Regarding the change of names mentioned in the document, such as Mitsubishi Electric and Mitsubishi XX, to Renesas Technology Corp.

The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.) Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names have in fact all been changed to Renesas Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself.

Note: Mitsubishi Electric will continue the business operations of high frequency & optical devices and power devices.

Renesas Technology Corp. Customer Support Dept. April 1, 2003

Overview

The M16C/62P group of single-chip microcomputers are built using the high-performance silicon gate CMOS process using a M16C/60 Series CPU core and are packaged in a 100-pin and 128-pin plastic molded QFP. These single-chip microcomputers operate using sophisticated instructions featuring a high level of instruction efficiency. With 1M bytes of address space, they are capable of executing instructions at high speed. In addition, this microcomputer contains a multiplier and DMAC which combined with fast instruction processing capability, makes it suitable for control of various OA, communication, and industrial equipment which requires high-speed arithmetic/logic operations.

Applications

Audio, cameras, office/communications/portable/industrial equipment, etc

-----Table of Contents-----

Overview 1	Serial I/O	139
Central Processing Unit (CPU)12	Clock Synchronous serial I/O Mode	148
Special Function Registers (SFR)14	UART Mode	155
Reset20	Special Mode 1 (I ² C mode)	162
Processor Mode29	Special Mode 2	172
Clock Generation Circuit51	Special Mode 3 (IE mode)	177
Protection74	Special Mode 4 (SIM mode) (UART2)	179
Interrupts75	SI/O3 and SI/O4	184
Watchdog Timer95	A-D Converter	189
DMAC97	D-A Converter	206
Timers107	CRC Calculation	208
Timer A109	Programmable I/O Ports	210
Timer B123	Electrical Characteristics	223
Three-phase Motor Control Timer Function 129	Flash Memory	261

Specifications written in this manual are believed to be accurate, but are not guaranteed to be entirely free of error. Specifications in this manual may be changed for functional or performance improvements. Please make sure your manual is the latest edition.

Under development

Performance Outline

Table 1.1.1 lists performance outline of M16C/62P group.

Table 1.1.1. Performance outline of M16C/62P group

	ltem		Performance		
Number of ba	sic instructions	91 instructions			
Shortest instruction execution time		41.7 ns (f(BCLK)= 24MHz, Vcc1= 3.0V to 5.5V)			
			Hz, Vcc1= 2.7V to 5.5V)		
Memory	ROM	(See the product list)			
capacity	RAM	(See the product list)			
I/O port	100-pin version	8 bits x 10, 7 bits x 1	P0 to P5: Vcc2 ports		
	P0 to P10 (except P85)		P6 to P10: Vcc1 ports		
	128-pin version	8 bits x 13, 7 bits x 1,	P0 to P5, P12, P13: Vcc2 ports		
	P0 to P14 (except P85)	2 bits x 1	P6 to P10, P11, P14: Vcc1 ports		
Input port	P85	1 bit x 1 (NMI pin level	judgment): Vcc1 ports		
Multifunction	timer				
	Output	16 bits x 5 channels (T	A0, TA1, TA2, TA3, TA40)		
	Input	,	B0, TB1, TB2, TB3, TB4, TB5)		
Serial I/O	•	3 channels (UART0, U			
		UART, clock synchrono	us, I ² C bus ¹ (option ³), or IE bus ² (option ³)		
		2 channels (SI/O3, SI/O	D4)		
		Clock synchronous	,		
A-D converter	r	10 bits x (8 x 3 + 2) channels			
D-A converter	r	8 bits x 2			
DMAC		2 channels (trigger: 25 sources)			
CRC calculati	ion circuit	CRC-CCITT			
Watchdog tim	ner	15 bits x 1 (with presca	15 bits x 1 (with prescaler)		
Interrupt		` .	ources, 4 software sources, 7 levels		
Clock genera	tion circuit	4 circuits			
J		Main clock (These circuits contain a built-in feedback)			
		Sub-clock resistor and external ceramic/quartz oscillator)			
		Ring oscillator (for main-clock oscillation stop detect function)			
		• PLL frequency synthe	•		
Voltage detec	ction circuit	Present (option ³)			
Power supply v		Vcc1=3.0V to 5.5V, Vcc2=3.0V to Vcc1(f(BCLK)=24MHz)			
,	ŭ	VCC1=VCC2=2.7V to 5.5V (f(BCLK)=10MHz)			
Flash memory	Program/erase voltage	$3.3V \pm 0.3V$ or $5.0V \pm 0.5$	* * * * * * * * * * * * * * * * * * * *		
,	Number of program/erase	100 times			
Power consur	, •	14mA (VCC1=VCC2=5V, f(BCLK)=24MHz)			
	•	8mA (VCC1=VCC2=3V, f(BCLK)=10MHz)			
		1.8μA (VCC1=VCC2=3V, f(XCIN)=32kHz, when wait mode)			
I/O	I/O withstand voltage	5.0V			
characteristics	_	5mA			
Memory expansion		Available (to 4M bytes)			
	bient temperature	-20 to 85°C			
a paraming amount temperature		-40 to 85°C (option ³)			
Device config	uration	CMOS high performance silicon gate			
Package		100-pin and 128-pin plastic mold QFP			
Notes:		100 pin and 120 pin plastic mold &i i			

Notes:

- 1. I²C Bus is a registered trademark of PHILIPS.
- 2. IE Bus is a registered trademark of NEC.
- 3. If you desire this option, please so specify.

_{development}

Block Diagram

Figure 1.1.1 is a block diagram of the M16C/62P group.

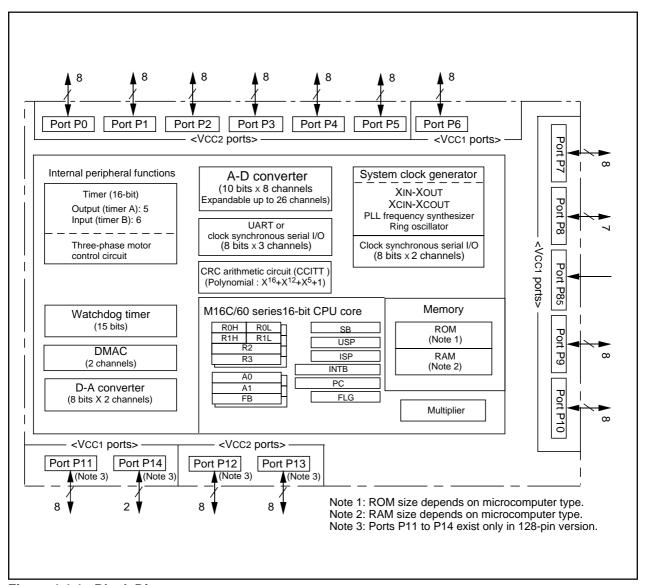


Figure 1.1.1. Block Diagram

Under development

Product List

Tables 1.1.2 and 1.1.3 list the M16C/62P group products and Figure 1.1.2 shows the type numbers, memory sizes and packages.

Table 1.1.2. Product List (1)

