

TPL5000 具有看门狗功能的毫微功耗可编程定时器

1 特性

- 电源电压范围为 1.8V 至 5.0V
- 流耗 30nA (2.5V 时的典型值)
- 看门狗功能性
- 复位功能性
- 可选定时器间隔 1s 至 64s

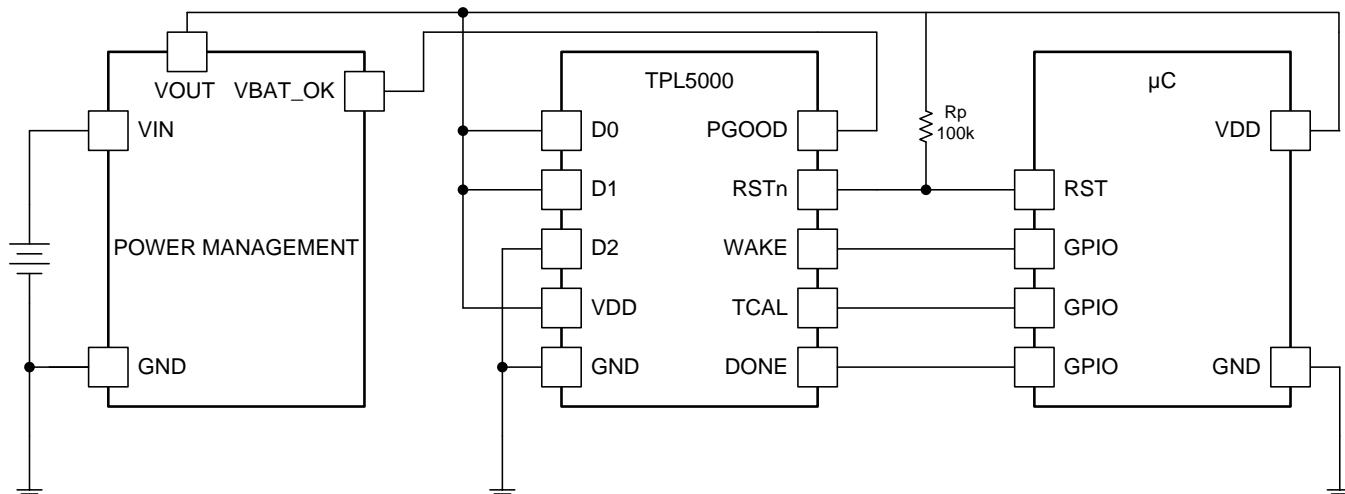
2 应用

- 电池供电系统
- 能量采集系统
- 远程数据记录器
- 传感器节点
- 楼宇自动化
- 消费类电子产品
- 低功耗无线系统
- 安全平台

3 说明

TPL5000 是一个长期定时器集成电路 (IC)，针对低功耗应用进行了优化。TPL5000 能够替代一个微控制器 (μ C) 的内部定时器，使 μ C 能够保持在低功耗睡眠模式，而不用运行一个定时器，从而减少 60% 至 80% 的总功耗。TPL5000 适用于中断驱动型应用，并且提供 1 秒至 64 秒的可选定时间隔。出于安全考虑，某些标准（如 EN50271）要求配备看门狗功能。

TPL5000 无需增加功耗即可实现看门狗功能。


TPL5000 还可通过一个电源正常数字输入监视电池管理 IC，并根据需要复位微控制器。此器件采用 10 引脚超薄小外形尺寸 (VSSOP) 封装。

器件信息⁽¹⁾

器件型号	封装	封装尺寸 (标称值)
TPL5000	VSSOP (10)	3.00mm x 3.00mm

(1) 如需了解所有可用封装，请见数据表末尾的可订购产品附录。

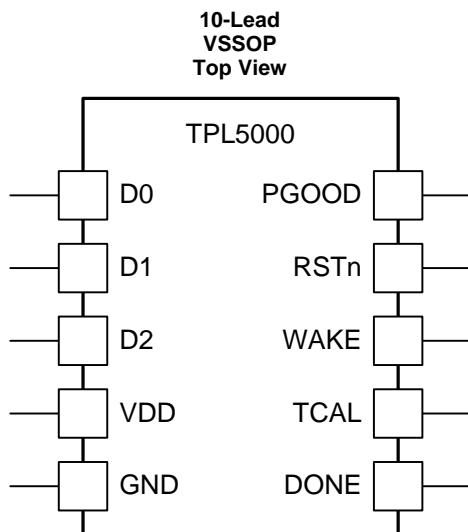
4 简化应用电路原理图

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

English Data Sheet: SNAS628

目录

1	特性	1
2	应用	1
3	说明	1
4	简化应用电路原理图	1
5	修订历史记录	2
6	Pin Configuration and Functions	3
7	Specifications	4
7.1	Absolute Maximum Ratings	4
7.2	ESD Ratings	4
7.3	Recommended Operating Ratings	4
7.4	Thermal Information	4
7.5	Electrical Characteristics	5
7.6	Timing Requirements	6
7.7	Typical Characteristics	7
8	Detailed Description	8
8.1	Overview	8
8.2	Functional Block Diagram	8
8.3	Feature Description	8
8.4	Device Functional Modes	11
9	Application and Implementation	12
9.1	Application Information	12
9.2	Typical Application	12
10	Power Supply Recommendations	14
11	Layout	14
11.1	Layout Guidelines	14
11.2	Layout Example	14
12	器件和文档支持	15
12.1	商标	15
12.2	静电放电警告	15
12.3	术语表	15
13	机械封装和可订购信息	15


5 修订历史记录

Changes from Revision A (July 2013) to Revision B

Page

• Added <i>ESD Ratings table</i> , <i>Feature Description section</i> , <i>Device Functional Modes</i> , <i>Application and Implementation section</i> , <i>Power Supply Recommendations section</i> , <i>Layout section</i> , <i>Device and Documentation Support section</i> , and <i>Mechanical, Packaging, and Orderable Information section</i>	3
--	---

6 Pin Configuration and Functions

Pin Functions

PIN		DESCRIPTION	APPLICATION INFORMATION
NAME	NO.		
D0	1	Logic Input to set period delay (t_{DP})	Connect to either GND (low logic value) or VDD (high logic value)
D1	2	Logic Input to set period delay (t_{DP})	Connect to either GND (low logic value) or VDD (high logic value)
D2	3	Logic Input to set period delay (t_{DP})	Connect to either GND (low logic value) or VDD (high logic value)
VDD	4	Supply voltage	
GND	5	Ground	
DONE	6	Logic Input for watchdog functionality	
TCAL	7	Short duration pulse output for estimation of TPL5000 timer delay.	
WAKE	8	Timer output signal generated every t_{DP} period.	
RSTn	9	Reset Output (open drain output)	
PGOOD	10	Digital power good input	

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature (unless otherwise noted) ⁽¹⁾

	MIN	MAX	UNIT
Supply Voltage	-0.3	6.0	V
Input Voltage ⁽²⁾	-0.3	V _{DD} + 0.3	V
Voltage between any two pins		V _{DD} + 0.3	V
Input Current on any pin	-5	5	mA
Operating Temperature, T _A	-40	105	
Junction Temperature, T _J ⁽³⁾		150	°C
Storage Temperature, T _{stg}	-65	150	°C

- (1) Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions*. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) When the input voltage (V_{IN}) at any pin exceeds the power supply (V_{DD}), the current on that pin must not exceed 5 mA and must not exceed 6.0 V.
- (3) The maximum power dissipation is a function of T_{J(MAX)}, R_{θJA}, and the ambient temperature, T_A. The maximum allowable power dissipation at any ambient temperature is PDMAX = (T_{J(MAX)} - T_A) / R_{θJA}. All numbers apply for packages soldered directly onto a PCB.

