

MC9S12DJ64

Device User Guide

V01.20

Covers also

**MC9S12D64, MC9S12A64, MC9S12D32,
MC9S12A32**

**Original Release Date: 19 Nov. 2001
Revised: 6 April 2005**

Freescale Semiconductor, Inc.

Freescale reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Freescale does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. Freescale products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale was negligent regarding the design or manufacture of the part.

Revision History

Version Number	Revision Date	Effective Date	Author	Description of Changes
V01.00	16 NOV 2001	19 NOV 2001		Initial version based on MC9SDP256-2.09 Version.
V01.01	18 FEB 2002	18 FEB 2002		In table 7 I/O Characteristics" of the electrical characteristics replaced tPULSE with tpign and tpval in lines "Port ... Interrupt Input Pulse filtered" and "Port ... Interrupt Input Pulse passed" respectively.
V01.02	6 MAR 2002	6 MAR 2002		Table "Oscillator Characteristics": removed "Oscillator start-up time from POR or STOP" row Table "5V I/O Characteristics": Updated Partial Drive IOH = +2mA and Full Drive IOH = -10mA Table "ATD Operating Characteristics": Distinguish I _{REF} for 1 and 2 ATD blocks on Table "ATD Electrical Characteristics": Update C _{INS} to 22 pF Table "Operating Conditions": Changed V _{DD} and V _{DDPLL} to 2.35 V (min) Removed Document number except from Cover Sheet Updated Table "Document References"
V01.03	4 June 2002	4 June 2002		Table "5V I/O Characteristics" : Corrected Input Capacitance to 6pF Section: "Device Pinout" (112-pin and 80-pin): added in diagrams RXCAN0 to PJ6 and TXCAN0 to PJ7 Table "PLL Characteristics": Updated parameters K ₁ and f ₁ Figure "Basic PLL functional diagram": Inserted XFC pin in diagram Enhanced section "XFC Component Selection" Added to Sections ATD, ECT and PWM: freeze mode = active BDM mode
V01.04	4 July 2002	4 July 2002		Added 1L86D to Table "Assigned Part ID numbers" Corrected MEMSIZ1 value in Table "Memory size registers" Subsection "Device Memory Map": Removed Flash mapping from \$0000 to \$3FFF. Table "Signal Properties": Added column "Internal Pull Resistor". Preface Table "Document References": Changed to full naming for each block. Table "Interrupt Vector Locations", Column "Local Enable": Corrected several register and bit names.
V01.05	30 July 2002	30 July 2002		Figure "Recommended PCB Layout for 80QFP: Corrected VREGEN pin position Thermal values for junction to board and package BGND pin pull-up Part Order Information Global Register Table Chip Configuration Summary Modified mode of Operations chapter Section "Printed Circuit Board Layout Proposals": added Pierce Oscillator examples for 112LQFP and 80QFP

Version Number	Revision Date	Effective Date	Author	Description of Changes
V01.06	20 Aug. 2002	20 Aug. 2002		NVM electricals updated Subsection "Detailed Register Map": Address corrections Preface, Table "Document references": added OSC User Guide New section "Oscillator (OSC) Block Description"
V01.07	20 Sept. 2002	20 Sept. 2002		Electrical Characteristics: -> Section "General": removed preliminary disclaimer -> Table "Supply Current Characteristics": changed max Run IDD from 65mA to 50mA changes max Wait IDD from 40mA to 30mA changed max Stop IDD from 50uA to 100uA Section HCS12 Core Block Description: mentioned alternate clock of BDM to be equivalent to oscillator clock
V01.08	25 Sept. 2002	25 Sept. 2002		Table "5V I/O Characteristics": Corrected Input Leakage Current to +/- 1 uA Section "Part ID assignment": Located on start of next page for better readability
V01.09	10 Oct. 2002	10 Oct. 2002		Added MC9S12A64 derivative to cover sheet and "Derivative Differences" Table Corrected in footnote of Table "PLL Characteristics": $f_{OSC} = 4\text{MHz}$
V01.10	8 Nov. 2002	8 Nov. 2002		Renamed "Preface" section to "Derivative Differences and Document references". Added details for derivatives missing CAN0 and/or BDLC Table "ESD and Latch-up Test Conditions": changed pulse numbers from 3 to 1 Table "ESD and Latch-Up Protection Characteristics": changed parameter classification from C to T Table "5V I/O Characteristics": removed foot note from "Input Leakage Current" Table "Supply Current Characteristics": updated Stop and Pseudo Stop currents
V01.11	24 Jan. 2003	24 Jan. 2003		Subsection "Detailed Register Map": Corrected several entries Subsection "Unsecuring the Microcontroller": Added more details Table "Operating Conditions": improved footnote 1 wording, applied footnote 1 to PLL Supply Voltage.
V01.12	31 Mar. 2003	31 Mar. 2003		Tables "SPI Master/Slave Mode Timing Characteristics": Corrected Operating Frequency Appendix 'NVM, Flash and EEPROM': Replaced 'burst programming' by 'row programming' Table "Operating Conditions": corrected minimum bus frequency to 0.25MHz Section "Feature List": ECT features changed to "Four pulse accumulators ..."
V01.13	20 May 2003	20 May 2003		Replaced references to HCS12 Core Guide by the individual HCS12 Block guides Table "Signal Properties" corrected pull resistor reset state for PE7 and PE4-PE2. Table "Absolute Maximum Ratings" corrected footnote on clamp of TEST pin.
V01.14	10 June 2003	10 June 2003		Added cycle definition to "CPU 12 Block Description". Added register reset values to MMC and MEBI block descriptions. Diagram "Clock Connections": Connect Bus Clock to HCS12 Core

Version Number	Revision Date	Effective Date	Author	Description of Changes
V01.15	22 July 2003	22 July 2003		Mentioned "S12 LRAE" bootloader in Flash section Section Document References: corrected S12 CPU document reference
V01.16	24 Feb. 2004	24 Feb. 2004		Added 3L86D maskset with corresponding Part ID Table Oscillator Characteristics: Added more details for EXTAL pin
V01.17	21 May 2004	21 May 2004		Added 4L86D maskset with corresponding Part ID Table "MC9S12DJ64 Memory Map out of Reset": corrected \$1000 - \$3fff memory in single chip modes to "unimplemented".
V01.18	13 July 2004	13 July 2004		Added MC9S12D32 and MC9S12A32
V01.19	2 Sept. 2004	2 Sept. 2004		Appendix, Table "Oscillator Characteristics": changed item 13 VIH,EXTAL min value from 0.7*VDDPLL to 0.75*VDDPLL item 14 VIL,EXTAL max value from 0.3*VDDPLL to 0.25*VDDPLL
V01.20	6 April 2005	6 April 2005		Table "Assigned Part ID Numbers": added mask set number 0M89C Table "NVM Reliability Characteristics": added footnote concerning data retention

Table of Contents

Section 1 Introduction

1.1	Overview.....	19
1.2	Features	19
1.3	Modes of Operation	21
1.4	Block Diagram	22
1.5	Device Memory Map.....	25
1.5.1	Detailed Register Map	30
1.6	Part ID Assignments.....	49

Section 2 Signal Description

2.1	Device Pinout	51
2.2	Signal Properties Summary	53
2.3	Detailed Signal Descriptions.....	56
2.3.1	EXTAL, XTAL — Oscillator Pins	56
2.3.2	RESET — External Reset Pin	56
2.3.3	TEST — Test Pin	56
2.3.4	VREGEN — Voltage Regulator Enable Pin	56
2.3.5	XFC — PLL Loop Filter Pin	56
2.3.6	BKGD / TAGHI / MODC — Background Debug, Tag High, and Mode Pin	56
2.3.7	PAD15 / AN15 / ETRIG1 — Port AD Input Pin of ATD1	57
2.3.8	PAD[14:08] / AN[14:08] — Port AD Input Pins ATD1	57
2.3.9	PAD07 / AN07 / ETRIG0 — Port AD Input Pin of ATD0	57
2.3.10	PAD[06:00] / AN[06:00] — Port AD Input Pins of ATD0	57
2.3.11	PA[7:0] / ADDR[15:8] / DATA[15:8] — Port A I/O Pins	57
2.3.12	PB[7:0] / ADDR[7:0] / DATA[7:0] — Port B I/O Pins	57
2.3.13	PE7 / NOACC / XCLKS — Port E I/O Pin 7	57
2.3.14	PE6 / MODB / IPIPE1 — Port E I/O Pin 6	59
2.3.15	PE5 / MODA / IPIPE0 — Port E I/O Pin 5	59
2.3.16	PE4 / ECLK — Port E I/O Pin 4	59
2.3.17	PE3 / LSTRB / TAGLO — Port E I/O Pin 3	59
2.3.18	PE2 / R/W — Port E I/O Pin 2	59
2.3.19	PE1 / IRQ — Port E Input Pin 1	59
2.3.20	PE0 / XIRQ — Port E Input Pin 0	59

2.3.21	PH7 / KWH7 — Port H I/O Pin 7	59
2.3.22	PH6 / KWH6 — Port H I/O Pin 6	60
2.3.23	PH5 / KWH5 — Port H I/O Pin 5	60
2.3.24	PH4 / KWH4 — Port H I/O Pin 2	60
2.3.25	PH3 / KWH3 — Port H I/O Pin 3	60
2.3.26	PH2 / KWH2 — Port H I/O Pin 2	60
2.3.27	PH1 / KWH1 — Port H I/O Pin 1	60
2.3.28	PH0 / KWH0 — Port H I/O Pin 0	60
2.3.29	PJ7 / KWJ7 / SCL / TXCAN0 — PORT J I/O Pin 7	60
2.3.30	PJ6 / KWJ6 / SDA / RXCAN0 — PORT J I/O Pin 6	61
2.3.31	PJ[1:0] / KWJ[1:0] — Port J I/O Pins [1:0]	61
2.3.32	PK7 / ECS / ROMCTL — Port K I/O Pin 7	61
2.3.33	PK[5:0] / XADDR[19:14] — Port K I/O Pins [5:0]	61
2.3.34	PM7 — Port M I/O Pin 7	61
2.3.35	PM6 — Port M I/O Pin 6	61
2.3.36	PM5 / TXCAN0 / SCK0 — Port M I/O Pin 5	61
2.3.37	PM4 / RXCAN0 / MOSI0 — Port M I/O Pin 4	61
2.3.38	PM3 / TXCAN0 / SS0 — Port M I/O Pin 3	62
2.3.39	PM2 / RXCAN0 / MISO0 — Port M I/O Pin 2	62
2.3.40	PM1 / TXCAN0 / TXB — Port M I/O Pin 1	62
2.3.41	PM0 / RXCAN0 / RXB — Port M I/O Pin 0	62
2.3.42	PP7 / KWP7 / PWM7 — Port P I/O Pin 7	62
2.3.43	PP6 / KWP6 / PWM6 — Port P I/O Pin 6	62
2.3.44	PP5 / KWP5 / PWM5 — Port P I/O Pin 5	62
2.3.45	PP4 / KWP4 / PWM4 — Port P I/O Pin 4	62
2.3.46	PP3 / KWP3 / PWM3 — Port P I/O Pin 3	63
2.3.47	PP2 / KWP2 / PWM2 — Port P I/O Pin 2	63
2.3.48	PP1 / KWP1 / PWM1 — Port P I/O Pin 1	63
2.3.49	PP0 / KWP0 / PWM0 — Port P I/O Pin 0	63
2.3.50	PS7 / SS0 — Port S I/O Pin 7	63
2.3.51	PS6 / SCK0 — Port S I/O Pin 6	63
2.3.52	PS5 / MOSI0 — Port S I/O Pin 5	63
2.3.53	PS4 / MISO0 — Port S I/O Pin 4	63
2.3.54	PS3 / TXD1 — Port S I/O Pin 3	63
2.3.55	PS2 / RXD1 — Port S I/O Pin 2	64
2.3.56	PS1 / TXD0 — Port S I/O Pin 1	64

2.3.57	PS0 / RXD0 — Port S I/O Pin 0	64
2.3.58	PT[7:0] / IOC[7:0] — Port T I/O Pins [7:0]	64
2.4	Power Supply Pins	64
2.4.1	VDDX, VSSX — Power & Ground Pins for I/O Drivers	65
2.4.2	VDDR, VSSR — Power & Ground Pins for I/O Drivers & for Internal Voltage Regulator	65
2.4.3	VDD1, VDD2, VSS1, VSS2 — Internal Logic Power Supply Pins	65
2.4.4	VDDA, VSSA — Power Supply Pins for ATD0/ATD1 and VREG	65
2.4.5	VRH, VRL — ATD Reference Voltage Input Pins	66
2.4.6	VDDPLL, VSSPLL — Power Supply Pins for PLL	66
2.4.7	VREGEN — On Chip Voltage Regulator Enable	66

Section 3 System Clock Description

3.1	Overview	67
-----	--------------------	----

Section 4 Modes of Operation

4.1	Overview	69
4.2	Chip Configuration Summary	69
4.3	Security	70
4.3.1	Securing the Microcontroller	70
4.3.2	Operation of the Secured Microcontroller	70
4.3.3	Unsecuring the Microcontroller	71
4.4	Low Power Modes	71
4.4.1	Stop	71
4.4.2	Pseudo Stop	71
4.4.3	Wait	71
4.4.4	Run	72

Section 5 Resets and Interrupts

5.1	Overview	73
5.2	Vectors	73
5.2.1	Vector Table	73
5.3	Effects of Reset	74
5.3.1	I/O pins	74
5.3.2	Memory	75

Section 6 HCS12 Core Block Description

6.1	CPU12 Block Description	77
6.1.1	Device-specific information	77
6.2	HCS12 Module Mapping Control (MMC) Block Description	77
6.2.1	Device-specific information	77
6.3	HCS12 Multiplexed External Bus Interface (MEBI) Block Description	77
6.3.1	Device-specific information	77
6.4	HCS12 Interrupt (INT) Block Description	78
6.5	HCS12 Background Debug (BDM) Block Description	78
6.5.1	Device-specific information	78
6.6	HCS12 Breakpoint (BKP) Block Description	78

Section 7 Clock and Reset Generator (CRG) Block Description

7.1	Device-specific information	78
-----	---------------------------------------	----

Section 8 Oscillator (OSC) Block Description

8.1	Device-specific information	78
-----	---------------------------------------	----

Section 9 Enhanced Capture Timer (ECT) Block Description

Section 10 Analog to Digital Converter (ATD) Block Description

Section 11 Inter-I^C Bus (I^C) Block Description

Section 12 Serial Communications Interface (SCI) Block Description

Section 13 Serial Peripheral Interface (SPI) Block Description

Section 14 J1850 (BDLC) Block Description

Section 15 Pulse Width Modulator (PWM) Block Description

Section 16 Flash EEPROM 64K Block Description

Section 17 EEPROM 1K Block Description

Section 18 RAM Block Description

Section 19 MSCAN Block Description

Section 20 Port Integration Module (PIM) Block Description

Section 21 Voltage Regulator (VREG) Block Description

Section 22 Printed Circuit Board Layout Proposals

Appendix A Electrical Characteristics

A.1	General	87
A.1.1	Parameter Classification	87
A.1.2	Power Supply	87
A.1.3	Pins	88
A.1.4	Current Injection	88
A.1.5	Absolute Maximum Ratings	89
A.1.6	ESD Protection and Latch-up Immunity	90
A.1.7	Operating Conditions	90
A.1.8	Power Dissipation and Thermal Characteristics	91
A.1.9	I/O Characteristics	93
A.1.10	Supply Currents	94
A.2	ATD Characteristics	97
A.2.1	ATD Operating Characteristics	97
A.2.2	Factors influencing accuracy	97
A.2.3	ATD accuracy	99
A.3	NVM, Flash and EEPROM	101
A.3.1	NVM timing	101
A.3.2	NVM Reliability	103
A.4	Voltage Regulator	105
A.5	Reset, Oscillator and PLL	107
A.5.1	Startup	107
A.5.2	Oscillator	108
A.5.3	Phase Locked Loop	109
A.6	MSCAN	113
A.7	SPI	115
A.7.1	Master Mode	115
A.7.2	Slave Mode	117
A.8	External Bus Timing	119
A.8.1	General Muxed Bus Timing	119

Appendix B Package Information

B.1	General	123
B.2	112-pin LQFP package	124
B.3	80-pin QFP package	125

List of Figures

Figure 0-1	Order Partnumber Example.	15
Figure 1-1	MC9S12DJ64 Block Diagram	23
Figure 1-2	MC9S12DJ64 Memory Map out of Reset	27
Figure 1-3	MC9S12D32 Memory Map out of Reset	29
Figure 2-1	Pin Assignments in 112-pin LQFP for MC9S12DJ64	52
Figure 2-2	Pin Assignments in 80-pin QFP for MC9S12DJ64 and MC9S12D32	53
Figure 2-3	PLL Loop Filter Connections	56
Figure 2-4	Colpitts Oscillator Connections (PE7=1)	58
Figure 2-5	Pierce Oscillator Connections (PE7=0)	58
Figure 2-6	External Clock Connections (PE7=0)	58
Figure 3-1	Clock Connections.	67
Figure 22-1	Recommended PCB Layout 112LQFP Colpitts Oscillator.	82
Figure 22-2	Recommended PCB Layout for 80QFP Colpitts Oscillator	83
Figure 22-3	Recommended PCB Layout for 112LQFP Pierce Oscillator	84
Figure 22-4	Recommended PCB Layout for 80QFP Pierce Oscillator	85
Figure A-1	ATD Accuracy Definitions	100
Figure A-2	Basic PLL functional diagram	109
Figure A-3	Jitter Definitions	111
Figure A-4	Maximum bus clock jitter approximation	111
Figure A-5	SPI Master Timing (CPHA = 0)	115
Figure A-6	SPI Master Timing (CPHA =1)	116
Figure A-7	SPI Slave Timing (CPHA = 0)	117
Figure A-8	SPI Slave Timing (CPHA =1)	117
Figure A-9	General External Bus Timing.	120
Figure B-1	112-pin LQFP mechanical dimensions (case no. 987)	124
Figure B-2	80-pin QFP Mechanical Dimensions (case no. 841B)	125

List of Tables

Table 0-1	Derivative Differences	15
Table 0-2	Document References	17
Table 1-1	Device Memory Map for MC9S12DJ64	25
Table 1-2	Device Memory Map for MC9S12D32	28
\$0000 - \$000F	MEBI map 1 of 3 (HCS12 Multiplexed External Bus Interface)	30
\$0010 - \$0014	MMC map 1 of 4 (HCS12 Module Mapping Control)	30
\$0015 - \$0016	INT map 1 of 2 (HCS12 Interrupt)	31
\$0017 - \$0019	Reserved	31
\$001A - \$001B	Device ID Register (Table 1-4)	31
\$001C - \$001D	MMC map 3 of 4 (HCS12 Module Mapping Control, Table 1-5)	31
\$001E - \$001E	MEBI map 2 of 3 (HCS12 Multiplexed External Bus Interface)	31
\$001F - \$001F	INT map 2 of 2 (HCS12 Interrupt)	32
\$0020 - \$0027	Reserved	32
\$0028 - \$002F	BKP (HCS12 Breakpoint)	32
\$0030 - \$0031	MMC map 4 of 4 (HCS12 Module Mapping Control)	32
\$0032 - \$0033	MEBI map 3 of 3 (HCS12 Multiplexed External Bus Interface)	32
\$0034 - \$003F	CRG (Clock and Reset Generator)	33
\$0040 - \$007F	ECT (Enhanced Capture Timer 16 Bit 8 Channels)	33
\$0080 - \$009F	ATD0 (Analog to Digital Converter 10 Bit 8 Channel)	36
\$00A0 - \$00C7	PWM (Pulse Width Modulator 8 Bit 8 Channel)	37
\$00C8 - \$00CF	SCI0 (Asynchronous Serial Interface)	39
\$00D0 - \$00D7	SCI1 (Asynchronous Serial Interface)	39
\$00D8 - \$00DF	SPI0 (Serial Peripheral Interface)	40
\$00E0 - \$00E7	IIC (Inter IC Bus)	40
\$00E8 - \$00EF	BDLC (Bytelevel Data Link Controller J1850)	41
\$00F0 - \$00FF	Reserved	41
\$0100 - \$010F	Flash Control Register (fts64k)	41
\$0110 - \$011B	EEPROM Control Register (eets1k)	42
\$011C - \$011F	Reserved for RAM Control Register	42
\$0120 - \$013F	ATD1 (Analog to Digital Converter 10 Bit 8 Channel)	43
\$0140 - \$017F	CAN0 (Freescale Scalable CAN - FSCAN)	44
Table 1-3	Detailed FSCAN Foreground Receive and Transmit Buffer Layout	45
\$0180 - \$023F	Reserved	46

\$0240 - \$027F	PIM (Port Integration Module)	46
\$0280 - \$03FF	Reserved	48
Table 1-4	Assigned Part ID Numbers	49
Table 1-5	Memory size registers	49
Table 2-1	Signal Properties	54
Table 2-2	MC9S12DJ64 Power and Ground Connection Summary	64
Table 4-1	Mode Selection	69
Table 4-2	Clock Selection Based on PE7	69
Table 4-3	Voltage Regulator VREGEN	70
Table 5-1	Interrupt Vector Locations	73
Table 22-1	Suggested External Component Values	81
Table A-1	Absolute Maximum Ratings	89
Table A-2	ESD and Latch-up Test Conditions	90
Table A-3	ESD and Latch-Up Protection Characteristics	90
Table A-4	Operating Conditions	91
Table A-5	Thermal Package Characteristics	93
Table A-6	5V I/O Characteristics	94
Table A-7	Supply Current Characteristics	95
Table A-8	ATD Operating Characteristics	97
Table A-9	ATD Electrical Characteristics	98
Table A-10	ATD Conversion Performance	99
Table A-11	NVM Timing Characteristics	102
Table A-12	NVM Reliability Characteristics	103
Table A-13	Voltage Regulator Recommended Load Capacitances	105
Table A-14	Startup Characteristics	107
Table A-15	Oscillator Characteristics	108
Table A-16	PLL Characteristics	112
Table A-17	MSCAN Wake-up Pulse Characteristics	113
Table A-18	SPI Master Mode Timing Characteristics	116
Table A-19	SPI Slave Mode Timing Characteristics	118
Table A-20	Expanded Bus Timing Characteristics	121

Derivative Differences and Document References

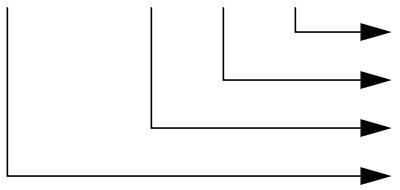

Derivative Differences

Table 0-1 shows the availability of peripheral modules on the various derivatives. For details about the compatibility within the MC9S12D-Family refer also to engineering bulletin EB386.

Table 0-1 Derivative Differences

Generic device	MC9S12DJ64	MC9S12D64	MC9S12A64	MC9S12D32	MC9S12A32
CAN0	1	1	0	1	0
J1850/BDLC	1	0	0	0	0
Packages	112LQFP, 80QFP	112LQFP, 80QFP	112LQFP, 80QFP	80QFP	80QFP
Mask Set	L86D	L86D	L86D	L86D	L86D
Temp Options	M, V, C	M, V, C	C	M, V, C	C
Package Codes	PV, FU	PV, FU	PV, FU	FU	FU
Note	An errata exists contact Sales office				

MC9S12 DJ64 C FU

Temperature Options

C = -40 °C to 85 °C
V = -40 °C to 105 °C
M = -40 °C to 125 °C

Package Options

FU = 80QFP
PV = 112LQFP

Figure 0-1 Order Partnumber Example

The following items should be considered when using a derivative.

- **Registers**
 - Do not write or read CAN0 registers (after reset: address range \$0140 - \$017F), if using a derivative without CAN0 (see **Table 0-1**).
 - Do not write or read BDLC registers (after reset: address range \$00E8 - \$00EF), if using a derivative without BDLC (see **Table 0-1**).
- **Interrupts**
 - Fill the four CAN0 interrupt vectors (\$FFB0 - \$FFB7) according to your coding policies for unused interrupts, if using a derivative without CAN0 (see **Table 0-1**).
 - Fill the BDLC interrupt vector (\$FFC2, \$FFC3) according to your coding policies for unused interrupts, if using a derivative without BDLC (see **Table 0-1**).

- **Ports**

- The CAN0 pin functionality (TXCAN0, RXCAN0) is not available on port PJ7, PJ6, PM5, PM4, PM3, PM2, PM1 and PM0, if using a derivative without CAN0 (see **Table 0-1**).
- The BDLC pin functionality (TXB, RXB) is not available on port PM1 and PM0, if using a derivative without BDLC (see **Table 0-1**).
- Do not write MODRR1 and MODRR0 Bit of Module Routing Register (PIM_9DJ64 Block User Guide), if using a derivative without CAN0 (see **Table 0-1**).

- **Pins not available in 80 pin QFP package**

- **Port H**

In order to avoid floating nodes the ports should be either configured as outputs by setting the data direction register (DDRH at Base+\$0262) to \$FF, or enabling the pull resistors by writing a \$FF to the pull enable register (PERH at Base+\$0264).

- **Port J[1:0]**

Port J pull-up resistors are enabled out of reset on all four pins (7:6 and 1:0). Therefore care must be taken not to disable the pull enables on PJ[1:0] by clearing the bits PERJ1 and PERJ0 at Base+\$026C.

- **Port K**

Port K pull-up resistors are enabled out of reset, i.e. Bit 7 = PUKE = 1 in the register PUCR at Base+\$000C. Therefor care must be taken not to clear this bit.

- **Port M[7:6]**

PM7:6 must be configured as outputs or their pull resistors must be enabled to avoid floating inputs.

- **Port P6**

PP6 must be configured as output or its pull resistor must be enabled to avoid a floating input.

- **Port S[7:4]**

PS7:4 must be configured as outputs or their pull resistors must be enabled to avoid floating inputs.

- **PAD[15:8] (ATD1 channels)**

Out of reset the ATD1 is disabled preventing current flows in the pins. Do not modify the ATD1 registers!

Document References

The Device User Guide provides information about the MC9S12DJ64 device made up of standard HCS12 blocks and the HCS12 processor core.

This document is part of the customer documentation. A complete set of device manuals also includes all the individual Block Guides of the implemented modules. In a effort to reduce redundancy all module specific information is located only in the respective Block Guide. If applicable, special implementation details of the module are given in the block description sections of this document.

See **Table 0-2** for names and versions of the referenced documents throughout the Device User Guide.

Table 0-2 Document References

User Guide	Version	Document Order Number
HCS12 CPU Reference Manual	V02	S12CPUV2/D
HCS12 Module Mapping Control (MMC) Block Guide	V04	S12MMCV4/D
HCS12 Multiplexed External Bus Interface (MEBI) Block Guide	V03	S12MEBIV3/D
HCS12 Interrupt (INT) Block Guide	V01	S12INTV1/D
HCS12 Background Debug (BDM) Block Guide	V04	S12BDMV4/D
HCS12 Breakpoint (BKP) Block Guide	V01	S12BKPV1/D
Clock and Reset Generator (CRG) Block User Guide	V04	S12CRGV4/D
Oscillator (OSC) Block User Guide	V02	S12OSCV2/D
Enhanced Capture Timer 16 Bit 8 Channel (ECT_16B8C) Block User Guide	V01	S12ECT16B8CV1/D
Analog to Digital Converter 10 Bit 8 Channel (ATD_10B8C) Block User Guide	V02	S12ATD10B8CV2/D
Inter IC Bus (IIC) Block User Guide	V02	S12IICV2/D
Asynchronous Serial Interface (SCI) Block User Guide	V02	S12SCIV2/D
Serial Peripheral Interface (SPI) Block User Guide	V02	S12SPIV2/D
Pulse Width Modulator 8 Bit 8 Channel (PWM_8B8C) Block User Guide	V01	S12PWM8B8CV1/D
64K Byte Flash (FTS64K) Block User Guide	V01	S12FTS64KV1/D
1K Byte EEPROM (EETS1K) Block User Guide	V01	S12EETS1KV1/D
Byte Level Data Link Controller -J1850 (BDLC) Block User Guide	V01	S12BDLCV1/D
Freescale Scalable CAN (MSCAN) Block User Guide	V02	S12MSCANV2/D
Voltage Regulator (VREG) Block User Guide	V01	S12VREGV1/D
Port Integration Module (PIM_9DJ64) Block User Guide	V01	S12PIM9DJ64V1/D

Section 1 Introduction

1.1 Overview

The MC9S12DJ64 microcontroller unit (MCU) is a 16-bit device composed of standard on-chip peripherals including a 16-bit central processing unit (HCS12 CPU), 64K bytes of Flash EEPROM, 4K bytes of RAM, 1K bytes of EEPROM, two asynchronous serial communications interfaces (SCI), one serial peripheral interfaces (SPI), an 8-channel IC/OC enhanced capture timer, two 8-channel, 10-bit analog-to-digital converters (ADC), an 8-channel pulse-width modulator (PWM), a digital Byte Data Link Controller (BDLC), 29 discrete digital I/O channels (Port A, Port B, Port K and Port E), 20 discrete digital I/O lines with interrupt and wakeup capability, a CAN 2.0 A, B software compatible modules (MSCAN12), and an Inter-IC Bus. The MC9S12DJ64 has full 16-bit data paths throughout. However, the external bus can operate in an 8-bit narrow mode so single 8-bit wide memory can be interfaced for lower cost systems. The inclusion of a PLL circuit allows power consumption and performance to be adjusted to suit operational requirements.