As of January 2003

Type No. ROM capacity RAM capacity Package type Remarks M30622M6P-XXXFP ** 48K bytes 100P6S-A M30622M8P-XXXFP ** 100P6G-A 100P6G-A M30622M8P-XXXFP ** 100P6G-A 100P6G-A M30622MAP-XXXFP ** 100P6G-A 100P6G-A M30620MCP-XXXFP ** 100P6G-A 100P6G-A M30620MCP-XXXFP ** 100P6G-A 100P6G-A M30622MEP-XXXFP ** 100P6G-A 100P6G-A M30622MEP-XXXFP ** 100P6G-A 100P6G-A M30622MGP-XXXFP ** 100P6G-A 100P6G-A M30622MGP-XXXFP ** 100P6G-A 100P6G-A M30624MGP-XXXFP ** 100P6G-A 100P6G-A M30624MGP-XXXGP ** 256K bytes 100P6G-A M30622MWP-XXXGP ** 100P6G-A M30622MWP-XXXGP ** 100P6G-A M30623MWP-XXXGP ** 100P6G-A M30624MWP-XXXGP ** 100P6G-A
M30622M6P-XXXGP ** 48K bytes 100P6Q-A M30622M8P-XXXFP ** 100P6S-A M30622M8P-XXXFP ** 100P6Q-A M30622MAP-XXXFP ** 100P6Q-A M30622MAP-XXXFP ** 100P6Q-A M30622MAP-XXXFP ** 100P6Q-A M30620MCP-XXXFP ** 100P6Q-A M30622MEP-XXXFP ** 100P6Q-A M30623MEP-XXXGP ** 100P6Q-A M30623MEP-XXXGP ** 100P6Q-A M30623MGP-XXXGP ** 100P6Q-A M30623MGP-XXXGP ** 12K bytes M30624MGP-XXXFP ** 100P6Q-A M30624MGP-XXXGP ** 12RP6Q-A M30625MGP-XXXGP ** 100P6Q-A M30624MWP-XXXFP ** 100P6Q-A M30623MWP-XXXGP ** 100P6Q-A M30624MWP-XXXGP ** 16K bytes M30624MWP-XXXGP ** 100P6Q-A M30624MWP-XXXGP ** 100P6Q-A M30624MWP-XXXGP ** 100P6Q-A M30624MWP-XXXGP ** 100P6Q-
M30622M6P-XXXGP ** 100P6Q-A M30622M8P-XXXFP ** 64K bytes 100P6S-A M30622M8P-XXXFP ** 100P6Q-A 100P6Q-A M30622MAP-XXXFP ** 100P6Q-A 100P6Q-A M30620MCP-XXXFP ** 100P6Q-A 100P6Q-A M30620MCP-XXXFP ** 100P6Q-A 100P6Q-A M30622MEP-XXXFP ** 100P6Q-A 100P6Q-A M30623MEP-XXXGP ** 12K bytes 100P6Q-A M30622MGP-XXXFP ** 100P6Q-A 100P6Q-A M30623MGP-XXXGP ** 12K bytes 100P6Q-A M30624MGP-XXXGP ** 100P6Q-A 100P6Q-A M30624MGP-XXXGP ** 100P6Q-A 100P6Q-A M30624MWP-XXXGP ** 100P6Q-A 100P6Q-A M3062MWP-XXXGP ** 16K bytes 100P6Q-A M3062MWP-XXXGP ** 16K bytes 100P6Q-A M3062MWP-XXXGP ** 100P6Q-A 100P6Q-A M3062MWP-XXXGP ** 100P6Q-A 100P6Q-A M3062MWP-XXXFP ** 100P6Q-A
M30622M8P-XXXGP ** 64K bytes 100P6Q-A M30622MAP-XXXFP ** 100P6Q-A 100P6Q-A M30620MCP-XXXFP ** 100P6Q-A 100P6Q-A M30620MCP-XXXFP ** 100P6Q-A 100P6Q-A M30620MCP-XXXGP ** 100P6Q-A 100P6Q-A M30622MEP-XXXFP ** 100P6Q-A 100P6Q-A M30623MEP-XXXGP ** 12K bytes 100P6Q-A M30622MGP-XXXGP ** 100P6Q-A 128P6Q-A M30623MGP-XXXGP ** 12K bytes 100P6Q-A M30624MGP-XXXGP ** 100P6Q-A 100P6Q-A M30624MWP-XXXGP ** 100P6Q-A MASK ROM version M30622MWP-XXXGP ** 100P6Q-A 100P6Q-A M30623MWP-XXXGP ** 100P6Q-A 128P6Q-A M30624MWP-XXXGP ** 128P6Q-A 128P6Q-A M30624MWP-XXXGP ** 128P6Q-A 100P6S-A M30624MWP-XXXGP ** 100P6G-A 100P6G-A
M30622MAP-XXXGP ** M30622MAP-XXXFP ** M30622MAP-XXXGP ** M30620MCP-XXXFP ** M30620MCP-XXXFP ** M30622MEP-XXXFP ** M30622MEP-XXXGP ** M30623MEP-XXXGP ** M30622MGP-XXXFP ** M30622MGP-XXXGP ** M30623MGP-XXXGP ** M30624MGP-XXXFP ** M30624MGP-XXXFP ** M30624MGP-XXXFP ** M30624MGP-XXXGP ** M30624MWP-XXXGP ** M30625MGP-XXXGP ** M30622MWP-XXXGP ** M30622MWP-XXXGP ** M30623MWP-XXXGP ** M30624MWP-XXXGP **
M30622MAP-XXXGP ** 96K bytes 5K bytes 100P6Q-A M30620MCP-XXXFP ** 100P6S-A 100P6Q-A M30620MCP-XXXGP ** 100P6Q-A 100P6Q-A M30622MEP-XXXGP ** 100P6Q-A 100P6Q-A M30622MGP-XXXGP ** 100P6Q-A 128P6Q-A M30622MGP-XXXGP ** 100P6Q-A 128P6Q-A M30624MGP-XXXGP ** 100P6Q-A 128P6Q-A M30624MGP-XXXGP ** 100P6Q-A 100P6Q-A M30629MGP-XXXGP ** 100P6Q-A MASK ROM version M30629MWP-XXXGP ** 100P6Q-A MASK ROM version M30622MWP-XXXGP ** 100P6Q-A 128P6Q-A M30624MWP-XXXGP ** 100P6Q-A 128P6Q-A
M30622MAP-XXXGP ** 100P6Q-A M30620MCP-XXXGP ** 100P6S-A M30622MEP-XXXGP ** 100P6G-A M30622MEP-XXXGP ** 100P6G-A M30622MEP-XXXGP ** 100P6G-A M30622MGP-XXXGP ** 100P6G-A M30622MGP-XXXGP ** 100P6G-A M30622MGP-XXXGP ** 100P6G-A M30624MGP-XXXGP ** 12K bytes M30624MGP-XXXGP ** 100P6G-A M30624MGP-XXXGP ** 100P6G-A M30624MWP-XXXGP ** 100P6G-A M30629MWP-XXXFP ** 100P6G-A M30622MWP-XXXGP ** 16K bytes M30623MWP-XXXGP ** 16K bytes M30624MWP-XXXFP ** 100P6G-A
M30620MCP-XXXGP ** 10K bytes 100P6Q-A M30622MEP-XXXFP ** 100P6G-A M30622MEP-XXXGP ** 100P6Q-A M30622MGP-XXXGP ** 12K bytes M30622MGP-XXXGP ** 100P6Q-A M30622MGP-XXXGP ** 100P6Q-A M30624MGP-XXXGP ** 100P6Q-A M30624MGP-XXXGP ** 100P6Q-A M30625MGP-XXXGP ** 100P6Q-A M30622MWP-XXXGP ** 100P6Q-A M30622MWP-XXXGP ** 100P6Q-A M30623MWP-XXXGP ** 100P6Q-A M30624MWP-XXXGP ** 100P6Q-A
M30620MCP-XXXGP ** 100P6Q-A M30622MEP-XXXGP ** 100P6Q-A M30623MEP-XXXGP ** 12K bytes M30622MGP-XXXGP ** 100P6Q-A M30622MGP-XXXGP ** 100P6Q-A M30623MGP-XXXGP ** 12K bytes M30624MGP-XXXGP ** 100P6Q-A M30624MGP-XXXGP ** 100P6Q-A M30625MGP-XXXGP ** 100P6Q-A M30622MWP-XXXGP ** 100P6S-A M30622MWP-XXXGP ** 100P6G-A M30623MWP-XXXGP ** 100P6G-A M30624MWP-XXXGP ** 100P6G-A
M30622MEP-XXXGP ** 192K bytes 100P6Q-A M30623MEP-XXXGP ** 128P6Q-A M30622MGP-XXXGP ** 100P6S-A M30623MGP-XXXGP ** 12K bytes M30624MGP-XXXGP ** 128P6Q-A M30624MGP-XXXGP ** 100P6S-A M30625MGP-XXXGP ** 100P6Q-A M30625MGP-XXXGP ** 100P6Q-A M30622MWP-XXXFP ** 100P6Q-A M30622MWP-XXXGP ** 100P6Q-A M30623MWP-XXXGP ** 16K bytes M30624MWP-XXXGP ** 100P6Q-A M30624MWP-XXXGP ** 100P6Q-A M30624MWP-XXXGP ** 100P6Q-A M30624MWP-XXXGP ** 100P6Q-A
M30623MEP-XXXGP ** M30622MGP-XXXFP ** M30622MGP-XXXGP ** M30623MGP-XXXGP ** M30624MGP-XXXFP ** M30624MGP-XXXGP ** M30625MGP-XXXGP ** M30622MWP-XXXGP ** M30622MWP-XXXGP ** M30622MWP-XXXGP ** M30623MWP-XXXGP ** M30624MWP-XXXGP **
M30623MEP-XXXGP ** M30622MGP-XXXFP ** M30622MGP-XXXGP ** M30623MGP-XXXGP ** M30624MGP-XXXFP ** M30624MGP-XXXGP ** M30625MGP-XXXGP ** M30622MWP-XXXFP ** M30622MWP-XXXGP ** M30622MWP-XXXGP ** M30623MWP-XXXGP ** M30624MWP-XXXGP ** M30624MWP-XXXFP ** M30624MWP-XXXFP ** M30624MWP-XXXFP ** M30624MWP-XXXGP **
M30622MGP-XXXFP ** M30622MGP-XXXGP ** M30623MGP-XXXGP ** M30624MGP-XXXFP ** M30624MGP-XXXGP ** M30625MGP-XXXGP ** M30622MWP-XXXFP ** M30622MWP-XXXGP ** M30622MWP-XXXGP ** M30623MWP-XXXGP ** M30624MWP-XXXGP **
M30623MGP-XXXGP ** 128P6Q-A M30624MGP-XXXFP ** 100P6S-A M30624MGP-XXXGP ** 100P6Q-A M30625MGP-XXXGP ** 128P6Q-A M30622MWP-XXXFP ** 100P6S-A M30622MWP-XXXGP ** 100P6Q-A M30623MWP-XXXGP ** 128P6Q-A M30624MWP-XXXFP ** 100P6S-A M30624MWP-XXXFP ** 100P6S-A M30624MWP-XXXGP ** 100P6Q-A
M30623MGP-XXXGP ** M30624MGP-XXXFP ** M30624MGP-XXXGP ** M30625MGP-XXXGP ** M30622MWP-XXXFP ** M30622MWP-XXXGP ** M30623MWP-XXXGP ** M30623MWP-XXXGP ** M30624MWP-XXXGP **
M30624MGP-XXXFP ** 100P6S-A M30624MGP-XXXGP ** 100P6Q-A M30625MGP-XXXGP ** 128P6Q-A M30622MWP-XXXFP ** 100P6S-A M30623MWP-XXXGP ** 100P6Q-A M30623MWP-XXXGP ** 128P6Q-A M30624MWP-XXXFP ** 100P6S-A M30624MWP-XXXGP ** 100P6Q-A M30624MWP-XXXGP ** 100P6Q-A
M30624MGP-XXXGP ** 100P6Q-A MASK ROM version M30625MGP-XXXGP ** 128P6Q-A M30622MWP-XXXFP ** 100P6S-A M30623MWP-XXXGP ** 128P6Q-A M30624MWP-XXXFP ** 100P6S-A M30624MWP-XXXGP ** 100P6S-A M30624MWP-XXXGP ** 100P6Q-A M30624MWP-XXXGP ** 100P6Q-A
M30625MGP-XXXGP 128P6Q-A M30622MWP-XXXFP 100P6S-A M30622MWP-XXXGP 100P6Q-A M30623MWP-XXXGP 128P6Q-A M30624MWP-XXXFP 100P6S-A M30624MWP-XXXGP 24K bytes 100P6Q-A
M30622MWP-XXXFP ** 100P6S-A M30622MWP-XXXGP ** 100P6Q-A M30623MWP-XXXGP ** 128P6Q-A M30624MWP-XXXFP ** 100P6S-A M30624MWP-XXXGP ** 24K bytes 100P6Q-A 100P6Q-A
M30623MWP-XXXGP ** M30624MWP-XXXFP ** M30624MWP-XXXGP ** M30624MWP-XXXGP ** 320K bytes 128P6Q-A 100P6S-A 100P6Q-A
M30624MWP-XXXFP ** M30624MWP-XXXGP ** 320K bytes 100P6Q-A
M30624MWP-XXXGP ** 320K bytes 24K bytes 100P6Q-A
320K bytes 2 m Sylves
SZUK DYLES
M30625MWP-XXXGP **
M30626MWP-XXXFP ** 100P6S-A
M30626MWP-XXXGP ** 31K bytes 100P6Q-A
M30627MWP-XXXGP **
M30622MHP-XXXFP ** 100P6S-A
M30622MHP-XXXGP
M30623MHP-XXXGP **
M30624MHP-XXXFP ** 100P6S-A
M30624MHP-XXXGP ** 384K bytes 24K bytes 100P6Q-A
M30625MHP-XXXGP **
M30626MHP-XXXFP ** 100P6S-A
M30626MHP-XXXGP ** 31K bytes 100P6Q-A
M30627MHP-XXXGP **

