

MMBT2222AWT1G, SMMBT2222AWT1G

General Purpose Transistor

NPN Silicon

These transistors are designed for general purpose amplifier applications. They are housed in the SOT-323/SC-70 package which is designed for low power surface mount applications.

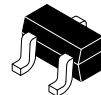
Features

- AEC-Q101 Qualified and PPAP Capable
- S Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant*

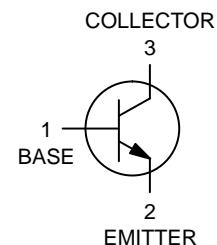
MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V_{CEO}	40	Vdc
Collector-Base Voltage	V_{CBO}	75	Vdc
Emitter-Base Voltage	V_{EBO}	6.0	Vdc
Collector Current - Continuous	I_C	600	mAdc

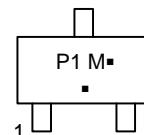
THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Total Device Dissipation FR-5 Board $T_A = 25^\circ\text{C}$	P_D	150	mW
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	280	°C/W
Junction and Storage Temperature	T_J, T_{stg}	-55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.



ON Semiconductor®


www.onsemi.com

SC-70
CASE 419
STYLE 3

MARKING DIAGRAM

P1 = Specific Device Code
M = Date Code
- = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
MMBT2222AWT1G	SC-70 (Pb-Free)	3,000 / Tape & Reel
SMMBT2222AWT1G	SC-70 (Pb-Free)	3,000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MMBT2222AWT1G, SMMBT2222AWT1G