1.2 Features

- HCS12 Core
 - 16-bit HCS12 CPU
 - i. Upward compatible with M68HC11 instruction set
 - ii. Interrupt stacking and programmer's model identical to M68HC11
 - iii. Instruction queue
 - iv. Enhanced indexed addressing
 - MEBI (Multiplexed External Bus Interface)
 - MMC (Module Mapping Control)
 - INT (Interrupt control)
 - BKP (Breakpoints)
 - BDM (Background Debug Mode)
- CRG (low current Colpitts or Pierce oscillator, PLL, reset, clocks, COP watchdog, real time interrupt, clock monitor)
- 8-bit and 4-bit ports with interrupt functionality
 - Digital filtering
 - Programmable rising or falling edge trigger
- Memory
 - 64K Flash EEPROM
 - 1K byte EEPROM

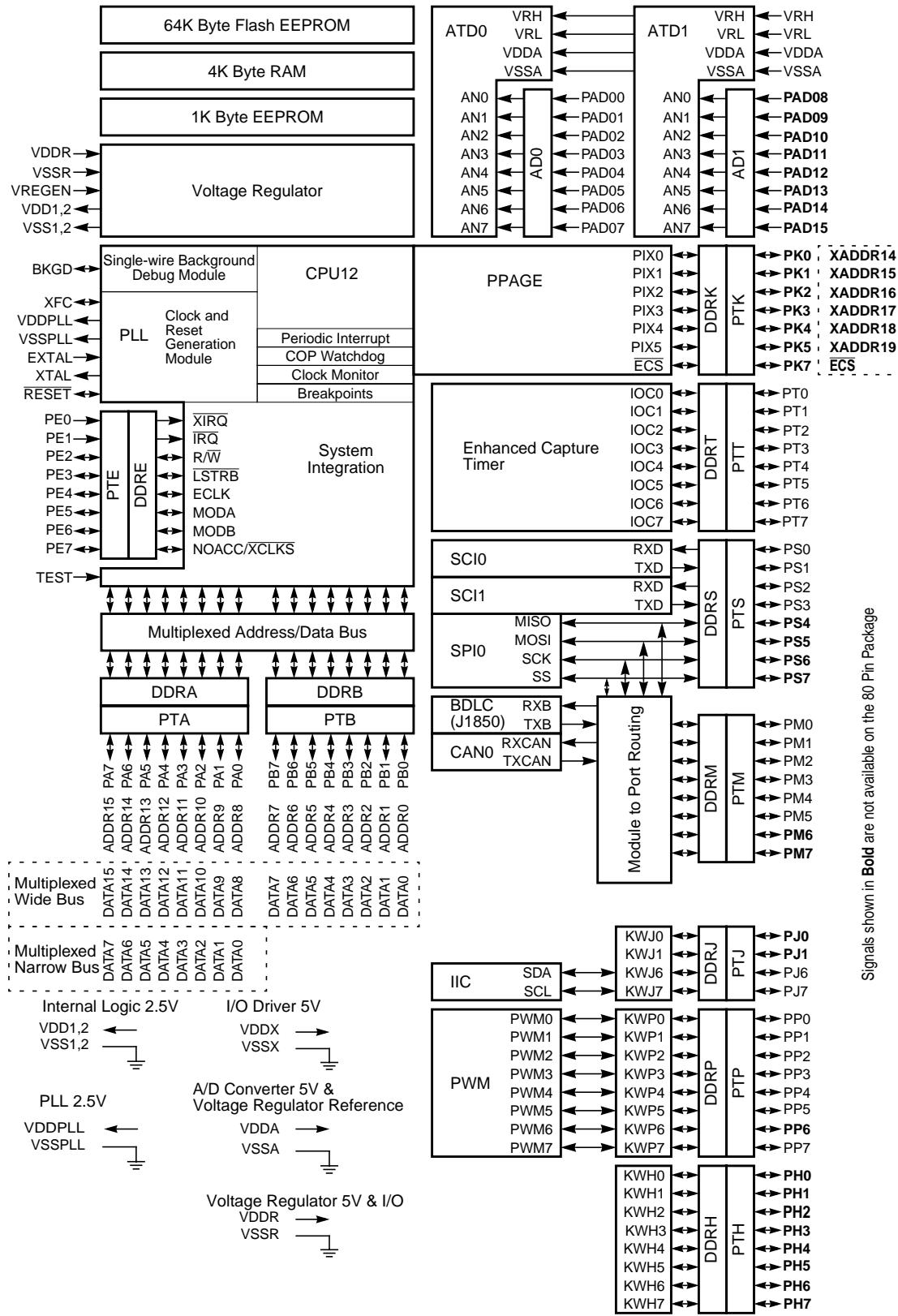
- 4K byte RAM
- Two 8-channel Analog-to-Digital Converters
 - 10-bit resolution
 - External conversion trigger capability
- 1M bit per second, CAN 2.0 A, B software compatible module
 - Five receive and three transmit buffers
 - Flexible identifier filter programmable as 2 x 32 bit, 4 x 16 bit or 8 x 8 bit
 - Four separate interrupt channels for Rx, Tx, error and wake-up
 - Low-pass filter wake-up function
 - Loop-back for self test operation
- Enhanced Capture Timer
 - 16-bit main counter with 7-bit prescaler
 - 8 programmable input capture or output compare channels
 - Four 8-bit or two 16-bit pulse accumulators
- 8 PWM channels
 - Programmable period and duty cycle
 - 8-bit 8-channel or 16-bit 4-channel
 - Separate control for each pulse width and duty cycle
 - Center-aligned or left-aligned outputs
 - Programmable clock select logic with a wide range of frequencies
 - Fast emergency shutdown input
 - Usable as interrupt inputs
- Serial interfaces
 - Two asynchronous Serial Communications Interfaces (SCI)
 - Synchronous Serial Peripheral Interface (SPI)
- Byte Data Link Controller (BDLC)
 - SAE J1850 Class B Data Communications Network Interface Compatible and ISO Compatible for Low-Speed (<125 Kbps) Serial Data Communications in Automotive Applications
- Inter-IC Bus (IIC)
 - Compatible with I2C Bus standard
 - Multi-master operation
 - Software programmable for one of 256 different serial clock frequencies
- 112-Pin LQFP or 80 QFP package

- I/O lines with 5V input and drive capability
- 5V A/D converter inputs
- Operation at 50MHz equivalent to 25MHz Bus Speed
- Development support
- Single-wire background debug™ mode (BDM)
- On-chip hardware breakpoints

1.3 Modes of Operation

User modes

- Normal and Emulation Operating Modes
 - Normal Single-Chip Mode
 - Normal Expanded Wide Mode
 - Normal Expanded Narrow Mode
 - Emulation Expanded Wide Mode
 - Emulation Expanded Narrow Mode
- Special Operating Modes
 - Special Single-Chip Mode with active Background Debug Mode
 - Special Test Mode (Freescale **use only**)
 - Special Peripheral Mode (Freescale **use only**)


Low power modes

- Stop Mode
- Pseudo Stop Mode
- Wait Mode

1.4 Block Diagram

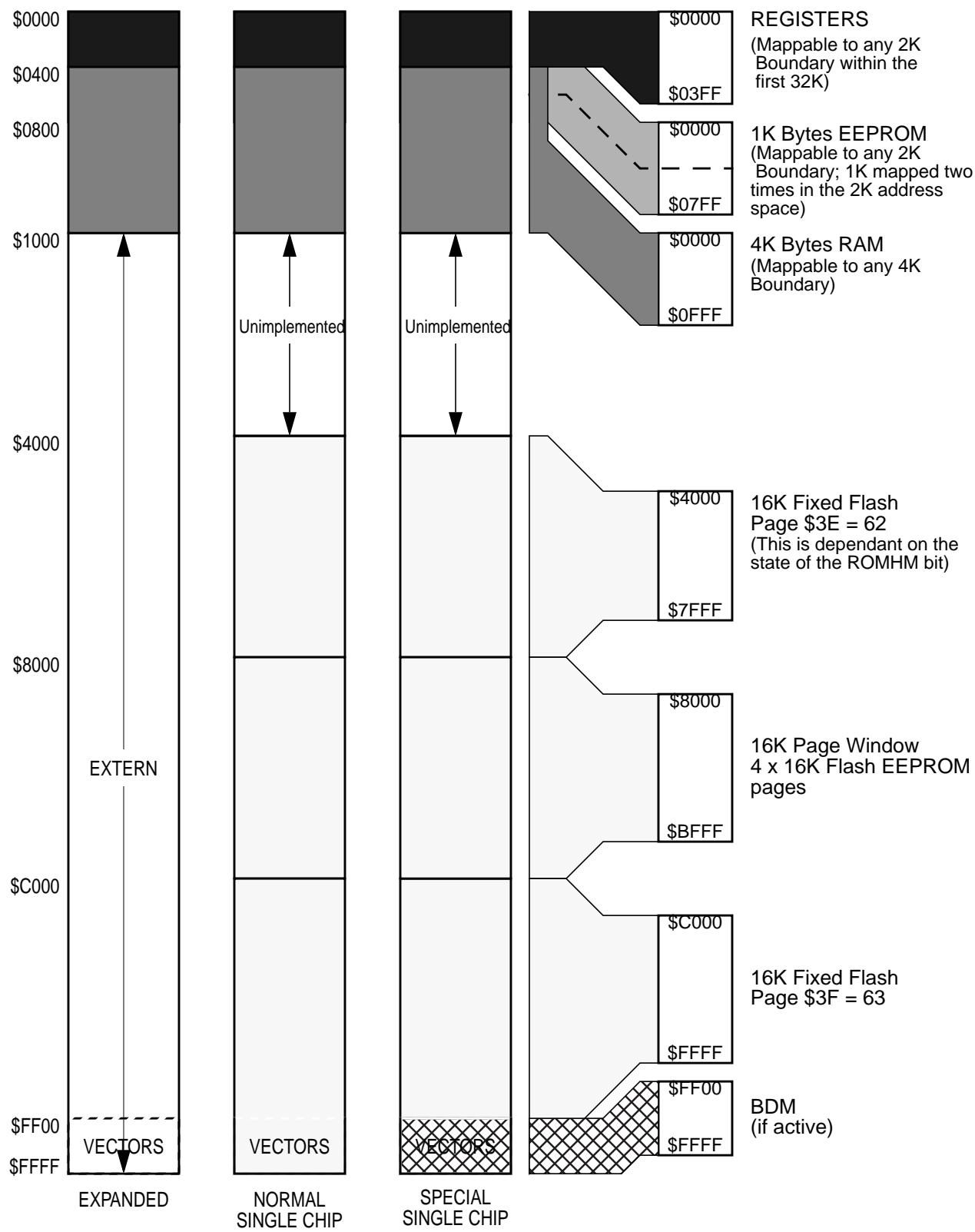
Figure 1-1 shows a block diagram of the MC9S12DJ64 device.

Figure 1-1 MC9S12DJ64 Block Diagram

Signals shown in **Bold** are not available on the 80 Pin Package

1.5 Device Memory Map

Table 1-1 and **Figure 1-2** show the device memory map of the MC9S12DJ64 after reset. The 1K EEPROM is mapped twice in a 2K address space. Note that after reset the bottom 1k of the EEPROM (\$0000 - \$03FF) are hidden by the register space, and the 1K \$0400 - \$07FF is hidden by the RAM.


Table 1-1 Device Memory Map for MC9S12DJ64

Address	Module	Size (Bytes)
\$0000 - \$000F	HCS12 Multiplexed External Bus Interface	16
\$0010 - \$0014	HCS12 Module Mapping Control	5
\$0015 - \$0016	HCS12 Interrupt	2
\$0017 - \$0019	Reserved	3
\$001A - \$001B	Device ID register (PARTID)	2
\$001C - \$001D	HCS12 Module Mapping Control	2
\$001E	HCS12 Multiplexed External Bus Interface	1
\$001F	HCS12 Interrupt	1
\$0020 - \$0027	Reserved	8
\$0028 - \$002F	HCS12 Breakpoint Module	8
\$0030 - \$0031	HCS12 Module Mapping Control	2
\$0032 - \$0033	HCS12 Multiplexed External Bus Interface	2
\$0034 - \$003F	Clock and Reset Generator (PLL, RTI, COP)	12
\$0040 - \$007F	Enhanced Capture Timer 16-bit 8 channels	64
\$0080 - \$009F	Analog to Digital Converter 10-bit 8 channels (ATD0)	32
\$00A0 - \$00C7	Pulse Width Modulator 8-bit 8 channels (PWM)	40
\$00C8 - \$00CF	Serial Communications Interface 0 (SCI0)	8
\$00D0 - \$00D7	Serial Communications Interface 0 (SCI1)	8
\$00D8 - \$00DF	Serial Peripheral Interface (SPI0)	8
\$00E0 - \$00E7	Inter IC Bus	8
\$00E8 - \$00EF	Byte Data Link Controller (BDLC)	8
\$00F0 - \$00FF	Reserved	16
\$0100- \$010F	Flash Control Register	16
\$0110 - \$011B	EEPROM Control Register	12
\$011C - \$011F	Reserved	4
\$0120 - \$013F	Analog to Digital Converter 10-bit 8 channels (ATD1)	32
\$0140 - \$017F	Freescale Scalable Can (CAN0)	64
\$0180 - \$023F	Reserved	192
\$0240 - \$027F	Port Integration Module (PIM)	64
\$0280 - \$03FF	Reserved	384
\$0000 - \$07FF	EEPROM array 1k Array mapped twice in the address space	2048
\$0000 - \$0FFF	RAM array	4096
\$4000 - \$7FFF	Fixed Flash EEPROM array incl. 0.5K, 1K, 2K or 4K Protected Sector at start	16384
\$8000 - \$BFFF	Flash EEPROM Page Window	16384

Table 1-1 Device Memory Map for MC9S12DJ64

Address	Module	Size (Bytes)
\$C000 - \$FFFF	Fixed Flash EEPROM array incl. 0.5K, 1K, 2K or 4K Protected Sector at end and 256 bytes of Vector Space at \$FF80 - \$FFFF	16384

Figure 1-2 MC9S12DJ64 Memory Map out of Reset

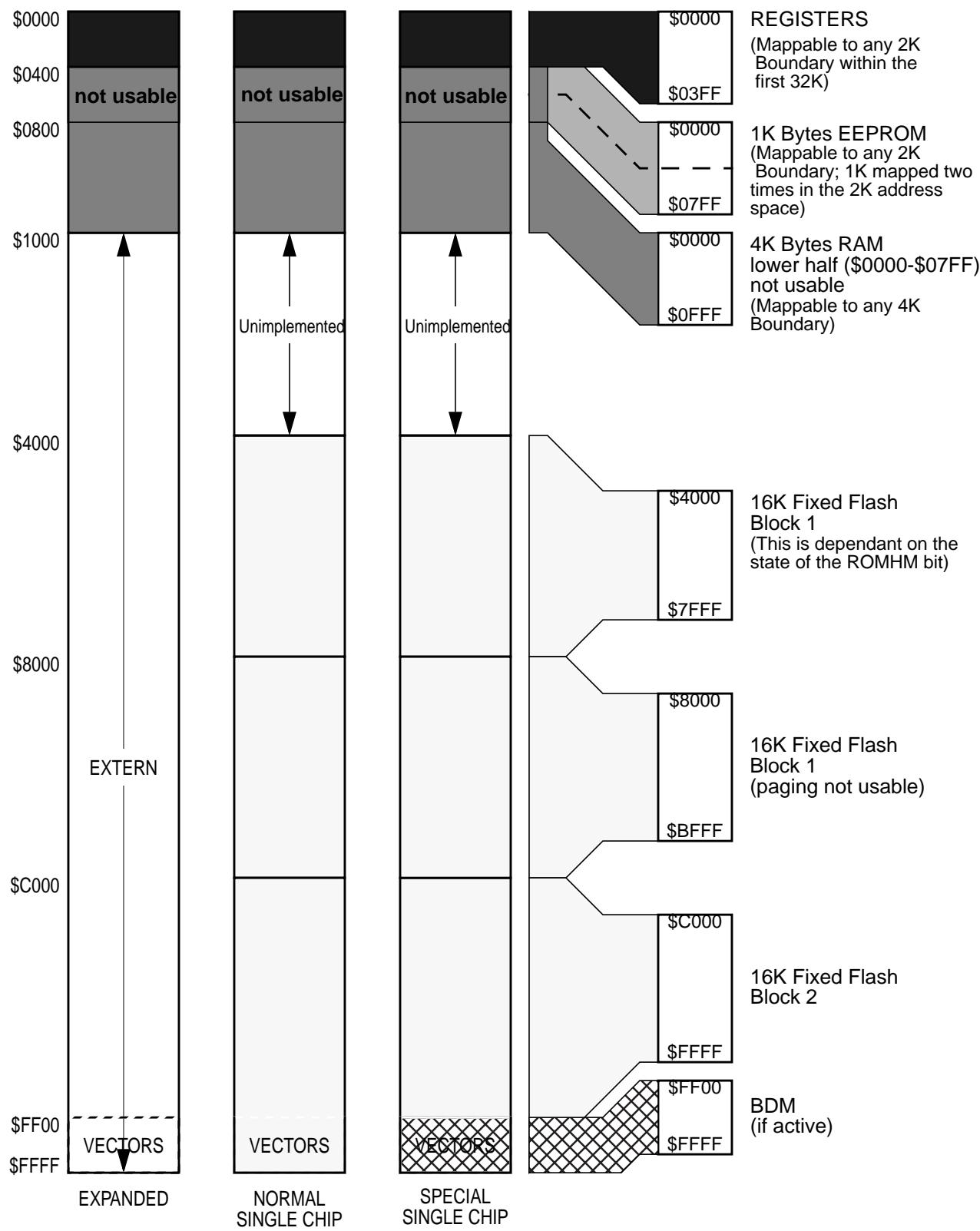


Table 1-2 Device Memory Map for MC9S12D32

Address	Module	Size (Bytes)
\$0000 - \$000F	HCS12 Multiplexed External Bus Interface	16
\$0010 - \$0014	HCS12 Module Mapping Control	5
\$0015 - \$0016	HCS12 Interrupt	2
\$0017 - \$0019	Reserved	3
\$001A - \$001B	Device ID register (PARTID)	2
\$001C - \$001D	HCS12 Module Mapping Control	2
\$001E	HCS12 Multiplexed External Bus Interface	1
\$001F	HCS12 Interrupt	1
\$0020 - \$0027	Reserved	8
\$0028 - \$002F	HCS12 Breakpoint Module	8
\$0030 - \$0031	HCS12 Module Mapping Control	2
\$0032 - \$0033	HCS12 Multiplexed External Bus Interface	2
\$0034 - \$003F	Clock and Reset Generator (PLL, RTI, COP)	12
\$0040 - \$007F	Enhanced Capture Timer 16-bit 8 channels	64
\$0080 - \$009F	Analog to Digital Converter 10-bit 8 channels (ATD0)	32
\$00A0 - \$00C7	Pulse Width Modulator 8-bit 8 channels (PWM)	40
\$00C8 - \$00CF	Serial Communications Interface 0 (SCI0)	8
\$00D0 - \$00D7	Serial Communications Interface 0 (SCI1)	8
\$00D8 - \$00DF	Serial Peripheral Interface (SPI0)	8
\$00E0 - \$00E7	Inter IC Bus	8
\$00E8 - \$00EF	Byte Data Link Controller (BDLC)	8
\$00F0 - \$00FF	Reserved	16
\$0100- \$010F	Flash Control Register	16
\$0110 - \$011B	EEPROM Control Register	12
\$011C - \$011F	Reserved	4
\$0120 - \$013F	Analog to Digital Converter 10-bit 8 channels (ATD1)	32
\$0140 - \$017F	Freescale Scalable Can (CAN0)	
\$0180 - \$023F	Reserved	192
\$0240 - \$027F	Port Integration Module (PIM)	64
\$0280 - \$03FF	Reserved	384
\$0000 - \$07FF	EEPROM array 1k Array mapped twice in the address space	2048
\$0000 - \$0FFF	RAM array, lower half (\$0000-\$07FF not usable)	4096
\$4000 - \$7FFF	16k Fixed Flash EEPROM array (same as array from \$8000 - \$BFFF when ROMHM=0)	16384
\$8000 - \$FFFF	32K Fixed Flash EEPROM array	32768

64

Figure 1-3 MC9S12D32 Memory Map out of Reset

1.5.1 Detailed Register Map

\$0000 - \$000F

MEBI map 1 of 3 (HCS12 Multiplexed External Bus Interface)

Address	Name	Read:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0000	PORTA	Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$0001	PORTB	Read:	Bit 7	6	5	4	3	2	1	Bit 0
\$0002	DDRA	Read:	Bit 7	6	5	4	3	2	1	Bit 0
\$0003	DDRB	Read:	Bit 7	6	5	4	3	2	1	Bit 0
\$0004	Reserved	Read:	0	0	0	0	0	0	0	0
\$0005	Reserved	Write:	0	0	0	0	0	0	0	0
\$0006	Reserved	Read:	0	0	0	0	0	0	0	0
\$0007	Reserved	Write:	0	0	0	0	0	0	0	0
\$0008	PORTE	Read:	Bit 7	6	5	4	3	2	Bit 1	Bit 0
\$0009	DDRE	Read:	Bit 7	6	5	4	3	Bit 2	0	0
\$000A	PEAR	Read:	NOACCE	0	PIPOE	NECLK	LSTRE	RDWE	0	0
\$000B	MODE	Write:	MODC	MODB	MODA	0	IVIS	0	EMK	EME
\$000C	PUCR	Read:	PUPKE	0	0	PUPEE	0	0	PUPBE	PUPAE
\$000D	RDRIV	Write:	RDPK	0	0	RDPE	0	0	RDPB	RDPA
\$000E	EBICTL	Read:	0	0	0	0	0	0	0	ESTR
\$000F	Reserved	Write:	0	0	0	0	0	0	0	0

\$0010 - \$0014

MMC map 1 of 4 (HCS12 Module Mapping Control)

Address	Name	Read:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0010	INITRM	Write:	RAM15	RAM14	RAM13	RAM12	RAM11	0	0	RAMHAL
\$0011	INITRG	Read:	0	REG14	REG13	REG12	REG11	0	0	0

\$0010 - \$0014**MMC map 1 of 4 (HCS12 Module Mapping Control)**

Address	Name	Read:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0012	INITEE	Write:	EE15	EE14	EE13	EE12	EE11	0	0	EEON
\$0013	MISC	Read:	0	0	0	0		EXSTR1	EXSTRO	ROMHM
\$0014	Reserved	Read:	0	0	0	0	0	0	0	0
		Write:								

\$0015 - \$0016**INT map 1 of 2 (HCS12 Interrupt)**

Address	Name	Read:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0015	ITCR	Read:	0	0	0			WRINT	ADR3	ADR2
\$0016	ITEST	Write:						ADR1	ADR0	
		Read:	INTE	INTC	INTA	INT8	INT6	INT4	INT2	INT0
		Write:								

\$0017 - \$0019**Reserved**

Address	Name	Read:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0017 - \$0019	Reserved	Write:	0	0	0	0	0	0	0	0
		Read:								

\$001A - \$001B**Device ID Register (Table 1-4)**

Address	Name	Read:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$001A	PARTIDH	Read:	ID15	ID14	ID13	ID12	ID11	ID10	ID9	ID8
\$001B	PARTIDL	Write:								
		Read:	ID7	ID6	ID5	ID4	ID3	ID2	ID1	ID0
		Write:								

\$001C - \$001D**MMC map 3 of 4 (HCS12 Module Mapping Control, Table 1-5)**

Address	Name	Read:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$001C	MEMSIZ0	Write:	reg_sw0	0	eep_sw1	eep_sw0	0	ram_sw2	ram_sw1	ram_sw0
\$001D	MEMSIZ1	Read:	rom_sw1	rom_sw0	0	0	0	0	pag_sw1	pag_sw0
		Write:								

\$001E - \$001E**MEBI map 2 of 3 (HCS12 Multiplexed External Bus Interface)**

Address	Name	Read:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$001E	INTCR	Write:	IRQE	IRQEN	0	0	0	0	0	0

\$001F - \$001F**INT map 2 of 2 (HCS12 Interrupt)**

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$001F	HPRIO	Read: Write:	PSEL7	PSEL6	PSEL5	PSEL4	PSEL3	PSEL2	PSEL1

\$0020 - \$0027**Reserved**

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0020 - \$0027	Reserved	Read: Write:	0	0	0	0	0	0	0

\$0028 - \$002F**BKP (HCS12 Breakpoint)**

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0028	BKPCT0	Read: Write:	BKEN	BKFULL	BKBDM	BKTAG	0	0	0
\$0029	BKPCT1	Read: Write:	BK0MBH	BK0MBL	BK1MBH	BK1MBL	BK0RWE	BK0RW	BK1RWE
\$002A	BKP0X	Read: Write:	0	0	BK0V5	BK0V4	BK0V3	BK0V2	BK0V1
\$002B	BKP0H	Read: Write:	Bit 15	14	13	12	11	10	9
\$002C	BKP0L	Read: Write:	Bit 7	6	5	4	3	2	1
\$002D	BKP1X	Read: Write:	0	0	BK1V5	BK1V4	BK1V3	BK1V2	BK1V1
\$002E	BKP1H	Read: Write:	Bit 15	14	13	12	11	10	9
\$002F	BKP1L	Read: Write:	Bit 7	6	5	4	3	2	1

\$0030 - \$0031**MMC map 4 of 4 (HCS12 Module Mapping Control)**

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0030	PPAGE	Read: Write:	0	0	PIX5	PIX4	PIX3	PIX2	PIX1
\$0031	Reserved	Read: Write:	0	0	0	0	0	0	0

\$0032 - \$0033**MEBI map 3 of 3 (HCS12 Multiplexed External Bus Interface)**

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0032	PORTK	Read: Write:	Bit 7	6	5	4	3	2	1
\$0033	DDRK	Read: Write:	Bit 7	6	5	4	3	2	1

\$0034 - \$003F**CRG (Clock and Reset Generator)**

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0034	SYNR	Read: 0	Write: 0	SYN5	SYN4	SYN3	SYN2	SYN1	SYN0
\$0035		Read: 0	Write: 0	0	0	REFDV3	REFDV2	REFDV1	REFDV0
\$0036	TEST ONLY	Read: 0	Write: 0	0	0	0	0	0	0
\$0037		Read: RTIF	Write: PORF	0	LOCKIF	LOCK	TRACK	SCMIF	SCM
\$0038	CRGINT	Read: RTIE	Write: 0	0	LOCKIE	0	0	SCMIE	0
\$0039	CLKSEL	Read: PLLSEL	Write: PSTP	SYSWAI	ROAWAI	PLLWAI	CWAI	RTIWAI	COPWAI
\$003A	PLLCTL	Read: CME	Write: PLLON	AUTO	ACQ	0	PRE	PCE	SCME
\$003B	RTICTL	Read: 0	Write: RTR6	RTR5	RTR4	RTR3	RTR2	RTR1	RTR0
\$003C	COPCTL	Read: WCOP	Write: RSBCK	0	0	0	CR2	CR1	CR0
\$003D	TEST ONLY	Read: 0	Write: 0	0	0	0	0	0	0
\$003E		Read: CTCTL	Write: 0	0	0	0	0	0	0
\$003F	ARMCOP	Read: 0	Write: Bit 7	0	0	0	0	0	0
		Read: Bit 7	Write: 6	5	4	3	2	1	Bit 0

\$0040 - \$007F**ECT (Enhanced Capture Timer 16 Bit 8 Channels)**

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0040	TIOS	Read: IOS7	Write: IOS6	IOS5	IOS4	IOS3	IOS2	IOS1	IOS0
\$0041		Read: 0	Write: 0	0	0	0	0	0	0
\$0042	OC7M	Read: FOC7	Write: FOC6	FOC5	FOC4	FOC3	FOC2	FOC1	FOC0
\$0043		Read: OC7M7	Write: OC7M6	OC7M5	OC7M4	OC7M3	OC7M2	OC7M1	OC7M0
\$0044	OC7D	Read: OC7D7	Write: OC7D6	OC7D5	OC7D4	OC7D3	OC7D2	OC7D1	OC7D0
\$0045		Read: Bit 15	Write: 14	13	12	11	10	9	Bit 8
\$0046	TCNT (hi)	Read: Bit 7	Write: 6	5	4	3	2	1	Bit 0
\$0047		Read: Bit 7	Write: 6	5	4	3	2	1	Bit 0
\$0048	TSCR1	Read: TEN	Write: TSWAI	TSFRZ	TFFCA	0	0	0	0
\$0049		Read: TOV7	Write: TOV6	TOV5	TOV4	TOV3	TOV2	TOV1	TOV0
\$0050	TCTL1	Read: OM7	Write: OL7	OM6	OL6	OM5	OL5	OM4	OL4
\$0051		Read: OM3	Write: OL3	OM2	OL2	OM1	OL1	OM0	OL0

\$0040 - \$007F

ECT (Enhanced Capture Timer 16 Bit 8 Channels)

Address	Name	Read: Write:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$004A	TCTL3	Read: Write:	EDG7B	EDG7A	EDG6B	EDG6A	EDG5B	EDG5A	EDG4B	EDG4A
\$004B	TCTL4	Read: Write:	EDG3B	EDG3A	EDG2B	EDG2A	EDG1B	EDG1A	EDG0B	EDG0A
\$004C	TIE	Read: Write:	C7I	C6I	C5I	C4I	C3I	C2I	C1I	C0I
\$004D	TSCR2	Read: Write:	TOI	0	0	0	TCRE	PR2	PR1	PR0
\$004E	TFLG1	Read: Write:	C7F	C6F	C5F	C4F	C3F	C2F	C1F	C0F
\$004F	TFLG2	Read: Write:	TOF	0	0	0	0	0	0	0
\$0050	TC0 (hi)	Read: Write:	Bit 15	14	13	12	11	10	9	Bit 8
\$0051	TC0 (lo)	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$0052	TC1 (hi)	Read: Write:	Bit 15	14	13	12	11	10	9	Bit 8
\$0053	TC1 (lo)	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$0054	TC2 (hi)	Read: Write:	Bit 15	14	13	12	11	10	9	Bit 8
\$0055	TC2 (lo)	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$0056	TC3 (hi)	Read: Write:	Bit 15	14	13	12	11	10	9	Bit 8
\$0057	TC3 (lo)	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$0058	TC4 (hi)	Read: Write:	Bit 15	14	13	12	11	10	9	Bit 8
\$0059	TC4 (lo)	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$005A	TC5 (hi)	Read: Write:	Bit 15	14	13	12	11	10	9	Bit 8
\$005B	TC5 (lo)	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$005C	TC6 (hi)	Read: Write:	Bit 15	14	13	12	11	10	9	Bit 8
\$005D	TC6 (lo)	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$005E	TC7 (hi)	Read: Write:	Bit 15	14	13	12	11	10	9	Bit 8
\$005F	TC7 (lo)	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0
\$0060	PACTL	Read: Write:	0	PAEN	PAMOD	PEDGE	CLK1	CLK0	PAOVI	PAI
\$0061	PAFLG	Read: Write:	0	0	0	0	0	0	PAOVF	PAIF
\$0062	PACN3 (hi)	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0