* : Under planning ** : Under development

Table 1.1.3. Product List (2)

As of January 2003

Type No.		ROM capacity	RAM capacity	Package type	Remarks
M30622F8PFP	**			100P6S-A	
M30622F8PGP	**	64K bytes	4K bytes	100P6Q-A	
M30620FCPFP	**	400161	40K butaa	100P6S-A	
M30620FCPGP	**	128K bytes	10K bytes	100P6Q-A	
M30624FGPFP	**			100P6S-A	
M30624FGPGP	**	256K bytes	20K bytes	100P6Q-A	Flash memory version
M30625FGPGP	**			128P6Q-A	
M30626FHPFP	**			100P6S-A	
M30626FHPGP	**	384K bytes 31K byte	31K bytes	1K bytes 100P6Q-A	
M30627FHPGP	**			128P6Q-A	
M30626FJPFP	*			100P6S-A	
M30626FJPGP	*	512K bytes	31K bytes	100P6Q-A	
M30627FJPGP	*			128P6Q-A	
M30620SPFP	**		10K bytes	100P6S-A	
M30620SPGP	**		TOIR Dylos	100P6Q-A	External DOM version
M30622SPFP	**		4K bytes	100P6S-A	External ROM version
M30622SPGP	**		TI Dyles	100P6Q-A	

: Under planning: Under development

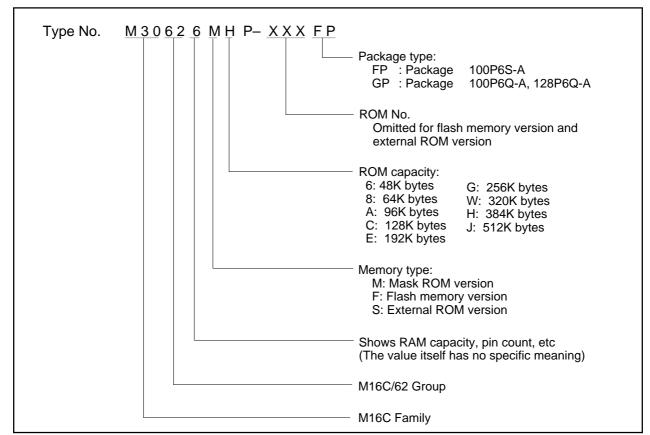


Figure 1.1.2. Type No., Memory Size, and Package

^{qe_Aelobwe_{ut} Nuqe_L}

Pin Configuration

Figures 1.1.3 to 1.1.5 show the pin configurations (top view).

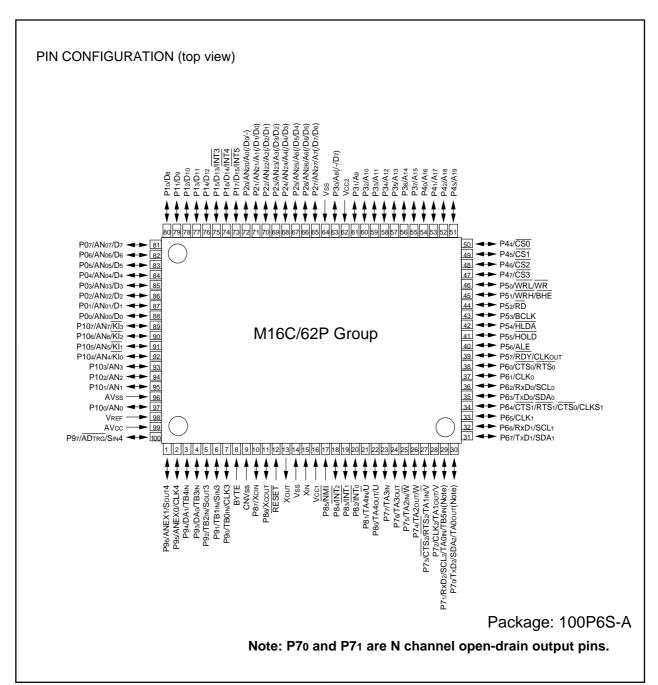


Figure 1.1.3. Pin Configuration (Top View)

^{de_Aelobweut}

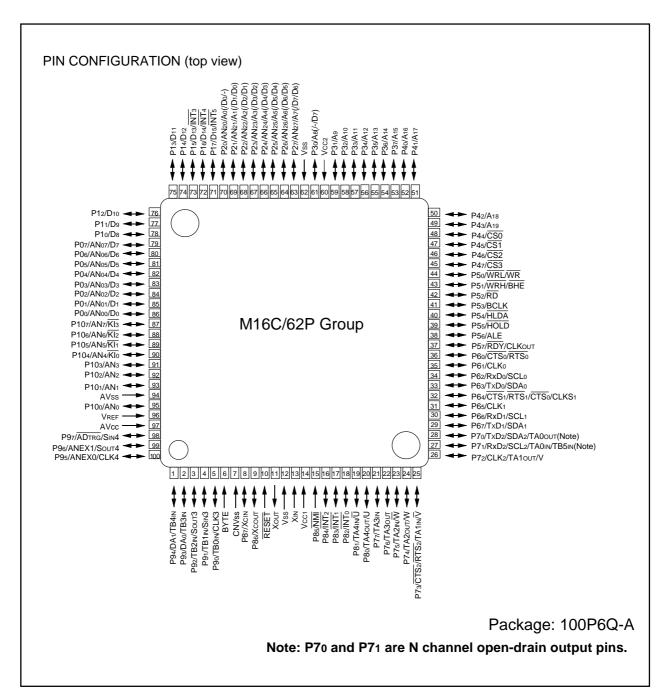


Figure 1.1.4. Pin Configuration (Top View)