ELECTRICAL CHARACTERISTICS ($T_A = 25^\circ\text{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage (Note 1) ($I_C = 10 \text{ mA}_\text{dc}$, $I_B = 0$)	$V_{(\text{BR})\text{CEO}}$	40	–	Vdc
Collector-Base Breakdown Voltage ($I_C = 10 \mu\text{A}_\text{dc}$, $I_E = 0$)	$V_{(\text{BR})\text{CBO}}$	75	–	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \mu\text{A}_\text{dc}$, $I_C = 0$)	$V_{(\text{BR})\text{EBO}}$	6.0	–	Vdc
Base Cutoff Current ($V_{CE} = 60 \text{ Vdc}$, $V_{EB} = 3.0 \text{ Vdc}$)	I_{BL}	–	20	nAdc
Collector Cutoff Current ($V_{CE} = 60 \text{ Vdc}$, $V_{EB} = 3.0 \text{ Vdc}$)	I_{CEX}	–	10	nAdc
ON CHARACTERISTICS (Note 1)				
DC Current Gain (Note 1) ($I_C = 0.1 \text{ mA}_\text{dc}$, $V_{CE} = 10 \text{ Vdc}$) ($I_C = 1.0 \text{ mA}_\text{dc}$, $V_{CE} = 10 \text{ Vdc}$) ($I_C = 10 \text{ mA}_\text{dc}$, $V_{CE} = 10 \text{ Vdc}$) ($I_C = 150 \text{ mA}_\text{dc}$, $V_{CE} = 10 \text{ Vdc}$) ($I_C = 500 \text{ mA}_\text{dc}$, $V_{CE} = 10 \text{ Vdc}$)	H_{FE}	35 50 75 100 40	– – – 300 –	–
Collector-Emitter Saturation Voltage (Note 1) ($I_C = 150 \text{ mA}_\text{dc}$, $I_B = 15 \text{ mA}_\text{dc}$) ($I_C = 500 \text{ mA}_\text{dc}$, $I_B = 50 \text{ mA}_\text{dc}$)	$V_{CE(\text{sat})}$	– –	0.3 1.0	Vdc
Base-Emitter Saturation Voltage (Note 1) ($I_C = 150 \text{ mA}_\text{dc}$, $I_B = 15 \text{ mA}_\text{dc}$) ($I_C = 500 \text{ mA}_\text{dc}$, $I_B = 50 \text{ mA}_\text{dc}$)	$V_{BE(\text{sat})}$	0.6 –	1.2 2.0	Vdc
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain – Bandwidth Product ($I_C = 20 \text{ mA}_\text{dc}$, $V_{CE} = 20 \text{ Vdc}$, $f = 100 \text{ MHz}$)	f_T	300	–	MHz
Output Capacitance ($V_{CB} = 10 \text{ Vdc}$, $I_E = 0$, $f = 1.0 \text{ MHz}$)	C_{obo}	–	8.0	pF
Input Capacitance ($V_{EB} = 0.5 \text{ Vdc}$, $I_C = 0$, $f = 1.0 \text{ MHz}$)	C_{ibo}	–	30	pF
Input Impedance ($V_{CE} = 10 \text{ Vdc}$, $I_C = 10 \text{ mA}_\text{dc}$, $f = 1.0 \text{ kHz}$)	h_{ie}	0.25	1.25	k Ω
Voltage Feedback Ratio ($V_{CE} = 10 \text{ Vdc}$, $I_C = 10 \text{ mA}_\text{dc}$, $f = 1.0 \text{ kHz}$)	h_{re}	–	4.0	$\times 10^{-4}$
Small-Signal Current Gain ($V_{CE} = 10 \text{ Vdc}$, $I_C = 10 \text{ mA}_\text{dc}$, $f = 1.0 \text{ kHz}$)	h_{fe}	75	375	–
Output Admittance ($V_{CE} = 10 \text{ Vdc}$, $I_C = 10 \text{ mA}_\text{dc}$, $f = 1.0 \text{ kHz}$)	h_{oe}	25	200	μmhos
Noise Figure ($V_{CE} = 10 \text{ Vdc}$, $I_C = 100 \mu\text{A}_\text{dc}$, $R_S = 1.0 \text{ k}\Omega$, $f = 1.0 \text{ kHz}$)	NF	–	4.0	dB
SWITCHING CHARACTERISTICS				
Delay Time	$(V_{CC} = 3.0 \text{ Vdc}$, $V_{BE} = -0.5 \text{ Vdc}$, $I_C = 150 \text{ mA}_\text{dc}$, $I_{B1} = 15 \text{ mA}_\text{dc}$)	t_d	–	10
Rise Time		t_r	–	25
Storage Time	$(V_{CC} = 30 \text{ Vdc}$, $I_C = 150 \text{ mA}_\text{dc}$, $I_{B1} = I_{B2} = 15 \text{ mA}_\text{dc}$)	t_s	–	225
Fall Time		t_f	–	60