\$0040 - \$007F

ECT (Enhanced Capture Timer 16 Bit 8 Channels)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
\$0063	PACN2 (lo)	Read:	Bit 7	6	5	4	3	2	1	Bit 0
		Write:								
\$0064	PACN1 (hi)	Read:	Bit 7	6	5	4	3	2	1	Bit 0
		Write:								
\$0065	PACN0 (lo)	Read:	Bit 7	6	5	4	3	2	1	Bit 0
		Write:								
\$0066	MCCTL	Read:	MCZI	MODMC	RDMCL	0	0	MCEN	MCPR1	MCPR0
		Write:				ICLAT	FLMC			
\$0067	MCFLG	Read:	MCZF	0	0	0	POLF3	POLF2	POLF1	POLF0
		Write:								
\$0068	ICPAR	Read:	0	0	0	0	PA3EN	PA2EN	PA1EN	PA0EN
		Write:								
\$0069	DLYCT	Read:	0	0	0	0	0	0	DLY1	DLY0
		Write:								
\$006A	ICOVW	Read:	NOVW7	NOVW6	NOVW5	NOVW4	NOVW3	NOVW2	NOVW1	NOVW0
		Write:								
\$006B	ICSYS	Read:	SH37	SH26	SH15	SH04	TFMOD	PACMX	BUFEN	LATQ
		Write:								
\$006C	Reserved	Read:								
\$006D	TIMTST Test Only	Read:	0	0	0	0	0	0	TCBYP	0
		Write:								
\$006E	Reserved	Read:								
\$006F	Reserved	Read:								
\$0070	PBCTL	Read:	0	PBEN	0	0	0	0	PBOVI	0
		Write:								
\$0071	PBFLG	Read:	0	0	0	0	0	0	PBOVF	0
		Write:								
\$0072	PA3H	Read:	Bit 7	6	5	4	3	2	1	Bit 0
		Write:								
\$0073	PA2H	Read:	Bit 7	6	5	4	3	2	1	Bit 0
		Write:								
\$0074	PA1H	Read:	Bit 7	6	5	4	3	2	1	Bit 0
		Write:								
\$0075	PA0H	Read:	Bit 7	6	5	4	3	2	1	Bit 0
		Write:								
\$0076	MCCNT (hi)	Read:	Bit 15	14	13	12	11	10	9	Bit 8
		Write:								
\$0077	MCCNT (lo)	Read:	Bit 7	6	5	4	3	2	1	Bit 0
		Write:								
\$0078	TC0H (hi)	Read:	Bit 15	14	13	12	11	10	9	Bit 8
		Write:								
\$0079	TC0H (lo)	Read:	Bit 7	6	5	4	3	2	1	Bit 0
		Write:								
\$007A	TC1H (hi)	Read:	Bit 15	14	13	12	11	10	9	Bit 8
		Write:								
\$007B	TC1H (lo)	Read:	Bit 7	6	5	4	3	2	1	Bit 0
		Write:								

\$0040 - \$007F**ECT (Enhanced Capture Timer 16 Bit 8 Channels)**

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$007C	TC2H (hi)	Read: Bit 15	Write: 14	13	12	11	10	9	Bit 8
\$007D	TC2H (lo)	Read: Bit 7	Write: 6	5	4	3	2	1	Bit 0
\$007E	TC3H (hi)	Read: Bit 15	Write: 14	13	12	11	10	9	Bit 8
\$007F	TC3H (lo)	Read: Bit 7	Write: 6	5	4	3	2	1	Bit 0

\$0080 - \$009F**ATD0 (Analog to Digital Converter 10 Bit 8 Channel)**

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0080	ATD0CTL0	Read: 0	Write: 0	0	0	0	0	0	0
\$0081	ATD0CTL1	Read: 0	Write: 0	0	0	0	0	0	0
\$0082	ATD0CTL2	Read: ADPU	Write: AFFC	AWAI	ETRIGLE	ETRIGP	ETRIG	ASCIE	ASCIF
\$0083	ATD0CTL3	Read: 0	Write: S8C	S4C	S2C	S1C	FIFO	FRZ1	FRZ0
\$0084	ATD0CTL4	Read: SRES8	Write: SMP1	SMP0	PRS4	PRS3	PRS2	PRS1	PRS0
\$0085	ATD0CTL5	Read: DJM	Write: DSGN	SCAN	MULT	0	CC	CB	CA
\$0086	ATD0STAT0	Read: SCF	Write: 0	ETORF	FIFOR	0	CC2	CC1	CC0
\$0087	Reserved	Read: 0	Write: 0	0	0	0	0	0	0
\$0088	ATD0TEST0	Read: 0	Write: 0	0	0	0	0	0	0
\$0089	ATD0TEST1	Read: 0	Write: 0	0	0	0	0	0	SC
\$008A	Reserved	Read: 0	Write: 0	0	0	0	0	0	0
\$008B	ATD0STAT1	Read: CCF7	Write: CCF6	CCF5	CCF4	CCF3	CCF2	CCF1	CCF0
\$008C	Reserved	Read: 0	Write: 0	0	0	0	0	0	0
\$008D	ATD0DIEN	Read: Bit 7	Write: 6	5	4	3	2	1	Bit 0
\$008E	Reserved	Read: 0	Write: 0	0	0	0	0	0	0
\$008F	PORTAD0	Read: Bit7	Write: 6	5	4	3	2	1	BIT 0
\$0090	ATD0DR0H	Read: Bit15	Write: 14	13	12	11	10	9	Bit8
\$0091	ATD0DR0L	Read: Bit7	Write: Bit6	0	0	0	0	0	0

\$0080 - \$009F**ATD0 (Analog to Digital Converter 10 Bit 8 Channel)**

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0092	ATD0DR1H	Read: Bit15	Write: 14	13	12	11	10	9	Bit8
\$0093	ATD0DR1L	Read: Bit7	Write: Bit6	0	0	0	0	0	0
\$0094	ATD0DR2H	Read: Bit15	Write: 14	13	12	11	10	9	Bit8
\$0095	ATD0DR2L	Read: Bit7	Write: Bit6	0	0	0	0	0	0
\$0096	ATD0DR3H	Read: Bit15	Write: 14	13	12	11	10	9	Bit8
\$0097	ATD0DR3L	Read: Bit7	Write: Bit6	0	0	0	0	0	0
\$0098	ATD0DR4H	Read: Bit15	Write: 14	13	12	11	10	9	Bit8
\$0099	ATD0DR4L	Read: Bit7	Write: Bit6	0	0	0	0	0	0
\$009A	ATD0DR5H	Read: Bit15	Write: 14	13	12	11	10	9	Bit8
\$009B	ATD0DR5L	Read: Bit7	Write: Bit6	0	0	0	0	0	0
\$009C	ATD0DR6H	Read: Bit15	Write: 14	13	12	11	10	9	Bit8
\$009D	ATD0DR6L	Read: Bit7	Write: Bit6	0	0	0	0	0	0
\$009E	ATD0DR7H	Read: Bit15	Write: 14	13	12	11	10	9	Bit8
\$009F	ATD0DR7L	Read: Bit7	Write: Bit6	0	0	0	0	0	0

\$00A0 - \$00C7**PWM (Pulse Width Modulator 8 Bit 8 Channel)**

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$00A0	PWME	Read: PWME7	Write: PWME6	PWME5	PWME4	PWME3	PWME2	PWME1	PWME0
\$00A1	PWMPOL	Read: PPOL7	Write: PPOL6	PPOL5	PPOL4	PPOL3	PPOL2	PPOL1	PPOLO
\$00A2	PWMCLK	Read: PCLK7	Write: PCLK6	PCLK5	PCLK4	PCLK3	PCLK2	PCLK1	PCLK0
\$00A3	PWMPRCLK	Read: 0	Write: PCKB2	PCKB1	PCKB0	0	PCKA2	PCKA1	PCKA0
\$00A4	PWMCAE	Read: CAE7	Write: CAE6	CAE5	CAE4	CAE3	CAE2	CAE1	CAE0
\$00A5	PWMCTL	Read: CON67	Write: CON45	CON23	CON01	PSWAI	PFRZ	0	0
\$00A6	PWMTST Test Only	Read: 0	Write: 0	0	0	0	0	0	0
\$00A7	PWMPRSC Test Only	Read: 0	Write: 0	0	0	0	0	0	0
\$00A8	PWMSCLA	Read: Bit 7	Write: 6	5	4	3	2	1	Bit 0

\$00A0 - \$00C7

PWM (Pulse Width Modulator 8 Bit 8 Channel)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$00A9	PWMSCLB	Read: Write:	Bit 7 0	6 0	5 0	4 0	3 0	2 0	1 0
\$00AA	PWMSCNTA	Read: Write:							
	Test Only								
\$00AB	PWMSCNTB	Read: Write:	0	0	0	0	0	0	0
	Test Only								
\$00AC	PWMCNT0	Read: Write:	Bit 7 0	6 0	5 0	4 0	3 0	2 0	1 0
\$00AD	PWMCNT1	Read: Write:	Bit 7 0	6 0	5 0	4 0	3 0	2 0	1 0
\$00AE	PWMCNT2	Read: Write:	Bit 7 0	6 0	5 0	4 0	3 0	2 0	1 0
\$00AF	PWMCNT3	Read: Write:	Bit 7 0	6 0	5 0	4 0	3 0	2 0	1 0
\$00B0	PWMCNT4	Read: Write:	Bit 7 0	6 0	5 0	4 0	3 0	2 0	1 0
\$00B1	PWMCNT5	Read: Write:	Bit 7 0	6 0	5 0	4 0	3 0	2 0	1 0
\$00B2	PWMCNT6	Read: Write:	Bit 7 0	6 0	5 0	4 0	3 0	2 0	1 0
\$00B3	PWMCNT7	Read: Write:	Bit 7 0	6 0	5 0	4 0	3 0	2 0	1 0
\$00B4	PWMPERO	Read: Write:	Bit 7 0	6 0	5 0	4 0	3 0	2 0	1 0
\$00B5	PWMPER1	Read: Write:	Bit 7 0	6 0	5 0	4 0	3 0	2 0	1 0
\$00B6	PWMPER2	Read: Write:	Bit 7 0	6 0	5 0	4 0	3 0	2 0	1 0
\$00B7	PWMPER3	Read: Write:	Bit 7 0	6 0	5 0	4 0	3 0	2 0	1 0
\$00B8	PWMPER4	Read: Write:	Bit 7 0	6 0	5 0	4 0	3 0	2 0	1 0
\$00B9	PWMPER5	Read: Write:	Bit 7 0	6 0	5 0	4 0	3 0	2 0	1 0
\$00BA	PWMPER6	Read: Write:	Bit 7 0	6 0	5 0	4 0	3 0	2 0	1 0
\$00BB	PWMPER7	Read: Write:	Bit 7 0	6 0	5 0	4 0	3 0	2 0	1 0
\$00BC	PWMDTY0	Read: Write:	Bit 7 0	6 0	5 0	4 0	3 0	2 0	1 0
\$00BD	PWMDTY1	Read: Write:	Bit 7 0	6 0	5 0	4 0	3 0	2 0	1 0
\$00BE	PWMDTY2	Read: Write:	Bit 7 0	6 0	5 0	4 0	3 0	2 0	1 0
\$00BF	PWMDTY3	Read: Write:	Bit 7 0	6 0	5 0	4 0	3 0	2 0	1 0
\$00C0	PWMDTY4	Read: Write:	Bit 7 0	6 0	5 0	4 0	3 0	2 0	1 0
\$00C1	PWMDTY5	Read: Write:	Bit 7 0	6 0	5 0	4 0	3 0	2 0	1 0

\$00A0 - \$00C7**PWM (Pulse Width Modulator 8 Bit 8 Channel)**

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$00C2	PWMDTY6	Read: Write:	Bit 7 6	5	4	3	2	1	Bit 0
\$00C3	PWMDTY7	Read: Write:	Bit 7 6	5	4	3	2	1	Bit 0
\$00C4	PWMSDN	Read: Write:	PWMIF PWMIE	PWMRSTRT	PWMLVL	0 PWM7IN		PWM7INL PWM7ENA	
\$00C5	Reserved	Read: Write:	0 	0	0	0	0	0	0
\$00C6	Reserved	Read: Write:	0 	0	0	0	0	0	0
\$00C7	Reserved	Read: Write:	0 	0	0	0	0	0	0

\$00C8 - \$00CF**SCI0 (Asynchronous Serial Interface)**

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$00C8	SCI0BDH	Read: Write:	0 	0	0	SBR12 SBR11	SBR10	SBR9	SBR8
\$00C9	SCI0BDL	Read: Write:	SBR7 	SBR6 	SBR5 	SBR4 	SBR3 	SBR2 	SBR1
\$00CA	SCI0CR1	Read: Write:	LOOPS 	SCISWAI 	RSRC 	M 	WAKE 	ILT 	PE
\$00CB	SCI0CR2	Read: Write:	TIE 	TCIE 	RIE 	ILIE 	TE 	RE 	RWU
\$00CC	SCI0SR1	Read: Write:	TDRE 	TC 	RDRF 	IDLE 	OR 	NF 	FE
\$00CD	SCI0SR2	Read: Write:	0 	0 	0 	0 	0 	BRK13 TXDIR	RAF
\$00CE	SCI0DRH	Read: Write:	R8 	T8 	0 	0 	0 	0 	0
\$00CF	SCI0DRL	Read: Write:	R7 	R6 	R5 	R4 	R3 	R2 	R1
			T7 	T6 	T5 	T4 	T3 	T2 	T1
									T0

\$00D0 - \$00D7**SCI1 (Asynchronous Serial Interface)**

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$00D0	SCI1BDH	Read: Write:	0 	0	0	SBR12 SBR11	SBR10	SBR9	SBR8
\$00D1	SCI1BDL	Read: Write:	SBR7 	SBR6 	SBR5 	SBR4 	SBR3 	SBR2 	SBR1
\$00D2	SCI1CR1	Read: Write:	LOOPS 	SCISWAI 	RSRC 	M 	WAKE 	ILT 	PE
\$00D3	SCI1CR2	Read: Write:	TIE 	TCIE 	RIE 	ILIE 	TE 	RE 	RWU
\$00D4	SCI1SR1	Read: Write:	TDRE 	TC 	RDRF 	IDLE 	OR 	NF 	FE

\$00D0 - \$00D7**SCI1 (Asynchronous Serial Interface)**

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$00D5	SCI1SR2	Read: 0	0	0	0	0	BRK13	TXDIR	RAF
		Write:							
\$00D6	SCI1DRH	Read: R8	T8	0	0	0	0	0	0
		Write:							
\$00D7	SCI1DRL	Read: R7	R6	R5	R4	R3	R2	R1	R0
		Write: T7	T6	T5	T4	T3	T2	T1	T0

\$00D8 - \$00DF**SPI0 (Serial Peripheral Interface)**

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$00D8	SPI0CR1	Read: SPIE	SPE	SPTIE	MSTR	CPOL	CPHA	SSOE	LSBFE
		Write:							
\$00D9	SPI0CR2	Read: 0	0	0	MODFEN	BIDIROE	0	SPISWAI	SPC0
		Write:							
\$00DA	SPI0BR	Read: 0	SPPR2	SPPR1	SPPR0	0	SPR2	SPR1	SPR0
		Write:							
\$00DB	SPI0SR	Read: SPIF	0	SPTEF	MODF	0	0	0	0
		Write:							
\$00DC	Reserved	Read: 0	0	0	0	0	0	0	0
		Write:							
\$00DD	SPI0DR	Read: Bit7	6	5	4	3	2	1	Bit0
		Write:							
\$00DE	Reserved	Read: 0	0	0	0	0	0	0	0
		Write:							
\$00DF	Reserved	Read: 0	0	0	0	0	0	0	0
		Write:							

\$00E0 - \$00E7**IIC (Inter IC Bus)**

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$00E0	IBAD	Read: ADR7	ADR6	ADR5	ADR4	ADR3	ADR2	ADR1	0
		Write:							
\$00E1	IBFD	Read: IBC7	IBC6	IBC5	IBC4	IBC3	IBC2	IBC1	IBCO
		Write:							
\$00E2	IBCR	Read: IBEN	IBIE	MS/SL	TX/RX	TXAK	0	0	IBSWAI
		Write:							
\$00E3	IBSR	Read: TCF	IAAS	IBB	IBAL	0	SRW	IBIF	RXAK
		Write:							
\$00E4	IBDR	D7	D6	D5	D4	D3	D2	D1	D 0
		Write:							
\$00E5	Reserved	Read: 0	0	0	0	0	0	0	0
		Write:							
\$00E6	Reserved	Read: 0	0	0	0	0	0	0	0
		Write:							
\$00E7	Reserved	Read: 0	0	0	0	0	0	0	0
		Write:							

\$00E8 - \$00EF**BDLC (Bytelevel Data Link Controller J1850)**

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$00E8	DLCBCR1	Read: IMSG	Write: CLKS	0	0	0	0	IE	WCM
\$00E9		Read: 0	Write:	I3	I2	I1	I0		
\$00EA	DLCBCR2	Read: SMRST	Write: DLOOP	RX4XE	NBFS	TEOD	TSIFR	TMIFR1	TMIFR0
\$00EB		Read: D7	Write: D6	D5	D4	D3	D2	D1	D0
\$00EC	DLCBARD	Read: 0	Write: RXPOL	0	0	BO3	BO2	BO1	BO0
\$00ED		Read: 0	Write: 0	R5	R4				
\$00EE	DLCSCR	Read: 0	Write: 0	0	BDLCE	0	0	0	0
\$00EF		Read: 0	Write: 0	0		0	0	0	IDLE

\$00F0 - \$00FF**Reserved**

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$00F0 - \$00FF	Reserved	Read: 0	Write:	0	0	0	0	0	0

\$0100 - \$010F**Flash Control Register (fts64k)**

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0100	FCLKDIV	Read: FDIVLD	PRDIV8	FDIV5	FDIV4	FDIV3	FDIV2	FDIV1	FDIV0
\$0101		Read: KEYEN		NV6	NV5	NV4	NV3	NV2	SEC1
\$0102	Reserved	Read: 0	Write:	0	0	0	0	0	0
\$0103		Read: CBEIE	Write: CCIE	KEYACC	0	0	0	0	0
\$0104	FPROT	Read: FPOOPEN	Write: NV6	FPHDIS	FPHS1	FPHS0	FPLDIS	FPLS1	FPLS0
\$0105		Read: CBEIF	Write: CCIF	PVIOL	ACCERR	0	BLANK	0	0
\$0106	FCMD	Read: 0	Write: CMDB6			0		0	CMDB0
\$0107		Read: 0	Write: CMDB5	0	0	CMDB2	0	CMDB0	CMDB0
\$0108	FADDRHI	Read: Bit 14	Write: Bit 14	13	12	11	10	9	Bit 8
\$0109		Read: Bit 7	Write: 6	5	4	3	2	1	Bit 0

\$0100 - \$010F**Flash Control Register (fts64k)**

Address	Name	Read:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$010A	FDATAHI	Write:	Bit 15	14	13	12	11	10	9	Bit 8
\$010B	FDATALO	Read:	Bit 7	6	5	4	3	2	1	Bit 0
\$010C - \$010F	Reserved	Read:	0	0	0	0	0	0	0	0
		Write:								

\$0110 - \$011B**EEPROM Control Register (eets1k)**

Address	Name	Read:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0110	ECLKDIV	Read:	EDIVLD	PRDIV8	EDIV5	EDIV4	EDIV3	EDIV2	EDIV1	EDIV0
\$0111	Reserved	Read:	0	0	0	0	0	0	0	0
\$0112	Reserved	Read:	0	0	0	0	0	0	0	0
\$0113	ECNFG	Read:	CBEIE	CCIE	0	0	0	0	0	0
\$0114	EPROT	Read:	EPOOPEN	NV6	NV5	NV4	EPDIS	EP2	EP1	EP0
\$0115	ESTAT	Read:	CBEIF	CCIF	PVIOL	ACCERR	0	BLANK	0	0
\$0116	ECMD	Read:	0	CMDB6	CMDB5	0	0	CMDB2	0	CMDB0
\$0117	Reserved for Factory Test	Read:	0	0	0	0	0	0	0	0
\$0118	EADDRHI	Read:	0	0	0	0	0	0	0	Bit 8
\$0119	EADDRLO	Read:	Bit 7	6	5	4	3	2	1	Bit 0
\$011A	EDATAHI	Read:	Bit 15	14	13	12	11	10	9	Bit 8
\$011B	EDATALO	Read:	Bit 7	6	5	4	3	2	1	Bit 0
		Write:								

\$011C - \$011F**Reserved for RAM Control Register**

Address	Name	Read:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$011C - \$011F	Reserved	Read:	0	0	0	0	0	0	0	0
		Write:								

\$0120 - \$013F

ATD1 (Analog to Digital Converter 10 Bit 8 Channel)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0120	ATD1CTL0	Read: 0	0	0	0	0	0	0	0
		Write:							
\$0121	ATD1CTL1	Read: 0	0	0	0	0	0	0	0
		Write:							
\$0122	ATD1CTL2	Read: ADPU	AFFC	AWAI	ETRIGLE	ETRIGP	ETRIG	ASCIE	ASCIF
		Write:							
\$0123	ATD1CTL3	Read: 0	S8C	S4C	S2C	S1C	FIFO	FRZ1	FRZ0
		Write:							
\$0124	ATD1CTL4	Read: SRES8	SMP1	SMP0	PRS4	PRS3	PRS2	PRS1	PRS0
		Write:							
\$0125	ATD1CTL5	Read: DJM	DSGN	SCAN	MULT	0	CC	CB	CA
		Write:							
\$0126	ATD1STAT0	Read: SCF	0	ETORF	FIFOR	0	CC2	CC1	CC0
		Write:							
\$0127	Reserved	Read: 0	0	0	0	0	0	0	0
		Write:							
\$0128	ATD1TEST0	Read: 0	0	0	0	0	0	0	0
		Write:							
\$0129	ATD1TEST1	Read: 0	0	0	0	0	0	0	SC
		Write:							
\$012A	Reserved	Read: 0	0	0	0	0	0	0	0
		Write:							
\$012B	ATD1STAT1	Read: CCF7	CCF6	CCF5	CCF4	CCF3	CCF2	CCF1	CCF0
		Write:							
\$012C	Reserved	Read: 0	0	0	0	0	0	0	0
		Write:							
\$012D	ATD1DIEN	Read: Bit 7	6	5	4	3	2	1	Bit 0
		Write:							
\$012E	Reserved	Read: 0	0	0	0	0	0	0	0
		Write:							
\$012F	PORTAD1	Read: Bit7	6	5	4	3	2	1	BIT 0
		Write:							
\$0130	ATD1DR0H	Read: Bit15	14	13	12	11	10	9	Bit8
		Write:							
\$0131	ATD1DR0L	Read: Bit7	Bit6	0	0	0	0	0	0
		Write:							
\$0132	ATD1DR1H	Read: Bit15	14	13	12	11	10	9	Bit8
		Write:							
\$0133	ATD1DR1L	Read: Bit7	Bit6	0	0	0	0	0	0
		Write:							
\$0134	ATD1DR2H	Read: Bit15	14	13	12	11	10	9	Bit8
		Write:							
\$0135	ATD1DR2L	Read: Bit7	Bit6	0	0	0	0	0	0
		Write:							
\$0136	ATD1DR3H	Read: Bit15	14	13	12	11	10	9	Bit8
		Write:							
\$0137	ATD1DR3L	Read: Bit7	Bit6	0	0	0	0	0	0
		Write:							
\$0138	ATD1DR4H	Read: Bit15	14	13	12	11	10	9	Bit8
		Write:							

\$0120 - \$013F**ATD1 (Analog to Digital Converter 10 Bit 8 Channel)**

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0139	ATD1DR4L	Read: Bit7	Read: Bit6	0	0	0	0	0	0
		Write:							
\$013A	ATD1DR5H	Read: Bit15	14	13	12	11	10	9	Bit8
		Write:							
\$013B	ATD1DR5L	Read: Bit7	Bit6	0	0	0	0	0	0
		Write:							
\$013C	ATD1DR6H	Read: Bit15	14	13	12	11	10	9	Bit8
		Write:							
\$013D	ATD1DR6L	Read: Bit7	Bit6	0	0	0	0	0	0
		Write:							
\$013E	ATD1DR7H	Read: Bit15	14	13	12	11	10	9	Bit8
		Write:							
\$013F	ATD1DR7L	Read: Bit7	Bit6	0	0	0	0	0	0
		Write:							

\$0140 - \$017F**CAN0 (Freescale Scalable CAN - FSCAN)**

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0140	CAN0CTL0	Read: RXFRM	Read: RXACT	CSWAI	Read: SYNCH	TIME	WUPE	SLPRQ	INITRQ
		Write:			Write:				
\$0141	CAN0CTL1	Read: CANE	CLKSRC	LOOPB	Read: LISTEN	0	WUPM	SLPAK	INITAK
		Write:			Write:				
\$0142	CAN0BTR0	Read: SJW1	SJW0	BRP5	BRP4	BRP3	BRP2	BRP1	BRP0
		Write:							
\$0143	CAN0BTR1	Read: SAMP	TSEG22	TSEG21	TSEG20	TSEG13	TSEG12	TSEG11	TSEG10
		Write:							
\$0144	CAN0RFLG	Read: WUPIF	CSCIF	RSTAT1	RSTAT0	TSTAT1	TSTAT0	OVRIF	RXF
		Write:							
\$0145	CAN0RIER	Read: WUPIE	CSCIE	RSTATE1	RSTATE0	TSTATE1	TSTATE0	OVRIE	RXFIE
		Write:							
\$0146	CAN0TFLG	Read: 0	0	0	0	0	TXE2	TXE1	TXE0
		Write:							
\$0147	CAN0TIER	Read: 0	0	0	0	0	TXEIE2	TXEIE1	TXEIE0
		Write:							
\$0148	CAN0TARQ	Read: 0	0	0	0	0	ABTRQ2	ABTRQ1	ABTRQ0
		Write:							
\$0149	CAN0TAAK	Read: 0	0	0	0	0	ABTAK2	ABTAK1	ABTAK0
		Write:							
\$014A	CAN0TBSEL	Read: 0	0	0	0	0	TX2	TX1	TX0
		Write:							
\$014B	CAN0IDAC	Read: 0	0	IDAM1	IDAM0	0	IDHIT2	IDHIT1	IDHIT0
		Write:							
\$014C	Reserved	Read: 0	0	0	0	0	0	0	0
		Write:							
\$014D	Reserved	Read: 0	0	0	0	0	0	0	0
		Write:							
\$014E	CAN0RXERR	Read: RXERR7	RXERR6	RXERR5	RXERR4	RXERR3	RXERR2	RXERR1	RXERR0
		Write:							

\$0140 - \$017F

CAN0 (Freescale Scalable CAN - FSCAN)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
\$014F	CAN0TXERR	Read: TXERR7	TXERR6	TXERR5	TXERR4	TXERR3	TXERR2	TXERR1	TXERR0	
		Write:								
\$0150 -	CAN0IDAR0 -	Read:	AC7	AC6	AC5	AC4	AC3	AC2	AC1	
\$0153	CAN0IDAR3	Write:							AC0	
\$0154 -	CAN0IDMR0 -	Read:	AM7	AM6	AM5	AM4	AM3	AM2	AM1	
\$0157	CAN0IDMR3	Write:							AM0	
\$0158 -	CAN0IDAR4 -	Read:	AC7	AC6	AC5	AC4	AC3	AC2	AC1	
\$015B	CAN0IDAR7	Write:							AC0	
\$015C -	CAN0IDMR4 -	Read:	AM7	AM6	AM5	AM4	AM3	AM2	AM1	
\$015F	CAN0IDMR7	Write:							AM0	
\$0160 -	CAN0RXFG	Read:	FOREGROUND RECEIVE BUFFER see Table 1-3							
\$016F		Write:								
\$0170 -	CAN0TXFG	Read:	FOREGROUND TRANSMIT BUFFER see Table 1-3							
\$017F		Write:								

Table 1-3 Detailed MSCAN Foreground Receive and Transmit Buffer Layout

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0160	Extended ID	Read: ID28	ID27	ID26	ID25	ID24	ID23	ID22	ID21
	Standard ID	Read: ID10	ID9	ID8	ID7	ID6	ID5	ID4	ID3
	CAN0RIDR0	Write:							
\$0161	Extended ID	Read: ID20	ID19	ID18	SRR=1	IDE=1	ID17	ID16	ID15
	Standard ID	Read: ID2	ID1	ID0	RTR	IDE=0			
	CAN0RIDR1	Write:							
\$0162	Extended ID	Read: ID14	ID13	ID12	ID11	ID10	ID9	ID8	ID7
	Standard ID	Read: ID6	ID5	ID4	ID3	ID2	ID1	ID0	RTR
	CAN0RIDR2	Write:							
\$0163	Extended ID	Read: ID6	ID5	ID4	ID3	ID2	ID1	ID0	RTR
	Standard ID	Read: CAN0RIDR3							
\$0164-	CAN0RDSR0 -	Read: DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
\$016B	CAN0RDSR7	Write:							
\$016C	CAN0RDLR	Read: DLC3							
	Write:								
\$016D	Reserved	Read: TSR15	TSR14	TSR13	TSR12	TSR11	TSR10	TSR9	TSR8
	Write:								
\$016E	CAN0RTSRH	Read: TSR7	TSR6	TSR5	TSR4	TSR3	TSR2	TSR1	TSR0
	Write:								
\$016F	CAN0RTSRL	Read: ID28	ID27	ID26	ID25	ID24	ID23	ID22	ID21
	Write:								
\$0170	Extended ID	Read: ID10	ID9	ID8	ID7	ID6	ID5	ID4	ID3
	CAN0TIDR0	Write:							
	Standard ID	Read: ID20	ID19	ID18	SRR=1	IDE=1	ID17	ID16	ID15
\$0171	Extended ID	Read: ID2	ID1	ID0	RTR	IDE=0			
	CAN0TIDR1	Write:							
	Standard ID	Read: ID2							

Table 1-3 Detailed MSCAN Foreground Receive and Transmit Buffer Layout

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0172	Extended ID CAN0TIDR2	Read: ID14	Write: ID13	Read: ID12	Write: ID11	Read: ID10	Write: ID9	Read: ID8	Write: ID7
	Standard ID								
\$0173	Extended ID CAN0TIDR3	Read: ID6	Write: ID5	Read: ID4	Write: ID3	Read: ID2	Write: ID1	Read: ID0	Write: RTR
	Standard ID								
\$0174- \$017B	CAN0TDSR0 - CAN0TDSR7	Read: DB7	Write: DB6	Read: DB5	Write: DB4	Read: DB3	Write: DB2	Read: DB1	Write: DB0
\$017C	CAN0TDLR	Read:	Write:			Read: DLC3	Write: DLC2	Read: DLC1	Write: DLC0
\$017D	CAN0TTBPR	Read: PRI07	Write: PRI06	Read: PRI05	Write: PRI04	Read: PRI03	Write: PRI02	Read: PRI01	Write: PRI00
\$017E	CAN0TTSRH	Read: TSR15	Write: TSR14	Read: TSR13	Write: TSR12	Read: TSR11	Write: TSR10	Read: TSR9	Write: TSR8
\$017F	CAN0TTSRL	Read: TSR7	Write: TSR6	Read: TSR5	Write: TSR4	Read: TSR3	Write: TSR2	Read: TSR1	Write: TSR0