^{qe}elobweut Nuqet

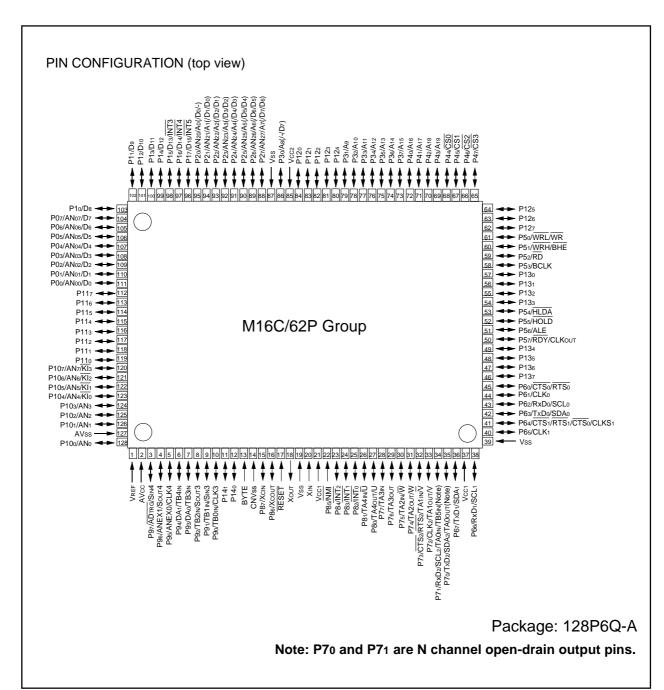


Figure 1.1.5. Pin Configuration (Top View)

Table 1.1.4 Pin Description (100-pin and 128-pin Packages) (Continued)

Pin name	Signal name	I/O type	Power supply	Function
VCC1, VCC2, VSS	Power supply input			Apply 2.7V to 5.5 V to the VCC1 and VCC2 pins and 0 V to the VSS pin. The Vcc apply condition is that $Vcc2 \le Vcc1$ (Note)
CNVss	CNVss	Input	VCC1	This pin switches between processor modes. Connect this pin to Vss pin when after a reset you want to start operation in single-chip mode (memory expansion mode) or the Vcc1 pin when starting operation in microprocessor mode.
RESET	Reset input	Input	VCC1	"L" on this input resets the microcomputer.
XIN	Clock input	Input	VCC1	These pins are provided for the main clock generating circuit input/
Xout	Clock output	Output		output. Connect a ceramic resonator or crystal between the XIN and the XOUT pins. To use an externally derived clock, input it to the XIN pin and leave the XOUT pin open.
ВҮТЕ	External data bus width select input	Input		This pin selects the width of an external data bus. A 16-bit width is selected when this input is "L"; an 8-bit width is selected when this input is "H". This input must be fixed to either "H" or "L". Connect this pin to the Vss pin when operating in single-chip mode.
AVcc	Analog power supply input			This pin is a power supply input for the A-D converter. Connect this pin to VCC1.
AVss	Analog power supply input			This pin is a power supply input for the A-D converter. Connect this pin to Vss.
VREF	Reference voltage input	Input		This pin is a reference voltage input for the A-D converter.
P00 to P07	I/O port P0	Input/output	VCC2	This is an 8-bit CMOS I/O port. This port has an input/output select direction register, allowing each pin in that port to be directed for input or output individually. If any port is set for input, selection can be made for it in a program whether or not to have a pull-up resistor in 4 bit units. This selection is unavailable in memory extension and microprocessor modes. This port can function as input pins for the A-D converter when so selected in a program.
Do to D7		Input/output		When set as a separate bus, these pins input and output data (D0 –D7).
P10 to P17	I/O port P1	Input/output	VCC2	This is an 8-bit I/O port equivalent to P0. P15 to P17 also function as $\overline{\text{INT}}$ interrupt input pins as selected by a program.
D8 to D15		Input/output		When set as a separate bus, these pins input and output data (D8 $-D15$).
P20 to P27	I/O port P2	Input/output	VCC2	This is an 8-bit I/O port equivalent to P0. This port can function as input pins for the A-D converter when so selected in a program.
Ao to A7		Output		These pins output 8 low-order address bits (A ₀ to A ₇).
A0/D0 to A7/D7		Input/output		If the external bus is set as an 8-bit wide multiplexed bus, these pins input and output data (Do to D7) and output 8 low-order address bits (Ao to A7) separated in time by multiplexing.
A0 A1/D0 to A7/D6		Output Input/output		If the external bus is set as a 16-bit wide multiplexed bus, these pins input and output data (Do to D6) and output address (A1 to A7) separated in time by multiplexing. They also output address (A0).
P30 to P37	I/O port P3	Input/output	VCC2	This is an 8-bit I/O port equivalent to P0.
A8 to A15	-	Output		These pins output 8 middle-order address bits (A8 to A15).
A8/D7, A9 to A15		Input/output Output		If the external bus is set as a 16-bit wide multiplexed bus, these pins input and output data (D7) and output address (A8) separated in time by multiplexing. They also output address (A9 to A15).
P40 to P47	I/O port P4	Input/output	VCC2	This is an 8-bit I/O port equivalent to P0.
A16 to A19, CS0 to CS3		Output Output		These pins output A16 to A19 and CS0 to CS3 signals. A16 to A19 are 4 high- order address bits. CS0 to CS3 are chip select signals used to specify an access space.

Note: In this manual, hereafter, VCC refers to VCC1 unless otherwise noted.

Table 1.1.5 Pin Description (100-pin and 128-pin Packages) (Continued)

Pin name	Signal name	I/O type	Power supply	Function
P50 to P57	I/O port P5	Input/output	VCC2	This is an 8-bit I/O port equivalent to P0. In single-chip mode, P57 in this port outputs a divide-by-8 or divide-by-32 clock of XIN or a clock of the same frequency as XCIN as selected by program.
WRL / WR, WRH / BHE RD, BCLK, HLDA, HOLD, ALE, RDY	•	Output Output Output Output Output Input Output Input		Output WRL/WR, WRH/BHE, RD, BCLK, HLDA, and ALE signals. WRL/WR and WRH/BHE are switchable in a program. Note that WRL and WRH are always used as a pair, so as WR and BHE. WRL, WRH, and RD selected If the external data bus is 16 bits wide, data are written to even addresses when the WRL signal is low, and written to odd_addresses when the WRH signal is low. Data are read out when the RD signal is low. WR, BHE, and RD selected Data are written when the WR signal is low, or read out when the RD signal is low. Odd addresses are accessed when the BHE signal is low. Use this mode when the external data bus is 8 bits wide. The microcomputer goes to a hold state when input to the HOLD pin is held low. While in the hold state, HLDA outputs a low level. ALE is used to latch the address. While the input level of the RDY pin is low, the bus of the microcomputer goes to a wait state.
P60 to P67	I/O port P6	Input/output	VCC1	This is an 8-bit I/O port equivalent to P0. Pins in this port also function as UART0 and UART1 I/O pins as selected by program.
P70 to P77	I/O port P7	Input/output	VCC1	This is an 8-bit I/O port equivalent to P0 (P70 and P71 are N channel open-drain output). This port can function as input/output pins for timers A0 to A3 when so selected in a program. Furthermore, P70 to P75, P71, and P72 to P75 can also function as input/output pins for UART2, an input pin for timer B5, and output pins for the three-phase motor control timer, respectively.
P80 to P84, P86, P87, P85	I/O port P8	Input/output Input/output Input/output Input	VCC1	P80 to P84, P86, and P87 are I/O ports with the same functions as P0. When so selected in a program, P80 to P81 and P82 to P84 can function as input/output pins for timer A4 or output pins for the three-phase motor control timer and INT interrupt input pins, respectively. P86 and P87, when so selected in a program, both can function as input/output pins for the subclock oscillator circuit. In that case, connect a crystal resonator between P86 (XCOUT pin) and P87 (XCIN pin). P85 is an input-only port shared with NMI. An NMI interrupt is generated when input on this pin changes state from high to low. The NMI function cannot be disabled in a program. A pull-up cannot be set for this pin.
P90 to P97	I/O port P9	Input/output	VCC1	This is an 8-bit I/O port equivalent to P0. Pins in this port also function as SI/O3 and SI/O4 I/O pins, Timer B0 to B4 input pins, D-A converter output pins, A-D converter input pins, or A-D trigger input pins as selected by program.
P100 to P107	I/O port P10	Input/output	VCC1	This is an 8-bit I/O port equivalent to P0. Pins in this port also function as A-D converter input pins as selected by program. Furthermore, P104 to P107 also function as input pins for the key input interrupt function.

Table 1.1.6 Pin Description (3) (128-pin Package) (Continued)

Pin name	Signal name		Power supply circuit block	Function
P110 to P117	I/O port P11	Input/output	VCC1	This is an 8-bit I/O port equivalent to P0.
P120 to P127	I/O port P12	Input/output	VCC2	This is an 8-bit I/O port equivalent to P0.
P130 to P137	I/O port P13	Input/output	VCC2	This is an 8-bit I/O port equivalent to P0.
P140, P141	I/O port P14	Input/output	VCC1	This is an 2-bit I/O port equivalent to P0.