7.2 ESD Ratings

		VALUE	UNIT
V _(ESD)	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	V
	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±500	

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Ratings

	MIN	MAX	UNIT
Supply Voltage (V _{DD} -GND)	1.8	5.0	V
Temperature Range	-40	105	°C

7.4 Thermal Information

THERMAL METRIC ⁽¹⁾	TPL5000	UNIT
	VSSOP	
	10 PINS	
R _{θJA} Junction-to-ambient thermal resistance	196.8	°C/W

- (1) For more information about traditional and new thermal metrics, see the *IC Package Thermal Metrics* application report, [SPRA953](http://www.ti.com/spraa953).

7.5 Electrical Characteristics⁽¹⁾

Specifications are for $T_A = T_J = 25^\circ\text{C}$, $\text{VDD-GND}=2.5\text{ V}$, unless otherwise stated.

PARAMETER		TEST CONDITIONS	MIN ⁽²⁾	TYP ⁽³⁾	MAX ⁽²⁾	UNIT
POWER SUPPLY						
IVDD	Supply current ⁽⁴⁾	PGOOD = VDD	30	50	nA	
		PGOOD = GND		12		nA
TIMER						
t_{DP}	Timer Delay Period		1, 2, 4, 8, 10, 16, 32, 64			s
	Timer Delay drift over life time ⁽⁵⁾		0.06%			
	Timer Delay drift over temperature		400			ppm/ $^\circ\text{C}$
t_{CAL}	Calibration pulse width		14.063	15.625	17.188	ms
	t_{DP} to t_{CAL} matching error ⁽⁶⁾	$\text{VDD} \leq 3.0\text{ V}$		0.1		
t_{DONE}	DONE Pulse width ⁽⁶⁾		100			ns
t_{RSTn}	RSTn Pulse width		15.625			ms
t_{WAKE}	WAKE Pulse width		31.25			ms
DIGITAL LOGIC LEVELS						
VIH	Logic High Threshold	PGOOD, DONE	0.7xVDD			V
VIL	Logic Low Threshold	PGOOD, DONE		0.3xVDD		V
VOH	Logic output High Level	WAKE, TCAL $I_{out} = 100\text{ }\mu\text{A}$	VDD-0.3			V
		WAKE, TCAL $I_{out} = 1\text{ mA}$	VDD-0.7			V
VOL	Logic output Low Level	WAKE, TCAL $I_{out} = -100\text{ }\mu\text{A}$		0.3		V
		WAKE, TCAL $I_{out} = -1\text{ mA}$		0.7		V
VOL_{RSTn}	RSTn Logic output Low Level	$I_{OL} = -1\text{ mA}$		0.3		V
IOH_{RSTn}	RSTn High Level output current	$VOH_{RSTn} = \text{VDD}$		1		nA

(1) Electrical Characteristics Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that $T_J = T_A$.

(2) Limits are specified by testing, design, or statistical analysis at 25°C . Limits over the operating temperature range are specified through correlations using statistical quality control (SQC) method.

(3) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration. The typical values are not tested and are not specified on shipped production material.

(4) The supply current does not take in account load and pull-up resistor current. Input pins are at GND or VDD.

(5) Operational life time test procedure equivalent to 10 years.

(6) Ensured by design.

7.6 Timing Requirements

			MIN	TYP	MAX	UNIT
tr_{TCAL}	Rise Time TCAL	Capacitive load 15 pF		50		ns
tf_{TCAL}	Fall Time TCAL	Capacitive load 15 pF		50		ns
tr_{RSTn}	Rise Time RSTn	Capacitive load 15 pF, Rpull-up 100Kohm		4		ns
tf_{RSTn}	Fall Time RSTn	Capacitive load 15 pF, Rpull-up 100Kohm		50		ns
tr_{WAKE}	Rise Time WAKE	Capacitive load 15 pF		50		ns
tf_{WAKE}	Fall Time WAKE	Capacitive load 15 pF		50		ns
tD_{DONE}	DONE to RSTn or WAKE delay	Min delay		100		ns
		Max delay			$t_{DP} - 5 * t_{CAL}$	ms
tD_{TCAL}	TCAL to RSTn or WAKE delay				$t_{CAL}/2$	ms