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

1. Pulse Test: Pulse Width $\leq 300 \mu\text{s}$, Duty Cycle $\leq 2.0\%$.

MMBT2222AWT1G, SMMBT2222AWT1G

SWITCHING TIME EQUIVALENT TEST CIRCUITS

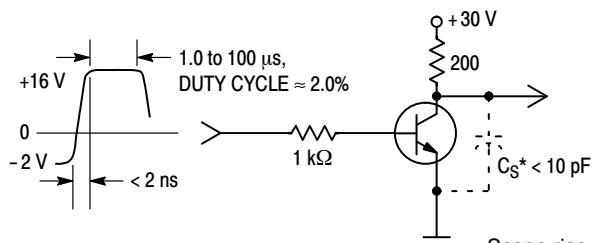


Figure 1. Turn-On Time

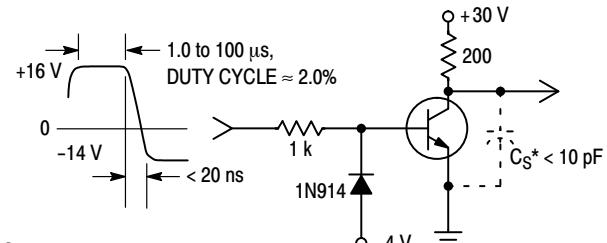


Figure 2. Turn-Off Time

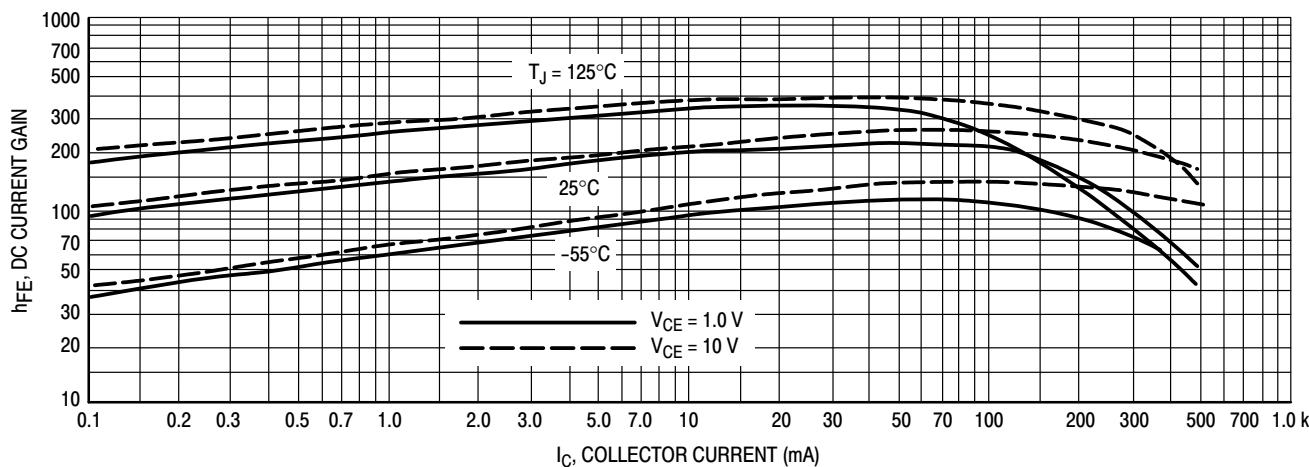