Memory

Figure 1.2.1 is a memory map of the M16C/62P group. The address space extends the 1M bytes from address 0000016 to FFFFF16.

The internal ROM is allocated in a lower address direction beginning with address FFFFF16. For example, a 64-Kbyte internal ROM is allocated to the addresses from F000016 to FFFFF16.

The fixed interrupt vector table is allocated to the addresses from FFFDC16 to FFFFF16. Therefore, store the start address of each interrupt routine here.

The internal RAM is allocated in an upper address direction beginning with address 0040016. For example, a 10-Kbytes internal RAM is allocated to the addresses from 0040016 to 02BFF16. In addition to storing data, the internal RAM also stores the stack used when calling subroutines and when interrupts are gener-

The SRF is allocated to the addresses from 0000016 to 003FF16. Peripheral function control registers are located here. Of the SFR, any area which has no functions allocated is reserved for future use and cannot be used by users.

The special page vector table is allocated to the addresses from FFE0016 to FFFDB16. This vector is used by the JMPS or JSRS instruction. For details, refer to the "M16C/60 and M16C/20 Series Software Manual." In memory expansion and microprocessor modes, some areas are reserved for future use and cannot be used by users.

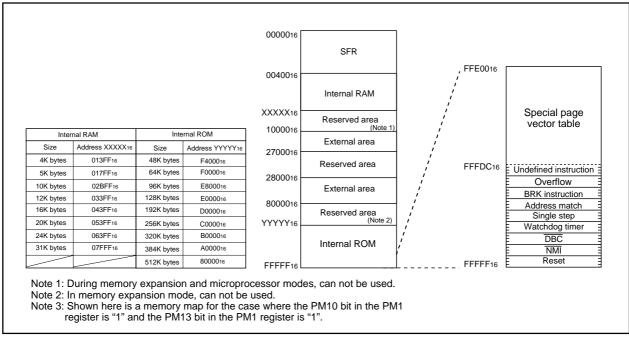


Figure 1.2.1. Memory Map

Under

Central Processing Unit (CPU)

Figure 1.3.1 shows the CPU registers. The CPU has 13 registers. Of these, R0, R1, R2, R3, A0, A1 and FB comprise a register bank. There are two register banks.

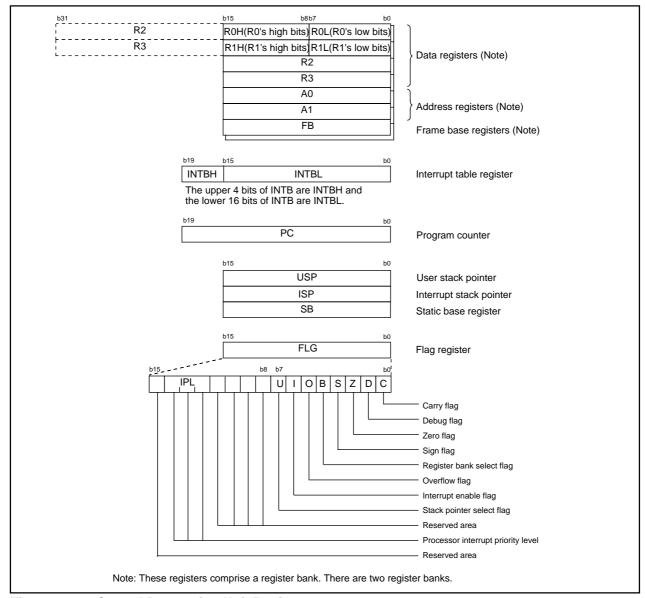


Figure 1.3.1. Central Processing Unit Register

(1) Data Registers (R0, R1, R2 and R3)

The R0 register consists of 16 bits, and is used mainly for transfers and arithmetic/logic operations. R1 to R3 are the same as R0.

The R0 register can be separated between high (R0H) and low (R0L) for use as two 8-bit data registers. R1H and R1L are the same as R0H and R0L. Conversely, R2 and R0 can be combined for use as a 32bit data register (R2R0). R3R1 is the same as R2R0.

(2) Address Registers (A0 and A1)

The register A0 consists of 16 bits, and is used for address register indirect addressing and address register relative addressing. They also are used for transfers and logic/logic operations. A1 is the same as A0.

In some instructions, registers A1 and A0 can be combined for use as a 32-bit address register (A1A0).

(3) Frame Base Register (FB)

FB is configured with 16 bits, and is used for FB relative addressing.

(4) Interrupt Table Register (INTB)

INTB is configured with 20 bits, indicating the start address of an interrupt vector table.

(5) Program Counter (PC)

PC is configured with 20 bits, indicating the address of an instruction to be executed.

(6) User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

Stack pointer (SP) comes in two types: USP and ISP, each configured with 16 bits. Your desired type of stack pointer (USP or ISP) can be selected by the U flag of FLG.

(7) Static Base Register (SB)

SB is configured with 16 bits, and is used for SB relative addressing.

(8) Flag Register (FLG)

FLG consists of 11 bits, indicating the CPU status.

Carry Flag (C Flag)

This flag retains a carry, borrow, or shift-out bit that has occurred in the arithmetic/logic unit.

Debug Flag (D Flag)

The D flag is used exclusively for debugging purpose. During normal use, it must be set to "0".

· Zero Flag (Z Flag)

This flag is set to "1" when an arithmetic operation resulted in 0; otherwise, it is "0".

• Sign Flag (S Flag)

This flag is set to "1" when an arithmetic operation resulted in a negative value; otherwise, it is "0".

• Register Bank Select Flag (B Flag)

Register bank 0 is selected when this flag is "0"; register bank 1 is selected when this flag is "1".

Overflow Flag (O Flag)

This flag is set to "1" when the operation resulted in an overflow; otherwise, it is "0".

• Interrupt Enable Flag (I Flag)

This flag enables a maskable interrupt.

Maskable interrupts are disabled when the I flag is "0", and are enabled when the I flag is "1". The I flag is cleared to "0" when the interrupt request is accepted.

Stack Pointer Select Flag (U Flag)

ISP is selected when the U flag is "0"; USP is selected when the U flag is "1".

The U flag is cleared to "0" when a hardware interrupt request is accepted or an INT instruction for software interrupt Nos. 0 to 31 is executed.

Processor Interrupt Priority Level (IPL)

IPL is configured with three bits, for specification of up to eight processor interrupt priority levels from level 0 to level 7.

If a requested interrupt has priority greater than IPL, the interrupt is enabled.

Reserved Area

When write to this bit, write "0". When read, its content is indeterminate.

Address	Register		Symbol	After reset
000016				
000116				
000216				
000316				
000416	Processor mode register 0	(Note 2)	PM0	000000002(CNVss pin is "L") 000000112(CNVss pin is "H")
000516	Processor mode register 1		PM1	000010002
000616	System clock control register 0		CM0	010010002
000716	System clock control register 1		CM1	001000002
000816	Chip select control register		CSR	000000012
000916	Address match interrupt enable register		AIER PRCR	XXXXXX002 XX0000002
000A16	Protect register			
000B16	Data bank register Oscillation stop detection register	(Note 3)	DBR CM2	0016
000C16 000D16	Oscillation stop detection register	(Note 3)	CIVIZ	0000X0002
000D16	Watchdog timer start register		WDTS	??16
000E16	Watchdog timer control register		WDC	00??????2(Note 4
001016	Address match interrupt register 0		RMAD0	0016
001116	Address materimenupt register o		T T T T T T T T T T T T T T T T T T T	0016
001216				X016
001316				
001416	Address match interrupt register 1		RMAD1	0016
001516	, ,			0016
001616				X016
001716				
001816				
001916	Power supply detection register 1	(Note 5)	VCR1	000010002
001A ₁₆	Power supply detection register 2	(Note 5)	VCR2	0016 0016
001B16	Chip select expansion control register PLL control register 0		CSE PLC0	0001X0102
001C ₁₆ 001D ₁₆	1 EE CONTION register o		1 200	000170102
001D16	Processor mode register 2		PM2	XXX000002
001E16	Power supply down detection interrupt register		D4INT	0016
002016	DMA0 source pointer		SAR0	??16
002116	•			??16
002216				X?16
002316				
002416	DMA0 destination pointer		DAR0	??16
002516				??16
002616				X?16
002716				
002816	DMA0 transfer counter		TCR0	??16
002916 002A16				??16
002A16				
002B16	DMA0 control register		DM0CON	00000?002
002D16	2111 to control regioter		DIVIDUOIN	00000:002
002E16				
002F16				
003016	DMA1 source pointer		SAR1	??16
003116	2 Source pointer		5,	??16
003216				X?16
003316				
003416	DMA1 destination pointer		DAR1	??16
003516				??16
003616				X?16
003716				<u> </u>
003816	DMA1 transfer counter		TCR1	??16
003916 003A16				??16
003A16				
003B16	DMA1 control register		DM1CON	00000?002
003D16	DMA1 control register		DIVITOON	000001002
003E16				
003F16				
			l .	