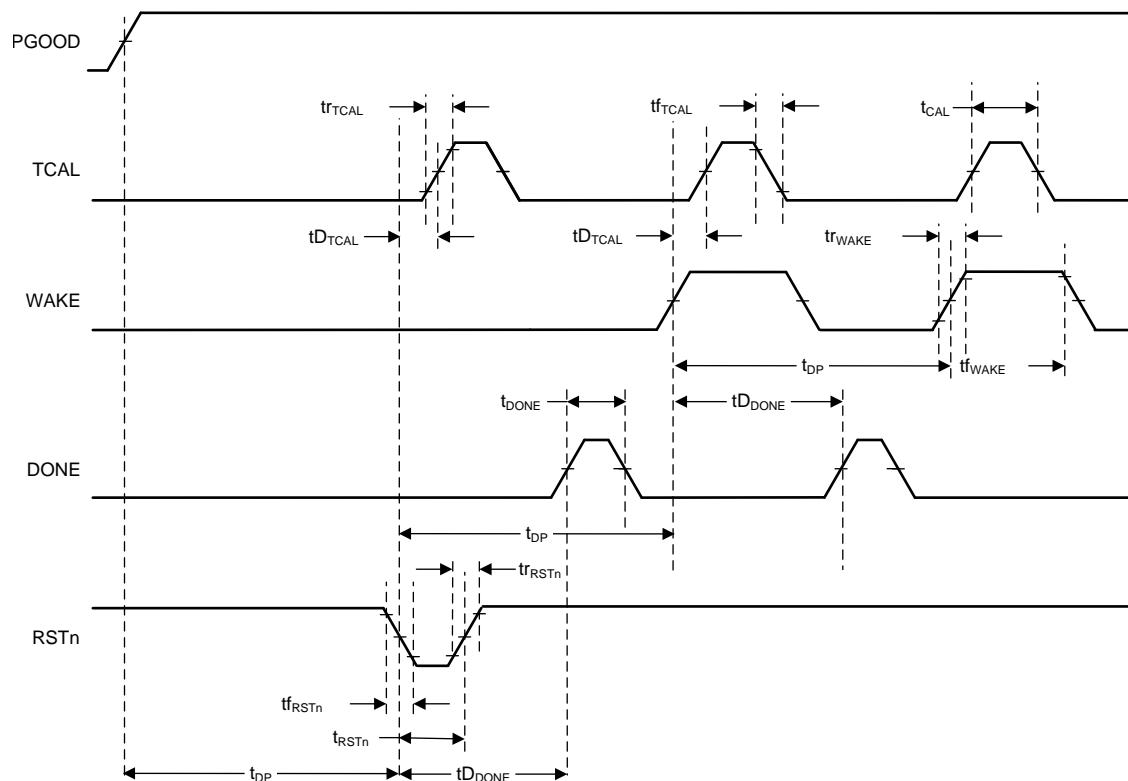
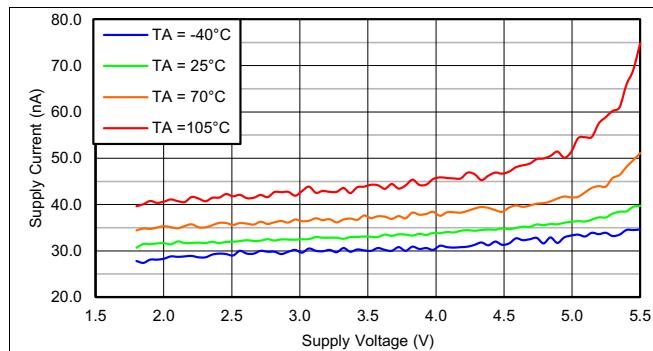
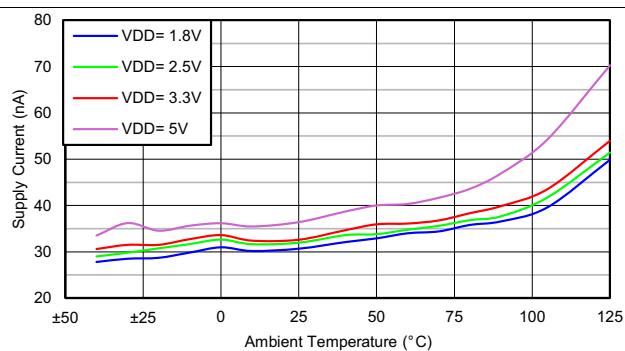
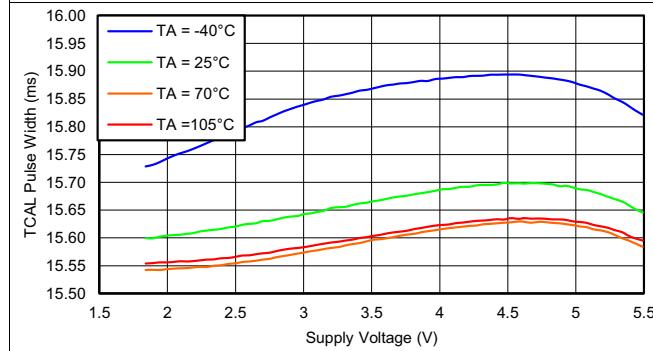




Figure 1. Timing Diagram


7.7 Typical Characteristics

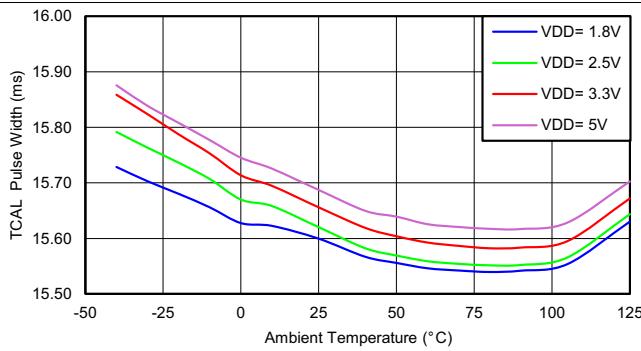
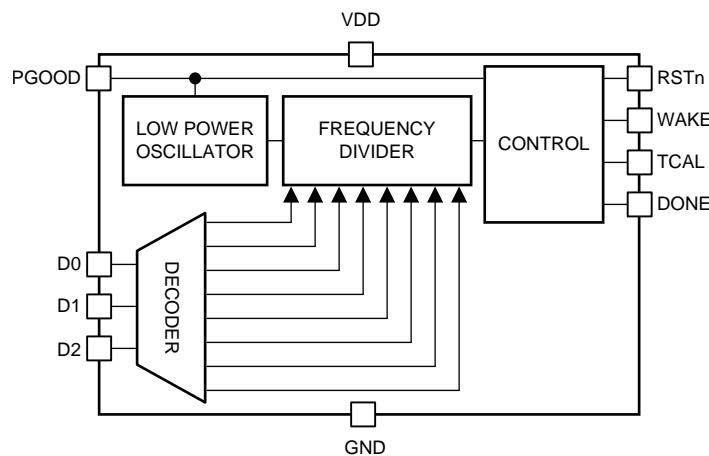

Figure 2. I_{DD} vs V_{DD}

Figure 3. I_{DD} vs Temperature

Figure 4. TCAL Pulse Width vs V_{DD}


Figure 5. TCAL Pulse Width vs Temperature

8 Detailed Description

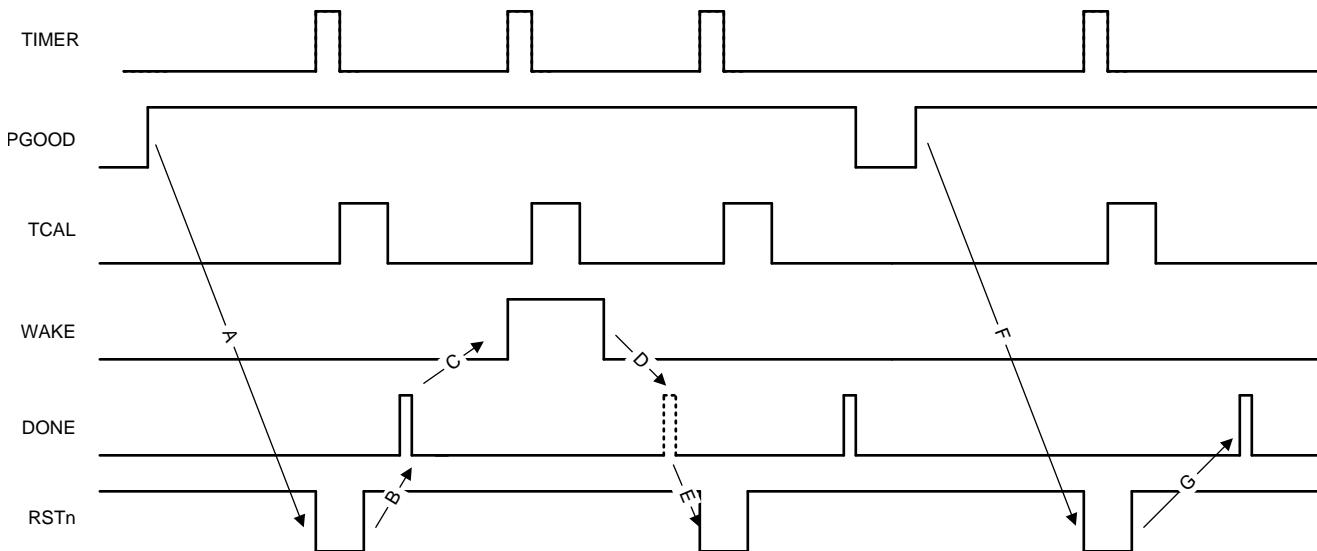
8.1 Overview

The TPL5000 is a long-term timer with a watchdog feature for low-power applications. The TPL5000 is designed for use in interrupt-driven applications and provides selectable timing from 1 s to 64 s. An additional supervisor feature is achieved through interfacing the TPL5000 to a power-management IC.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Supervisor Feature


A critical event that can corrupt the memory of a microcontroller is a voltage supply drop (supply lower than minimum operating range), and a reset of the microcontroller is mandatory if this occurs. Since the TPL5000 is the right choice in systems which stay most of the time in deep sleep, due to its ultra-low power consumption, it is fundamental that it takes into account the voltage drop events.

