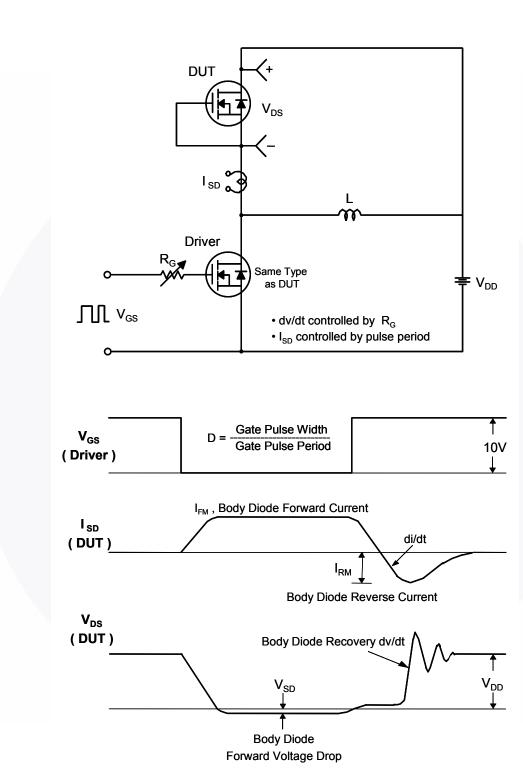
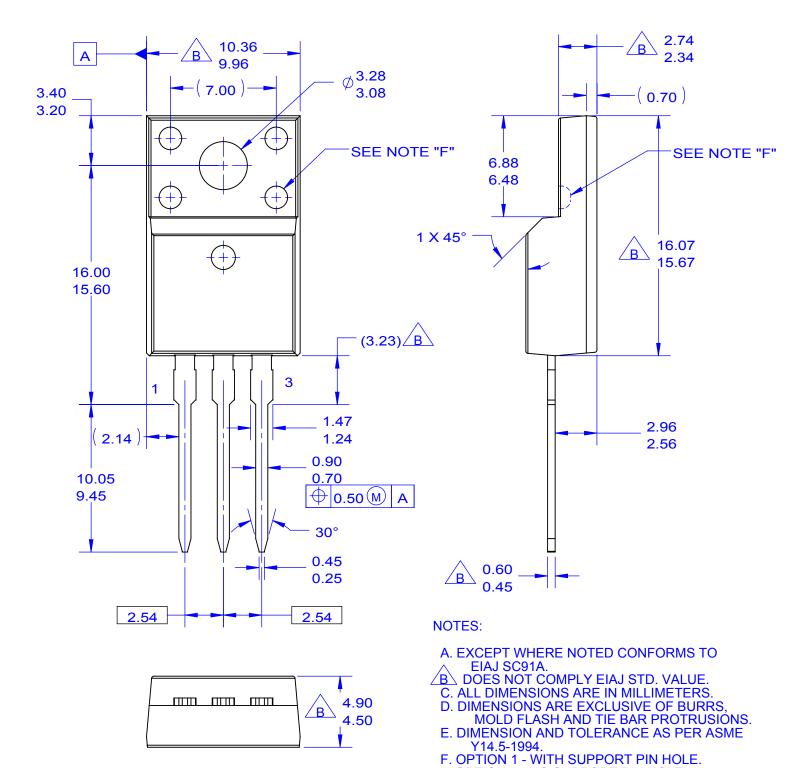



Figure 16. Peak Diode Recovery dv/dt Test Circuit & Waveforms

OPTION 2 - NO SUPPORT PIN HOLE. G. DRAWING FILE NAME: TO220M03REV3

TRADEMARKS

 $CorePLUS^{\scriptscriptstyle\mathsf{TM}}$

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

 AccuPower™
 F-PFS™

 Awinda®
 FRFET®

 AX-CAP®∗
 Global F

AX- $CAP^{\otimes_{\star}}$ Global Power Resource SM GreenBridge M Green FPSTM Green FPSTM

DEUXPEED[®] Making Small Speakers Sound Louder
Dual Cool™ and Better™

 Dual Cool™
 and Better™

 EcoSPARK®
 MegaBuck™

 EfficientMax™
 MICROCOUPLER™

 ESBC™
 MicroFET™

 MicroPak™
 MicroPak™

Fairchild®

Fairchild Semiconductor®
FACT Quiet Series™

FACT®
FAST®

FastvCore™

MillerDrive™

MotionMax™

MotionGrid®

MTx®

MTx®

FETBench™ MVN®
FPS™ mWSaver®
OptoHiT™

PowerTrench[®] PowerXS™

Programmable Active Droop™

QFET[®] QS™

Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™

Solutions for Your Success™

SPM[®]
STEALTH™
SuperFET[®]
SuperSOT™-3
SuperSOT™-6

SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™ Sync-Lock™

•

TinyBoost®
TinyBuck®
TinyCalc™
TinyLogic®
TiNYOPTO™
TinyPower™
TinyPWM™
TinyWire™
TranSiC™
TriFault Detect™

TRUECURRENT®*

SerDes"
UHC®
Ultra FRFET™
UniFET™
VCX™
VisualMax™
VoltagePlus™
XS™
Xsens™

仙童™

μSerDes™

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

Green FPS™ e-Series™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT http://www.fairchildsemi.com, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Definition of Terms	ennition of Terms				
Datasheet Identification	Product Status	Definition			
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.			
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.			
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.			
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.			

Rev. I71

UIC Mall.co

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: FCPF650N80Z