Figure 3. DC Current Gain

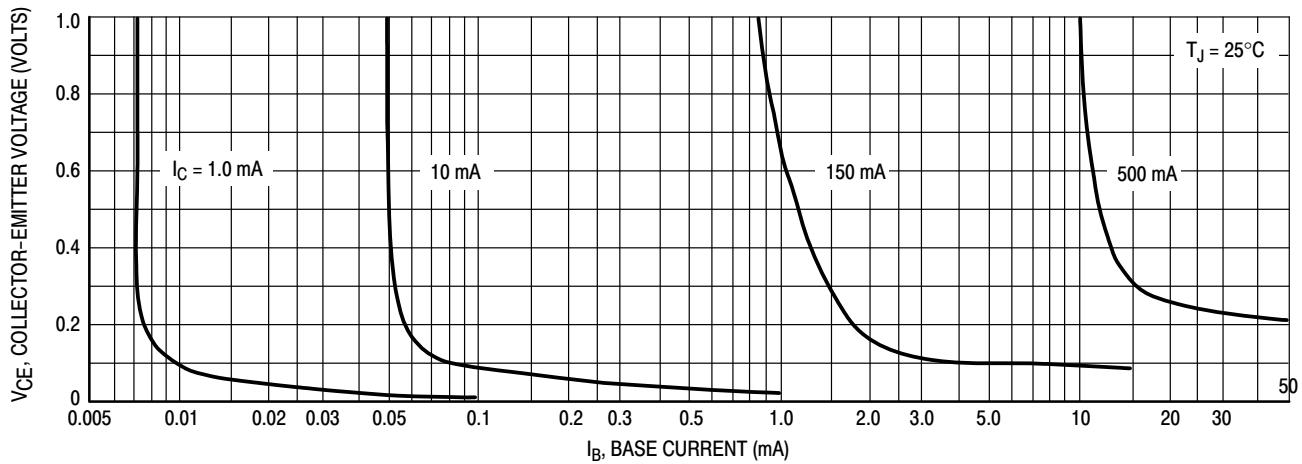


Figure 4. Collector Saturation Region

MMBT2222AWT1G, SMMBT2222AWT1G

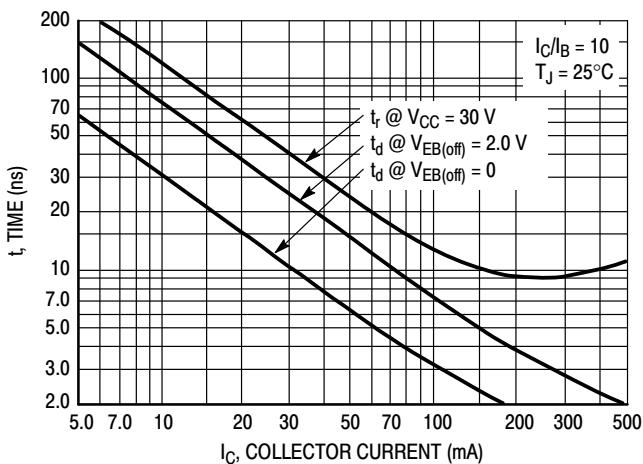


Figure 5. Turn-On Time

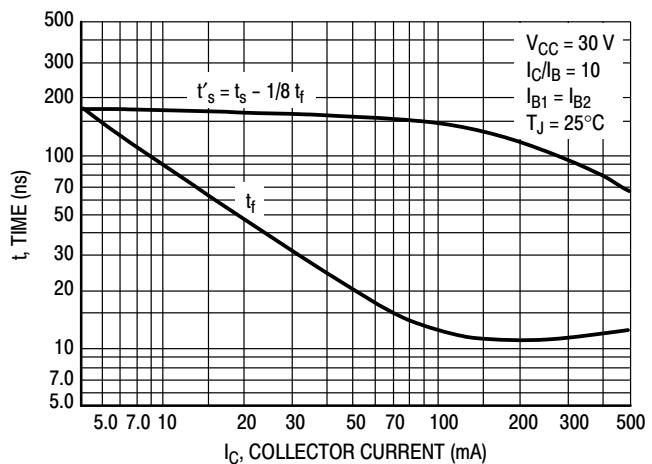


Figure 6. Turn-Off Time

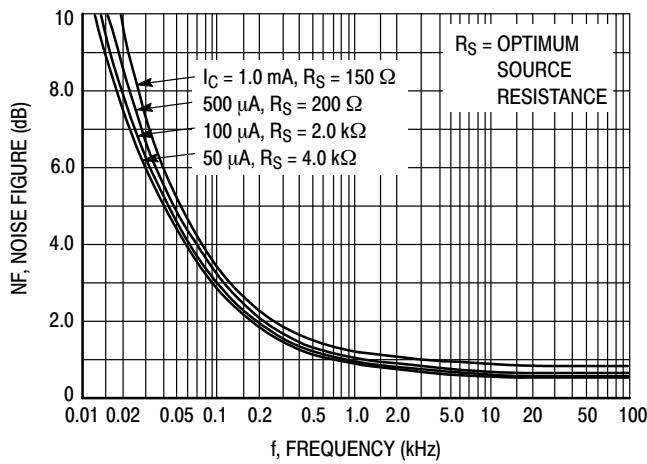


Figure 7. Frequency Effects