\$0180 - \$023F**Reserved**

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0180 - \$023F	Reserved	Read: 0	Write: 0						

\$0240 - \$027F**PIM (Port Integration Module)**

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0240	PTT	Read: PTT7	Write: PTT6	Read: PTT5	Write: PTT4	Read: PTT3	Write: PTT2	Read: PTT1	Write: PTT0
\$0241	PTIT	Read: PTIT7	Write: PTIT6	Read: PTIT5	Write: PTIT4	Read: PTIT3	Write: PTIT2	Read: PTIT1	Write: PTIT0
\$0242	DDRT	Read: DDRT7	Write: DDRT7	Read: DDRT5	Write: DDRT4	Read: DDRT3	Write: DDRT2	Read: DDRT1	Write: DDRT0
\$0243	RDRT	Read: RDRT7	Write: RDRT6	Read: RDRT5	Write: RDRT4	Read: RDRT3	Write: RDRT2	Read: RDRT1	Write: RDRT0
\$0244	PERT	Read: PERT7	Write: PERT6	Read: PERT5	Write: PERT4	Read: PERT3	Write: PERT2	Read: PERT1	Write: PERT0
\$0245	PPST	Read: PPST7	Write: PPST6	Read: PPST5	Write: PPST4	Read: PPST3	Write: PPST2	Read: PPST1	Write: PPST0
\$0246	Reserved	Read: 0	Write: 0						
\$0247	Reserved	Read: 0	Write: 0						
\$0248	PTS	Read: PTS7	Write: PTS6	Read: PTS5	Write: PTS4	Read: PTS3	Write: PTS2	Read: PTS1	Write: PTS0
\$0249	PTIS	Read: PTIS7	Write: PTIS6	Read: PTIS5	Write: PTIS4	Read: PTIS3	Write: PTIS2	Read: PTIS1	Write: PTIS0

\$0240 - \$027F

PIM (Port Integration Module)

Address	Name	Read: Write:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
\$024A	DDRS	Read: Write:	DDRS7	DDRS7	DDRS5	DDRS4	DDRS3	DDRS2	DDRS1	DDRS0	
\$024B	RDRS	Read: Write:	RDRS7	RDRS6	RDRS5	RDRS4	RDRS3	RDRS2	RDRS1	RDRS0	
\$024C	PERS	Read: Write:	PERS7	PERS6	PERS5	PERS4	PERS3	PERS2	PERS1	PERS0	
\$024D	PPSS	Read: Write:	PPSS7	PPSS6	PPSS5	PPSS4	PPSS3	PPSS2	PPSS1	PPSS0	
\$024E	WOMS	Read: Write:	WOMS7	WOMS6	WOMS5	WOMS4	WOMS3	WOMS2	WOMS1	WOMS0	
\$024F	Reserved	Read: Write:	0	0	0	0	0	0	0	0	
\$0250	PTM	Read: Write:	PTM7	PTM6	PTM5	PTM4	PTM3	PTM2	PTM1	PTM0	
\$0251	PTIM	Read: Write:	PTIM7	PTIM6	PTIM5	PTIM4	PTIM3	PTIM2	PTIM1	PTIM0	
\$0252	DDRM	Read: Write:	DDRM7	DDRM7	DDRM5	DDRM4	DDRM3	DDRM2	DDRM1	DDRM0	
\$0253	RDRM	Read: Write:	RDRM7	RDRM6	RDRM5	RDRM4	RDRM3	RDRM2	RDRM1	RDRM0	
\$0254	PERM	Read: Write:	PERM7	PERM6	PERM5	PERM4	PERM3	PERM2	PERM1	PERM0	
\$0255	PPSM	Read: Write:	PPSM7	PPSM6	PPSM5	PPSM4	PPSM3	PPSM2	PPSM1	PPSM0	
\$0256	WOMM	Read: Write:	WOMM7	WOMM6	WOMM5	WOMM4	WOMM3	WOMM2	WOMM1	WOMM0	
\$0257	MODRR	Read: Write:	0	0	0	MODRR4		0	0	MODRR1	MODRR0
\$0258	PTP	Read: Write:	PTP7	PTP6	PTP5	PTP4	PTP3	PTP2	PTP1	PTP0	
\$0259	PTIP	Read: Write:	PTIP7	PTIP6	PTIP5	PTIP4	PTIP3	PTIP2	PTIP1	PTIP0	
\$025A	DDRP	Read: Write:	DDRP7	DDRP7	DDRP5	DDRP4	DDRP3	DDRP2	DDRP1	DDRP0	
\$025B	RDRP	Read: Write:	RDRP7	RDRP6	RDRP5	RDRP4	RDRP3	RDRP2	RDRP1	RDRP0	
\$025C	PERP	Read: Write:	PERP7	PERP6	PERP5	PERP4	PERP3	PERP2	PERP1	PERP0	
\$025D	PPSP	Read: Write:	PPSP7	PPSP6	PPSP5	PPSP4	PPSP3	PPSP2	PPSP1	PPSS0	
\$025E	PIEP	Read: Write:	PIEP7	PIEP6	PIEP5	PIEP4	PIEP3	PIEP2	PIEP1	PIEP0	
\$025F	PIFP	Read: Write:	PIFP7	PIFP6	PIFP5	PIFP4	PIFP3	PIFP2	PIFP1	PIFP0	
\$0260	PTH	Read: Write:	PTH7	PTH6	PTH5	PTH4	PTH3	PTH2	PTH1	PTH0	
\$0261	PTIH	Read: Write:	PTIH7	PTIH6	PTIH5	PTIH4	PTIH3	PTIH2	PTIH1	PTIH0	
\$0262	DDRH	Read: Write:	DDRH7	DDRH7	DDRH5	DDRH4	DDRH3	DDRH2	DDRH1	DDRH0	

\$0240 - \$027F**PIM (Port Integration Module)**

Address	Name	Read:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0263	RDRH	Write:	RDRH7	RDRH6	RDRH5	RDRH4	RDRH3	RDRH2	RDRH1	RDRH0
\$0264	PERH	Read:	PERH7	PERH6	PERH5	PERH4	PERH3	PERH2	PERH1	PERH0
\$0265	PPSH	Read:	PPSH7	PPSH6	PPSH5	PPSH4	PPSH3	PPSH2	PPSH1	PPSH0
\$0266	PIEH	Read:	PIEH7	PIEH6	PIEH5	PIEH4	PIEH3	PIEH2	PIEH1	PIEH0
\$0267	PIFH	Read:	PIFH7	PIFH6	PIFH5	PIFH4	PIFH3	PIFH2	PIFH1	PIFH0
\$0268	PTJ	Read:	PTJ7	PTJ6	0	0	0	0	PTJ1	PTJ0
\$0269	PTIJ	Read:	PTIJ7	PTIJ6	0	0	0	0	PTIJ1	PTIJ0
\$026A	DDRJ	Read:	DDRJ7	DDRJ7	0	0	0	0	DDRJ1	DDRJ0
\$026B	RDRJ	Read:	RDRJ7	RDRJ6	0	0	0	0	RDRJ1	RDRJ0
\$026C	PERJ	Read:	PERJ7	PERJ6	0	0	0	0	PERJ1	PERJ0
\$026D	PPSJ	Read:	PPSJ7	PPSJ6	0	0	0	0	PPSJ1	PPSJ0
\$026E	PIEJ	Read:	PIEJ7	PIEJ6	0	0	0	0	PIEJ1	PIEJ0
\$026F	PIFJ	Read:	PIFJ7	PIFJ6	0	0	0	0	PIFJ1	PIFJ0
\$0270 - \$027F	Reserved	Read:	0	0	0	0	0	0	0	0
		Write:								

\$0280 - \$03FF**Reserved**

Address	Name	Read:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
\$0280 - \$03FF	Reserved	Write:	0	0	0	0	0	0	0	0

1.6 Part ID Assignments

The part ID is located in two 8-bit registers PARTIDH and PARTIDL (addresses \$001A and \$001B after reset). The read-only value is a unique part ID for each revision of the chip. **Table 1-4** shows the assigned part ID number.

Table 1-4 Assigned Part ID Numbers

Device	Mask Set Number	Part ID ¹
MC9S12DJ64	0L86D	\$0200
MC9S12DJ64	1L86D	\$0201
MC9S12DJ64	2L86D	\$0201 ²
MC9S12DJ64	3L86D	\$0203
MC9S12DJ64	4L86D	\$0204
MC9S12DJ64	0M89C	\$0204

NOTES:

1. The coding is as follows:
 Bit 15-12: Major family identifier
 Bit 11-8: Minor family identifier
 Bit 7-4: Major mask set revision number including FAB transfers
 Bit 3-0: Minor - non full - mask set revision
2. 1L86D is identical to 2L86D except improved ESD performance on 2L86D

The device memory sizes are located in two 8-bit registers MEMSIZ0 and MEMSIZ1 (addresses \$001C and \$001D after reset). **Table 1-5** shows the read-only values of these registers. Refer to HCS12 Module Mapping Control (MMC) Block Guide for further details.

Table 1-5 Memory size registers

Register name	Value
MEMSIZ0	\$11
MEMSIZ1	\$80

Section 2 Signal Description

This section describes signals that connect off-chip. It includes a pinout diagram, a table of signal properties, and detailed discussion of signals. It is built from the signal description sections of the Block Guides of the individual IP blocks on the device.

2.1 Device Pinout

The MC9S12DJ64 is available in a 112-pin low profile quad flat pack (LQFP) and in a 80-pin quad flat pack (QFP). The MC9S12D32 is only available in a 80-pin quad flat pack (QFP). Most pins perform two or more functions, as described in the Signal Descriptions. **Figure 2-1** and **Figure 2-2** show the pin assignments.

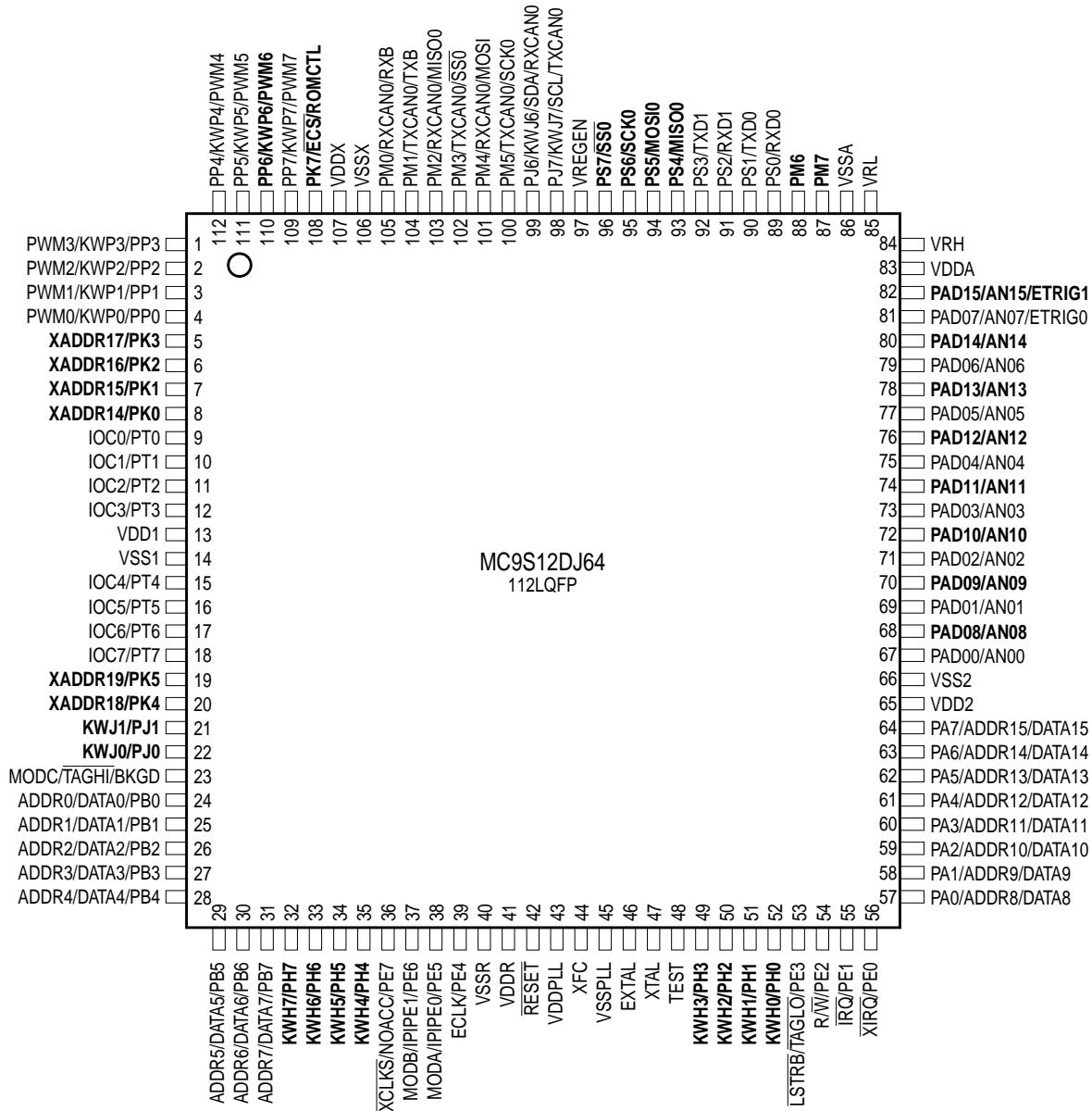
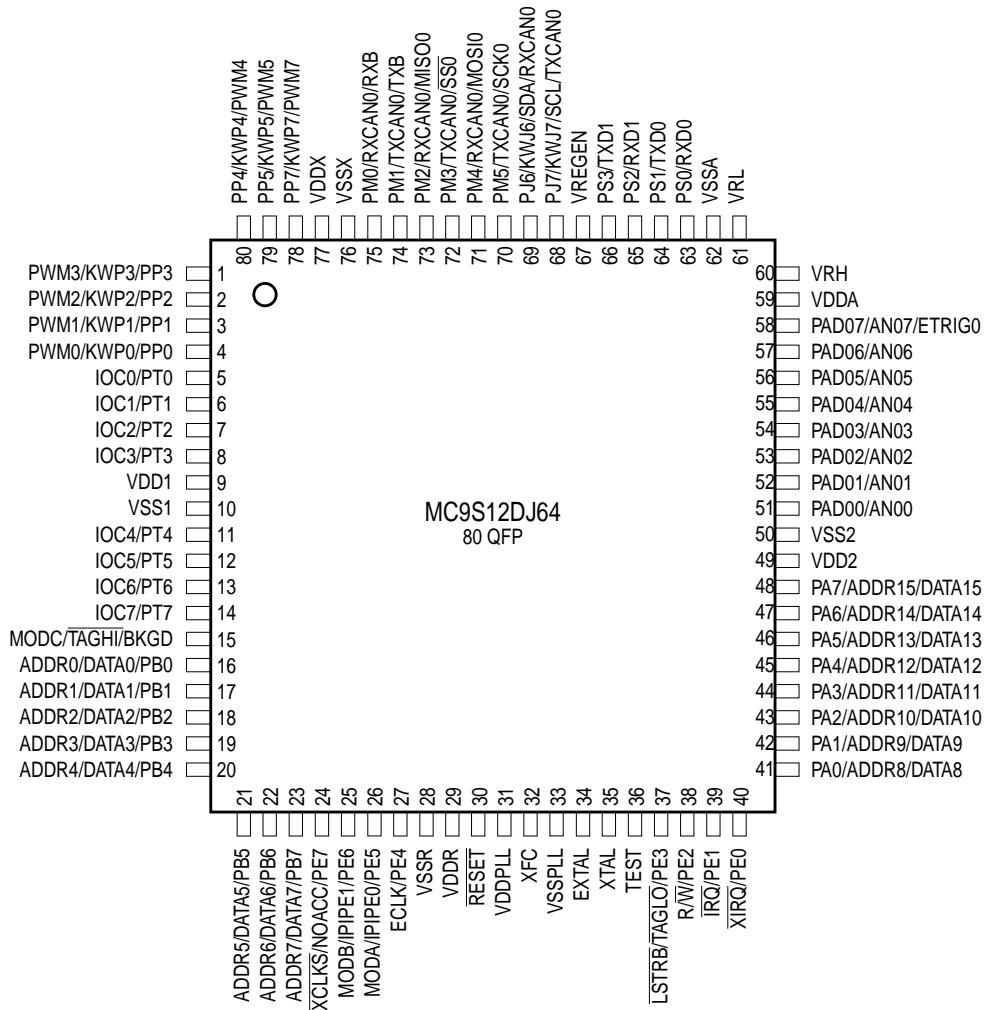



Figure 2-1 Pin Assignments in 112-pin LQFP for MC9S12DJ64

Figure 2-2 Pin Assignments in 80-pin QFP for MC9S12DJ64 and MC9S12D32

2.2 Signal Properties Summary

Table 2-1 summarizes the pin functionality. Signals shown in **bold** are not available in the 80 pin package.

Table 2-1 Signal Properties

Pin Name Function1	Pin Name Function2	Pin Name Function3	Pin Name Function4	Powered by	Internal Pull Resistor		Description
					CTRL	Reset State	
EXTAL	—	—	—	VDDPLL	None	None	Oscillator Pins
XTAL	—	—	—				External Reset
RESET	—	—	—				Test Input
TEST	—	—	—				Voltage Regulator Enable Input
VREGEN	—	—	—				PLL Loop Filter
XFC	—	—	—				Background Debug, Tag High, Mode Input
BKGD	TAGHI	MODC	—	VDDR	Always Up	Up	
PAD15	AN15	ETRIG1	—	VDDA	None	None	Port AD Input, Analog Input AN7 of ATD1, External Trigger Input of ATD1
PAD[14:08]	AN[14:08]	—	—				Port AD Inputs, Analog Inputs AN[6:0] of ATD1
PAD07	AN07	ETRIGO	—				Port AD Input, Analog Input AN7 of ATD0, External Trigger Input of ATD0
PAD[06:00]	AN[06:00]	—	—				Port AD Inputs, Analog Inputs AN[6:0] of ATD0
PA[7:0]	ADDR[15:8]/DATA[15:8]	—	—	VDDR	PUCR/PUPAE	Disabled	Port A I/O, Multiplexed Address/Data
PB[7:0]	ADDR[7:0]/DATA[7:0]	—	—				Port B I/O, Multiplexed Address/Data
PE7	NOACC	XCLKS	—				Port E I/O, Access, Clock Select
PE6	IPIPE1	MODB	—		PUCR/PUPBE	Mode dependent ¹	Port E I/O, Pipe Status, Mode Input
PE5	IPIPE0	MODA	—				Port E I/O, Pipe Status, Mode Input
PE4	ECLK	—	—		PUCR/PUPEE	Mode dependent ¹	Port E I/O, Bus Clock Output
PE3	LSTRB	TAGLO	—				Port E I/O, Byte Strobe, Tag Low
PE2	R/W	—	—		PUCR/PUPEE	Mode dependent ¹	Port E I/O, R/W in expanded modes
PE1	IRQ	—	—				Port E Input, Maskable Interrupt
PE0	XIRQ	—	—		PERH/PPSH	Up	Port E Input, Non Maskable Interrupt
PH7	KWH7	—	—				Port H I/O, Interrupt
PH6	KWH6	—	—				Port H I/O, Interrupt
PH5	KWH5	—	—				Port H I/O, Interrupt
PH4	KWH4	—	—				Port H I/O, Interrupt
PH3	KWH3	—	—				Port H I/O, Interrupt
PH2	KWH2	—	—				Port H I/O, Interrupt
PH1	KWH1	—	—				Port H I/O, Interrupt
PH0	KWH0	—	—				Port H I/O, Interrupt

Pin Name Function1	Pin Name Function2	Pin Name Function3	Pin Name Function4	Powered by	Internal Pull Resistor		Description
					CTRL	Reset State	
PJ7	KWJ7	SCL	TXCAN0	VDDX	PERJ/ PPSJ	Up	Port J I/O, Interrupt, SCL of IIC, TX of CAN0
PJ6	KWJ6	SDA	RXCAN0				Port J I/O, Interrupt, SDA of IIC, RX of CAN0
PJ[1:0]	KWJ[1:0]	—	—				Port J I/O, Interrupts
PK7	ECS	ROMCTL	—		PUCR/ PUPKE	Up	Port K I/O, Emulation Chip Select, ROM On Enable
PK[5:0]	XADDR[19:14]	—	—				Port K I/O, Extended Addresses
PM7	—	—	—		PERM/ PPSM	Up	Port M I/O
PM6	—	—	—				Port M I/O
PM5	TXCAN0	SCK	—				Port M I/O, TX of CAN0, SCK of SPI0
PM4	RXCAN0	MOSI	—				Port M I/O, RX of CAN0, MOSI of SPI0
PM3	TXCAN0	SS0	—				Port M I/O, TX of CAN0, SS of SPI0
PM2	RXCAN0	MISO0	—				Port M I/O, RX of CAN0, MISO of SPI0
PM1	TXCAN0	TXB	—				Port M I/O, TX of CAN0, RX of BDLC
PM0	RXCAN0	RXB	—				Port M I/O, RX of CAN0, RX of BDLC
PP7	KWP7	PWM7	—		PERP/ PPSP	Disabled	Port P I/O, Interrupt, Channel 7 of PWM
PP6	KWP6	PWM6	—				Port P I/O, Interrupt, PWM Channel 6
PP5	KWP5	PWM5	—				Port P I/O, Interrupt, PWM Channel 5
PP4	KWP4	PWM4	—				Port P I/O, Interrupt, PWM Channel 4
PP3	KWP3	PWM3	—				Port P I/O, Interrupt, PWM Channel 3
PP2	KWP2	PWM2	—				Port P I/O, Interrupt, PWM Channel 2
PP1	KWP1	PWM1	—				Port P I/O, Interrupt, PWM Channel 1
PP0	KWP0	PWM0	—				Port P I/O, Interrupt, PWM Channel 0
PS7	SS0	—	—		PERS/ PPSS	Up	Port S I/O, SS of SPI0
PS6	SCK0	—	—				Port S I/O, SCK of SPI0
PS5	MOSI0	—	—				Port S I/O, MOSI of SPI0
PS4	MISO0	—	—				Port S I/O, MISO of SPI0
PS3	TXD1	—	—				Port S I/O, TXD of SCI1
PS2	RXD1	—	—				Port S I/O, RXD of SCI1
PS1	TXD0	—	—				Port S I/O, TXD of SCI0
PS0	RXD0	—	—				Port S I/O, RXD of SCI0
PT[7:0]	IOC[7:0]	—	—	PERT/ PPST	Disabled	Up	Port T I/O, Timer channels

NOTES:

1. Refer to PEAR register description in HCS12 Multiplexed External Bus Interface (MEBI) Block Guide

2.3 Detailed Signal Descriptions

2.3.1 EXTAL, XTAL — Oscillator Pins

EXTAL and XTAL are the crystal driver and external clock pins. On reset all the device clocks are derived from the EXTAL input frequency. XTAL is the crystal output.

2.3.2 RESET — External Reset Pin

An active low bidirectional control signal, it acts as an input to initialize the MCU to a known start-up state, and an output when an internal MCU function causes a reset.

2.3.3 TEST — Test Pin

This input only pin is reserved for test.

NOTE: *The TEST pin must be tied to VSS in all applications.*

2.3.4 VREGEN — Voltage Regulator Enable Pin

This input only pin enables or disables the on-chip voltage regulator.

2.3.5 XFC — PLL Loop Filter Pin

PLL loop filter. Please ask your Freescale representative for the interactive application note to compute PLL loop filter elements. Any current leakage on this pin must be avoided.

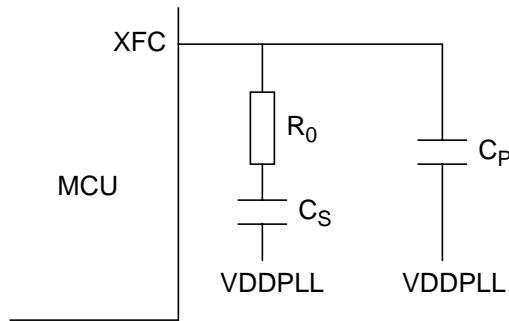


Figure 2-3 PLL Loop Filter Connections

2.3.6 BKGD / TAGHI / MODC — Background Debug, Tag High, and Mode Pin

The BKGD/TAGHI/MODC pin is used as a pseudo-open-drain pin for the background debug communication. In MCU expanded modes of operation when instruction tagging is on, an input low on this pin during the falling edge of E-clock tags the high half of the instruction word being read into the

instruction queue. It is used as a MCU operating mode select pin during reset. The state of this pin is latched to the MODC bit at the rising edge of $\overline{\text{RESET}}$. This pin has a permanently enabled pull-up device.

2.3.7 PAD15 / AN15 / ETRIG1 — Port AD Input Pin of ATD1

PAD15 is a general purpose input pin and analog input AN7 of the analog to digital converter ATD1. It can act as an external trigger input for the ATD1.

2.3.8 PAD[14:08] / AN[14:08] — Port AD Input Pins ATD1

PAD14 - PAD08 are general purpose input pins and analog inputs AN[6:0] of the analog to digital converter ATD1.

2.3.9 PAD07 / AN07 / ETRIG0 — Port AD Input Pin of ATD0

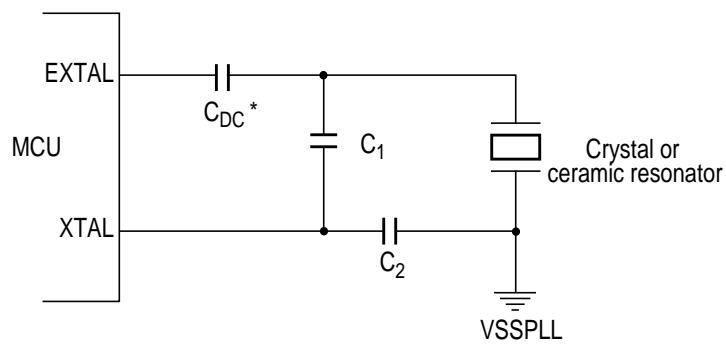
PAD07 is a general purpose input pin and analog input AN0 of the analog to digital converter ATD0. It can act as an external trigger input for the ATD0.

2.3.10 PAD[06:00] / AN[06:00] — Port AD Input Pins of ATD0

PAD06 - PAD00 are general purpose input pins and analog inputs AN[6:0] of the analog to digital converter ATD0.

2.3.11 PA[7:0] / ADDR[15:8] / DATA[15:8] — Port A I/O Pins

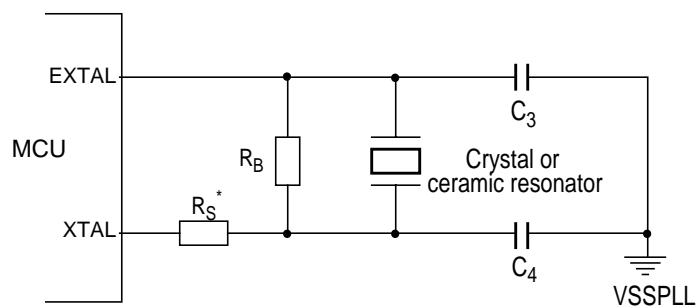
PA7-PA0 are general purpose input or output pins. In MCU expanded modes of operation, these pins are used for the multiplexed external address and data bus.


2.3.12 PB[7:0] / ADDR[7:0] / DATA[7:0] — Port B I/O Pins

PB7-PB0 are general purpose input or output pins. In MCU expanded modes of operation, these pins are used for the multiplexed external address and data bus.

2.3.13 PE7 / NOACC / $\overline{\text{XCLKS}}$ — Port E I/O Pin 7

PE7 is a general purpose input or output pin. During MCU expanded modes of operation, the NOACC signal, when enabled, is used to indicate that the current bus cycle is an unused or “free” cycle. This signal will assert when the CPU is not using the bus.


The $\overline{\text{XCLKS}}$ is an input signal which controls whether a crystal in combination with the internal Colpitts (low power) oscillator is used or whether Pierce oscillator/external clock circuitry is used. The state of this pin is latched at the rising edge of $\overline{\text{RESET}}$. If the input is a logic low the EXTAL pin is configured for an external clock drive or a Pierce Oscillator. If input is a logic high a Colpitts oscillator circuit is configured on EXTAL and XTAL. Since this pin is an input with a pull-up device during reset, if the pin is left floating, the default configuration is a Colpitts oscillator circuit on EXTAL and XTAL.

* Due to the nature of a translated ground Colpitts oscillator a DC voltage bias is applied to the crystal

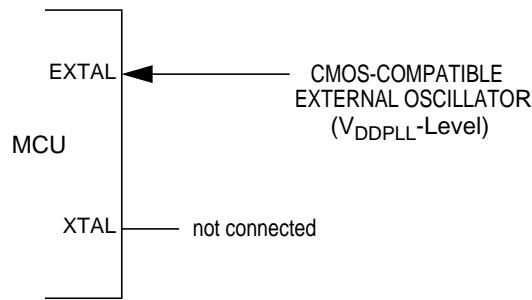

Please contact the crystal manufacturer for crystal DC bias conditions and recommended capacitor value C_{DC} .

Figure 2-4 Colpitts Oscillator Connections (PE7=1)

* R_S can be zero (shorted) when used with higher frequency crystals.
Refer to manufacturer's data.

Figure 2-5 Pierce Oscillator Connections (PE7=0)

Figure 2-6 External Clock Connections (PE7=0)

2.3.14 PE6 / MODB / IPIPE1 — Port E I/O Pin 6

PE6 is a general purpose input or output pin. It is used as a MCU operating mode select pin during reset. The state of this pin is latched to the MODB bit at the rising edge of $\overline{\text{RESET}}$. This pin is shared with the instruction queue tracking signal IPIPE1. This pin is an input with a pull-down device which is only active when $\overline{\text{RESET}}$ is low.

2.3.15 PE5 / MODA / IPIPE0 — Port E I/O Pin 5

PE5 is a general purpose input or output pin. It is used as a MCU operating mode select pin during reset. The state of this pin is latched to the MODA bit at the rising edge of $\overline{\text{RESET}}$. This pin is shared with the instruction queue tracking signal IPIPE0. This pin is an input with a pull-down device which is only active when $\overline{\text{RESET}}$ is low.

2.3.16 PE4 / ECLK — Port E I/O Pin 4

PE4 is a general purpose input or output pin. It can be configured to drive the internal bus clock ECLK. ECLK can be used as a timing reference.