Note 1: The blank areas are reserved and cannot be used by users.

Note 2: The PM00 and PM01 bits do not change at software reset, watchdog timer reset and oscillation stop detection reset.

Note 3: The CM20, CM21, and CM27 bits do not change at oscillation stop detection reset.

Note 4: The WDC5 bit is "0" (cold start) immediately after power-on. It can only be set to "1" in a program. It is set to "0" when the input voltage at the Vcc1 pin drops to Vdet2 or less while the VC25 bit in the VCR2 register is set to "1" (RAM retention limit detection circuit enable Note 5: This register does not change at software reset, watchdog timer reset and oscillation stop detection reset.

X: Nothing is mapped to this bit

?: Undefined

Under

004016 004116 004216 004316			 _
004216 004316			
004316			
	INT3 interrupt control register	INT3IC	XX00?0002
	Timer B5 interrupt control register	TB5IC	XXXX?0002
	Timer B4 interrupt control register, UART1 BUS collision detection interrupt control register	TB4IC, U1BCNIC	XXXX?0002
	Timer B3 interrupt control register, UARTO BUS collision detection interrupt control register	TB3IC, U0BCNIC	XXXX?0002
	SI/O4 interrupt control register (S4IC), INT5 interrupt control register	S4IC, INT5IC	XX00?0002
004916 004A16	SI/O3 interrupt control register, INT4 interrupt control register	S3IC, INT4IC	XX00?0002
	UART2 Bus collision detection interrupt control register	BCNIC	XXXX?0002
	DMA0 interrupt control register DMA1 interrupt control register	DM0IC DM1IC	XXXX?0002 XXXX?0002
	Key input interrupt control register	KUPIC	XXXX?0002 XXXX?0002
	A-D conversion interrupt control register	ADIC	XXXX?0002 XXXX?0002
	UART2 transmit interrupt control register	S2TIC	XXXX?0002 XXXX?0002
	UART2 receive interrupt control register	S2RIC	XXXX?0002
	UARTO transmit interrupt control register	SOTIC	XXXX?0002
	UART0 receive interrupt control register	SORIC	XXXX?0002
	UART1 transmit interrupt control register	S1TIC	XXXX?0002
	UART1 receive interrupt control register	S1RIC	XXXX?0002
	Timer A0 interrupt control register	TA0IC	XXXX?0002
	Timer A1 interrupt control register	TA1IC	XXXX?0002
	Timer A2 interrupt control register	TA2IC	XXXX?0002
	Timer A3 interrupt control register	TA3IC	XXXX?0002
	Timer A4 interrupt control register	TA4IC	XXXX?0002
	Timer B0 interrupt control register	TB0IC	XXXX?0002
	Timer B1 interrupt control register	TB1IC	XXXX?0002
	Timer B2 interrupt control register	TB2IC	XXXX?0002
	INTO interrupt control register	INTOIC	XX00?0002
	INT1 interrupt control register	INT1IC	XX00?0002
	INT2 interrupt control register	INT2IC	XX00?0002
006016 006116			
006216			
006316			
006416			
006516			
006616			
006716			
006816			
006916			
006A16			
006B16			
006C16			
006D16			
006E16			
006F16			
007016			
007116			
007216			
007316			
007416			
007516 007616			
007616			
007716			
007916			
007916 007A16			
007A16			
007C16			
007D16			
00,0101			
007E16	ı		

Note: The blank areas are reserved and cannot be used by users.

X : Nothing is mapped to this bit ? : Undefined

Under

Address	Register		Symbol	After reset
008016	9		- J	
008116				
008216				
008316				
008416				
008516				
008616				
≈ 				≈
01B016				
01B116				
01B216				
01B316 01B416	Elech identification register	(Note 2)	FIDR	XXXXXX002
01B416 01B516	Flash identification register Flash memory control register 1	(Note 2)	FMR1	0?00??0?2
01B516	Flash memory control register 1	(Note 2)	LIMIK I	0:00::0:2
01B016	Flash memory control register 0	(Note 2)	FMR0	??0000012
01B816	Address match interrupt register 2	(: : : · · · /	RMAD2	0016
01B916	. tas. 550 materi interrupt regioter 2		111111111111111111111111111111111111111	0016
01BA ₁₆				X016
01BB16	Address match interrupt enable register 2		AIER2	XXXXXX002
01BC16	Address match interrupt register 3		RMAD3	0016
01BD16				0016
01BE ₁₆				X016
01BF16				
* *				· ≈
025016				
025116				
025216				
025316				
025416				
025516				
025616				
025716				
025816				
025916				
025A ₁₆ 025B ₁₆				
025B16 025C16				
025C16 025D16				
025D16 025E16	Peripheral clock select register		PCLKR	000000112
025F16	. Sporal olook oolook rogistor		· OLIVI	00000112
*				~
033016				
033116				
033216				
033316				
033516				
033616				
033716				
033816				
033916				
033A16				
033B16	<u> </u>			
033C16				
033D16				
033E16				
033F16				

Note 1: The blank areas are reserved and cannot be used by users.

Note 2: This register is included in the flash memory version.

X : Nothing is mapped to this bit

?: Undefined

development Nuder

Address	Register	Symbol	After reset
034016	Timer B3, 4, 5 count start flag	TBSR	000XXXXX2
034116	Timor Bo, 1, o count clart mag	- IBOIL	000700000
034216	Timer A1-1 register	TA11	??16
034316			??16
034416	Timer A2-1 register	TA21	??16
034516	3 3 3 3		??16
034616	Timer A4-1 register	TA41	??16
034716	Times 7.1. 1 regions.		??16
034816	Three-phase PWM control register 0	INVC0	0016
034916	Three-phase PWM control register 1	INVC1	0016
034A16	Three-phase output buffer register 0	IDB0	0016
034B ₁₆	Three-phase output buffer register 1	IDB1	0016
034C ₁₆	Dead time timer	DTT	??16
034D ₁₆	Timer B2 interrupt occurrence frequency set counter	ICTB2	??16
034E ₁₆	Timer B2 interrupt occurrence frequency set counter	10152	0
034F ₁₆			
035016	Timor R3 register	TB3	??16
035116	Timer B3 register	100	??16
035216	Timor R4 register	TB4	??16
035216	Timer B4 register	I D4	??16
035416	Timer B5 register	TB5	??16
035516	Timer bo register	IDO	??16
035516			(10
035616			
035716			
035916			
035A ₁₆	Times D2 made register	TDOMD	00220000
035B ₁₆	Timer B3 mode register	TB3MR	00??00002
035C ₁₆	Timer B4 mode register	TB4MR	00?X00002
035D16	Timer B5 mode register	TB5MR	00?X00002
035E16	Interrupt cause select register 2	IFSR2A	00XXXXXX2
035F ₁₆	Interrupt cause select register	IFSR	0016
036016	SI/O3 transmit/receive register	S3TRR	??16
036116	0//00	200	0.4000000-
036216	SI/O3 control register	S3C	010000002
036316	SI/O3 bit rate generator	S3BRG	??16
036416	SI/O4 transmit/receive register	S4TRR	??16
036516			
036616	SI/O4 control register	S4C	010000002
036716	SI/O4 bit rate generator	S4BRG	??16
036816			
036916			
036A ₁₆			
036B ₁₆			
036C ₁₆	UART0 special mode register 4	U0SMR4	0016
036D ₁₆	UART0 special mode register 3	U0SMR3	000X0X0X2
036E16	UART0 special mode register 2	U0SMR2	X00000002
036F16	UART0 special mode register	U0SMR	X00000002
037016	UART1 special mode register 4	U1SMR4	0016
037116	UART1 special mode register 3	U1SMR3	000X0X0X2
037216	UART1 special mode register 2	U1SMR2	X00000002
037316	UART1 special mode register	U1SMR	X00000002
037416	UART2 special mode register 4	U2SMR4	0016
037516	UART2 special mode register 3	U2SMR3	000X0X0X2
037616	UART2 special mode register 2	U2SMR2	X00000002
037716	UART2 special mode register	U2SMR	X00000002
	UART2 transmit/receive mode register	U2MR	0016
037816	UART2 bit rate generator	U2BRG	??16
037816			????????2
037916		11218	
0379 ₁₆ 037A ₁₆	UART2 transmit buffer register	U2TB	l l
0379 ₁₆ 037A ₁₆ 037B ₁₆	UART2 transmit buffer register		XXXXXXX?2
0379 ₁₆ 037A ₁₆ 037B ₁₆ 037C ₁₆	UART2 transmit buffer register UART2 transmit/receive control register 0	U2C0	XXXXXXX?2 000010002
0379 ₁₆ 037A ₁₆ 037B ₁₆	UART2 transmit buffer register		XXXXXXX?2

Note: The blank areas are reserved and cannot be used by users.