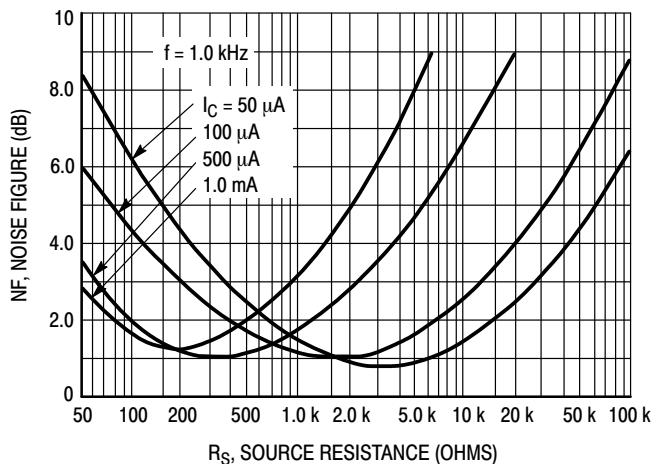


Figure 8. Source Resistance Effects

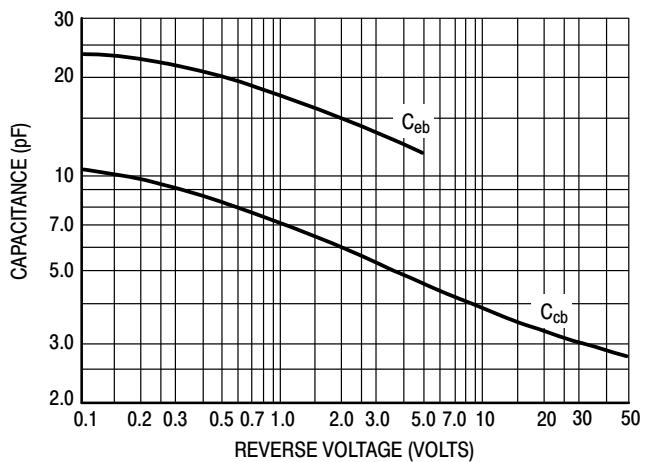


Figure 9. Capacitances

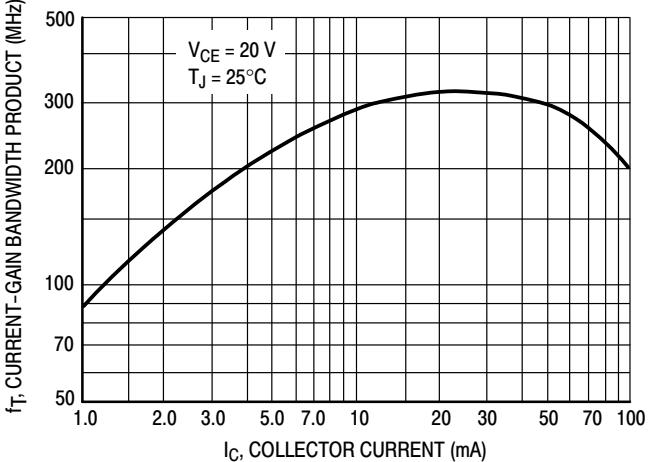


Figure 10. Current-Gain Bandwidth Product

MMBT2222AWT1G, SMMBT2222AWT1G

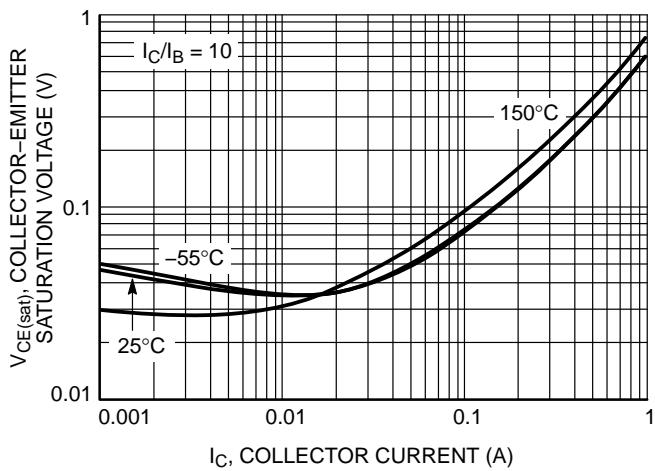


Figure 11. Collector Emitter Saturation Voltage vs. Collector Current