2.3.17 PE3 / $\overline{\text{LSTRB}}$ / $\overline{\text{TAGLO}}$ — Port E I/O Pin 3

PE3 is a general purpose input or output pin. In MCU expanded modes of operation, $\overline{\text{LSTRB}}$ can be used for the low-byte strobe function to indicate the type of bus access and when instruction tagging is on, $\overline{\text{TAGLO}}$ is used to tag the low half of the instruction word being read into the instruction queue.

2.3.18 PE2 / $\overline{\text{R/W}}$ — Port E I/O Pin 2

PE2 is a general purpose input or output pin. In MCU expanded modes of operations, this pin drives the read/write output signal for the external bus. It indicates the direction of data on the external bus.

2.3.19 PE1 / $\overline{\text{IRQ}}$ — Port E Input Pin 1

PE1 is a general purpose input pin and the maskable interrupt request input that provides a means of applying asynchronous interrupt requests. This will wake up the MCU from STOP or WAIT mode.

2.3.20 PE0 / $\overline{\text{XIRQ}}$ — Port E Input Pin 0

PE0 is a general purpose input pin and the non-maskable interrupt request input that provides a means of applying asynchronous interrupt requests. This will wake up the MCU from STOP or WAIT mode.

2.3.21 PH7 / KWH7 — Port H I/O Pin 7

PH7 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode.

2.3.22 PH6 / KWH6 — Port H I/O Pin 6

PH6 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode.

2.3.23 PH5 / KWH5 — Port H I/O Pin 5

PH5 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode.

2.3.24 PH4 / KWH4 — Port H I/O Pin 2

PH4 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode.

2.3.25 PH3 / KWH3 — Port H I/O Pin 3

PH3 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode.

2.3.26 PH2 / KWH2 — Port H I/O Pin 2

PH2 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode.

2.3.27 PH1 / KWH1 — Port H I/O Pin 1

PH1 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode.

2.3.28 PH0 / KWH0 — Port H I/O Pin 0

PH0 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode.

2.3.29 PJ7 / KWJ7 / SCL / TXCAN0 — PORT J I/O Pin 7

PJ7 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as the serial clock pin SCL of the IIC module. It can be configured as the transmit pin TXCAN of the Freescale Scalable Controller Area Network controller 0 (CAN0).

2.3.30 PJ6 / KWJ6 / SDA / RXCAN0 — PORT J I/O Pin 6

PJ6 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as the serial data pin SDA of the IIC module. It can be configured as the receive pin RXCAN of the Freescale Scalable Controller Area Network controller 0 (CAN0).

2.3.31 PJ[1:0] / KWJ[1:0] — Port J I/O Pins [1:0]

PJ1 and PJ0 are general purpose input or output pins. They can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode.

2.3.32 PK7 / \overline{ECS} / ROMCTL — Port K I/O Pin 7

PK7 is a general purpose input or output pin. During MCU expanded modes of operation, this pin is used as the emulation chip select output (\overline{ECS}). During MCU expanded modes of operation, this pin is used to enable the Flash EEPROM memory in the memory map (ROMCTL). At the rising edge of \overline{RESET} , the state of this pin is latched to the ROMON bit. For a complete list of modes refer to **4.2 Chip Configuration Summary**.

2.3.33 PK[5:0] / XADDR[19:14] — Port K I/O Pins [5:0]

PK5-PK0 are general purpose input or output pins. In MCU expanded modes of operation, these pins provide the expanded address XADDR[19:14] for the external bus.

2.3.34 PM7 — Port M I/O Pin 7

PM7 is a general purpose input or output pin.

2.3.35 PM6 — Port M I/O Pin 6

PM6 is a general purpose input or output pin.

2.3.36 PM5 / TXCAN0 / SCK0 — Port M I/O Pin 5

PM5 is a general purpose input or output pin. It can be configured as the transmit pin TXCAN of the Freescale Scalable Controller Area Network controller 0 (CAN0). It can be configured as the serial clock pin SCK of the Serial Peripheral Interface 0 (SPI0).

2.3.37 PM4 / RXCAN0 / MOSI0 — Port M I/O Pin 4

PM4 is a general purpose input or output pin. It can be configured as the receive pin RXCAN of the Freescale Scalable Controller Area Network controller 0 (CAN0). It can be configured as the master output (during master mode) or slave input pin (during slave mode) MOSI for the Serial Peripheral Interface 0 (SPI0).

2.3.38 PM3 / TXCAN0 / SS0 — Port M I/O Pin 3

PM3 is a general purpose input or output pin. It can be configured as the transmit pin TXCAN of the Freescale Scalable Controller Area Network controller 0 (CAN0). It can be configured as the slave select pin SS of the Serial Peripheral Interface 0 (SPI0).

2.3.39 PM2 / RXCAN0 / MISO0 — Port M I/O Pin 2

PM2 is a general purpose input or output pin. It can be configured as the receive pin RXCAN of the Freescale Scalable Controller Area Network controller 0 (CAN0). It can be configured as the master input (during master mode) or slave output pin (during slave mode) MISO for the Serial Peripheral Interface 0 (SPI0).

2.3.40 PM1 / TXCAN0 / TXB — Port M I/O Pin 1

PM1 is a general purpose input or output pin. It can be configured as the transmit pin TXCAN of the Freescale Scalable Controller Area Network controller 0 (CAN0). It can be configured as the transmit pin TXB of the BDLC.

2.3.41 PM0 / RXCAN0 / RXB — Port M I/O Pin 0

PM0 is a general purpose input or output pin. It can be configured as the receive pin RXCAN of the Freescale Scalable Controller Area Network controller 0 (CAN0). It can be configured as the receive pin RXB of the BDLC.

2.3.42 PP7 / KWP7 / PWM7 — Port P I/O Pin 7

PP7 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 7 output.

2.3.43 PP6 / KWP6 / PWM6 — Port P I/O Pin 6

PP6 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 6 output.

2.3.44 PP5 / KWP5 / PWM5 — Port P I/O Pin 5

PP5 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 5 output.

2.3.45 PP4 / KWP4 / PWM4 — Port P I/O Pin 4

PP4 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 4 output.

2.3.46 PP3 / KWP3 / PWM3 — Port P I/O Pin 3

PP3 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 3 output.

2.3.47 PP2 / KWP2 / PWM2 — Port P I/O Pin 2

PP2 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 2 output.

2.3.48 PP1 / KWP1 / PWM1 — Port P I/O Pin 1

PP1 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 1 output.

2.3.49 PP0 / KWP0 / PWM0 — Port P I/O Pin 0

PP0 is a general purpose input or output pin. It can be configured to generate an interrupt causing the MCU to exit STOP or WAIT mode. It can be configured as Pulse Width Modulator (PWM) channel 0 output.

2.3.50 PS7 / \overline{SS} — Port S I/O Pin 7

PS6 is a general purpose input or output pin. It can be configured as the slave select pin \overline{SS} of the Serial Peripheral Interface 0 (SPI0).

2.3.51 PS6 / SCK0 — Port S I/O Pin 6

PS6 is a general purpose input or output pin. It can be configured as the serial clock pin SCK of the Serial Peripheral Interface 0 (SPI0).

2.3.52 PS5 / MOSI0 — Port S I/O Pin 5

PS5 is a general purpose input or output pin. It can be configured as master output (during master mode) or slave input pin (during slave mode) MOSI of the Serial Peripheral Interface 0 (SPI0).

2.3.53 PS4 / MISO0 — Port S I/O Pin 4

PS4 is a general purpose input or output pin. It can be configured as master input (during master mode) or slave output pin (during slave mode) MISO of the Serial Peripheral Interface 0 (SPI0).

2.3.54 PS3 / TXD1 — Port S I/O Pin 3

PS3 is a general purpose input or output pin. It can be configured as the transmit pin TXD of Serial Communication Interface 1 (SCI1).

2.3.55 PS2 / RXD1 — Port S I/O Pin 2

PS2 is a general purpose input or output pin. It can be configured as the receive pin RXD of Serial Communication Interface 1 (SCI1).

2.3.56 PS1 / TXD0 — Port S I/O Pin 1

PS1 is a general purpose input or output pin. It can be configured as the transmit pin TXD of Serial Communication Interface 0 (SCI0).

2.3.57 PS0 / RXD0 — Port S I/O Pin 0

PS0 is a general purpose input or output pin. It can be configured as the receive pin RXD of Serial Communication Interface 0 (SCI0).

2.3.58 PT[7:0] / IOC[7:0] — Port T I/O Pins [7:0]

PT7-PT0 are general purpose input or output pins. They can be configured as input capture or output compare pins IOC7-IOC0 of the Enhanced Capture Timer (ECT).

2.4 Power Supply Pins

MC9S12DJ64 power and ground pins are described below.

NOTE: All VSS pins must be connected together in the application.

Table 2-2 MC9S12DJ64 Power and Ground Connection Summary

Mnemonic	Pin Number 112-pin QFP	Nominal Voltage	Description
VDD1, 2	13, 65	2.5V	Internal power and ground generated by internal regulator
VSS1, 2	14, 66	0V	
VDDR	41	5.0V	External power and ground, supply to pin drivers and internal voltage regulator.
VSSR	40	0V	
VDDX	107	5.0V	External power and ground, supply to pin drivers.
VSSX	106	0V	
VDDA	83	5.0V	Operating voltage and ground for the analog-to-digital converters and the reference for the internal voltage regulator, allows the supply voltage to the A/D to be bypassed independently.
VSSA	86	0V	
VRL	85	0V	Reference voltages for the analog-to-digital converter.
VRH	84	5.0V	

Mnemonic	Pin Number 112-pin QFP	Nominal Voltage	Description
VDDPLL	43	2.5V	Provides operating voltage and ground for the Phased-Locked Loop. This allows the supply voltage to the PLL to be bypassed independently. Internal power and ground generated by internal regulator.
VSSPLL	45	0V	
VREGEN	97	5.0V	Internal Voltage Regulator enable/disable

2.4.1 VDDX, VSSX — Power & Ground Pins for I/O Drivers

External power and ground for I/O drivers. Because fast signal transitions place high, short-duration current demands on the power supply, use bypass capacitors with high-frequency characteristics and place them as close to the MCU as possible. Bypass requirements depend on how heavily the MCU pins are loaded.

VDDX and VSSX are the supplies for Ports J, K, M, P, T and S.

2.4.2 VDDR, VSSR — Power & Ground Pins for I/O Drivers & for Internal Voltage Regulator

External power and ground for I/O drivers and input to the internal voltage regulator. Because fast signal transitions place high, short-duration current demands on the power supply, use bypass capacitors with high-frequency characteristics and place them as close to the MCU as possible. Bypass requirements depend on how heavily the MCU pins are loaded.

VDDR and VSSR are the supplies for Ports A, B, E and H.

2.4.3 VDD1, VDD2, VSS1, VSS2 — Internal Logic Power Supply Pins

Power is supplied to the MCU through VDD and VSS. Because fast signal transitions place high, short-duration current demands on the power supply, use bypass capacitors with high-frequency characteristics and place them as close to the MCU as possible. This 2.5V supply is derived from the internal voltage regulator. There is no static load on those pins allowed. The internal voltage regulator is turned off, if VREGEN is tied to ground.

NOTE: *No load allowed except for bypass capacitors.*

2.4.4 VDDA, VSSA — Power Supply Pins for ATD0/ATD1 and VREG

VDDA, VSSA are the power supply and ground input pins for the voltage regulator and the two analog to digital converters. It also provides the reference for the internal voltage regulator. This allows the supply voltage to ATD0/ATD1 and the reference voltage to be bypassed independently.

2.4.5 VRH, VRL — ATD Reference Voltage Input Pins

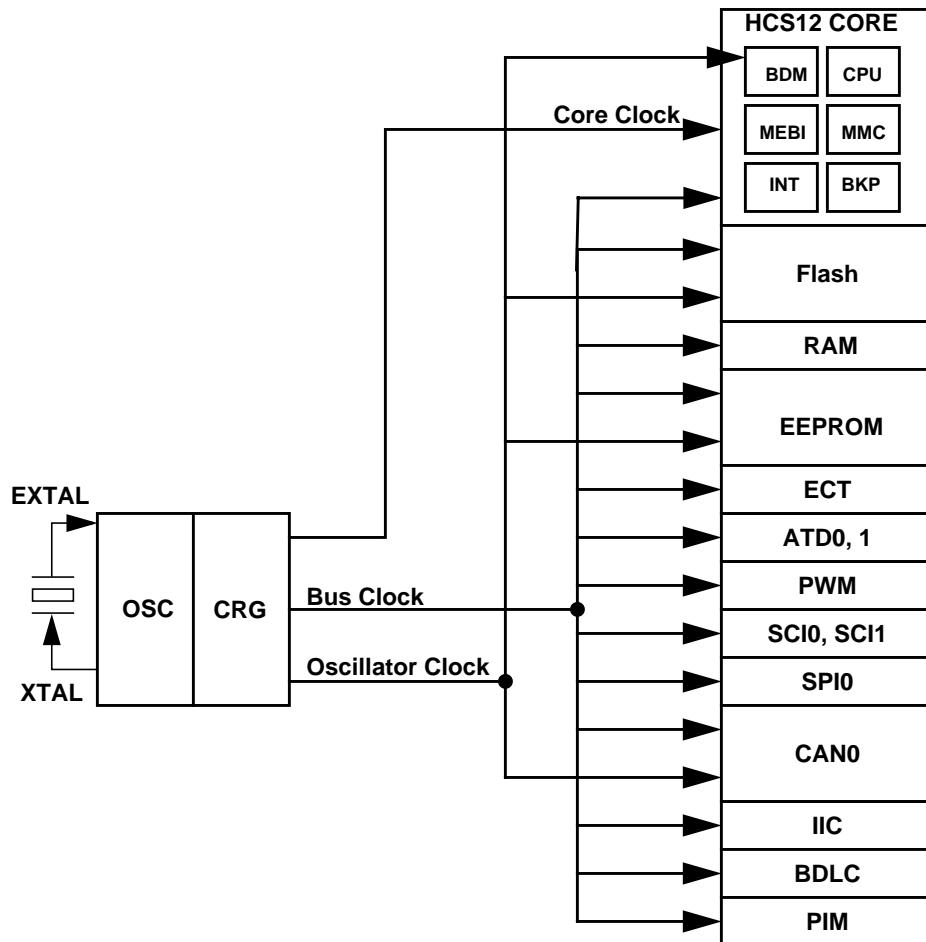
VRH and VRL are the reference voltage input pins for the analog to digital converter.

2.4.6 VDDPLL, VSSPLL — Power Supply Pins for PLL

Provides operating voltage and ground for the Oscillator and the Phased-Locked Loop. This allows the supply voltage to the Oscillator and PLL to be bypassed independently. This 2.5V voltage is generated by the internal voltage regulator.

NOTE: *No load allowed except for bypass capacitors.*

2.4.7 VREGEN — On Chip Voltage Regulator Enable


Enables the internal 5V to 2.5V voltage regulator. If this pin is tied low, VDD1,2 and VDDPLL must be supplied externally.

Section 3 System Clock Description

3.1 Overview

The Clock and Reset Generator provides the internal clock signals for the HCS12 Core and all peripheral modules. **Figure 3-1** shows the clock connections from the CRG to all modules.

Consult the CRG Block User Guide and OSC Block User Guide for details on clock generation.

Figure 3-1 Clock Connections

Section 4 Modes of Operation

4.1 Overview

Eight possible modes determine the operating configuration of the MC9S12DJ64 and MC9S12D32. Each mode has an associated default memory map and external bus configuration.

Three low power modes exist for the device.

4.2 Chip Configuration Summary

The operating mode out of reset is determined by the states of the MODC, MODB, and MODA pins during reset (**Table 4-1**). The MODC, MODB, and MODA bits in the MODE register show the current operating mode and provide limited mode switching during operation. The states of the MODC, MODB, and MODA pins are latched into these bits on the rising edge of the reset signal. The ROMCTL signal allows the setting of the ROMON bit in the MISC register thus controlling whether the internal Flash is visible in the memory map. ROMON = 1 mean the Flash is visible in the memory map. The state of the ROMCTL pin is latched into the ROMON bit in the MISC register on the rising edge of the reset signal.

Table 4-1 Mode Selection

BKGD = MODC	PE6 = MODB	PE5 = MODA	PK7 = ROMCTL	ROMON Bit	Mode Description
0	0	0	X	1	Special Single Chip, BDM allowed and ACTIVE. BDM is allowed in all other modes but a serial command is required to make BDM active.
0	0	1	0	1	Emulation Expanded Narrow, BDM allowed
			1	0	
0	1	0	X	0	Special Test (Expanded Wide), BDM allowed
0	1	1	0	1	Emulation Expanded Wide, BDM allowed
			1	0	
1	0	0	X	1	Normal Single Chip, BDM allowed
1	0	1	0	0	Normal Expanded Narrow, BDM allowed
			1	1	
1	1	0	X	1	Peripheral; BDM allowed but bus operations would cause bus conflicts (must not be used)
1	1	1	0	0	Normal Expanded Wide, BDM allowed
			1	1	

For further explanation on the modes refer to the HCS12 Multiplexed External Bus Interface Block Guide.

Table 4-2 Clock Selection Based on PE7

PE7 = XCLKS	Description
1	Colpitts Oscillator selected

Table 4-2 Clock Selection Based on PE7

PE7 = <u>XCLKS</u>	Description
0	Pierce Oscillator/external clock selected

Table 4-3 Voltage Regulator VREGEN

VREGEN	Description
1	Internal Voltage Regulator enabled
0	Internal Voltage Regulator disabled, VDD1,2 and VDDPLL must be supplied externally with 2.5V

4.3 Security

The device will make available a security feature preventing the unauthorized read and write of the memory contents. This feature allows:

- Protection of the contents of FLASH,
- Protection of the contents of EEPROM,
- Operation in single-chip mode,
- Operation from external memory with internal FLASH and EEPROM disabled.

The user must be reminded that part of the security must lie with the user's code. An extreme example would be user's code that dumps the contents of the internal program. This code would defeat the purpose of security. At the same time the user may also wish to put a back door in the user's program. An example of this is the user downloads a key through the SCI which allows access to a programming routine that updates parameters stored in EEPROM.

4.3.1 Securing the Microcontroller

Once the user has programmed the FLASH and EEPROM (if desired), the part can be secured by programming the security bits located in the FLASH module. These non-volatile bits will keep the part secured through resetting the part and through powering down the part.

The security byte resides in a portion of the Flash array.

Check the Flash Block User Guide for more details on the security configuration.

4.3.2 Operation of the Secured Microcontroller

4.3.2.1 Normal Single Chip Mode

This will be the most common usage of the secured part. Everything will appear the same as if the part was not secured with the exception of BDM operation. The BDM operation will be blocked.

4.3.2.2 Executing from External Memory

The user may wish to execute from external space with a secured microcontroller. This is accomplished by resetting directly into expanded mode. The internal FLASH and EEPROM will be disabled. BDM operations will be blocked.

4.3.3 Unsecuring the Microcontroller

In order to unsecure the microcontroller, the internal FLASH and EEPROM must be erased. This can be done through an external program in expanded mode or via a sequence of BDM commands. Unsecuring is also possible via the Backdoor Key Access. Refer to Flash Block Guide for details.

Once the user has erased the FLASH and EEPROM, the part can be reset into special single chip mode. This invokes a program that verifies the erasure of the internal FLASH and EEPROM. Once this program completes, the user can erase and program the FLASH security bits to the unsecured state. This is generally done through the BDM, but the user could also change to expanded mode (by writing the mode bits through the BDM) and jumping to an external program (again through BDM commands). Note that if the part goes through a reset before the security bits are reprogrammed to the unsecure state, the part will be secured again.

4.4 Low Power Modes

The microcontroller features three main low power modes. Consult the respective Block User Guide for information on the module behavior in Stop, Pseudo Stop, and Wait Mode. An important source of information about the clock system is the Clock and Reset Generator User Guide (CRG).

4.4.1 Stop

Executing the CPU STOP instruction stops all clocks and the oscillator thus putting the chip in fully static mode. Wake up from this mode can be done via reset or external interrupts.

4.4.2 Pseudo Stop

This mode is entered by executing the CPU STOP instruction. In this mode the oscillator is still running and the Real Time Interrupt (RTI) or Watchdog (COP) sub module can stay active. Other peripherals are turned off. This mode consumes more current than the full STOP mode, but the wake up time from this mode is significantly shorter.

4.4.3 Wait

This mode is entered by executing the CPU WAI instruction. In this mode the CPU will not execute instructions. The internal CPU signals (address and data bus) will be fully static. All peripherals stay active. For further power consumption the peripherals can individually turn off their local clocks.

4.4.4 Run

Although this is not a low power mode, unused peripheral modules should not be enabled in order to save power.

Section 5 Resets and Interrupts

5.1 Overview

Consult the Exception Processing section of the CPU12 Reference Manual for information on resets and interrupts.

5.2 Vectors

5.2.1 Vector Table

Table 5-1 lists interrupt sources and vectors in default order of priority.

Table 5-1 Interrupt Vector Locations

Vector Address	Interrupt Source	CCR Mask	Local Enable	HPrio Value to Elevate
\$FFFE, \$FFFF	Reset	None	None	—
\$FFFC, \$FFFD	Clock Monitor fail reset	None	PLLCTL (CME, SCME)	—
\$FFFA, \$FFFB	COP failure reset	None	COP rate select	—
\$FFF8, \$FFF9	Unimplemented instruction trap	None	None	—
\$FFF6, \$FFF7	SWI	None	None	—
\$FFF4, \$FFF5	XIRQ	X-Bit	None	—
\$FFF2, \$FFF3	IRQ	I-Bit	IRQCR (IRQEN)	\$F2
\$FFF0, \$FFF1	Real Time Interrupt	I-Bit	CRGINT (RTIE)	\$F0
\$FFEE, \$FFEF	Enhanced Capture Timer channel 0	I-Bit	TIE (COI)	\$EE
\$FFEC, \$FFED	Enhanced Capture Timer channel 1	I-Bit	TIE (C1I)	\$EC
\$FFEA, \$FFEB	Enhanced Capture Timer channel 2	I-Bit	TIE (C2I)	\$EA
\$FFE8, \$FFE9	Enhanced Capture Timer channel 3	I-Bit	TIE (C3I)	\$E8
\$FFE6, \$FFE7	Enhanced Capture Timer channel 4	I-Bit	TIE (C4I)	\$E6
\$FFE4, \$FFE5	Enhanced Capture Timer channel 5	I-Bit	TIE (C5I)	\$E4
\$FFE2, \$FFE3	Enhanced Capture Timer channel 6	I-Bit	TIE (C6I)	\$E2
\$FFE0, \$FFE1	Enhanced Capture Timer channel 7	I-Bit	TIE (C7I)	\$E0
\$FFDE, \$FFDF	Enhanced Capture Timer overflow	I-Bit	TSRC2 (TOI)	\$DE
\$FFDC, \$FFDD	Pulse accumulator A overflow	I-Bit	PACTL (PAOVI)	\$DC
\$FFDA, \$FFDB	Pulse accumulator input edge	I-Bit	PACTL (PAI)	\$DA
\$FFD8, \$FFD9	SPI0	I-Bit	SPICR1 (SPIE, SPTIE)	\$D8
\$FFD6, \$FFD7	SCI0	I-Bit	SCICR2 (TIE, TCIE, RIE, ILIE)	\$D6
\$FFD4, \$FFD5	SCI1	I-Bit	SCICR2 (TIE, TCIE, RIE, ILIE)	\$D4
\$FFD2, \$FFD3	ATD0	I-Bit	ATDCTL2 (ASCIE)	\$D2
\$FFD0, \$FFD1	ATD1	I-Bit	ATDCTL2 (ASCIE)	\$D0
\$FFCE, \$FFCF	Port J	I-Bit	PIEJ (PIEJ7, PIEJ6, PIEJ1, PIEJ0)	\$CE
\$FFCC, \$FFCD	Port H	I-Bit	PIEH (PIEH7-0)	\$CC

\$FFCA, \$FFCB	Modulus Down Counter underflow	I-Bit	MCCTL (MCZI)	\$CA
\$FFC8, \$FFC9	Pulse Accumulator B Overflow	I-Bit	PBCTL (PBOVI)	\$C8
\$FFC6, \$FFC7	CRG PLL lock	I-Bit	CRGINT (LOCKIE)	\$C6
\$FFC4, \$FFC5	CRG Self Clock Mode	I-Bit	CRGINT (SCMIE)	\$C4
\$FFC2, \$FFC3	BDLC	I-Bit	DLCBCR1 (IE)	\$C2
\$FFC0, \$FFC1	IIC Bus	I-Bit	IBCR (IBIE)	\$C0
\$FFBE, \$FFBF	Reserved	I-Bit	Reserved	\$BE
\$FFBC, \$FFBD		I-Bit		\$BC
\$FFBA, \$FFBB	EEPROM	I-Bit	ECNFG (CCIE, CBEIE)	\$BA
\$FFB8, \$FFB9	FLASH	I-Bit	FCNFG (CCIE, CBEIE)	\$B8
\$FFB6, \$FFB7	CAN0 wake-up	I-Bit	CANRIER (WUPIE)	\$B6
\$FFB4, \$FFB5	CAN0 errors	I-Bit	CANRIER (CSCIE, OVRIE)	\$B4
\$FFB2, \$FFB3	CAN0 receive	I-Bit	CANRIER (RXFIE)	\$B2
\$FFB0, \$FFB1	CAN0 transmit	I-Bit	CANTIER (TXEIE2-TXEIE0)	\$B0
\$FFAE, \$FFAF	Reserved	I-Bit	Reserved	\$AE
\$FFAC, \$FFAD		I-Bit		\$AC
\$FFAA, \$FFAB		I-Bit		\$AA
\$FFA8, \$FFA9		I-Bit		\$A8
\$FFA6, \$FFA7		I-Bit		\$A6
\$FFA4, \$FFA5		I-Bit		\$A4
\$FFA2, \$FFA3		I-Bit		\$A2
\$FFA0, \$FFA1		I-Bit		\$A0
\$FF9E, \$FF9F		I-Bit		\$9E
\$FF9C, \$FF9D		I-Bit		\$9C
\$FF9A, \$FF9B		I-Bit		\$9A
\$FF98, \$FF99		I-Bit		\$98
\$FF96, \$FF97		I-Bit		\$96
\$FF94, \$FF95		I-Bit		\$94
\$FF92, \$FF93		I-Bit		\$92
\$FF90, \$FF91		I-Bit		\$90
\$FF8E, \$FF8F	Port P	I-Bit	PIEP (PIEP7-0)	\$8E
\$FF8C, \$FF8D	PWM Emergency Shutdown	I-Bit	PWMSDN (PWMIE)	\$8C
\$FF80 to \$FF8B	Reserved			

5.3 Effects of Reset

When a reset occurs, MCU registers and control bits are changed to known start-up states. Refer to the respective module Block User Guides for register reset states.

5.3.1 I/O pins

Refer to the HCS12 Multiplexed External Bus Interface (MEBI) Block Guide for mode dependent pin configuration of port A, B, E and K out of reset.

Refer to the PIM Block User Guide for reset configurations of all peripheral module ports.

NOTE: For devices assembled in 80-pin QFP packages all non-bonded out pins should be configured as outputs after reset in order to avoid current drawn from floating inputs. Refer to **Table 2-1** for affected pins.

5.3.2 Memory

Refer to **Table 1-1** for locations of the memories depending on the operating mode after reset.

The RAM array is not automatically initialized out of reset.

Section 6 HCS12 Core Block Description

6.1 CPU12 Block Description

Consult the CPU12 Reference Manual for information on the CPU.

6.1.1 Device-specific information

When the CPU12 Reference Manual refers to *cycles* this is equivalent to *Bus Clock periods*. So 1 *cycle* is equivalent to 1 *Bus Clock period*.

6.2 HCS12 Module Mapping Control (MMC) Block Description

Consult the MMC Block Guide for information on the HCS12 Module Mapping Control module.

6.2.1 Device-specific information

- INITEE
 - Reset state: \$01
 - Bits EE11-EE15 are "Write once in Normal and Emulation modes and write anytime in Special modes".
- PPAGE
 - Reset state: \$00
 - Register is "Write anytime in all modes"
- MEMSIZ0
 - Reset state: \$11
- MEMSIZ1
 - Reset state: \$80

6.3 HCS12 Multiplexed External Bus Interface (MEBI) Block Description

Consult the MEBI Block Guide for information on HCS12 Multiplexed External Bus Interface module.

6.3.1 Device-specific information

- PUCR
 - Reset state: \$90

6.4 HCS12 Interrupt (INT) Block Description

Consult the INT Block Guide for information on the HCS12 Interrupt module.

6.5 HCS12 Background Debug (BDM) Block Description

Consult the BDM Block Guide for information on the HCS12 Background Debug module.

6.5.1 Device-specific information

When the BDM Block Guide refers to *alternate clock* this is equivalent to *Oscillator Clock*.

6.6 HCS12 Breakpoint (BKP) Block Description

Consult the BKP Block Guide for information on the HCS12 Breakpoint module.

Section 7 Clock and Reset Generator (CRG) Block Description

Consult the CRG Block User Guide for information about the Clock and Reset Generator module.

7.1 Device-specific information

The Low Voltage Reset feature of the CRG is not available on this device.

Section 8 Oscillator (OSC) Block Description

Consult the OSC Block User Guide for information about the Oscillator module.

8.1 Device-specific information

The $\overline{\text{XCLKS}}$ input signal is active low (see **2.3.13 PE7 / NOACC / XCLKS — Port E I/O Pin 7**).

Section 9 Enhanced Capture Timer (ECT) Block Description

Consult the ECT_16B8C Block User Guide for information about the Enhanced Capture Timer module. When the ECT_16B8C Block User Guide refers to *freeze mode* this is equivalent to *active BDM mode*.

Section 10 Analog to Digital Converter (ATD) Block Description

There are two Analog to Digital Converters (ATD1 and ATD0) implemented on the MC9S12DJ64. Consult the ATD_10B8C Block User Guide for information about each Analog to Digital Converter module. When the ATD_10B8C Block User Guide refers to *freeze mode* this is equivalent to *active BDM mode*.

Section 11 Inter-IC Bus (IIC) Block Description

Consult the IIC Block User Guide for information about the Inter-IC Bus module.

Section 12 Serial Communications Interface (SCI) Block Description

There are two Serial Communications Interfaces (SCI1 and SCI0) implemented on the MC9S12DJ64 device. Consult the SCI Block User Guide for information about each Serial Communications Interface module.