The TPL5000 implements a supervisory functionality when working with some power-management ICs which indicate the status of the supply voltage with a power-good or battery-good output. The supervisory functionality is enabled by simply connecting the Battery management power-good output to the TPL5000 PGOOD pin. If this feature is not used connect the PGOOD pin to VDD.

In case the power management IC detects a voltage drop, lowering the PGOOD line, while the microcontroller is in deep sleep mode (in which internal supervisors are usually off), the TPL5000 internally latches that event, and when the PGOOD returns to high, it sends out a RESET signal to the microcontroller at the end of the elapsed delay period.

Figure 6 shows the supervisor feature of the TPL5000. The sequence F, G is a standard sequence where the microcontroller is in deep sleep and a voltage supply drop occurs (which is highlighted by the PGOOD high to low transition). When PGOOD is high again, a reset pulse at the end of the delay period is sent to the microcontroller (arrow F), then the microcontroller executes its routine (memory has been reloaded upon reset) and sends the "DONE" signal.

Feature Description (continued)

Figure 6. Watchdog and Supervisor Feature

8.3.1.1 Calibration Pulse

The TPL5000 is based on a ultra-low power oscillator which has a relatively low frequency and low accuracy; however, it shows very good cycle-to-cycle repeatability and very low temperature drift. In most of the applications, the accuracy of the oscillator is enough, but if a more accurate measure of the delay period is required, it is possible to measure the base period of the internal oscillator. A single pulse, which has the same duration as the base period of the internal oscillator, is present at the TCAL pin of the TPL5000. This pulse starts after a half period of the internal oscillator from either the falling edge of the RESET pulse, or the rising edge of the WAKE pulse.

A microcontroller connected to the TPL5000 can routinely measure the width of the TCAL pulse using a counter and an external crystal. Once the base period of the TPL5000 is measured, the actual time delay is calculated by multiplying the measured period by a factor, N (see [Table 1](#)), dependent on the nominal selected time delay.

The resolution and the accuracy of the measurement depend on the external crystal. Since the frequency of the internal oscillator of the TPL5000 is very stable, the measurement of the calibration pulse is suggested only when a high gradient of ambient temperature is observed. The measurement of the TCAL pulse is useful in battery-powered applications that implement a precise battery life counter in the microcontroller.

8.3.1.2 Overview of the Timing Signals: WAKE, RSTn, TCAL and DONE

[Figure 7](#) shows the timing of WAKE, RSTn, and TCAL with respect to DONE. The frame, A, shows a typical sequence after the PGOOD, low to high, transition. As soon as PGOOD is high, the internal oscillator is powered ON. At the end of the delay period (t_{DP}), a reset signal (RSTn), followed by a calibration pulse, TCAL, is sent out. The calibration pulse starts after a half period of the internal oscillator from the falling edge of the reset, and lasts one internal oscillator period.

The frame, B, shows a standard sequence. A "DONE" signal has been received in the previous delay period, so at the end of the next delay period, a "WAKE", followed by a calibration pulse, is sent out. The WAKE signal stays high for 2 internal oscillator periods. The calibration pulse starts after a half period of the internal oscillator from the rising edge of the WAKE signal, and lasts one internal oscillator period. In this frame, the TPL5000 receives a "DONE" signal before the end of the delay period.

The frame, C, still shows a standard sequence, but in this case, the TPL5000 receives the DONE signal when both WAKE and TCAL pulses are still high. As soon as the TPL5000 recognizes the DONE resets the counter and puts WAKE and TCAL in the default condition (both signal low).

Feature Description (continued)

The frame, D, shows a typical PGOOD, high to low transition. As soon as PGOOD is low, the internal oscillator is powered OFF and the digital output pins, TCAL, RSTn, and WAKE, are asynchronously reset by the falling edge of the PGOOD signal, such that TCAL and WAKE reset at low logical values, while RSTn resets at a high logical value.

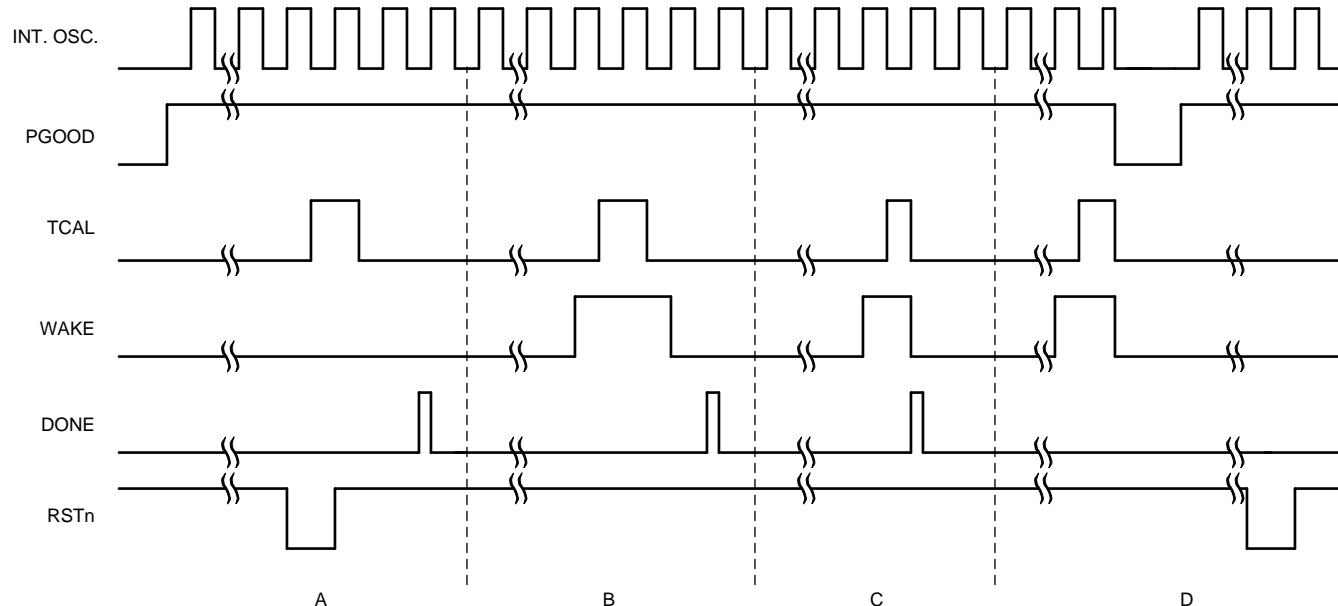


Figure 7. Timing PGOOD, WAKE, RSTn, TCAL

8.3.1.3 Watchdog Feature

Most of the microcontroller-based systems need to be self-reliant; if the software hangs for any reason, the microcontroller must be reset. The TPL5000 can provide this functionality by connecting a microcontroller programmable output pin to the DONE input pin. If the DONE line does not toggle within the selected delay period, then the microcontroller is not operating properly and must be reset.