X : Nothing is mapped to this bit

?: Undefined

Under

Address	Register	Symbol	After reset
038016	Count start flag	TABSR	0016
038116	Clock prescaler reset flag	CPSRF	0XXXXXXX2
038216	One-shot start flag	ONSF	0016
038316	Trigger select register	TRGSR	0016
038416	Up-down flag	UDF	0016
038516	op dom nag		00.0
038616	Timer A0 register	TA0	??16
038716	Times no register	17.0	??16
038816	Timer A1 register	TA1	??16
038916	Timor / Crogistor	.,,,,	??16
038A16	Timer A2 register	TA2	??16
038B16	Time: 7 = register		??16
038C16	Timer A3 register	TA3	??16
038D16	Times no register	17.0	??16
038E16	Timer A4 register	TA4	??16
038F16	Timor 74 Togistor	17.4	??16
039016	Timer B0 register	TB0	??16
039116	Time: Bo register	1.50	??16
039216	Timer B1 register	TB1	??16
039316	Timor Di Tegistei	151	??16
039416	Timer B2 register	TB2	??16
039516	Timor Dz Togistor	102	??16
039516	Timer A0 mode register	TAOMR	0016
039016	Timer At mode register	TAUMR	0016
039716	Timer A2 mode register	TA1MR	0016
039916	Timer A3 mode register	TA3MR	0016
039916 039A16	Timer A4 mode register	TA4MR	0016
039A16	Timer B0 mode register	TB0MR	00??00002
039D16	Timer B1 mode register	TB1MR	00? X00002 00? X00002
039D16	Timer B2 mode register	TB2MR	00?X00002 00?X00002
039D16			
039E16	Timer B2 special mode register	TB2SC	XXXXXX002
039F16	LIADTO topo positivo positivo positivo	LIONAD	0040
03A016	UART0 transmit/receive mode register	U0MR U0BRG	0016
03A116	UARTO bit rate generator		??16
03A216	UART0 transmit buffer register	U0TB	????????2
03A316	HADTO: ''' - A I - A O	11000	XXXXXXXX?2
03A416	UARTO transmit/receive control register 0	U0C0	000010002
03A516	UART0 transmit/receive control register 1	U0C1	000000102
03A616 03A716	UART0 receive buffer register	U0RB	????????2
03A716 03A816	HARTA W. S. J. S.	LIAMD	?????XX?2
	UART1 transmit/receive mode register	U1MR	0016
03A916	UART1 bit rate generator	U1BRG	??16
03AA16	UART1 transmit buffer register	U1TB	????????2
03AB16	LIADT1 transmit/receive control register 0	U1C0	XXXXXXX?2
	UART1 transmit/receive control register 0		000010002
03AD16	UART1 transmit/receive control register 1	U1C1	000000102
03AE16	UART1 receive buffer register	U1RB	????????2
03AF16	HART A MARKET A LA CONTRACTOR AND A LA CONTRAC	HOCK	?????XX?2
03B016 03B116	UART transmit/receive control register 2	UCON	X00000002
			+
03B216			+
03B316			+
03B416			+
03B516			+
03B616			+
03B716	DMA0 request cause select register	DM0SL	0016
03B816	DIVIAU TEQUEST CAUSE SEIECT TEGISTEI	DIVIUSE	0016
03B916	DMA1 request cause solest register	DM4SI	0016
03BA16	DMA1 request cause select register	DM1SL	0016
03BB16	ODO data na sista n	0000	2010
03BC16	CRC data register	CRCD	??16
03BD16	ODO in part provides a	ODCIN	??16
03BE16	CRC input register	CRCIN	??16
03BF16			

Note : The blank areas are reserved and cannot be used by users. X : Nothing is mapped to this bit ? : Undefined

Under development

Address	Register	Symbol	After reset
03C016	A-D register 0	AD0	????????2
03C1 ₁₆			XXXXXX??2
03C216	A-D register 1	AD1	????????2
03C3 ₁₆			XXXXXX??2
03C4 ₁₆	A-D register 2	AD2	???????2
03C516			XXXXXX??2
03C616	A-D register 3	AD3	???????2
03C716			XXXXXX??2
03C816	A-D register 4	AD4	????????2
03C916	A.D	4.05	XXXXXX??2
03CA ₁₆	A-D register 5	AD5	????????2
03CB ₁₆	A D register 6	ADG	XXXXXX??2 ????????2
03CD16	A-D register 6	AD6	XXXXXX??2
03CE16	A-D register 7	AD7	????????2
03CF16	A-D legister /	ADI	XXXXXX??2
03D016			\\\\\\\!!2
03D116			
03D216			
03D316			
03D416	A-D control register 2	ADCON2	0016
03D516		7.555.42	1
03D616	A-D control register 0	ADCON0	00000???2
03D716	A-D control register 1	ADCON1	0016
03D816	D-A register 0	DA0	??16
03D916	<u> </u>		
03DA ₁₆	D-A register 1	DA1	??16
03DB16			
03DC16	D-A control register	DACON	0016
03DD16	-		
03DE16	Port P14 control register	PC14	XX00XXXX2
03DF ₁₆	Pull-up control register 3	PUR3	0016
03E016	Port P0 register	P0	??16
03E1 ₁₆	Port P1 register	P1	??16
03E216	Port P0 direction register	PD0	0016
03E3 ₁₆	Port P1 direction register	PD1	0016
03E416	Port P2 register	P2	??16
03E516	Port P3 register	P3	??16
03E616	Port P2 direction register	PD2	0016
03E7 ₁₆	Port P3 direction register	PD3	0016
03E816	Port P4 register	P4	??16
03E916	Port P5 register	P5	??16
03EA16	Port P4 direction register	PD4	0016
03EB16	Port P5 direction register	PD5	0016
03EC ₁₆	Port P6 register Port P7 register	P6 P7	??16 ??16
03ED16	Port P6 direction register	PD6	0016
03EE16 03EF16	Port P7 direction register	PD7	0016
03F016	Port P8 register	P8	??16
03F016 03F116	Port P9 register	P9	??16
03F216	Port P8 direction register	PD8	00X000002
03F316	Port P9 direction register	PD9	0016
03F416	Port P10 register	P10	??16
03F516	Port P11 register	P11	??16
03F616	Port P10 direction register	PD10	0016
03F7 ₁₆	Port P11 direction register	PD11	0016
03F8 ₁₆	Port P12 register	P12	??16
03F9 ₁₆	Port P13 register	P13	??16
03FA ₁₆	Port P12 direction register	PD12	0016
03FB ₁₆	Port P13 direction register	PD13	0016
03FC ₁₆	Pull-up control register 0	PUR0	0016
03FD ₁₆	Pull-up control register 1	PUR1	00000000
• •	1		00000002 (Note 2)
03FE ₁₆	Pull-up control register 2	PUR2	0016
	Port control register	PCR	0016

Note 1: The blank areas are reserved and cannot be used by users.

- Note 2: At hardware reset 1 or hardware reset 2, the register is as follows:

 "000000002" where "L" is inputted to the CNVss pin

 "000000102" where "H" is inputted to the CNVss pin

 At software reset, watchdog timer reset and oscillation stop detection reset, the register is as follows:

 - "000000002" where the PM01 to PM00 bits in the PM0 register are "002" (single-chip mode)
 "000000102" where the PM01 to PM00 bits in the PM0 register are "012" (memory expansion mode) or "112" (microprocessor mode)
- X : Nothing is mapped to this bit ? : Indefined

Reset

There are four types of resets: a hardware reset, a software reset, an watchdog timer reset, and an oscillation stop detection reset.

Hardware Reset

There are two types of hardware resets: a hardware reset 1 and a hardware reset 2.

Hardware Reset 1

A reset is applied using the RESET pin. When an "L" signal is applied to the RESET pin while the power supply voltage is within the recommended operating condition, the pins are initialized (see Table 1.5.1). The oscillation circuit is initialized and the main clock starts oscillating. When the input level at the RESET pin is released from "L" to "H", the CPU and SFR are initialized, and the program is executed starting from the address indicated by the reset vector. The internal RAM is not initialized. If the RESET pin is pulled "L" while writing to the internal RAM, the internal RAM becomes indeterminate.

Figure 1.5.1 shows the example reset circuit. Figure 1.5.2 shows the reset sequence. Table 1.5.1 shows the statuses of the other pins while the RESET pin is "L". Figure 1.5.3 shows the CPU register status after reset. Refer to "SFR" for SFR status after reset.

- 1. When the power supply is stable
- (1) Apply an "L" signal to the RESET pin.
- (2) Supply a clock for 20 cycles or more to the XIN pin.
- (3) Apply an "H" signal to the RESET pin.
- 2. Power on
- (1) Apply an "L" signal to the RESET pin.
- (2) Let the power supply voltage increase until it meets the recommended operating condition.
- (3) Wait td(P-R) or more until the internal power supply stabilizes.
- (4) Supply a clock for 20 cycles or more to the XIN pin.
- (5) Apply an "H" signal to the RESET pin.