Section 13 Serial Peripheral Interface (SPI) Block Description

Consult the SPI Block User Guide for information about each Serial Peripheral Interface module.

Section 14 J1850 (BDLC) Block Description

Consult the BDLC Block User Guide for information about the J1850 module.

Section 15 Pulse Width Modulator (PWM) Block Description

Consult the PWM_8B8C Block User Guide for information about the Pulse Width Modulator module. When the PWM_8B8C Block User Guide refers to *freeze mode* this is equivalent to *active BDM mode*.

Section 16 Flash EEPROM 64K Block Description

Consult the FTS64K Block User Guide for information about the flash module.

The "S12 LRAE" is a generic Load RAM and Execute (LRAE) program which will be programmed into the flash memory of this device during manufacture. This LRAE program will provide greater programming flexibility to the end users by allowing the device to be programmed directly using CAN or SCI after it is assembled on the PCB. Use of the LRAE program is at the discretion of the end user and, if not required, it must simply be erased prior to flash programming. For more details of the S12 LRAE and its implementation, please see the S12 LREA Application Note (AN2546/D).

It is planned that most HC9S12 devices manufactured after Q1 of 2004 will be shipped with the S12 LRAE programmed in the Flash. Exact details of the changeover (ie blank to programmed) for each product will be communicated in advance via GPCN and will be traceable by the customer via datecode marking on the device.

Please contact Freescale SPS Sales if you have any additional questions.

Section 17 EEPROM 1K Block Description

Consult the EETS1K Block User Guide for information about the EEPROM module.

Section 18 RAM Block Description

This module supports single-cycle misaligned word accesses.

Section 19 MSCAN Block Description

Consult the MSCAN Block User Guide for information about the Freescale Scalable CAN Module.

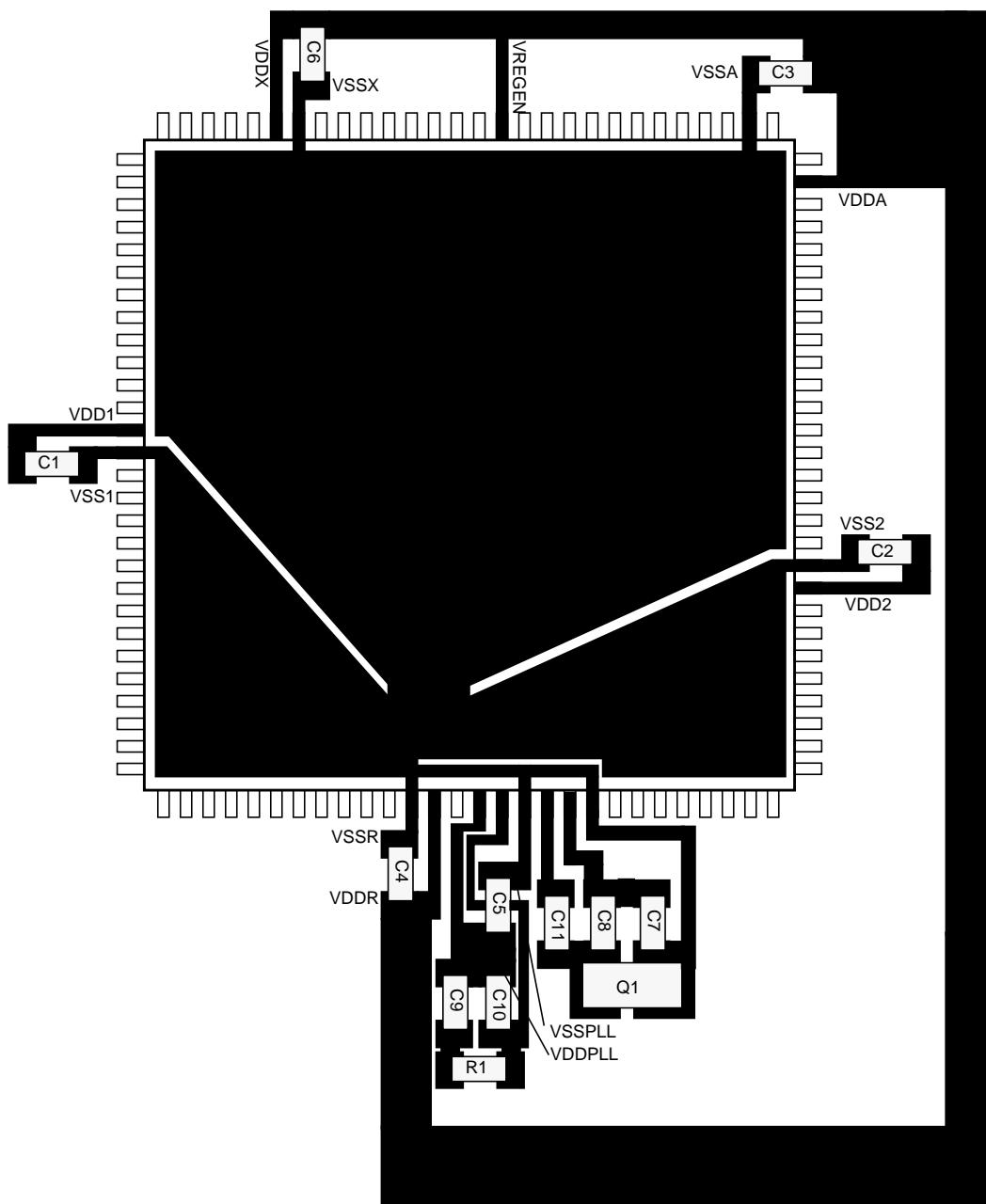
Section 20 Port Integration Module (PIM) Block Description

Consult the PIM_9DJ64 Block User Guide for information about the Port Integration Module.

Section 21 Voltage Regulator (VREG) Block Description

Consult the VREG Block User Guide for information about the dual output linear voltage regulator.

Section 22 Printed Circuit Board Layout Proposals


Table 22-1 Suggested External Component Values

Component	Purpose	Type	Value
C1	VDD1 filter cap	ceramic X7R	100 .. 220nF
C2	VDD2 filter cap	ceramic X7R	100 .. 220nF
C3	VDDA filter cap	ceramic X7R	100nF
C4	VDDR filter cap	X7R/tantalum	$\geq 100nF$
C5	VDDPLL filter cap	ceramic X7R	100nF
C6	VDDX filter cap	X7R/tantalum	$\geq 100nF$
C7	OSC load cap		
C8	OSC load cap		
C9 / C _S	PLL loop filter cap	See PLL specification chapter	
C10 / C _P	PLL loop filter cap		
C11 / C _{DC}	DC cutoff cap	Colpitts mode only, if recommended by quartz manufacturer	
R1	PLL loop filter res	See PLL specification chapter	
R2 / R _B	PLL loop filter res		
R3 / R _S	PLL loop filter res	Pierce mode only	
Q1	Quartz		

The PCB must be carefully laid out to ensure proper operation of the voltage regulator as well as of the MCU itself. The following rules must be observed:

- Every supply pair must be decoupled by a ceramic capacitor connected as near as possible to the corresponding pins(C1 - C6).
- Central point of the ground star should be the VSSR pin.
- Use low ohmic low inductance connections between VSS1, VSS2 and VSSR.
- VSSPLL must be directly connected to VSSR.
- Keep traces of VSSPLL, EXTAL and XTAL as short as possible and occupied board area for C7, C8, C11 and Q1 as small as possible.
- Do not place other signals or supplies underneath area occupied by C7, C8, C10 and Q1 and the connection area to the MCU.
- Central power input should be fed in at the VDDA/VSSA pins.

Figure 22-1 Recommended PCB Layout 112LQFP Colpitts Oscillator

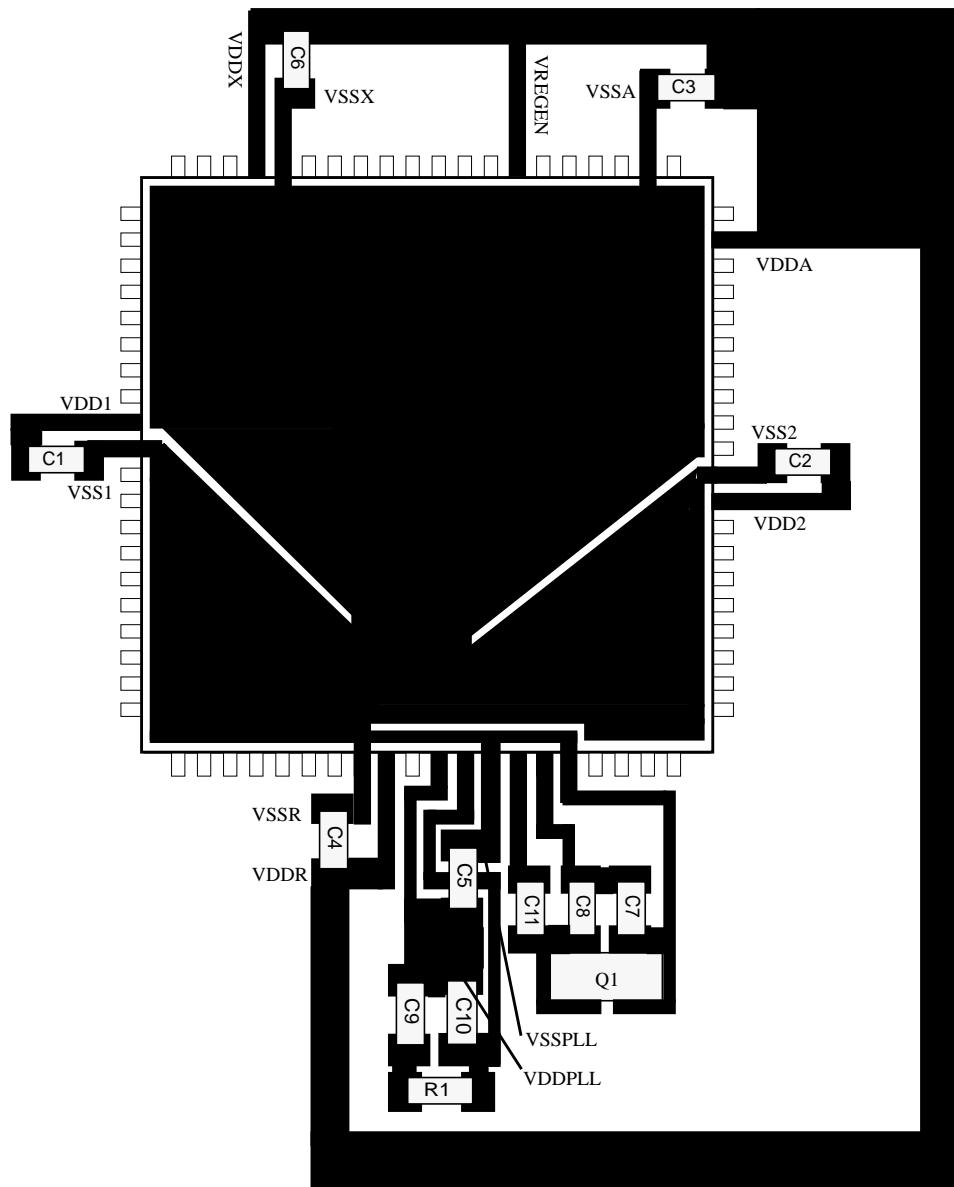

Figure 22-2 Recommended PCB Layout for 80QFP Colpitts Oscillator

Figure 22-3 Recommended PCB Layout for 112LQFP Pierce Oscillator

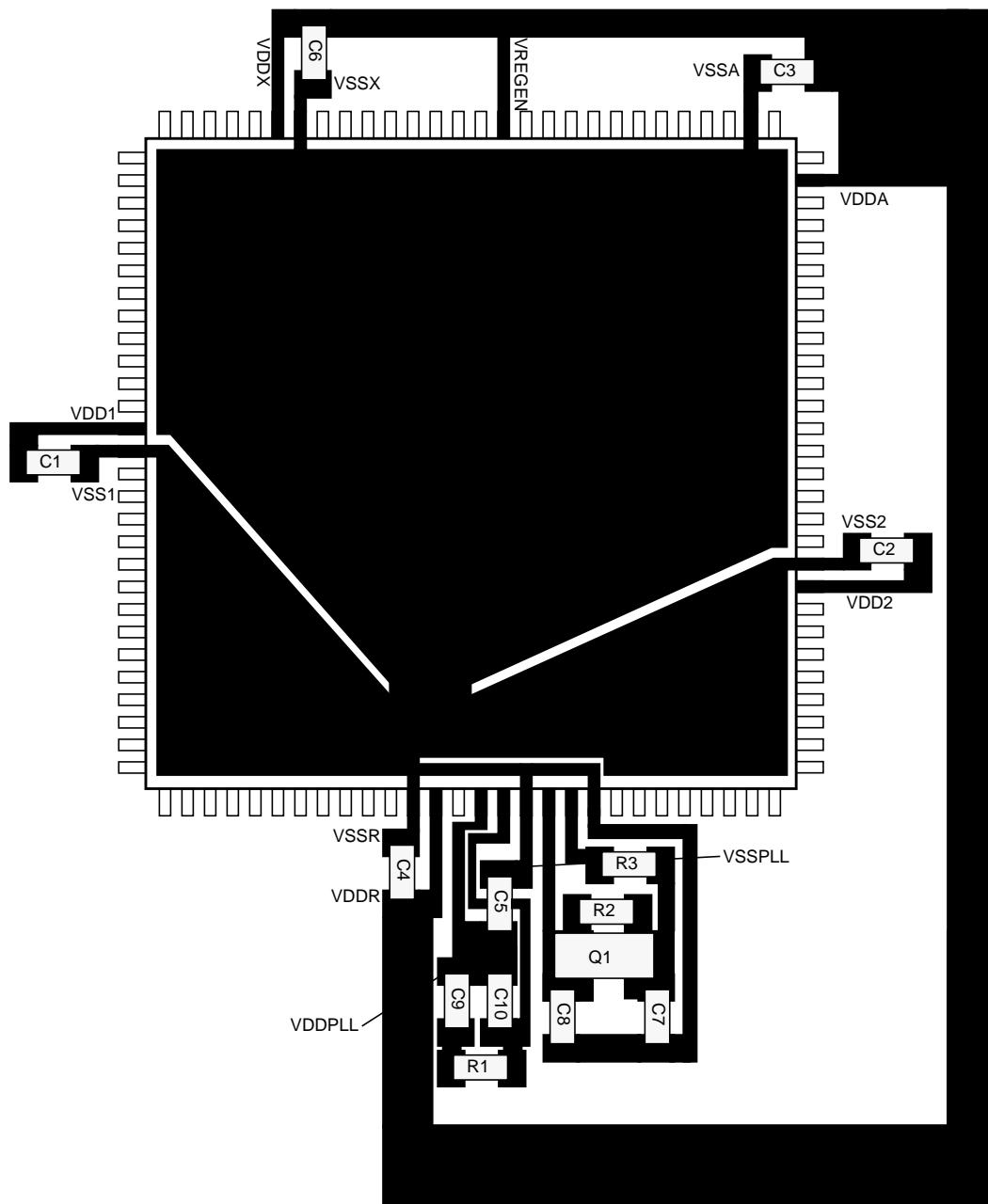
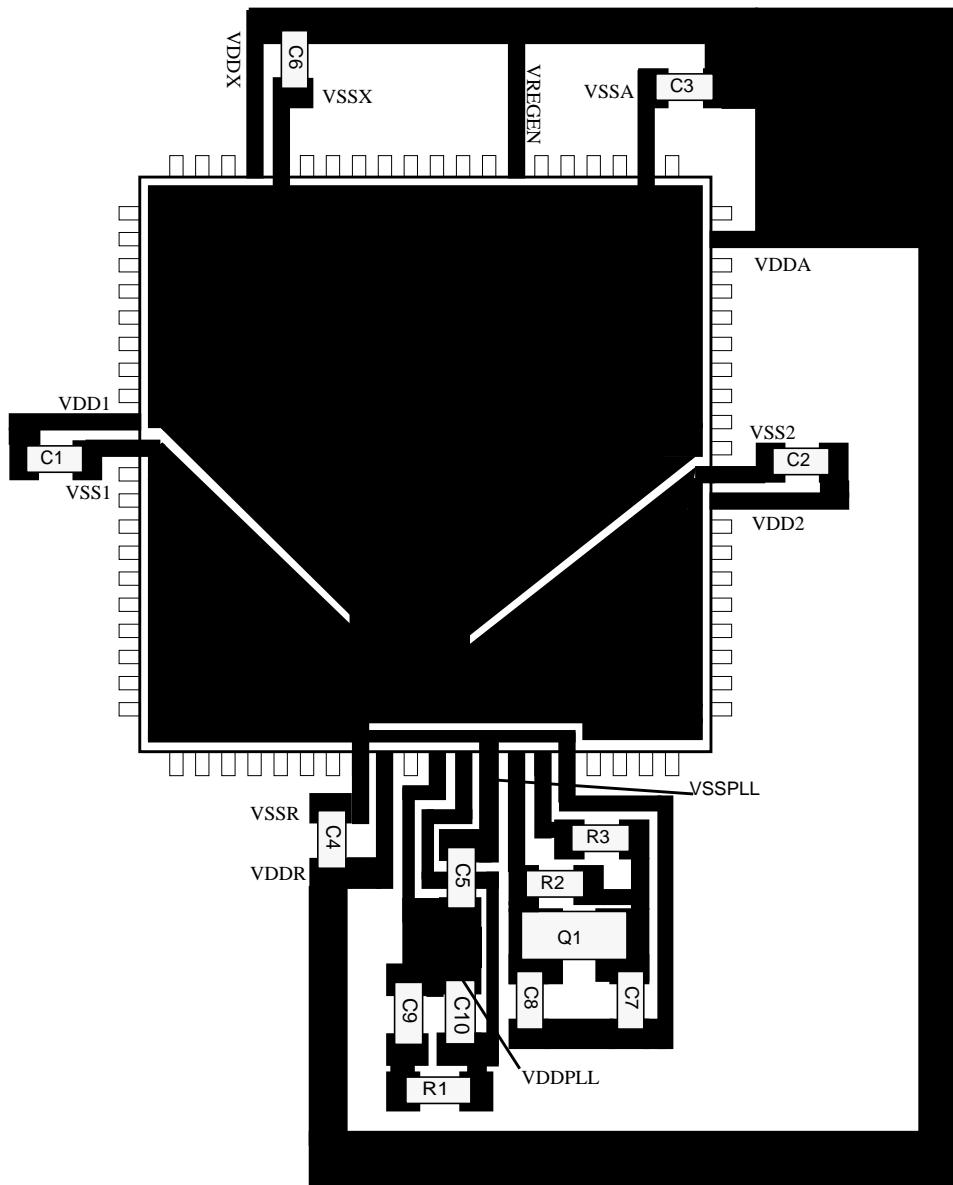



Figure 22-4 Recommended PCB Layout for 80QFP Pierce Oscillator

Appendix A Electrical Characteristics

A.1 General

This introduction is intended to give an overview on several common topics like power supply, current injection etc.

A.1.1 Parameter Classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate.

NOTE: *This classification is shown in the column labeled “C” in the parameter tables where appropriate.*

P:

Those parameters are guaranteed during production testing on each individual device.

C:

Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.

T:

Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.

D:

Those parameters are derived mainly from simulations.

A.1.2 Power Supply

The MC9S12DJ64 and MC9S12D32 utilize several pins to supply power to the I/O ports, A/D converter, oscillator, PLL and internal logic.

The VDDA, VSSA pair supplies the A/D converter and the resistor ladder of the internal voltage regulator.

The VDDX, VSSX, VDDR and VSSR pairs supply the I/O pins, VDDR supplies also the internal voltage regulator.

VDD1, VSS1, VDD2 and VSS2 are the supply pins for the digital logic, VDDPLL, VSSPLL supply the oscillator and the PLL.

VSS1 and VSS2 are internally connected by metal.

VDDA, VDDX, VDDR as well as VSSA, VSSX, VSSR are connected by anti-parallel diodes for ESD protection.

NOTE: *In the following context VDD5 is used for either VDDA, VDDR and VDDX; VSS5 is used for either VSSA, VSSR and VSSX unless otherwise noted.*

IDD5 denotes the sum of the currents flowing into the VDDA, VDDX and VDDR pins.

VDD is used for VDD1, VDD2 and VDDPLL, VSS is used for VSS1, VSS2 and VSSPLL.

IDD is used for the sum of the currents flowing into VDD1 and VDD2.

A.1.3 Pins

There are four groups of functional pins.

A.1.3.1 5V I/O pins

Those I/O pins have a nominal level of 5V. This class of pins is comprised of all port I/O pins, the analog inputs, BKGD and the RESET pins. The internal structure of all those pins is identical, however some of the functionality may be disabled. E.g. for the analog inputs the output drivers, pull-up and pull-down resistors are disabled permanently.

A.1.3.2 Analog Reference

This group is made up by the VRH and VRL pins.

A.1.3.3 Oscillator

The pins XFC, EXTAL, XTAL dedicated to the oscillator have a nominal 2.5V level. They are supplied by VDDPLL.

A.1.3.4 TEST

This pin is used for production testing only.

A.1.3.5 VREGEN

This pin is used to enable the on chip voltage regulator.

A.1.4 Current Injection

Power supply must maintain regulation within operating V_{DD5} or V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current ($V_{in} > V_{DD5}$) is greater than I_{DD5} , the injection current may flow out of $VDD5$ and could result in external power supply going out of regulation. Ensure external $VDD5$ load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power; e.g. if no system clock is present, or if clock rate is very low which would reduce overall power consumption.

A.1.5 Absolute Maximum Ratings

Absolute maximum ratings are stress ratings only. A functional operation under or outside those maxima is not guaranteed. Stress beyond those limits may affect the reliability or cause permanent damage of the device.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., either V_{SS5} or V_{DD5}).

Table A-1 Absolute Maximum Ratings¹

Num	Rating	Symbol	Min	Max	Unit
1	I/O, Regulator and Analog Supply Voltage	V_{DD5}	-0.3	6.0	V
2	Digital Logic Supply Voltage ²	V_{DD}	-0.3	3.0	V
3	PLL Supply Voltage ²	V_{DDPLL}	-0.3	3.0	V
4	Voltage difference VDDX to VDDR and VDDA	Δ_{VDDX}	-0.3	0.3	V
5	Voltage difference VSSX to VSSR and VSSA	Δ_{VSSX}	-0.3	0.3	V
6	Digital I/O Input Voltage	V_{IN}	-0.3	6.0	V
7	Analog Reference	V_{RH}, V_{RL}	-0.3	6.0	V
8	XFC, EXTAL, XTAL inputs	V_{ILV}	-0.3	3.0	V
9	TEST input	V_{TEST}	-0.3	10.0	V
10	Instantaneous Maximum Current Single pin limit for all digital I/O pins ³	I_D	-25	+25	mA
11	Instantaneous Maximum Current Single pin limit for XFC, EXTAL, XTAL ⁴	I_{DL}	-25	+25	mA
12	Instantaneous Maximum Current Single pin limit for TEST ⁵	I_{DT}	-0.25	0	mA
13	Storage Temperature Range	T_{stg}	-65	155	°C

NOTES:

1. Beyond absolute maximum ratings device might be damaged.
2. The device contains an internal voltage regulator to generate the logic and PLL supply out of the I/O supply. The absolute maximum ratings apply when the device is powered from an external source.
3. All digital I/O pins are internally clamped to V_{SSX} and V_{DDX} , V_{SSR} and V_{DDR} or V_{SSA} and V_{DDA} .
4. Those pins are internally clamped to V_{SSPLL} and V_{DDPLL} .
5. This pin is clamped low to V_{SSR} , but not clamped high. This pin must be tied low in applications.

A.1.6 ESD Protection and Latch-up Immunity

All ESD testing is in conformity with CDF-AEC-Q100 Stress test qualification for Automotive Grade Integrated Circuits. During the device qualification ESD stresses were performed for the Human Body Model (HBM), the Machine Model (MM) and the Charge Device Model.

A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Table A-2 ESD and Latch-up Test Conditions

Model	Description	Symbol	Value	Unit
Human Body	Series Resistance	R1	1500	Ohm
	Storage Capacitance	C	100	pF
	Number of Pulse per pin positive negative	-	- 1 1	
Machine	Series Resistance	R1	0	Ohm
	Storage Capacitance	C	200	pF
	Number of Pulse per pin positive negative	-	- 3 3	
Latch-up	Minimum input voltage limit		-2.5	V
	Maximum input voltage limit		7.5	V

Table A-3 ESD and Latch-Up Protection Characteristics

Num	C	Rating	Symbol	Min	Max	Unit
1	T	Human Body Model (HBM)	V_{HBM}	2000	-	V
2	T	Machine Model (MM)	V_{MM}	200	-	V
3	T	Charge Device Model (CDM)	V_{CDM}	500	-	V
4	T	Latch-up Current at $T_A = 125^\circ\text{C}$ positive negative	I_{LAT}	+100 -100	-	mA
5	T	Latch-up Current at $T_A = 27^\circ\text{C}$ positive negative	I_{LAT}	+200 -200	-	mA

A.1.7 Operating Conditions

This chapter describes the operating conditions of the device. Unless otherwise noted those conditions apply to all the following data.

NOTE: Please refer to the temperature rating of the device (*C*, *V*, *M*) with regards to the ambient temperature T_A and the junction temperature T_J . For power dissipation calculations refer to **Section A.1.8 Power Dissipation and Thermal Characteristics**.

Table A-4 Operating Conditions

Rating	Symbol	Min	Typ	Max	Unit
I/O, Regulator and Analog Supply Voltage	V_{DD5}	4.5	5	5.25	V
Digital Logic Supply Voltage ¹	V_{DD}	2.35	2.5	2.75	V
PLL Supply Voltage ¹	V_{DDPLL}	2.35	2.5	2.75	V
Voltage Difference VDDX to VDDR and VDDA	Δ_{VDDX}	-0.1	0	0.1	V
Voltage Difference VSSX to VSSR and VSSA	Δ_{VSSX}	-0.1	0	0.1	V
Oscillator	f_{osc}	0.5	-	16	MHz
Bus Frequency	f_{bus}	0.25 ²	-	25	MHz
MC9S12DJ64C					
Operating Junction Temperature Range	T_J	-40	-	100	°C
Operating Ambient Temperature Range ³	T_A	-40	27	85	°C
MC9S12DJ64V					
Operating Junction Temperature Range	T_J	-40	-	120	°C
Operating Ambient Temperature Range ³	T_A	-40	27	105	°C
MC9S12DJ64M					
Operating Junction Temperature Range	T_J	-40	-	140	°C
Operating Ambient Temperature Range ³	T_A	-40	27	125	°C

NOTES:

1. The device contains an internal voltage regulator to generate the logic and PLL supply out of the I/O supply. The given operating range applies when this regulator is disabled and the device is powered from an external source.
2. Some blocks e.g. ATD (conversion) and NVMs (program/erase) require higher bus frequencies for proper operation.
3. Please refer to **Section A.1.8 Power Dissipation and Thermal Characteristics** for more details about the relation between ambient temperature T_A and device junction temperature T_J .

A.1.8 Power Dissipation and Thermal Characteristics

Power dissipation and thermal characteristics are closely related. The user must assure that the maximum operating junction temperature is not exceeded. The average chip-junction temperature (T_J) in °C can be obtained from:

$$T_J = T_A + (P_D \cdot \Theta_{JA})$$

T_J = Junction Temperature, [°C]

T_A = Ambient Temperature, [°C]

P_D = Total Chip Power Dissipation, [W]

Θ_{JA} = Package Thermal Resistance, [°C/W]

The total power dissipation can be calculated from:

$$P_D = P_{INT} + P_{IO}$$

P_{INT} = Chip Internal Power Dissipation, [W]

Two cases with internal voltage regulator enabled and disabled must be considered:

1. Internal Voltage Regulator disabled

$$P_{INT} = I_{DD} \cdot V_{DD} + I_{DDPLL} \cdot V_{DDPLL} + I_{DDA} \cdot V_{DDA}$$

$$P_{IO} = \sum_i R_{DS0N} \cdot I_{IO_i}^2$$

P_{IO} is the sum of all output currents on I/O ports associated with VDDX and VDDR.

For R_{DS0N} is valid:

$$R_{DS0N} = \frac{V_{OL}}{I_{OL}}; \text{for outputs driven low}$$

respectively

$$R_{DS0N} = \frac{V_{DD5} - V_{OH}}{I_{OH}}; \text{for outputs driven high}$$

2. Internal voltage regulator enabled

$$P_{INT} = I_{DDR} \cdot V_{DDR} + I_{DDA} \cdot V_{DDA}$$

I_{DDR} is the current shown in **Table A-7** and not the overall current flowing into VDDR, which additionally contains the current flowing into the external loads with output high.

$$P_{IO} = \sum_i R_{DS0N} \cdot I_{IO_i}^2$$

P_{IO} is the sum of all output currents on I/O ports associated with VDDX and VDDR.

Table A-5 Thermal Package Characteristics¹

Num	C	Rating	Symbol	Min	Typ	Max	Unit
1	T	Thermal Resistance LQFP112, single sided PCB ²	θ_{JA}	—	—	54	°C/W
2	T	Thermal Resistance LQFP112, double sided PCB with 2 internal planes ³	θ_{JA}	—	—	41	°C/W
3	T	Junction to Board LQFP112	θ_{JB}	—	—	31	°C/W
4	T	Junction to Case LQFP112	θ_{JC}	—	—	11	°C/W
5	T	Junction to Package Top LQFP112	Ψ_{JT}	—	—	2	°C/W
6	T	Thermal Resistance QFP 80, single sided PCB	θ_{JA}	—	—	51	°C/W
7	T	Thermal Resistance QFP 80, double sided PCB with 2 internal planes	θ_{JA}	—	—	41	°C/W
8	T	Junction to Board QFP80	θ_{JB}	—	—	27	°C/W
9	T	Junction to Case QFP80	θ_{JC}	—	—	14	°C/W
10	T	Junction to Package Top QFP80	Ψ_{JT}	—	—	3	°C/W

NOTES:

1. The values for thermal resistance are achieved by package simulations
2. PC Board according to EIA/JEDEC Standard 51-3
3. PC Board according to EIA/JEDEC Standard 51-7

A.1.9 I/O Characteristics

This section describes the characteristics of all 5V I/O pins. All parameters are not always applicable, e.g. not all pins feature pull up/down resistances.