The TPL5000 recognizes a valid DONE signal as a low to high transition; if two DONE signals are received within the delay period the second signal is ignored.

In the TPL5000, the watchdog window and the delay period are equivalent. A valid "DONE" signal resets the watchdog counter only, and not the delay time counter. A PGOOD low to high transition clears both the watchdog and delay time counters.

Figure 6 shows the watchdog feature of the TPL5000. The sequence A, B, C is a standard sequence with the microcontroller working properly. In this normal sequence, the microcontroller sends a valid "DONE" (arrow B) before the end of the delay period. The sequence C, D, E is an anomalous sequence in which the microcontroller is not in a valid state, and it does not send the DONE signal (dashed pulse) before the end of the delay period. The TPL5000 determines the microcontroller is hung and sends a RESET signal (arrow E) when the period delay has elapsed.

8.3.1.4 Different Utilizations of the TPL5000

When either the watchdog or the supervisor feature of the TPL5000 are not required, it is possible to disable them reducing the interconnections between the TPL5000 and the microcontroller.

Connecting the DONE pin either to GND or to TCAL pin disables the watchdog feature. If connected to GND, the TPL5000 only sends a reset pulse when the time delay elapses. If DONE is connected to TCAL, the TPL5000 sends out just one RESET pulse after a PGOOD low to high transition, when the time delay elapses and then WAKE pulses when the successive time delay elapses.

Connecting the PGOOD pin to the supply pin of the TPL5000 disables the supervisor feature.

Feature Description (continued)

8.3.2 Configuration and Interface

The time interval between 2 adjacent WAKE pulses (or 2 adjacent RSTn pulses or RSTn and WAKE pulses) is selectable through 3 digital input pins (D0, D1, D2). These pins can be strapped to either VDD (1) or GND (0). Eight possible time delays can be selected, as shown in [Table 1](#).

Table 1. Timer Delay Period

D2	D1	D0	Time (s)	Factor N
0	0	0	1	2^6
0	0	1	2	2^7
0	1	0	4	2^8
0	1	1	8	2^9
1	0	0	10	10×2^6
1	0	1	16	2^{10}
1	1	0	32	2^{11}
1	1	1	64	2^{12}

8.4 Device Functional Modes

The TPL5000 mode of operations are selected through the PGOOD pin. There are two factors to consider when the PGOOD pin is at a high-logic level or low-logic level. When the PGOOD pin is at a high-logic level, the TPL5000 works as a timer and conversely at a low-logic level the TPL5000 does not work as a timer. For best use of TPL5000 waiting for high-logic is necessary.

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

In battery powered applications the design of the system is driven by low current consumption. The TPL5000 is suitable in the applications where there is the needs to monitor environment conditions at fixed timer interval. Often in these applications the micro is kept on to enable the watchdog and to count the elapsed time. Some time due to the high frequency clock of the micro controllers special structure needs to be configured to count for long time (several seconds). The TPL5000 can do the same job burning only tens of nA.

9.2 Typical Application

The TPL5000 can be used in conjunction with environment sensors to build a low-power environment data-logger, such as an air quality data-logger. In this application due to the monitored phenomena the micro-controller and the front end of the sensor spend most of the time in idle state, waiting for the next working interval, usually few hundred of ms. The application is based on a micro-controller which represents the core of the data-logger, a front end for gas sensor, such as the LMP91000.

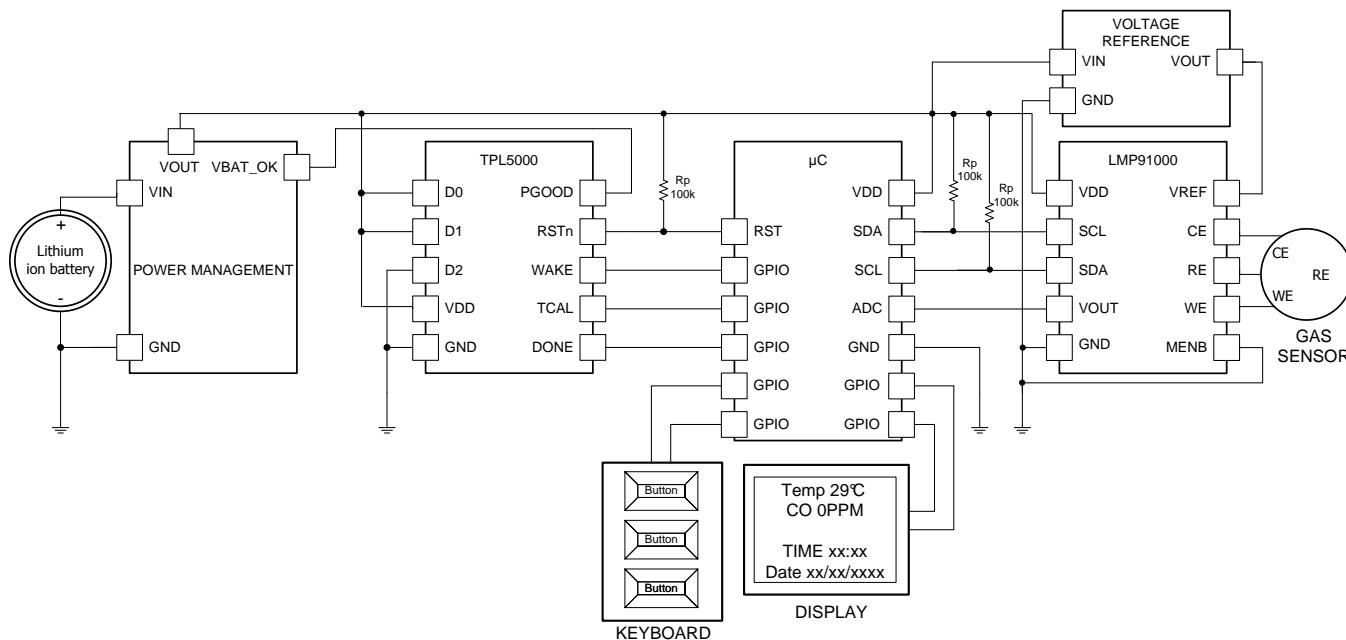


Figure 8. Data-logger

9.2.1 Design Requirements

The design is driven by the low current consumption constraint. The data are usually acquired on a rate that ranges between 1 s to 10 s. The highest necessity is the maximization of the battery life. The TPL5000 helps achieve that goal because it allows putting the micro-controller in its lowest power mode.

Typical Application (continued)

9.2.2 Detailed Design Procedure

When the focal constraint is the battery, the selection of a low power voltage reference, a micro-controller and display is mandatory. The first step in the design is the calculation of the power consumption of each device in the different mode of operations. An example is the LMP91000; the device has gas measurement mode, sleep mode and micro-controller in low-power mode which is normal operation. The different modes offer the possibility to select the appropriate timer interval which respect the application constraint and maximize the life of the battery.

