TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC74HC595AP,TC74HC595AF,TC74HC595AFN

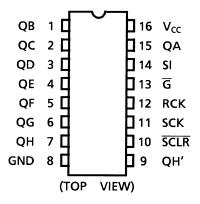
8-Bit Shift Register/Latch (3-state)

The TC74HC595A is a high speed 8-BIT SHIFT REGISTER/LATCH fabricated with silicon gate C2MOS technology.

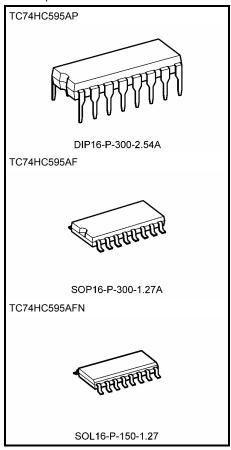
It achieve the high speed operation similar to equivalent LSTTL while maintaining the CMOS low power dissipation.

The TC74HC595A contains an 8-bit static shift register which feeds an 8-bit storage register.

Shift operation is accomplished on the positive going transition of the SCK input. The output register is loaded with the contents of the shift register on the positive going transition of the RCK input. Since RCK and SCK signal are independent, parallel outputs can be held stable during the shift operation.


And, since the parallel outputs are 3-state, it can be directly connected to 8-bit bus. This register can be used in serial-to-parallel conversion, data receivers, etc.

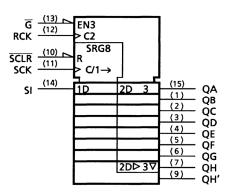
All inputs are equipped with protection circuits against static discharge or transient excess voltage.


Features

- High speed: $f_{max} = 55 \text{ MHz}$ (typ.) at $V_{CC} = 5 \text{ V}$
- Low power dissipation: $ICC = 4 \mu A \text{ (max)}$ at $Ta = 25^{\circ}C$
- High noise immunity: VNIH = VNIL = 28% VCC (min)
- Output drive capability: 15 LSTTL loads for QA to QH
 10 LSTTL loads for QH'
- Symmetrical output impedance: $|I_{OH}| = I_{OL} = 6 \text{ mA (min)}$ For QA to QH $|I_{OH}| = I_{OL} = 4 \text{ mA (min)}$ For QH'
- Balanced propagation delays: $t_pLH \simeq t_pHL$
- Wide operating voltage range: VCC (opr) = 2 to 6 V
- Pin and function compatible with 74LS595

Pin Assignment

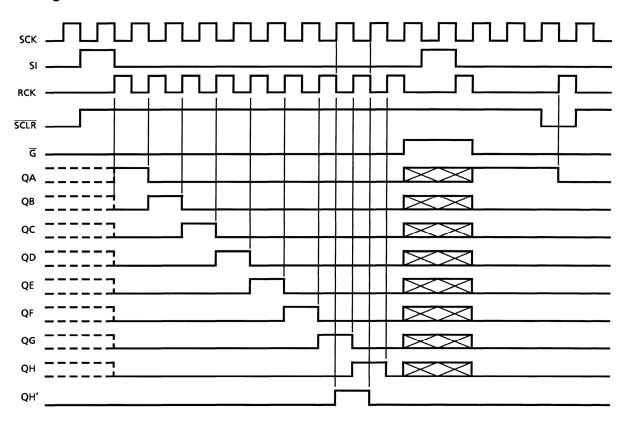
Note: xxxFN (JEDEC SOP) is not available in Japan.


Weight

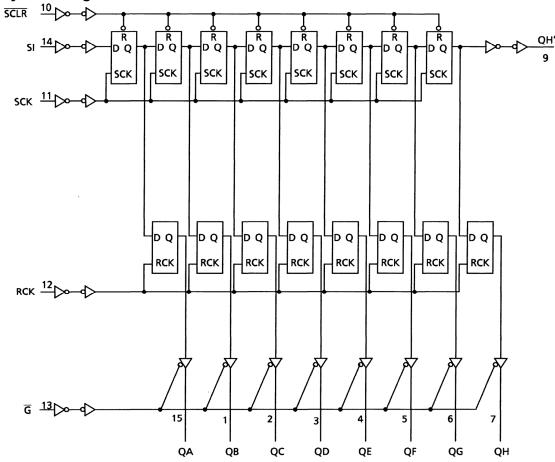
DIP16-P-300-2.54A : 1.00 g (typ.) SOP16-P-300-1.27A : 0.18 g (typ.) SOL16-P-150-1.27 : 0.13 g (typ.)