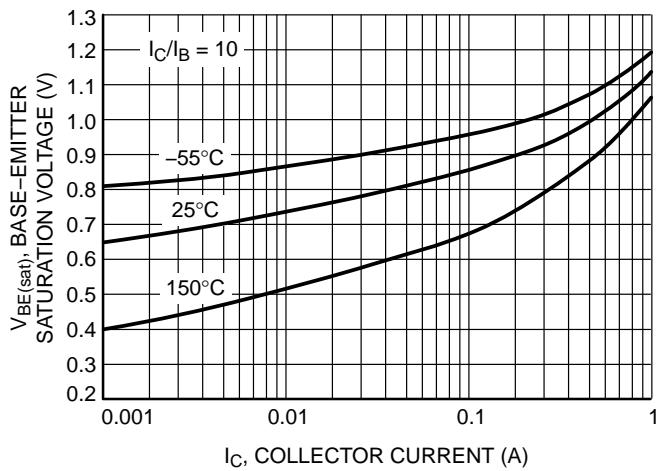


Figure 12. Base Emitter Saturation Voltage vs. Collector Current

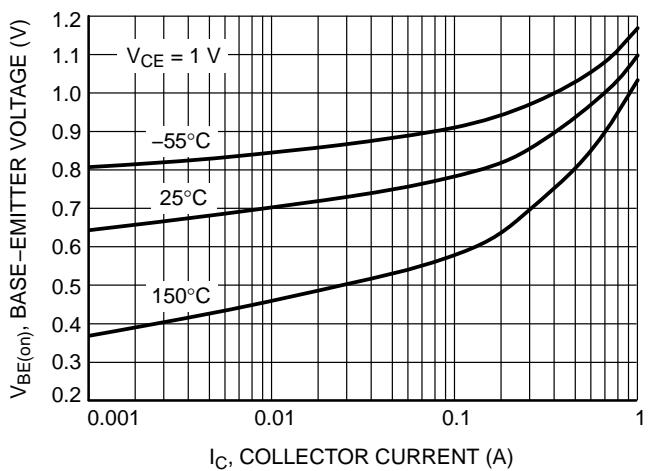


Figure 13. Base Emitter Voltage vs. Collector Current

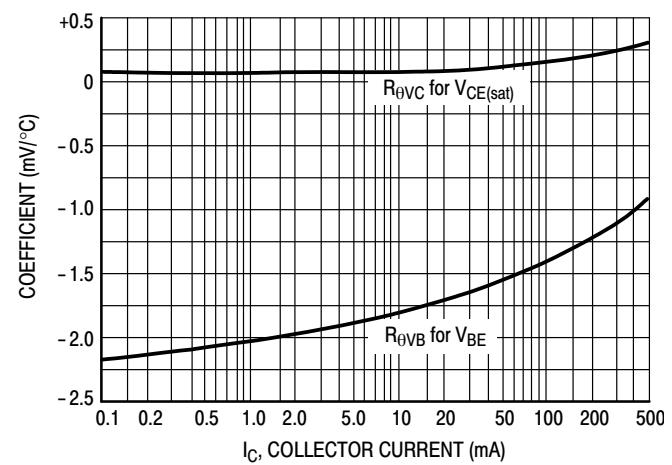
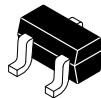
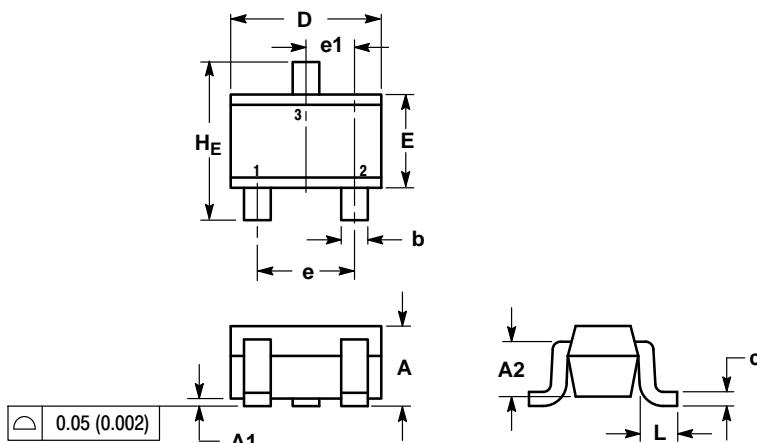
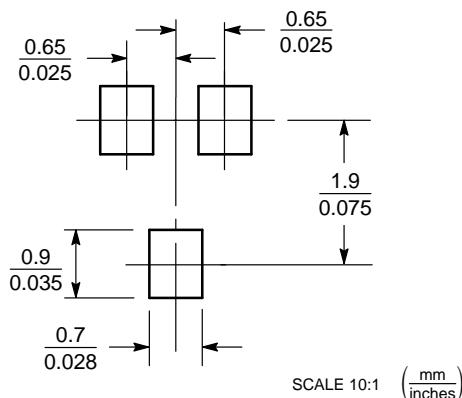