9.2.3 Application Curve

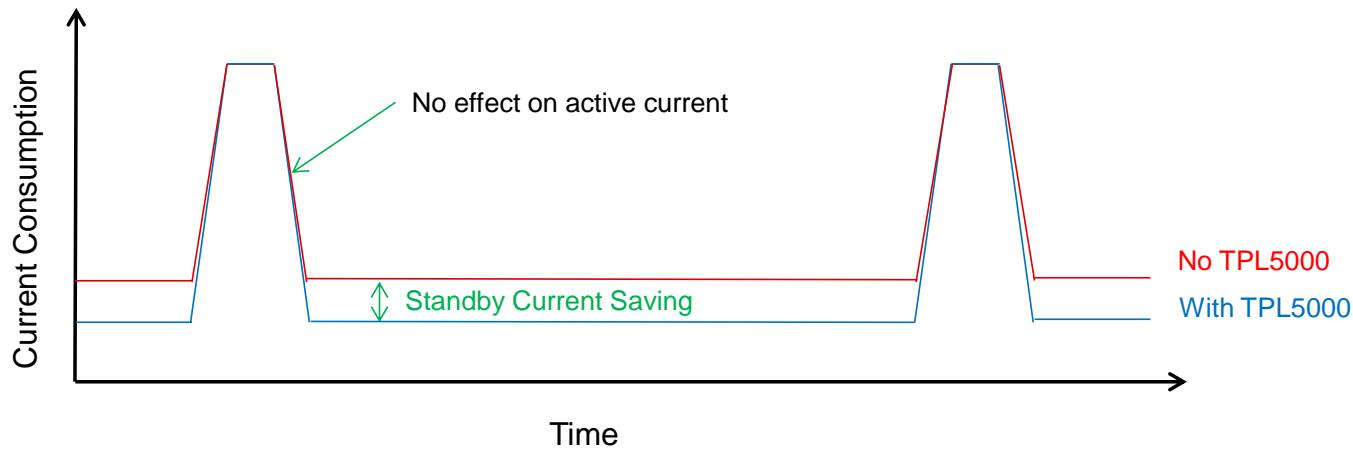


Figure 9. Effect of TPL5000 on Current Consumption

10 Power Supply Recommendations

The TPL5000 requires a voltage supply within 2.7 V and 5.5 V. A multilayer, ceramic-bypass X7R capacitor of 0.1 μ F between VDD and GND pin is recommended.

11 Layout

11.1 Layout Guidelines

The more sensitive pins of the TPL5000 are the digital input pins D0, D1, D2 to select the timer interval. It is mandatory to connect them to VDD or GND through short traces avoiding series resistance. It is mandatory to keep these pins far from traces of high frequency signals, such as clock or communication bus. Signal integrity of WAKE, RSTN and TCAL signal is achieved reducing parasitic capacitance on the traces between the TPL5000 and the micro-controller. In the application where the watchdog feature is not used, the DONE pin is required to be tied to TCAL pin.

11.2 Layout Example

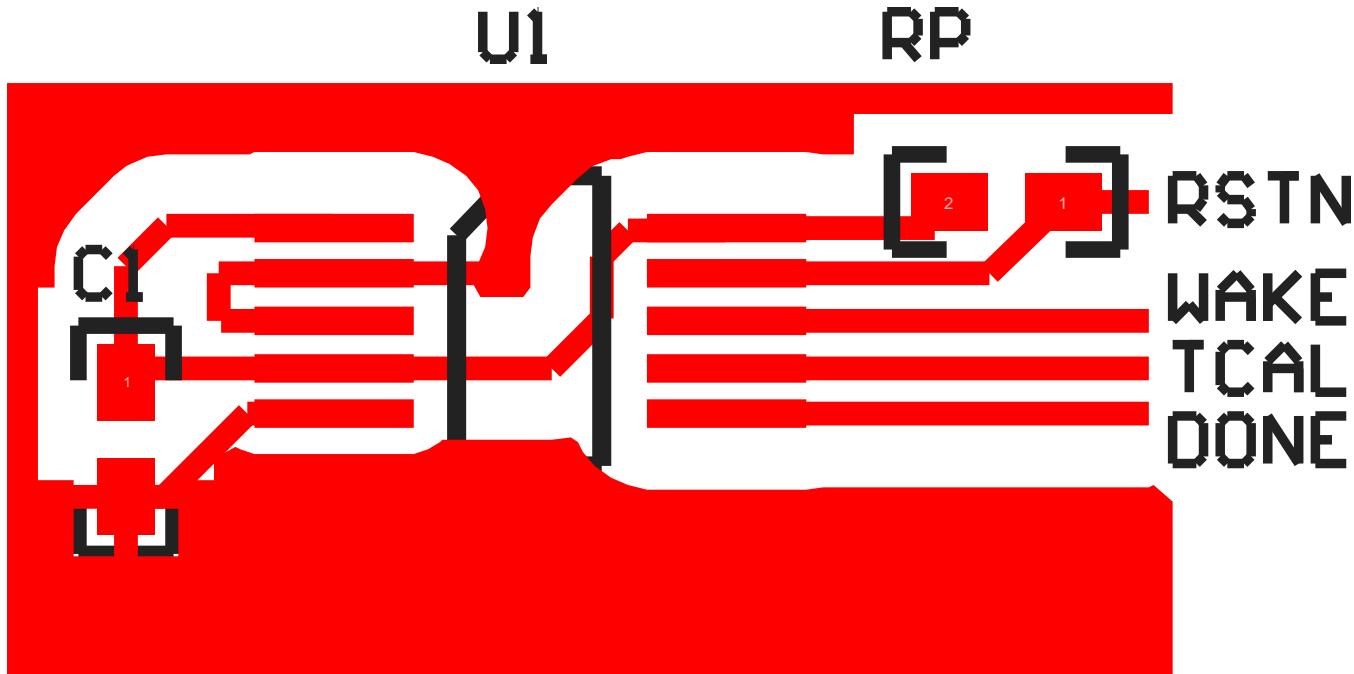


Figure 10. PCB Layout

12 器件和文档支持

12.1 商标

All trademarks are the property of their respective owners.