1 2007-10-01

IEC Logic Symbol


Truth Table

Inputs					Function				
SI	SCK	SCLR	RCK	Ġ	Function				
Х	Х	Х	Х	Н	QA thru QH outputs disable				
Х	Х	Х	Х	L	QA thru QH outputs enable				
Х	Х	L	Х	Х	Shift register is cleared.				
L		Н	Х	Х	First stage of S.R. becomes "L". Other stages store the data of previous stage, respectively.				
Н		Н	Х	Х	First stage of S.R. becomes "H". Other stages store the data of previous stage, respectively.				
Х	\downarrow	Н	Х	Х	State of S.R. is not changed.				
Х	Х	Х		Х	S.R. data is stored into storage register.				
Х	Х	Х	_	Х	Storage register stage is not changed.				


X: Don't care

Timing Chart

System Diagram

Absolute Maximum Ratings (Note 1)

Characteristics	Symbol	Rating	Unit	
Supply voltage range	V _{CC}	–0.5 to 7	V	
DC input voltage	V _{IN}	-0.5 to V _{CC} + 0.5	V	
DC output voltage	V _{OUT}	-0.5 to $V_{CC} + 0.5$	V	
Input diode current	I _{IK}	±20	mA	
Output diode current	lok	±20	mA	
DC output current (QH')	lau-	±25	mA	
(QA to QH)	Гоит	±35	IIIA	
DC V _{CC} /ground current	Icc	±75	mA	
Power dissipation	PD	500 (DIP) (Note 2)/180 (SOP)	mW	
Storage temperature	T _{stg}	-65 to 150	°C	

Note 1: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Note 2: 500 mW in the range of Ta = -40 to 65°C. From Ta = 65 to 85°C a derating factor of -10 mW/°C shall be applied until 300 mW.

Operating Ranges (Note)

Characteristics	Symbol	Rating	Unit
Supply voltage	V _{CC}	2 to 6	V
Input voltage	V _{IN}	0 to V _{CC}	٧
Output voltage	V _{OUT}	0 to V _{CC}	V
Operating temperature	T _{opr}	-40 to 85	°C
		0 to 1000 (V _{CC} = 2.0 V)	
Input rise and fall time	t _r , t _f	0 to 500 (V _{CC} = 4.5 V)	ns
		0 to 400 ($V_{CC} = 6.0 \text{ V}$)	

Note: The operating ranges must be maintained to ensure the normal operation of the device.
Unused inputs must be tied to either VCC or GND.

Electrical Characteristics

DC Characteristics

Characteristics	Symbol	Test Condition			Ta = 25°C			Ta = -40 to 85°C		Unit
	Í					Тур.	Max	Min	Max	
				2.0	1.50	_	_	1.50	_	
High-level input voltage	V_{IH}	_		4.5	3.15	_	_	3.15	_	V
1 11 9				6.0	4.20	—	_	4.20	_	
				2.0		_	0.50	_	0.50	
Low-level input voltage	V _{IL}		_	4.5	_	_	1.35	_	1.35	V
, and the second				6.0	_	_	1.80	_	1.80	
		.,		2.0	1.9	2.0	_	1.9	_	
		V _{IN} = V _{IH} or V _{IL}	$I_{OH} = -20 \mu A$	4.5	4.4	4.5	_	4.4	_	V
				6.0	5.9	6.0	_	5.9	_	
High-level output voltage	V _{OH}	QH'	$I_{OH} = -4 \text{ mA}$	4.5	4.18	4.31	_	4.13	_	· V
		QII	$I_{OH} = -5.2 \text{ mA}$	6.0	5.68	5.80	—	5.63	_	
		QA to	$I_{OH} = -6 \text{ mA}$	4.5	4.18	4.31	_	4.13	_	
		QH	$I_{OH} = -7.8 \text{ mA}$	6.0	5.68	5.80	_	5.63	_	
				2.0		0.0	0.1	_	0.1	
		V _{IN} = V _{IH} or V _{II}	$I_{OL} = 20 \mu A$	4.5	_	0.0	0.1		0.1	V
				6.0		0.0	0.1		0.1	
Low-level output voltage	V _{OL}	QH'	$I_{OL} = 4 \text{ mA}$	4.5		0.17	0.26	_	0.33	
		QII	$I_{OL} = 5.2 \text{ mA}$	6.0		0.18	0.26		0.33	V
		QA to	$I_{OL} = 6 \text{ mA}$	4.5		0.17	0.26	_	0.33	
		QH	$I_{OL} = 7.8 \text{ mA}$	6.0	_	0.18	0.26	_	0.33	
3-state output off-state current	I _{OZ}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = V_{CC} \text{ or GND}$		6.0	_		±0.5		±5.0	μА
Input leakage current	I _{IN}	V _{IN} = V _{CC} o	6.0		_	±0.1	_	±1.0	μА	
Quiescent supply current	Icc	$V_{IN} = V_{CC} o$	r GND	6.0	_	_	4.0	_	40.0	μА