Table A-6 5V I/O Characteristics

Conditions are shown in Table A-4 unless otherwise noted							
Num	C	Rating	Symbol	Min	Typ	Max	Unit
1	P	Input High Voltage	V_{IH}	$0.65*V_{DD5}$	-	$V_{DD5} + 0.3$	V
2	P	Input Low Voltage	V_{IL}	$V_{SS5} - 0.3$	-	$0.35*V_{DD5}$	V
3	C	Input Hysteresis	V_{HYS}		250		mV
4	P	Input Leakage Current (pins in high impedance input mode) $V_{in} = V_{DD5}$ or V_{SS5}	I_{in}	-1	-	1	μA
5	P	Output High Voltage (pins in output mode) Partial Drive $I_{OH} = -2mA$ Full Drive $I_{OH} = -10mA$	V_{OH}	$V_{DD5} - 0.8$	-	-	V
6	P	Output Low Voltage (pins in output mode) Partial Drive $I_{OL} = +2mA$ Full Drive $I_{OL} = +10mA$	V_{OL}	-	-	0.8	V
7	P	Internal Pull Up Device Current, tested at V_{IL} Max.	I_{PUL}	-	-	-130	μA
8	C	Internal Pull Up Device Current, tested at V_{IH} Min.	I_{PUH}	-10	-	-	μA
9	P	Internal Pull Down Device Current, tested at V_{IH} Min.	I_{PDH}	-	-	130	μA
10	C	Internal Pull Down Device Current, tested at V_{IL} Max.	I_{PDL}	10	-	-	μA
11	D	Input Capacitance	C_{in}		6	-	pF
12	T	Injection current ¹ Single Pin limit Total Device Limit. Sum of all injected currents	I_{ICS} I_{ICP}	-2.5 -25	-	2.5 25	mA
13	P	Port H, J, P Interrupt Input Pulse filtered ²	t_{pign}			3	μs
14	P	Port H, J, P Interrupt Input Pulse passed ²	t_{pval}	10			μs

NOTES:

1. Refer to **Section A.1.4 Current Injection**, for more details
2. Parameter only applies in STOP or Pseudo STOP mode.

A.1.10 Supply Currents

This section describes the current consumption characteristics of the device as well as the conditions for the measurements.

A.1.10.1 Measurement Conditions

All measurements are without output loads. Unless otherwise noted the currents are measured in single chip mode, internal voltage regulator enabled and at 25MHz bus frequency using a 4MHz oscillator in Colpitts mode. Production testing is performed using a square wave signal at the EXTAL input.

A.1.10.2 Additional Remarks

In expanded modes the currents flowing in the system are highly dependent on the load at the address, data and control signals as well as on the duty cycle of those signals. No generally applicable numbers can be given. A very good estimate is to take the single chip currents and add the currents due to the external loads.

Table A-7 Supply Current Characteristics

Conditions are shown in Table A-4 unless otherwise noted							
Num	C	Rating	Symbol	Min	Typ	Max	Unit
1	P	Run supply currents Single Chip, Internal regulator enabled	I_{DD5}			50	mA
2	P P	Wait Supply current All modules enabled, PLL on only RTI enabled ¹	I_{DDW}			30 5	mA
3	C P C C P C P C P	Pseudo Stop Current (RTI and COP disabled) ^{1, 2} -40°C 27°C 70°C 85°C "C" Temp Option 100°C 105°C "V" Temp Option 120°C 125°C "M" Temp Option 140°C	I_{DDPS}	370 400 450 550 600 650 800 850 1200	500 1600 2100 5000		µA
4	C C C C C C C	Pseudo Stop Current (RTI and COP enabled) ^{1, 2} -40°C 27°C 70°C 85°C 105°C 125°C 140°C	I_{DDPS}	570 600 650 750 850 1200 1500			µA
5	C P C C P C P C P	Stop Current ² -40°C 27°C 70°C 85°C "C" Temp Option 100°C 105°C "V" Temp Option 120°C 125°C "M" Temp Option 140°C	I_{DDS}	12 25 100 130 160 200 350 400 600	100 1200 1700 5000		µA

NOTES:

1. PLL off
2. At those low power dissipation levels $T_J = T_A$ can be assumed

A.2 ATD Characteristics

This section describes the characteristics of the analog to digital converter.

A.2.1 ATD Operating Characteristics

The **Table A-8** shows conditions under which the ATD operates.

The following constraints exist to obtain full-scale, full range results:

$V_{SSA} \leq V_{RL} \leq V_{IN} \leq V_{RH} \leq V_{DDA}$. This constraint exists since the sample buffer amplifier can not drive beyond the power supply levels that it ties to. If the input level goes outside of this range it will effectively be clipped.

Table A-8 ATD Operating Characteristics

Conditions are shown in Table A-4 unless otherwise noted							
Num	C	Rating	Symbol	Min	Typ	Max	Unit
1	D	Reference Potential	V_{RL} V_{RH}	V_{SSA} $V_{DDA}/2$		$V_{DDA}/2$ V_{DDA}	V V
2	C	Differential Reference Voltage ¹	$V_{RH}-V_{RL}$	4.50	5.00	5.25	V
3	D	ATD Clock Frequency	f_{ATDCLK}	0.5		2.0	MHz
4	D	ATD 10-Bit Conversion Period	N_{CONV10} T_{CONV10}	14 7		28 14	Cycles μ s
5	D	ATD 8-Bit Conversion Period	N_{CONV8} T_{CONV8}	12 6		26 13	Cycles μ s
6	D	Recovery Time ($V_{DDA}=5.0$ Volts)	t_{REC}			20	μ s
7	P	Reference Supply current 2 ATD blocks on	I_{REF}			0.750	mA
8	P	Reference Supply current 1 ATD block on	I_{REF}			0.375	mA

NOTES:

1. Full accuracy is not guaranteed when differential voltage is less than 4.50V
2. The minimum time assumes a final sample period of 2 ATD clock cycles while the maximum time assumes a final sample period of 16 ATD clocks.

A.2.2 Factors influencing accuracy

Three factors - source resistance, source capacitance and current injection - have an influence on the accuracy of the ATD.

A.2.2.1 Source Resistance:

Due to the input pin leakage current as specified in **Table A-6** in conjunction with the source resistance there will be a voltage drop from the signal source to the ATD input. The maximum source resistance R_S

specifies results in an error of less than 1/2 LSB (2.5mV) at the maximum leakage current. If device or operating conditions are less than worst case or leakage-induced error is acceptable, larger values of source resistance is allowed.

A.2.2.2 Source Capacitance

When sampling an additional internal capacitor is switched to the input. This can cause a voltage drop due to charge sharing with the external and the pin capacitance. For a maximum sampling error of the input voltage $\leq 1\text{LSB}$, then the external filter capacitor, $C_f \geq 1024 * (C_{\text{INS}} - C_{\text{INN}})$.

A.2.2.3 Current Injection

There are two cases to consider.

1. A current is injected into the channel being converted. The channel being stressed has conversion values of \$3FF (\$FF in 8-bit mode) for analog inputs greater than V_{RH} and \$000 for values less than V_{RL} unless the current is higher than specified as disruptive condition.
2. Current is injected into pins in the neighborhood of the channel being converted. A portion of this current is picked up by the channel (coupling ratio K). This additional current impacts the accuracy of the conversion depending on the source resistance.

The additional input voltage error on the converted channel can be calculated as $V_{\text{ERR}} = K * R_s * I_{\text{INJ}}$, with I_{INJ} being the sum of the currents injected into the two pins adjacent to the converted channel.

Table A-9 ATD Electrical Characteristics

Conditions are shown in Table A-4 unless otherwise noted							
Num	C	Rating	Symbol	Min	Typ	Max	Unit
1	C	Max input Source Resistance	R_s	-	-	1	$\text{K}\Omega$
2	T	Total Input Capacitance Non Sampling Sampling	C_{INN} C_{INS}			10 22	pF
3	C	Disruptive Analog Input Current	I_{NA}	-2.5		2.5	mA
4	C	Coupling Ratio positive current injection	K_p			10^{-4}	A/A
5	C	Coupling Ratio negative current injection	K_n			10^{-2}	A/A

A.2.3 ATD accuracy

Table A-10 specifies the ATD conversion performance excluding any errors due to current injection, input capacitance and source resistance.

Table A-10 ATD Conversion Performance

Conditions are shown in Table A-4 unless otherwise noted $V_{REF} = V_{RH} - V_{RL} = 5.12V$. Resulting to one 8 bit count = 20mV and one 10 bit count = 5mV $f_{ATDCLK} = 2.0MHz$							
Num	C	Rating	Symbol	Min	Typ	Max	Unit
1	P	10-Bit Resolution	LSB		5		mV
2	P	10-Bit Differential Nonlinearity	DNL	-1		1	Counts
3	P	10-Bit Integral Nonlinearity	INL	-2.5	± 1.5	2.5	Counts
4	P	10-Bit Absolute Error ¹	AE	-3	± 2.0	3	Counts
5	P	8-Bit Resolution	LSB		20		mV
6	P	8-Bit Differential Nonlinearity	DNL	-0.5		0.5	Counts
7	P	8-Bit Integral Nonlinearity	INL	-1.0	± 0.5	1.0	Counts
8	P	8-Bit Absolute Error ¹	AE	-1.5	± 1.0	1.5	Counts

NOTES:

1. These values include the quantization error which is inherently 1/2 count for any A/D converter.

For the following definitions see also **Figure A-1**.

Differential Non-Linearity (DNL) is defined as the difference between two adjacent switching steps.

$$DNL(i) = \frac{V_i - V_{i-1}}{1LSB} - 1$$

The Integral Non-Linearity (INL) is defined as the sum of all DNLs:

$$INL(n) = \sum_{i=1}^n DNL(i) = \frac{V_n - V_0}{1LSB} - n$$

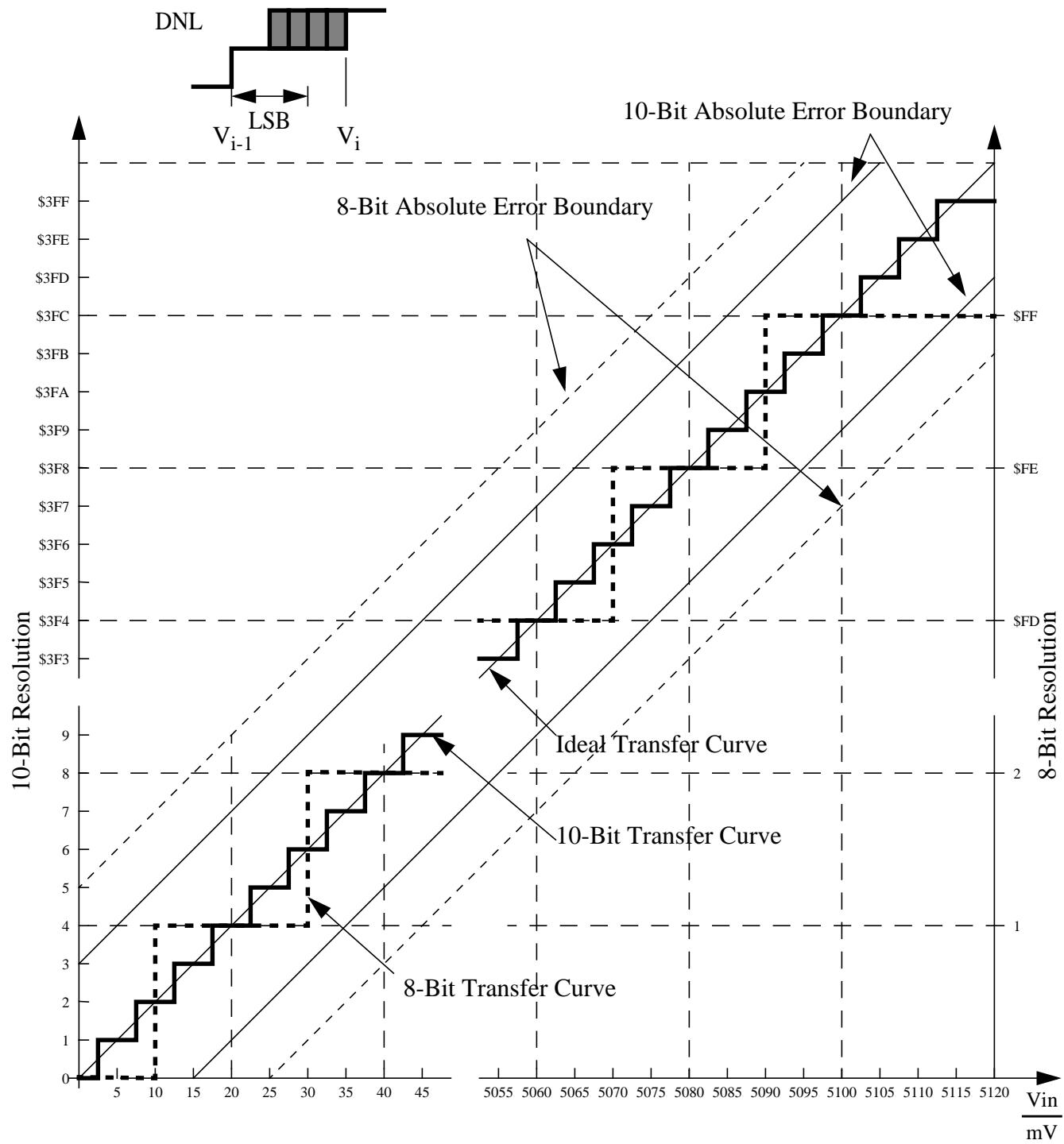


Figure A-1 ATD Accuracy Definitions

NOTE: *Figure A-1* shows only definitions, for specification values refer to **Table A-10**.

A.3 NVM, Flash and EEPROM

NOTE: Unless otherwise noted the abbreviation NVM (Non Volatile Memory) is used for both Flash and EEPROM.

A.3.1 NVM timing

The time base for all NVM program or erase operations is derived from the oscillator. A minimum oscillator frequency f_{NVMOSC} is required for performing program or erase operations. The NVM modules do not have any means to monitor the frequency and will not prevent program or erase operation at frequencies above or below the specified minimum. Attempting to program or erase the NVM modules at a lower frequency a full program or erase transition is not assured.

The Flash and EEPROM program and erase operations are timed using a clock derived from the oscillator using the FCLKDIV and ECLKDIV registers respectively. The frequency of this clock must be set within the limits specified as f_{NVMOP} .

The minimum program and erase times shown in **Table A-11** are calculated for maximum f_{NVMOP} and maximum f_{bus} . The maximum times are calculated for minimum f_{NVMOP} and a f_{bus} of 2MHz.

A.3.1.1 Single Word Programming

The programming time for single word programming is dependant on the bus frequency as a well as on the frequency f_{NVMOP} and can be calculated according to the following formula.

$$t_{swpgm} = 9 \cdot \frac{1}{f_{NVMOP}} + 25 \cdot \frac{1}{f_{bus}}$$

A.3.1.2 Row Programming

This applies only to the Flash where up to 32 words in a row can be programmed consecutively by keeping the command pipeline filled. The time to program a consecutive word can be calculated as:

$$t_{bwpgm} = 4 \cdot \frac{1}{f_{NVMOP}} + 9 \cdot \frac{1}{f_{bus}}$$

The time to program a whole row is:

$$t_{brpgm} = t_{swpgm} + 31 \cdot t_{bwpgm}$$

Row programming is more than 2 times faster than single word programming.

A.3.1.3 Sector Erase

Erasing a 512 byte Flash sector or a 4 byte EEPROM sector takes:

$$t_{era} \approx 4000 \cdot \frac{1}{f_{NVMOP}}$$

The setup time can be ignored for this operation.

A.3.1.4 Mass Erase

Erasing a NVM block takes:

$$t_{mass} \approx 20000 \cdot \frac{1}{f_{NVMOP}}$$

The setup time can be ignored for this operation.

A.3.1.5 Blank Check

The time it takes to perform a blank check on the Flash or EEPROM is dependant on the location of the first non-blank word starting at relative address zero. It takes one bus cycle per word to verify plus a setup of the command.

$$t_{check} \approx \text{location} \cdot t_{cyc} + 10 \cdot t_{cyc}$$

Table A-11 NVM Timing Characteristics

Conditions are shown in Table A-4 unless otherwise noted							
Num	C	Rating	Symbol	Min	Typ	Max	Unit
1	D	External Oscillator Clock	f_{NVMOSC}	0.5		50 ¹	MHz
2	D	Bus frequency for Programming or Erase Operations	f_{NVMBUS}	1			MHz
3	D	Operating Frequency	f_{NVMOP}	150		200	kHz
4	P	Single Word Programming Time	t_{swpgm}	46 ²		74.5 ³	μs
5	D	Flash Burst Programming consecutive word ⁴	t_{bwpgm}	20.4 ²		31 ³	μs
6	D	Flash Burst Programming Time for 32 Words ⁴	t_{brpgm}	678.4 ²		1035.5 ³	μs
7	P	Sector Erase Time	t_{era}	20 ⁵		26.7 ³	ms
8	P	Mass Erase Time	t_{mass}	100 ⁵		133 ³	ms
9	D	Blank Check Time Flash per block	t_{check}	11 ⁶		32778 ⁷	t_{cyc}
10	D	Blank Check Time EEPROM per block	t_{check}	11 ⁶		2058 ⁷	t_{cyc}

NOTES:

1. Restrictions for oscillator in crystal mode apply!
2. Minimum Programming times are achieved under maximum NVM operating frequency f_{NVMOP} and maximum bus frequency f_{bus} .
3. Maximum Erase and Programming times are achieved under particular combinations of f_{NVMOP} and bus frequency f_{bus} . Refer to formulae in Sections A.3.1.1 - A.3.1.4 for guidance.
4. Burst Programming operations are not applicable to EEPROM
5. Minimum Erase times are achieved under maximum NVM operating frequency f_{NVMOP} .
6. Minimum time, if first word in the array is not blank
7. Maximum time to complete check on an erased block

A.3.2 NVM Reliability

The reliability of the NVM blocks is guaranteed by stress test during qualification, constant process monitors and burn-in to screen early life failures.

The failure rates for data retention and program/erase cycling are specified at the operating conditions noted.

The program/erase cycle count on the sector is incremented every time a sector or mass erase event is executed.

Table A-12 NVM Reliability Characteristics

Conditions are shown in Table A-4 unless otherwise noted							
Num	C	Rating	Symbol	Min	Typ	Max	Unit
1	C	Data Retention at an average junction temperature of $T_{Javg} = 85^{\circ}C^1$	t_{NVMRET}	15			Years
2	C	Flash number of Program/Erase cycles	n_{FLPE}	10,000			Cycles
3	C	EEPROM number of Program/Erase cycles ($-40^{\circ}C \leq T_J \leq 0^{\circ}C$)	n_{EEPE}	10,000			Cycles
4	C	EEPROM number of Program/Erase cycles ($0^{\circ}C < T_J \leq 140^{\circ}C$)	n_{EEPE}	100,000			Cycles

NOTES:

1. Total time at the maximum guaranteed device operating temperature ≤ 1 year

A.4 Voltage Regulator

The on-chip voltage regulator is intended to supply the internal logic and oscillator circuits. No external DC load is allowed.

Table A-13 Voltage Regulator Recommended Load Capacitances

Rating	Symbol	Min	Typ	Max	Unit
Load Capacitance on VDD1, 2	C_{LVDD}		220		nF
Load Capacitance on VDDPLL	$C_{LVDDfcPLL}$		220		nF

A.5 Reset, Oscillator and PLL

This section summarizes the electrical characteristics of the various startup scenarios for Oscillator and Phase-Locked-Loop (PLL).

A.5.1 Startup

Table A-14 summarizes several startup characteristics explained in this section. Detailed description of the startup behavior can be found in the Clock and Reset Generator (CRG) Block User Guide.

Table A-14 Startup Characteristics

Conditions are shown in Table A-4 unless otherwise noted							
Num	C	Rating	Symbol	Min	Typ	Max	Unit
1	T	POR release level	V_{PORR}			2.07	V
2	T	POR assert level	V_{PORA}	0.97			V
3	D	Reset input pulse width, minimum input time	PW_{RSTL}	2			t_{osc}
4	D	Startup from Reset	n_{RST}	192		196	n_{osc}
5	D	Interrupt pulse width, IRQ edge-sensitive mode	PW_{IRQ}	20			ns
6	D	Wait recovery startup time	t_{WRS}			14	t_{cyc}

A.5.1.1 POR

The release level V_{PORR} and the assert level V_{PORA} are derived from the V_{DD} Supply. They are also valid if the device is powered externally. After releasing the POR reset the oscillator and the clock quality check are started. If after a time t_{CQOUT} no valid oscillation is detected, the MCU will start using the internal self clock. The fastest startup time possible is given by n_{uposc} .

A.5.1.2 SRAM Data Retention

Provided an appropriate external reset signal is applied to the MCU, preventing the CPU from executing code when $VDD5$ is out of specification limits, the SRAM contents integrity is guaranteed if after the reset the PORF bit in the CRG Flags Register has not been set.

A.5.1.3 External Reset

When external reset is asserted for a time greater than PW_{RSTL} the CRG module generates an internal reset, and the CPU starts fetching the reset vector without doing a clock quality check, if there was an oscillation before reset.

A.5.1.4 Stop Recovery

Out of STOP the controller can be woken up by an external interrupt. A clock quality check as after POR is performed before releasing the clocks to the system.

A.5.1.5 Pseudo Stop and Wait Recovery

The recovery from Pseudo STOP and Wait are essentially the same since the oscillator was not stopped in both modes. The controller can be woken up by internal or external interrupts. After t_{wrs} the CPU starts fetching the interrupt vector.

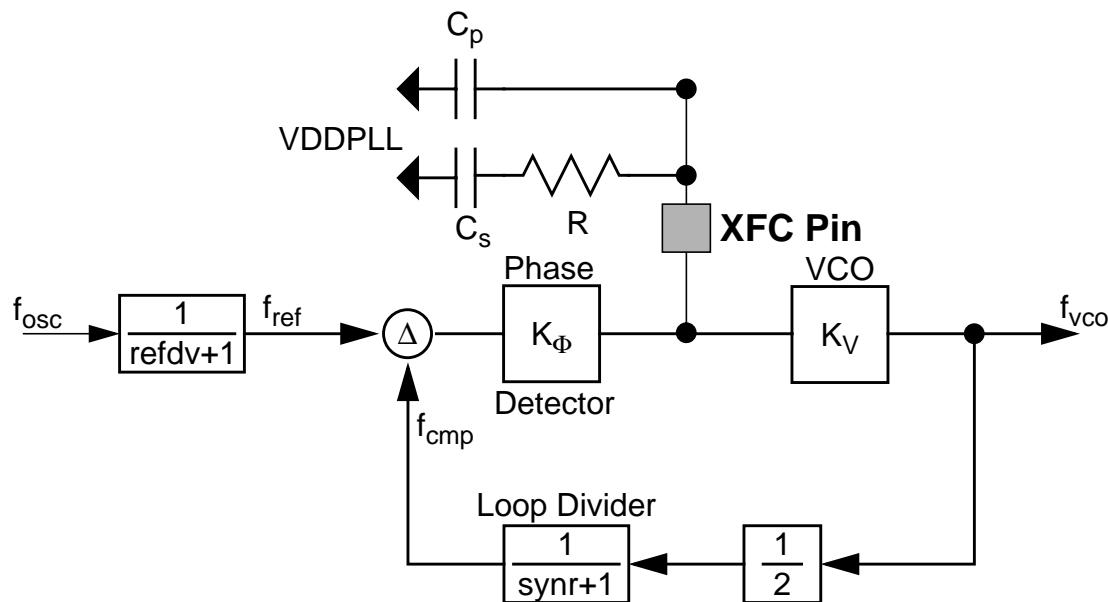
A.5.2 Oscillator

The device features an internal Colpitts and Pierce oscillator. The selection of Colpitts oscillator or Pierce oscillator/external clock depends on the \overline{XCLKS} signal which is sampled during reset. Pierce oscillator/external clock mode allows the input of a square wave. Before asserting the oscillator to the internal system clocks the quality of the oscillation is checked for each start from either power-on, STOP or oscillator fail. t_{CQOUT} specifies the maximum time before switching to the internal self clock mode after POR or STOP if a proper oscillation is not detected. The quality check also determines the minimum oscillator start-up time t_{UPOSC} . The device also features a clock monitor. A Clock Monitor Failure is asserted if the frequency of the incoming clock signal is below the Assert Frequency f_{CMFA} .

Table A-15 Oscillator Characteristics

Conditions are shown in Table A-4 unless otherwise noted							
Num	C	Rating	Symbol	Min	Typ	Max	Unit
1a	C	Crystal oscillator range (Colpitts)	f_{OSC}	0.5		16	MHz
1b	C	Crystal oscillator range (Pierce) ¹	f_{OSC}	0.5		40	MHz
2	P	Startup Current	i_{OSC}	100			μA
3	C	Oscillator start-up time (Colpitts)	t_{UPOSC}		8^2	100^3	ms
4	D	Clock Quality check time-out	t_{CQOUT}	0.45		2.5	s
5	P	Clock Monitor Failure Assert Frequency	f_{CMFA}	50	100	200	KHz
6	P	External square wave input frequency ⁴	f_{EXT}	0.5		50	MHz
7	D	External square wave pulse width low	t_{EXTL}	9.5			ns
8	D	External square wave pulse width high	t_{EXTH}	9.5			ns
9	D	External square wave rise time	t_{EXTR}			1	ns
10	D	External square wave fall time	t_{EXTF}			1	ns
11	D	Input Capacitance (EXTAL, XTAL pins)	C_{IN}		7		pF
12	C	DC Operating Bias in Colpitts Configuration on EXTAL Pin	V_{DCBIAS}		1.1		V
13	P	EXTAL Pin Input High Voltage ⁴	$V_{IH,EXTAL}$	0.75^*V_{DDPLL}			V
	T	EXTAL Pin Input High Voltage ⁴	$V_{IH,EXTAL}$			$V_{DDPLL} + 0.3$	V
14	P	EXTAL Pin Input Low Voltage ⁴	$V_{IL,EXTAL}$			0.25^*V_{DDPLL}	V
	T	EXTAL Pin Input Low Voltage ⁴	$V_{IL,EXTAL}$	$V_{DDPLL} - 0.3$			V
15	C	EXTAL Pin Input Hysteresis ⁴	$V_{HYS,EXTAL}$		250		mV

NOTES:


1. Depending on the crystal a damping series resistor might be necessary
2. $f_{osc} = 4\text{MHz}$, $C = 22\text{pF}$.
3. Maximum value is for extreme cases using high Q, low frequency crystals
4. Only valid if Pierce oscillator/external clock mode is selected

A.5.3 Phase Locked Loop

The oscillator provides the reference clock for the PLL. The PLL's Voltage Controlled Oscillator (VCO) is also the system clock source in self clock mode.

A.5.3.1 XFC Component Selection

This section describes the selection of the XFC components to achieve a good filter characteristics.

Figure A-2 Basic PLL functional diagram

The following procedure can be used to calculate the resistance and capacitance values using typical values for K_1 , f_1 and i_{ch} from **Table A-16**.

The grey boxes show the calculation for $f_{VCO} = 50\text{MHz}$ and $f_{ref} = 1\text{MHz}$. E.g., these frequencies are used for $f_{osc} = 4\text{MHz}$ and a 25MHz bus clock.

The VCO Gain at the desired VCO frequency is approximated by:

$$K_V = K_1 \cdot e^{\frac{(f_1 - f_{VCO})}{K_1 \cdot 1V}} = -100 \cdot e^{\frac{(60 - 50)}{-100}} = -90.48\text{MHz/V}$$

The phase detector relationship is given by:

$$K_{\Phi} = -|i_{ch}| \cdot K_V = 316.7 \text{Hz}/\Omega$$

i_{ch} is the current in tracking mode.

The loop bandwidth f_C should be chosen to fulfill the Gardner's stability criteria by at least a factor of 10, typical values are 50. $\zeta = 0.9$ ensures a good transient response.

$$f_C < \frac{2 \cdot \zeta \cdot f_{ref}}{\pi \cdot (\zeta + \sqrt{1 + \zeta^2})} \cdot \frac{1}{10} \rightarrow f_C < \frac{f_{ref}}{4 \cdot 10}; (\zeta = 0.9)$$

$$f_C < 25 \text{kHz}$$

And finally the frequency relationship is defined as

$$n = \frac{f_{VCO}}{f_{ref}} = 2 \cdot (\text{synr} + 1) = 50$$

With the above values the resistance can be calculated. The example is shown for a loop bandwidth $f_C = 10 \text{kHz}$:

$$R = \frac{2 \cdot \pi \cdot n \cdot f_C}{K_{\Phi}} = 2 \cdot \pi \cdot 50 \cdot 10 \text{kHz} / (316.7 \text{Hz}/\Omega) = 9.9 \text{k}\Omega \approx 10 \text{k}\Omega$$

The capacitance C_s can now be calculated as:


$$C_s = \frac{2 \cdot \zeta^2}{\pi \cdot f_C \cdot R} \approx \frac{0.516}{f_C \cdot R}; (\zeta = 0.9) = 5.19 \text{nF} \approx 4.7 \text{nF}$$

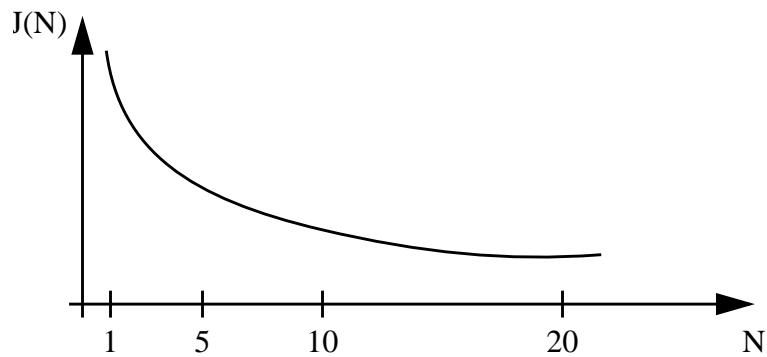
The capacitance C_p should be chosen in the range of:

$$C_s / 20 \leq C_p \leq C_s / 10 \quad C_p = 470 \text{pF}$$

A.5.3.2 Jitter Information

The basic functionality of the PLL is shown in **Figure A-2**. With each transition of the clock f_{cmp} , the deviation from the reference clock f_{ref} is measured and input voltage to the VCO is adjusted accordingly. The adjustment is done continuously with no abrupt changes in the clock output frequency. Noise, voltage, temperature and other factors cause slight variations in the control loop resulting in a clock jitter. This jitter affects the real minimum and maximum clock periods as illustrated in **Figure A-3**.

Figure A-3 Jitter Definitions


The relative deviation of t_{nom} is at its maximum for one clock period, and decreases towards zero for larger number of clock periods (N).