12.2 静电放电警告

这些装置包含有限的内置 ESD 保护。存储或装卸时，应将导线一起截短或将装置放置于导电泡棉中，以防止 MOS 门极遭受静电损伤。

12.3 术语表

SLYZ022 — TI 术语表。

这份术语表列出并解释术语、首字母缩略词和定义。

13 机械封装和可订购信息

以下页中包括机械封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本，请查阅左侧的导航栏。

重要声明

德州仪器(TI) 及其下属子公司有权根据 **JESD46** 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据 **JESD48** 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售都遵循在订单确认时所提供的**TI** 销售条款与条件。

TI 保证其所销售的组件的性能符合产品销售时 **TI** 半导体产品销售条件与条款的适用规范。仅在 **TI** 保证的范围内, 且 **TI** 认为有必要时才会使用测试或其它质量控制技术。除非适用法律做出了硬性规定, 否则没有必要对每种组件的所有参数进行测试。

TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 **TI** 组件的产品和应用自行负责。为尽量减小与客户产品和应用相关的风险, 客户应提供充分的设计与操作安全措施。

TI 不对任何 **TI** 专利权、版权、屏蔽作品权或其它与使用了 **TI** 组件或服务的组合设备、机器或流程相关的 **TI** 知识产权中授予的直接或隐含权限作出任何保证或解释。**TI** 所发布的与第三方产品或服务有关的信息, 不能构成从 **TI** 获得使用这些产品或服务的许可、授权、或认可。使用此类信息可能需要获得第三方的专利权或其它知识产权方面的许可, 或是 **TI** 的专利权或其它知识产权方面的许可。

对于 **TI** 的产品手册或数据表中 **TI** 信息的重要部分, 仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况下才允许进行复制。**TI** 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。

在转售 **TI** 组件或服务时, 如果对该组件或服务参数的陈述与 **TI** 标明的参数相比存在差异或虚假成分, 则会失去相关 **TI** 组件或服务的所有明示或暗示授权, 且这是不正当的、欺诈性商业行为。**TI** 对任何此类虚假陈述均不承担任何责任或义务。

客户认可并同意, 尽管任何应用相关信息或支持仍可能由 **TI** 提供, 但他们将独自负责满足与其产品及在其应用中使用 **TI** 产品相关的所有法律、法规和安全相关要求。客户声明并同意, 他们具备制定与实施安全措施所需的全部专业技术和知识, 可预见故障的危险后果、监测故障及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因在此类安全关键应用中使用任何 **TI** 组件而对 **TI** 及其代理造成任何损失。

在某些场合中, 为了推进安全相关应用有可能对 **TI** 组件进行特别的促销。**TI** 的目标是利用此类组件帮助客户设计和创立其特有的可满足适用的功能安全性标准和要求的终端产品解决方案。尽管如此, 此类组件仍然服从这些条款。

TI 组件未获得用于 **FDA Class III** (或类似的生命攸关医疗设备) 的授权许可, 除非各方授权官员已经达成了专门管控此类使用的特别协议。

只有那些 **TI** 特别注明属于军用等级或“增强型塑料”的 **TI** 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同意, 对并非指定面向军事或航空航天用途的 **TI** 组件进行军事或航空航天方面的应用, 其风险由客户单独承担, 并且由客户独自负责满足与此类使用相关的所有法律和法规要求。

TI 已明确指定符合 **ISO/TS16949** 要求的产品, 这些产品主要用于汽车。在任何情况下, 因使用非指定产品而无法达到 **ISO/TS16949** 要求, **TI** 不承担任何责任。

产品	应用
数字音频	www.ti.com.cn/audio
放大器和线性器件	www.ti.com.cn/amplifiers
数据转换器	www.ti.com.cn/dataconverters
DLP® 产品	www.dlp.com
DSP - 数字信号处理器	www.ti.com.cn/dsp
时钟和计时器	www.ti.com.cn/clockandtimers
接口	www.ti.com.cn/interface
逻辑	www.ti.com.cn/logic
电源管理	www.ti.com.cn/power
微控制器 (MCU)	www.ti.com.cn/microcontrollers
RFID 系统	www.ti.com.cn/rfidsys
OMAP应用处理器	www.ti.com/omap
无线连通性	www.ti.com.cn/wirelessconnectivity
	德州仪器在线技术支持社区 www.deyisupport.com

邮寄地址: 上海市浦东新区世纪大道1568号, 中建大厦32楼邮政编码: 200122
Copyright © 2015, 德州仪器半导体技术(上海)有限公司

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
TPL5000DGSR	ACTIVE	VSSOP	DGS	10	3500	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 105	ARAA	Samples
TPL5000DGST	ACTIVE	VSSOP	DGS	10	250	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 105	ARAA	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check <http://www.ti.com/productcontent> for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

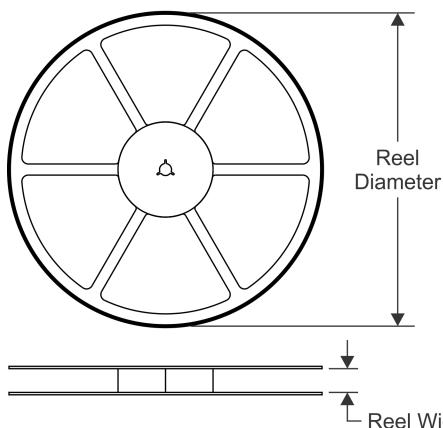
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

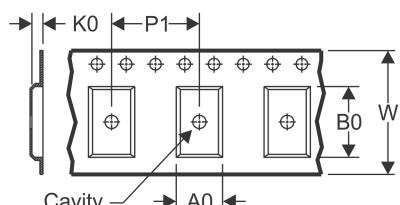
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