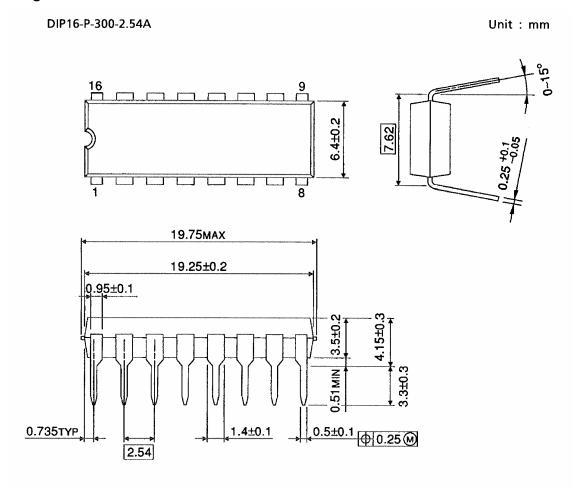
Timing Requirements (input: $t_r = t_f = 6$ ns)

Characteristics	Symbol	Test Condition	Test Condition			Ta = -40 to 85°C	Unit	
			V _{CC} (V)	Тур.	Limit	Limit		
Minimum pulse width	4		2.0	_	75	95		
(SCK, RCK)	t _{W (H)}	_	4.5	_	15	19	ns	
(SCN, NCN)	t _{W (L)}		6.0		13	16		
Minimum pulse width			2.0	_	75	95		
(SCLR)	t _{W (L)}	_	4.5	_	15	19	ns	
(SOLIN)			6.0	_	13	16		
Minimum set-up time			2.0	_	50	65		
(SI-SCK)	t _s	_	4.5	_	10	13	ns	
(01-001)			6.0	_	9	11		
Minimum set-up time			2.0	_	75	95		
(SCK-RCK)	ts	_	4.5	_	15	19	ns	
(0011-1011)			6.0	_	13	16		
Minimum set-up time			2.0	_	100	125		
(SCLR -RCK)	t _s	_	4.5	_	20	25	ns	
(SOLIV-NON)			6.0		17	21		
			2.0	_	0	0		
Minimum hold time	t _h	_	4.5	_	0	0	ns	
			6.0	_	0	0		
Minimum removal time			2.0	_	50	65		
(SCLR)	t _{rem}	_	4.5	_	10	13	ns	
(GOLIX)			6.0	_	9	11		
			2.0	_	6	5		
Clock frequency	f	_	4.5	_	30	25	MHz	
			6.0	_	35	28		

AC Characteristics (C_L = 15 pF, V_{CC} = 5 V, Ta = 25°C, input: t_r = t_f = 6 ns)

Characteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Output transition time (QH')	t _{TLH} t _{THL}	_	_	4	8	ns
Propagation delay time (SCK-QH')	t _{pLH}	_	_	12	21	ns
Propagation delay time (SCLR -QH')	t _{pHL}	_	_	15	30	ns
Maximum clock frequency	f _{max}	_	35	77	_	MHz

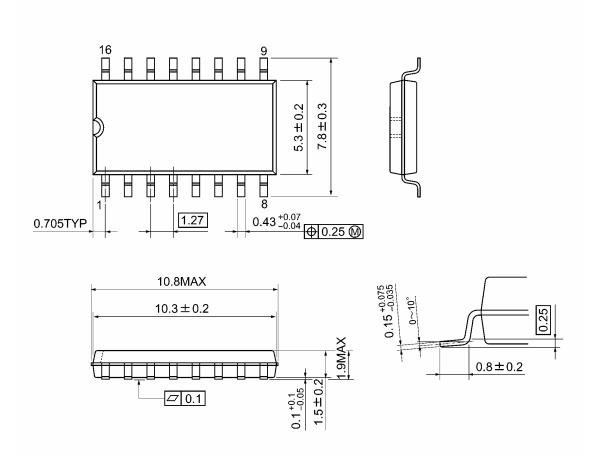
AC Characteristics (input: $t_r = t_f = 6$ ns)