Figure 14. Temperature Coefficients


Figure 15. Safe Operating Area

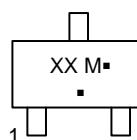
SCALE 4:1

SOLDERING FOOTPRINT*

SCALE 10:1 (mm/inches)

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

SC-70 (SOT-323)
CASE 419-04
ISSUE N


DATE 11 NOV 2008

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.

DIM	MILLIMETERS			INCHES		
	MIN	NOM	MAX	MIN	NOM	MAX
A	0.80	0.90	1.00	0.032	0.035	0.040
A1	0.00	0.05	0.10	0.000	0.002	0.004
A2	0.70	REF		0.028	REF	
b	0.30	0.35	0.40	0.012	0.014	0.016
c	0.10	0.18	0.25	0.004	0.007	0.010
D	1.80	2.10	2.20	0.071	0.083	0.087
E	1.15	1.24	1.35	0.045	0.049	0.053
e	1.20	1.30	1.40	0.047	0.051	0.055
e1	0.65	REF		0.026	REF	
L	0.20	0.38	0.56	0.008	0.015	0.022
H_E	2.00	2.10	2.40	0.079	0.083	0.095

**GENERIC
MARKING DIAGRAM**

XX = Specific Device Code
M = Date Code
- = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present.

STYLE 1:
CANCELLED

STYLE 2:
PIN 1. ANODE
2. N.C.
3. CATHODE

STYLE 3:
PIN 1. BASE
2. Emitter
3. Collector

STYLE 4:
PIN 1. CATHODE
2. CATHODE
3. ANODE

STYLE 5:
PIN 1. ANODE
2. ANODE
3. CATHODE

STYLE 6:
PIN 1. Emitter
2. BASE
3. COLLECTOR

STYLE 7:
PIN 1. BASE
2. Emitter
3. COLLECTOR

STYLE 8:
PIN 1. GATE
2. SOURCE
3. DRAIN

STYLE 9:
PIN 1. ANODE
2. CATHODE
3. CATHODE-ANODE

STYLE 10:
PIN 1. CATHODE
2. ANODE
3. ANODE-CATHODE

STYLE 11:
PIN 1. CATHODE
2. CATHODE
3. CATHODE

DOCUMENT NUMBER:	98ASB42819B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
STATUS:	ON SEMICONDUCTOR STANDARD		
NEW STANDARD:			
DESCRIPTION:	SC-70 (SOT-323)		
	PAGE 1 OF 2		

ON Semiconductor®

DOCUMENT NUMBER:
98ASB42819B

PAGE 2 OF 2

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free
USA/Canada

Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910

ON Semiconductor Website: www.onsemi.com

Order Literature: <http://www.onsemi.com/orderlit>

For additional information, please contact your local
Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

[ON Semiconductor:](#)

[MMBT2222AWT1G](#) [MMBT2222AWT3G](#)