www.ti.com

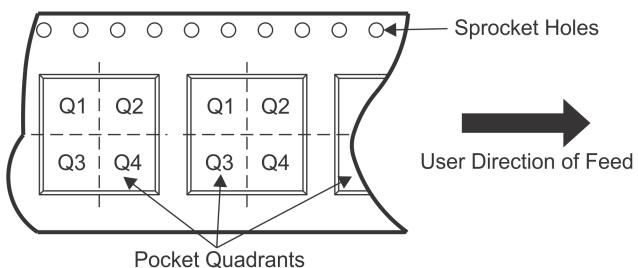
PACKAGE OPTION ADDENDUM


16-Jan-2015

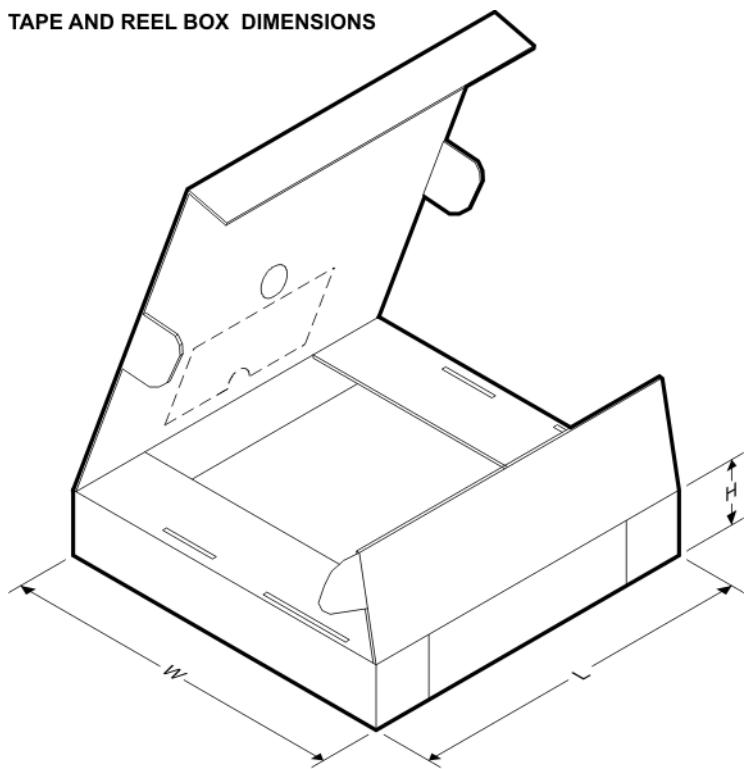

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

REEL DIMENSIONS



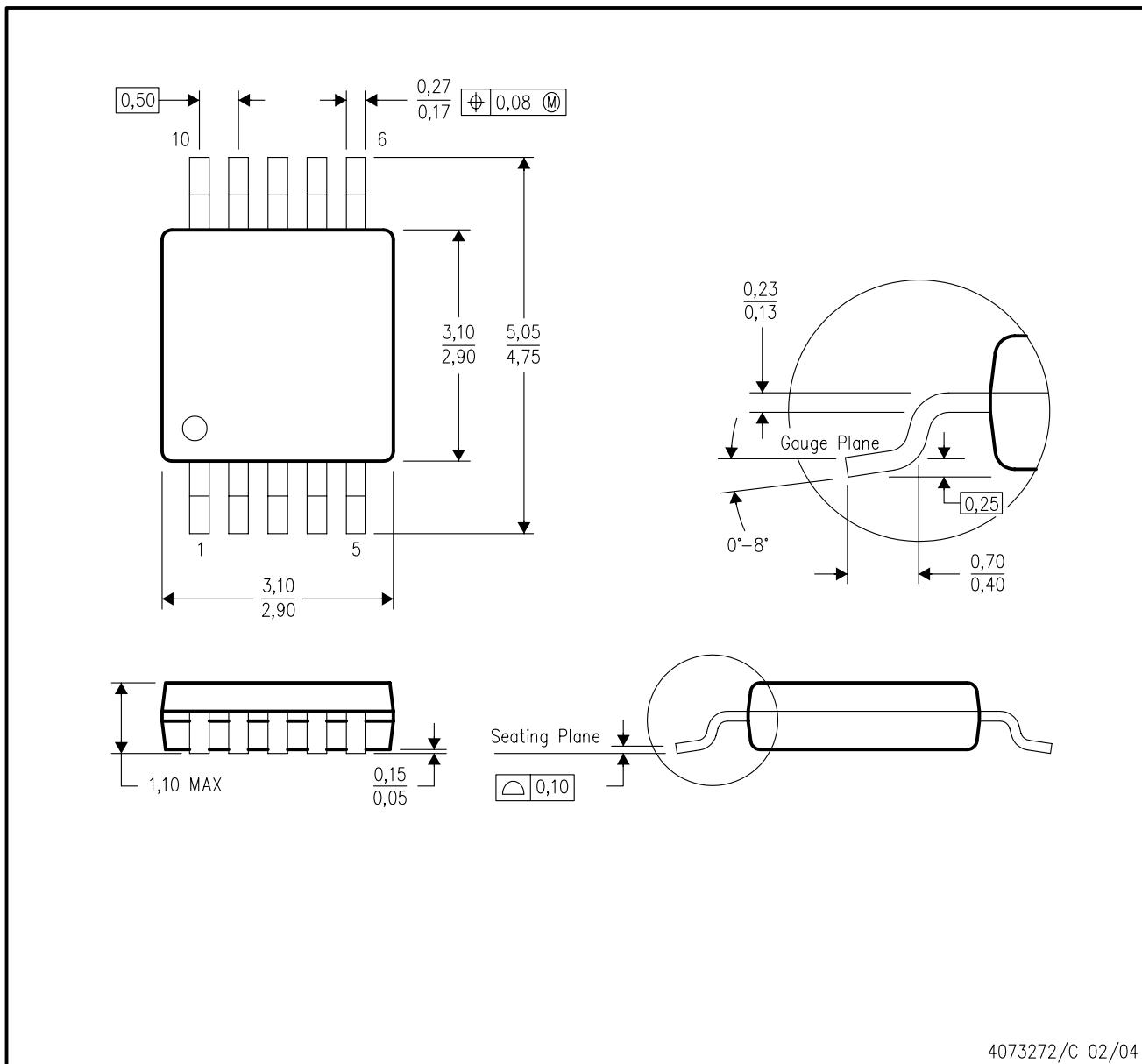
TAPE DIMENSIONS


A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

All dimensions are nominal													
Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant	
TPL5000DGSR	VSSOP	DGS	10	3500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1	
TPL5000DGST	VSSOP	DGS	10	250	178.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1	


TAPE AND REEL BOX DIMENSIONS

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPL5000DGSR	VSSOP	DGS	10	3500	367.0	367.0	35.0
TPL5000DGST	VSSOP	DGS	10	250	210.0	185.0	35.0

DGS (S-PDSO-G10)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.
- D. Falls within JEDEC MO-187 variation BA.

4073272/C 02/04

重要声明

德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据 JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售都遵循在订单确认时所提供的 TI 销售条款与条件。

TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内, 且 TI 认为有必要时才会使用测试或其它质量控制技术。除非适用法律做出了硬性规定, 否则没有必要对每种组件的所有参数进行测试。

TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应用相关联的风险, 客户应提供充分的设计与操作安全措施。

TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予的直接或隐含权限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息, 不能构成从 TI 获得使用这些产品或服务的许可、授权、或认可。使用此类信息可能需要获得第三方的专利权或其它知识产权方面的许可, 或是 TI 的专利权或其它知识产权方面的许可。

对于 TI 的产品手册或数据表中 TI 信息的重要部分, 仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况下才允许进行复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。

在转售 TI 组件或服务时, 如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分, 则会失去相关 TI 组件或服务的所有明示或暗示授权, 且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。

客户认可并同意, 尽管任何应用相关信息或支持仍可能由 TI 提供, 但他们将独力负责满足与其产品及在其应用中使用 TI 产品相关的所有法律、法规和安全相关要求。客户声明并同意, 他们具备制定与实施安全措施所需的全部专业技术和知识, 可预见故障的危险后果、监测故障及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因在此类安全关键应用中使用任何 TI 组件而对 TI 及其代理造成任何损失。

在某些场合中, 为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特有的可满足适用的功能安全性标准和要求的终端产品解决方案。尽管如此, 此类组件仍然服从这些条款。

TI 组件未获得用于 FDA Class III (或类似的生命攸关医疗设备) 的授权许可, 除非各方授权官员已经达成了专门管控此类使用的特别协议。

只有那些 TI 特别注明属于军用等级或“增强型塑料”的 TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同意, 对并非指定面向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用, 其风险由客户单独承担, 并且由客户独力负责满足与此类使用相关的所有法律和法规要求。

TI 已明确指定符合 ISO/TS16949 要求的产品, 这些产品主要用于汽车。在任何情况下, 因使用非指定产品而无法达到 ISO/TS16949 要求, TI 不承担任何责任。

产品	应用
数字音频	www.ti.com.cn/telecom
放大器和线性器件	www.ti.com.cn/computer
数据转换器	www.ti.com/consumer-apps
DLP® 产品	www.ti.com/energy
DSP - 数字信号处理器	www.ti.com.cn/industrial
时钟和计时器	www.ti.com.cn/medical
接口	www.ti.com.cn/security
逻辑	www.ti.com.cn/automotive
电源管理	www.ti.com.cn/video
微控制器 (MCU)	
RFID 系统	
OMAP 应用处理器	
无线连通性	
	德州仪器在线技术支持社区 www.deyisupport.com