Characteristics	Symbol	Test Condition			Ta = 25°C			Ta = -40 to 85°C		Unit
	- j		CL (pF)	V _{CC} (V)	Min	Тур.	Max	Min	Max	
Output transition time				2.0	_	25	60	_	75	
Output transition time	t _{TLH}	_	50	4.5	_	7	12	_	15	ns
(Q _n)	t _{THL}			6.0	_	6	10	_	13	
Output transition time	t _{TLH}			2.0	_	30	75	_	95	
(QH')	t _{THL}	_	50	4.5	_	8	15	_	19	ns
(411)	THL			6.0	_	7	13	_	16	
Propagation delay	t			2.0	_	45	125		155	
time	^t pLH •	_	50	4.5	_	15	25	_	31	ns
(SCK-QH')	t _{pHL}			6.0	_	13	21	_	26	
Propagation delay				2.0	_	60	175	_	220	
time	t_{pHL}	_	50	4.5	_	18	35	_	44	ns
(SCLR-QH')				6.0	_	15	30	_	37	
				2.0	_	60	150	_	190	- ns
		_	50	4.5	_	20	30	_	38	
Propagation delay time	t_{pLH}			6.0	_	17	26	_	32	
(RCK-Q _n)	t _{pHL}		150	2.0	_	75	190	_	240	
117				4.5	_	25	38	_	48	
				6.0	_	22	32	_	41	
				2.0	_	45	135	_	170	
			50	4.5	_	15	27	_	34	
Output anable time	t_{pZL}	D. 1 kO		6.0	_	13	23	_	29	
Output enable time	t _{pZH}	$R_L = 1 \text{ k}\Omega$		2.0	_	60	175		220	ns
			150	4.5	_	20	35	_	44	
				6.0	_	17	30	_	37	
	4 .			2.0	_	30	150	_	190	
Output disable time	t _{pLZ}	$R_L=1\;k\Omega$	50	4.5	_	15	30		38	ns
	t _{pHZ}			6.0	_	14	26	_	33	
				2.0	6	17	_	5	_	
Maximum clock frequency	f _{max}	_	50	4.5	30	50	_	25	_	MHz
- 4)				6.0	35	59	_	28	_	
Input capacitance	C _{IN}	_	_		_	5	10		10	pF
Power dissipation capacitance	C _{PD} (Note)	_	_		_	184	_	_	_	pF

Note: CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

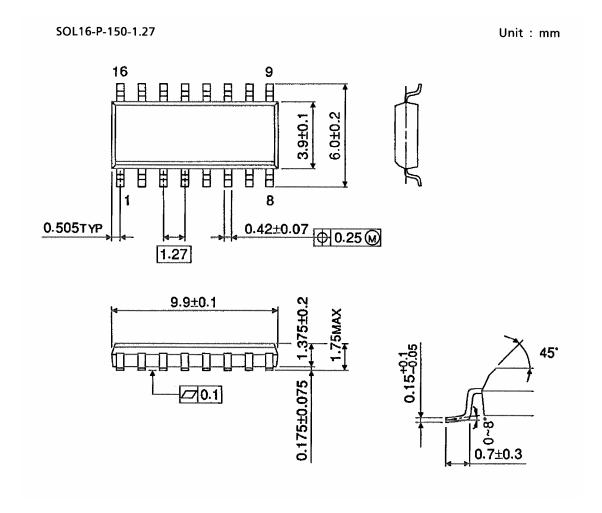
Average operating current can be obtained by the equation:

$$I_{CC}$$
 (opr) = $C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}$


Package Dimensions

Weight: 1.00 g (typ.)

Package Dimensions


SOP16-P-300-1.27A Unit: mm

Weight: 0.18 g (typ.)

Package Dimensions (Note)

Note: This package is not available in Japan.

Weight: 0.13 g (typ.)

RESTRICTIONS ON PRODUCT USE

20070701-EN GENERAL

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which
 manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which
 may result from its use. No license is granted by implication or otherwise under any patents or other rights of
 TOSHIBA or the third parties.
- Please contact your sales representative for product-by-product details in this document regarding RoHS
 compatibility. Please use these products in this document in compliance with all applicable laws and regulations
 that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses
 occurring as a result of noncompliance with applicable laws and regulations.