Defining the jitter as:

$$J(N) = \max\left(\left|1 - \frac{t_{\max}(N)}{N \cdot t_{\text{nom}}}\right|, \left|1 - \frac{t_{\min}(N)}{N \cdot t_{\text{nom}}}\right|\right)$$

For $N < 100$, the following equation is a good fit for the maximum jitter:

$$J(N) = \frac{j_1}{\sqrt{N}} + j_2$$

Figure A-4 Maximum bus clock jitter approximation

This is very important to notice with respect to timers, serial modules where a pre-scaler will eliminate the effect of the jitter to a large extent.

Table A-16 PLL Characteristics

Conditions are shown in Table A-4 unless otherwise noted							
Num	C	Rating	Symbol	Min	Typ	Max	Unit
1	P	Self Clock Mode frequency	f_{SCM}	1		5.5	MHz
2	D	VCO locking range	f_{VCO}	8		50	MHz
3	D	Lock Detector transition from Acquisition to Tracking mode	$ \Delta_{trk} $	3		4	% ¹
4	D	Lock Detection	$ \Delta_{Lock} $	0		1.5	% ¹
5	D	Un-Lock Detection	$ \Delta_{unl} $	0.5		2.5	% ¹
6	D	Lock Detector transition from Tracking to Acquisition mode	$ \Delta_{unl} $	6		8	% ¹
7	C	PLLON Total Stabilization delay (Auto Mode) ²	t_{stab}		0.5		ms
8	D	PLLON Acquisition mode stabilization delay ²	t_{acq}		0.3		ms
9	D	PLLON Tracking mode stabilization delay ²	t_{al}		0.2		ms
10	D	Fitting parameter VCO loop gain	K_1		-100		MHz/V
11	D	Fitting parameter VCO loop frequency	f_1		60		MHz
12	D	Charge pump current acquisition mode	$ i_{ch} $		38.5		µA
13	D	Charge pump current tracking mode	$ i_{ch} $		3.5		µA
14	C	Jitter fit parameter 1 ²	j_1			1.1	%
15	C	Jitter fit parameter 2 ²	j_2			0.13	%

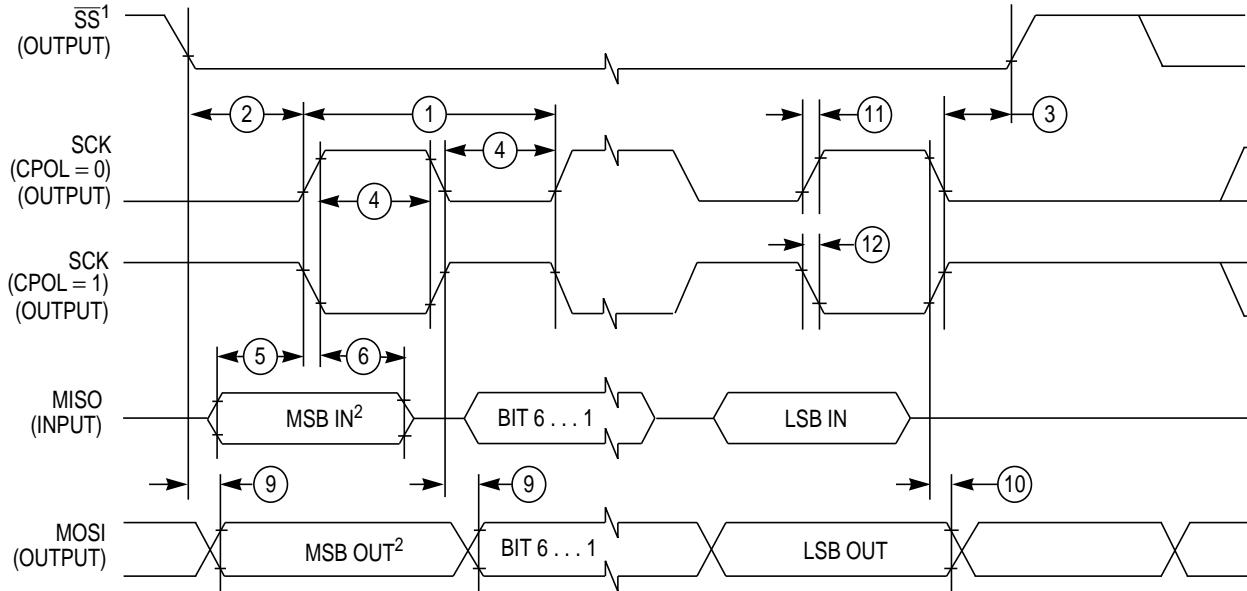
NOTES:

1. % deviation from target frequency

2. $f_{OSC} = 4\text{MHz}$, $f_{BUS} = 25\text{MHz}$ equivalent $f_{VCO} = 50\text{MHz}$: REFDV = #\$03, SYNR = #\$018, $C_s = 4.7\text{nF}$, $C_p = 470\text{pF}$, $R_s = 10\text{K}\Omega$.

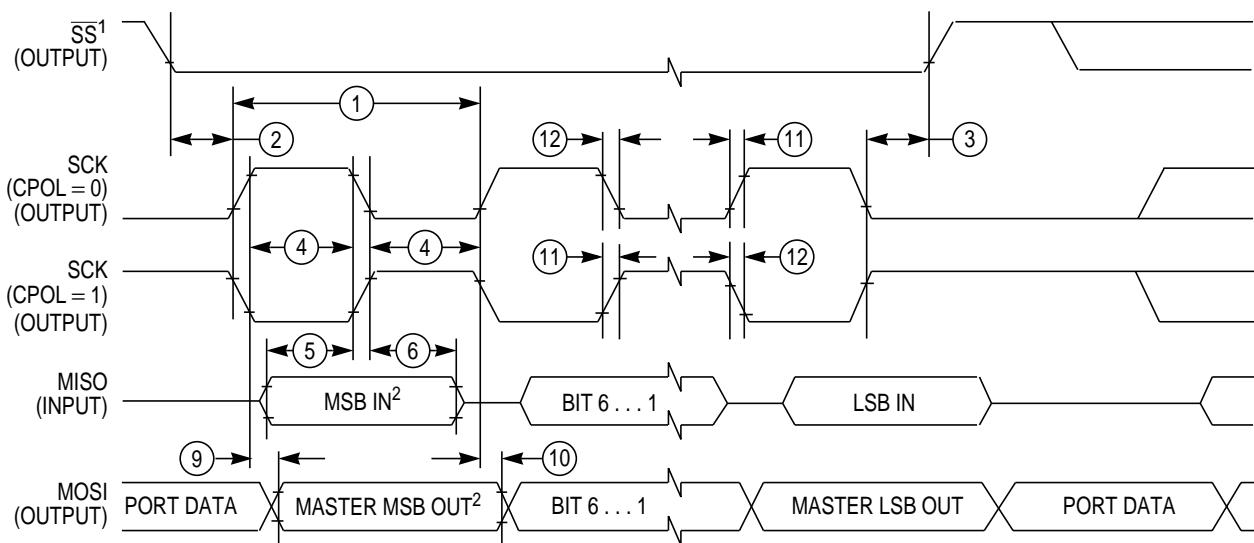
A.6 MSCAN

Table A-17 MSCAN Wake-up Pulse Characteristics


Conditions are shown in Table A-4 unless otherwise noted							
Num	C	Rating	Symbol	Min	Typ	Max	Unit
1	P	MSCAN Wake-up dominant pulse filtered	t_{WUP}			2	μs
2	P	MSCAN Wake-up dominant pulse pass	t_{WUP}	5			μs

A.7 SPI

A.7.1 Master Mode


Figure A-5 and Figure A-6 illustrate the master mode timing. Timing values are shown in Table A-18.

1. If configured as output.

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

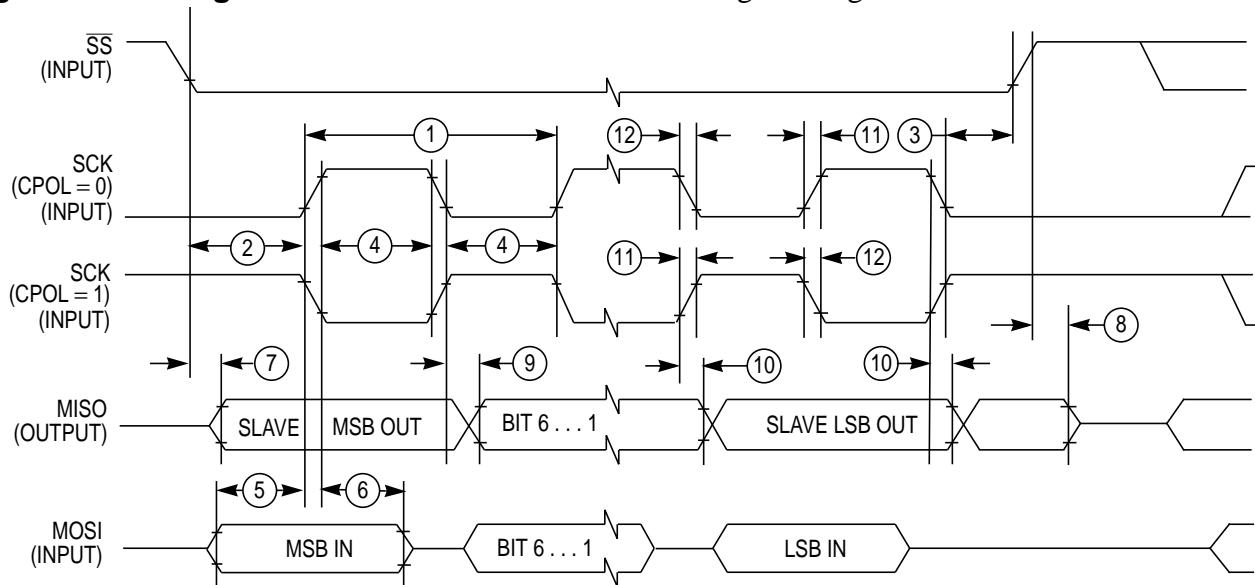
Figure A-5 SPI Master Timing (CPHA = 0)

1. If configured as output

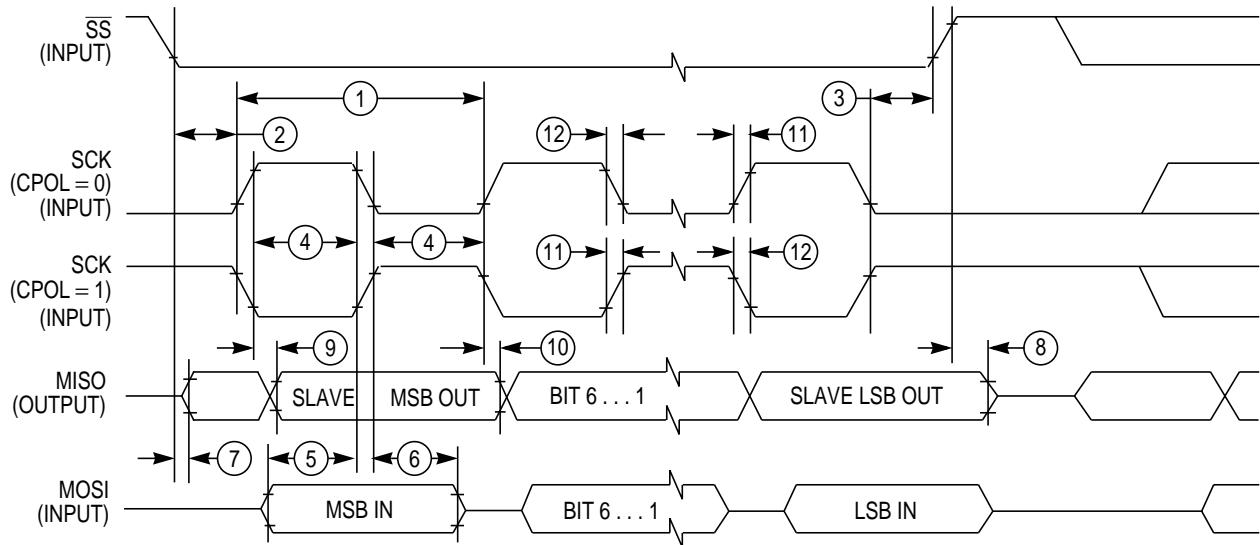
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure A-6 SPI Master Timing (CPHA =1)

Table A-18 SPI Master Mode Timing Characteristics¹


Conditions are shown in Table A-4 unless otherwise noted, $C_{LOAD} = 200\text{pF}$ on all outputs							
Num	C	Rating	Symbol	Min	Typ	Max	Unit
1	P	Operating Frequency	f_{op}	DC		1/2	f_{bus}
1	P	SCK Period $t_{sck} = 1/f_{op}$	t_{sck}	4		2048	t_{bus}
2	D	Enable Lead Time	t_{lead}	1/2		—	t_{sck}
3	D	Enable Lag Time	t_{lag}	1/2			t_{sck}
4	D	Clock (SCK) High or Low Time	t_{wsck}	$t_{bus} - 30$		1024 t_{bus}	ns
5	D	Data Setup Time (Inputs)	t_{su}	25			ns
6	D	Data Hold Time (Inputs)	t_{hi}	0			ns
9	D	Data Valid (after SCK Edge)	t_v			25	ns
10	D	Data Hold Time (Outputs)	t_{ho}	0			ns
11	D	Rise Time Inputs and Outputs	t_r			25	ns
12	D	Fall Time Inputs and Outputs	t_f			25	ns

NOTES:


1. The numbers 7, 8 in the column labeled "Num" are missing. This has been done on purpose to be consistent between the Master and the Slave timing shown in **Table A-19**.

A.7.2 Slave Mode

Figure A-7 and **Figure A-8** illustrate the slave mode timing. Timing values are shown in **Table A-19**.

Figure A-7 SPI Slave Timing (CPHA = 0)

Figure A-8 SPI Slave Timing (CPHA = 1)

Table A-19 SPI Slave Mode Timing Characteristics

Conditions are shown in Table A-4 unless otherwise noted, CLOAD = 200pF on all outputs							
Num	C	Rating	Symbol	Min	Typ	Max	Unit
1	P	Operating Frequency	f_{op}	DC		1/6	f_{bus}
1	P	SCK Period $t_{sck} = 1./f_{op}$	t_{sck}	4		2048	t_{bus}
2	D	Enable Lead Time	t_{lead}	1			t_{cyc}
3	D	Enable Lag Time	t_{lag}	1			t_{cyc}
4	D	Clock (SCK) High or Low Time	t_{wsck}	$t_{cyc} - 30$			ns
5	D	Data Setup Time (Inputs)	t_{su}	25			ns
6	D	Data Hold Time (Inputs)	t_{hi}	25			ns
7	D	Slave Access Time	t_a			1	t_{cyc}
8	D	Slave MISO Disable Time	t_{dis}			1	t_{cyc}
9	D	Data Valid (after SCK Edge)	t_v			25	ns
10	D	Data Hold Time (Outputs)	t_{ho}	0			ns
11	D	Rise Time Inputs and Outputs	t_r			25	ns
12	D	Fall Time Inputs and Outputs	t_f			25	ns

A.8 External Bus Timing

A timing diagram of the external multiplexed-bus is illustrated in **Figure A-9** with the actual timing values shown on table **Table A-20**. All major bus signals are included in the diagram. While both a data write and data read cycle are shown, only one or the other would occur on a particular bus cycle.

A.8.1 General Muxed Bus Timing

The expanded bus timings are highly dependent on the load conditions. The timing parameters shown assume a balanced load across all outputs.

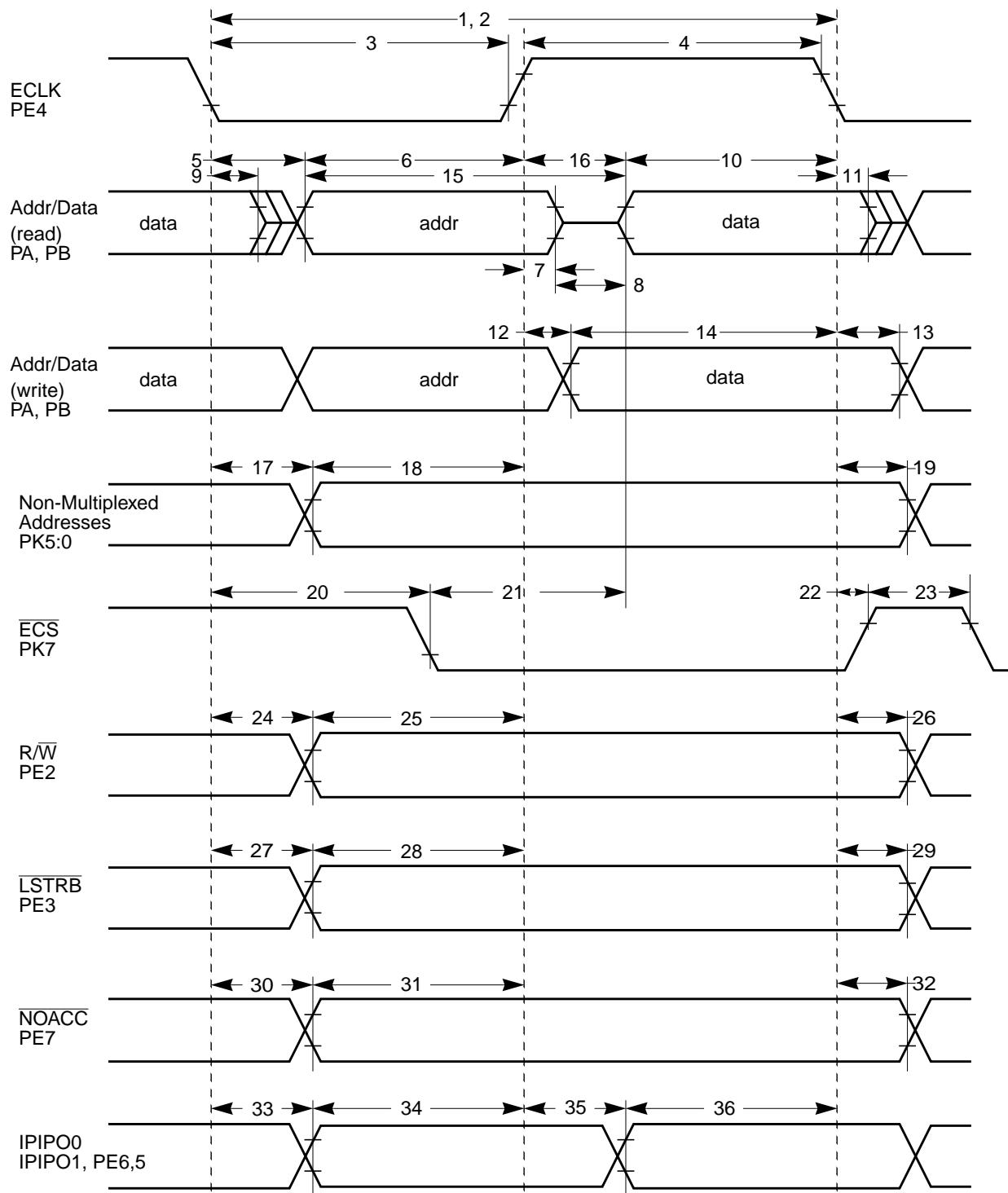


Figure A-9 General External Bus Timing

Table A-20 Expanded Bus Timing Characteristics

Conditions are shown in Table A-4 unless otherwise noted, $C_{LOAD} = 50\text{pF}$							
Num	C	Rating	Symbol	Min	Typ	Max	Unit
1	P	Frequency of operation (E-clock)	f_o	0		25.0	MHz
2	P	Cycle time	t_{cyc}	40			ns
3	D	Pulse width, E low	PW_{EL}	19			ns
4	D	Pulse width, E high ¹	PW_{EH}	19			ns
5	D	Address delay time	t_{AD}			8	ns
6	D	Address valid time to E rise ($PW_{EL}-t_{AD}$)	t_{AV}	11			ns
7	D	Muxed address hold time	t_{MAH}	2			ns
8	D	Address hold to data valid	t_{AHDS}	7			ns
9	D	Data hold to address	t_{DHA}	2			ns
10	D	Read data setup time	t_{DSR}	13			ns
11	D	Read data hold time	t_{DHR}	0			ns
12	D	Write data delay time	t_{DDW}			7	ns
13	D	Write data hold time	t_{DHW}	2			ns
14	D	Write data setup time ¹ ($PW_{EH}-t_{DDW}$)	t_{DSW}	12			ns
15	D	Address access time ¹ ($t_{cyc}-t_{AD}-t_{DSR}$)	t_{ACCA}	19			ns
16	D	E high access time ¹ ($PW_{EH}-t_{DSR}$)	t_{ACCE}	6			ns
17	D	Non-multiplexed address delay time	t_{NAD}			6	ns
18	D	Non-muxed address valid to E rise ($PW_{EL}-t_{NAD}$)	t_{NAV}	15			ns
19	D	Non-multiplexed address hold time	t_{NAH}	2			ns
20	D	Chip select delay time	t_{CSD}			16	ns
21	D	Chip select access time ¹ ($t_{cyc}-t_{CSD}-t_{DSR}$)	t_{ACCS}	11			ns
22	D	Chip select hold time	t_{CSH}	2			ns
23	D	Chip select negated time	t_{CSN}	8			ns
24	D	Read/write delay time	t_{RWD}			7	ns
25	D	Read/write valid time to E rise ($PW_{EL}-t_{RWD}$)	t_{RVV}	14			ns
26	D	Read/write hold time	t_{RWH}	2			ns
27	D	Low strobe delay time	t_{LSD}			7	ns
28	D	Low strobe valid time to E rise ($PW_{EL}-t_{LSD}$)	t_{LSV}	14			ns
29	D	Low strobe hold time	t_{LSH}	2			ns
30	D	NOACC strobe delay time	t_{NOD}			7	ns
31	D	NOACC valid time to E rise ($PW_{EL}-t_{NOD}$)	t_{NOV}	14			ns

Table A-20 Expanded Bus Timing Characteristics

Conditions are shown in Table A-4 unless otherwise noted, $C_{LOAD} = 50\text{pF}$							
Num	C	Rating	Symbol	Min	Typ	Max	Unit
32	D	NOACC hold time	t_{NOH}	2			ns
33	D	IPIPO[1:0] delay time	t_{P0D}	2		7	ns
34	D	IPIPO[1:0] valid time to E rise ($PW_{EL} - t_{P0D}$)	t_{P0V}	11			ns
35	D	IPIPO[1:0] delay time ¹ ($PW_{EH} - t_{P1V}$)	t_{P1D}	2		25	ns
36	D	IPIPO[1:0] valid time to E fall	t_{P1V}	11			ns

NOTES:

1. Affected by clock stretch: add $N \times t_{cyc}$ where $N=0,1,2$ or 3, depending on the number of clock stretches.

Appendix B Package Information

B.1 General

This section provides the physical dimensions of the MC9S12DJ64 and MC9S12D32 packages.

B.2 112-pin LQFP package

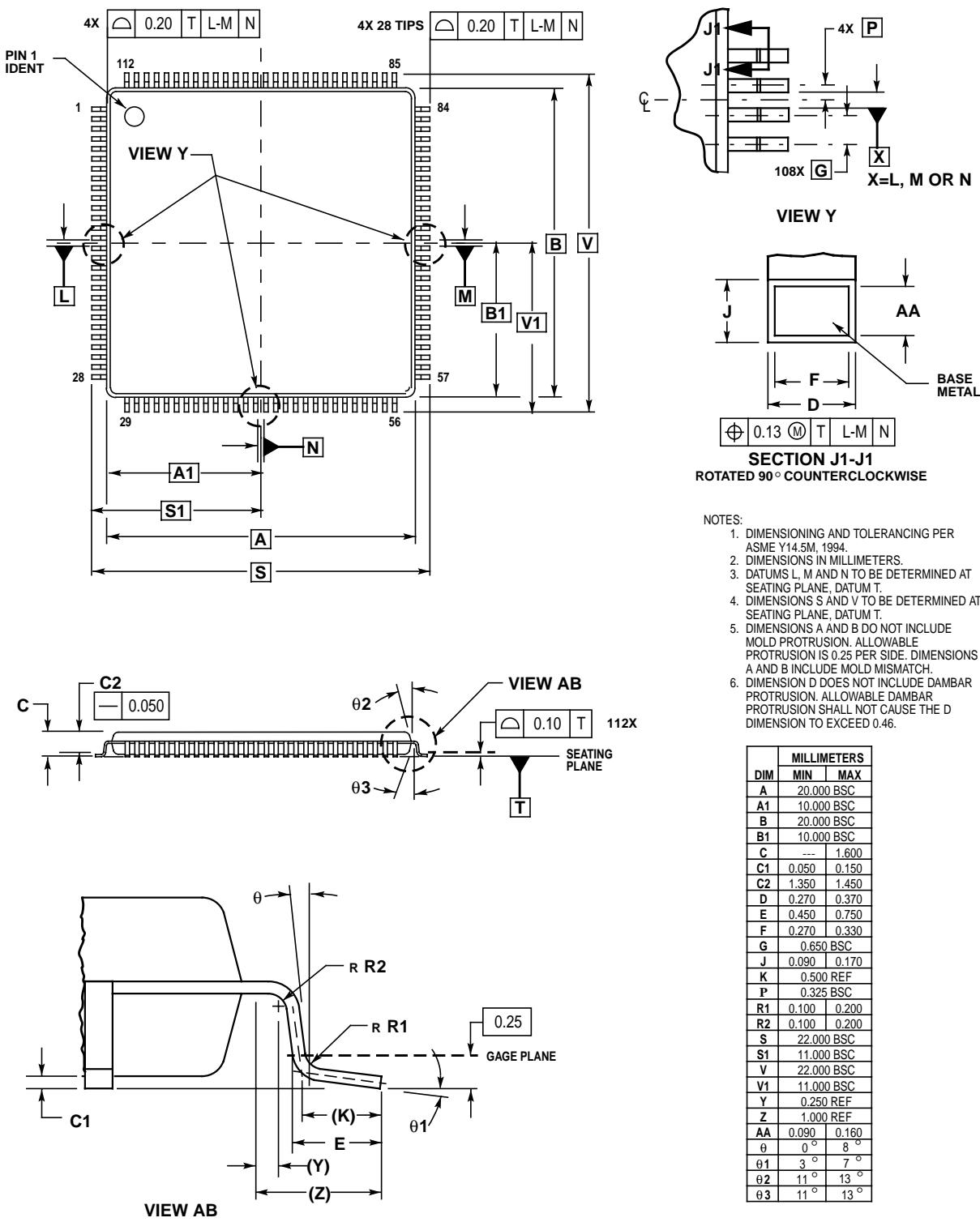


Figure B-1 112-pin LQFP mechanical dimensions (case no. 987)

B.3 80-pin QFP package

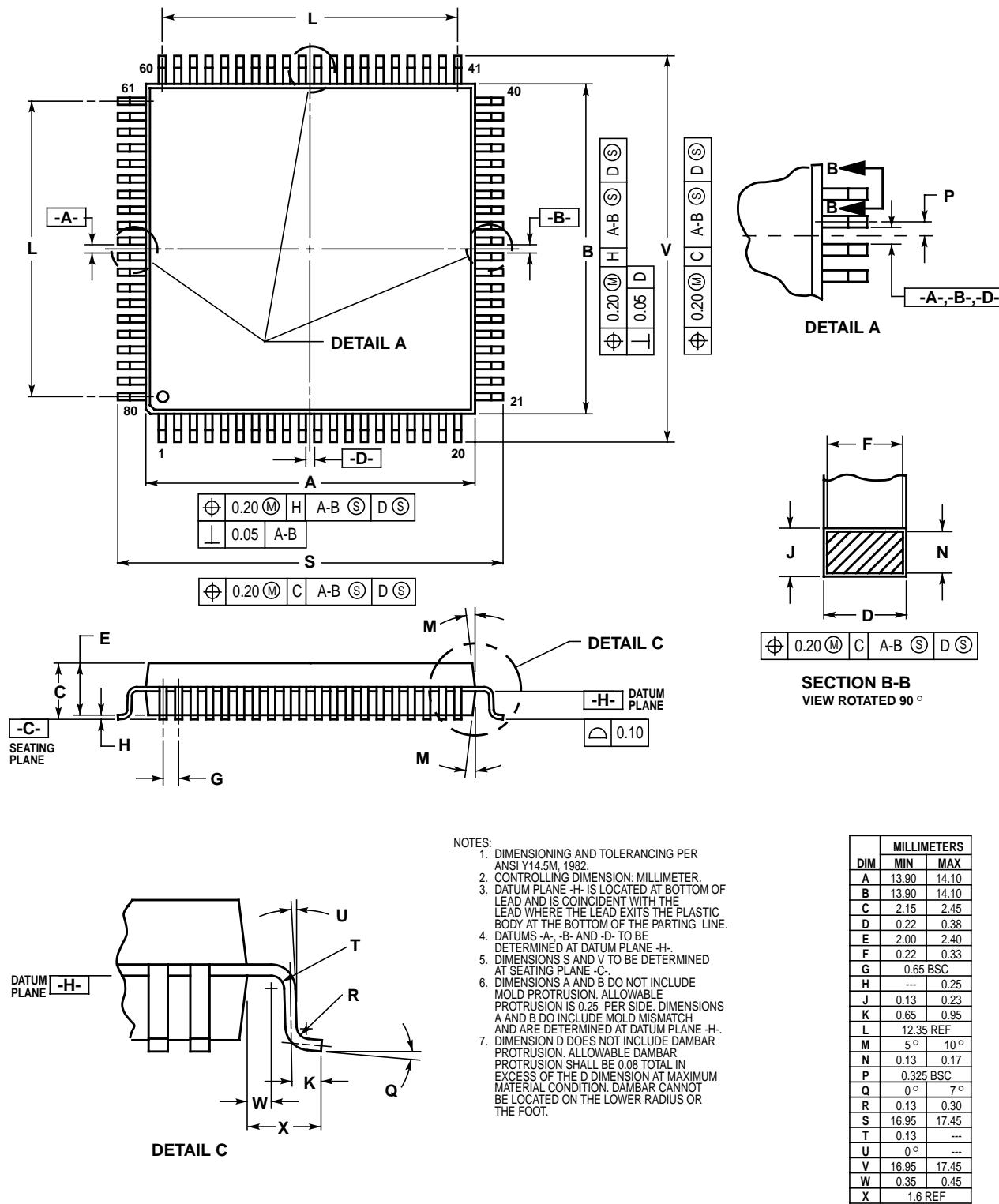


Figure B-2 80-pin QFP Mechanical Dimensions (case no. 841B)

User Guide End Sheet

**FINAL PAGE OF
128
PAGES**