Hardware Reset 2

This reset is generated by the microcomputer's internal voltage detection circuit. The voltage detection circuit monitors the voltage supplied to the VCC1 pin.

If the VC26 bit in the VCR2 register is set to "1" (reset level detection circuit enabled), the microcomputer is reset when the voltage at the VCC1 input pin drops below Vdet3.

Similarly, if the VC25 bit in the VCR2 register is set to "1" (RAM retention limit detection circuit enabled), the microcomputer is reset when the voltage at the VCC1 input pin drops below Vdet2.

Conversely, when the input voltage at the Vcc1 pin rises to Vdet3 or more, the pins and the CPU and SFR are initialized, and the program is executed starting from the address indicated by the reset vector. It takes about td(S-R) before the program starts running after Vdet3 is detected. The initialized pins and registers and the status thereof are the same as in hardware reset 1.

Set the CM10 bit in the CM1 register to "1" (stop mode) after setting the VC25 bit to "1" (RAM retention limit detection circuit enabled), and the microcomputer will be reset when the voltage at the VCC1 input pin drops below Vdet2 and comes out of reset when the voltage at the VCC1 input pin rises above Vdet3. During stop mode, the value set in the VC26 bit has no effect. Therefore, no reset is generated even when the input voltage at the VCC1 pin drops to Vdet3 or less.

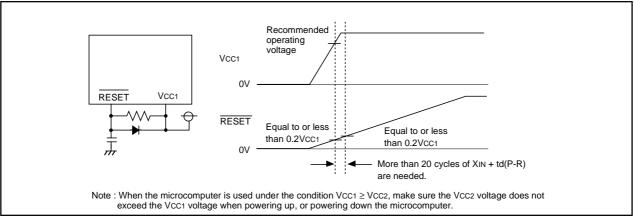


Figure 1.5.1. Example Reset Circuit

Software Reset

When the PM03 bit in the PM0 register is set to "1" (microcomputer reset), the microcomputer has its pins, CPU, and SFR initialized. Then the program is executed starting from the address indicated by the reset vector.

Select the main clock for the CPU clock source, and set the PM03 bit to "1" with main clock oscillation satisfactorily stable.

At software reset, some SFR's are not initialized. Refer to "SFR". Also, since the PM01 to PM00 bits in the PM0 register are not initialized, the processor mode remains unchanged.

Watchdog Timer Reset

Where the PM12 bit in the PM1 register is "1" (reset when watchdog timer underflows), the microcomputer initializes its pins, CPU and SFR if the watchdog timer underflows. Then the program is executed starting from the address indicated by the reset vector.

At watchdog timer reset, some SFR's are not initialized. Refer to "SFR". Also, since the PM01 to PM00 bits in the PM0 register are not initialized, the processor mode remains unchanged.

Oscillation Stop Detection Reset

Where the CM27 bit in the CM2 register is "0" (reset at oscillation stop detection), the microcomputer initializes its pins, CPU and SFR, coming to a halt if it detects main clock oscillation circuit stop. Refer to the section "oscillation stop, re-oscillation detection function".

At oscillation stop detection reset, some SFR's are not initialized. Refer to the section "SFR". Also, since the PM01 to PM00 bits in the PM0 register are not initialized, the processor mode remains unchanged.

^{qe_Aelobweut}

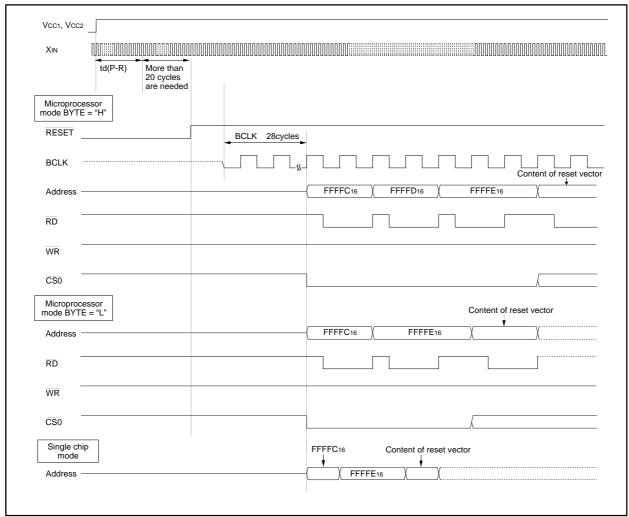


Figure 1.5.2. Reset Sequence

^{qe}elobweut Nuqet

Table 1.5.1. Pin Status When RESET Pin Level is "L"

		Status			
Pin name	ONIV/on V/on	CNVss = Vcc1			
	CNVss = Vss	BYTE = Vss	BYTE = Vcc		
P0	Input port	Data input	Data input		
P1	Input port	Data input	Input port		
P2, P3, P40 to P43	Input port	Address output (undefined)	Address output (undefined)		
P44	Input port	CS0 output ("H" is output)	CS0 output ("H" is output)		
P45 to P47	Input port	Input port (Pulled high)	Input port (Pulled high)		
P50	Input port	WR output ("H" is output)	WR output ("H" is output)		
P51	Input port	BHE output (undefined)	BHE output (undefined)		
P52	Input port	RD output ("H" is output)	RD output ("H" is output)		
P53	Input port	BCLK output	BCLK output		
P54	Input port	HLDA output (The output value depends on the input to the HOLD pin)	HLDA output (The output value depends on the input to the HOLD pin)		
P55	Input port	HOLD input	HOLD input		
P56	Input port	ALE output ("L" is output)	ALE output ("L" is output)		
P57	Input port	RDY input	RDY input		
P6, P7, P80 to P84, P86, P87, P9, P10	Input port	Input port	Input port		
P11, P12, P13, P140, P141 (Note)	Input port	Input port	Input port		

Note: P11, P12, P13, P140, P141 pins exist in 128-pin version.

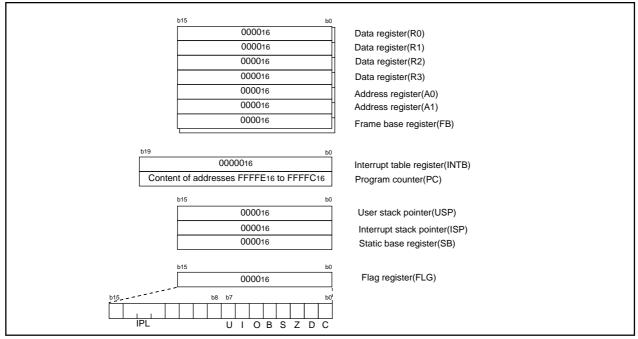


Figure 1.5.3. CPU Register Status After Rreset

^{qenelobwe}ur Nuqe_t

Voltage Detection Circuit

The voltage detection circuit has circuits to monitor the input voltage at the VCC1 pin, each checking the input voltage with respect to Vdet2, Vdet3, and Vdet4, respectively. Use the VC25 to VC27 bits in the VCR2 register to select whether or not to enable these circuits.

Enable the RAM retention limit detection circuit when using hardware reset 2 in stop mode, or when using the WDC5 bit in the WDC register. The WDC5 bit indicates that the RAM is retained.

Use the reset level detection circuit for hardware reset 2.

The power supply down detection circuit can be set to detect whether the input voltage is equal to or greater than Vdet4 or less than Vdet4 by using the VC13 bit in the VCR1 register. Furthermore, a power supply down detection interrupt can be used.

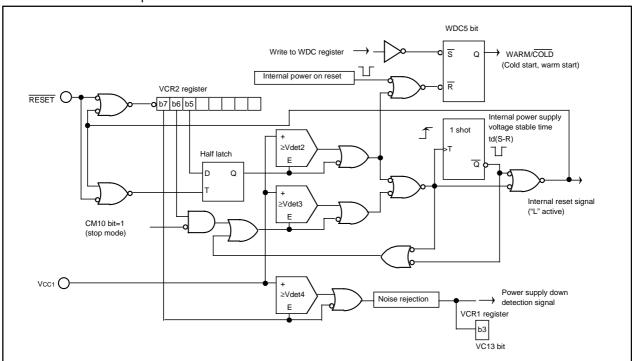


Figure 1.5.4. Reset Circuit Block

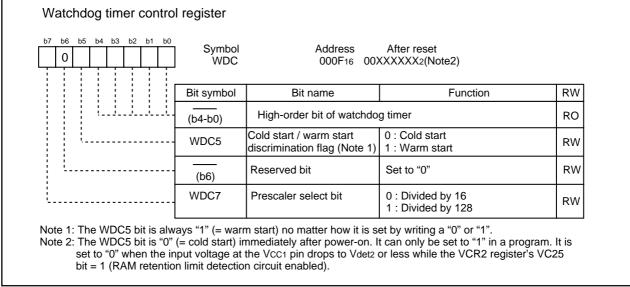


Figure 1.5.5. WDC Register

enable). The VC13 bit is always "1" (Vcc1 4 V) when the VC27 bit in the VCR2 register is set to "0" (power supply down detection circuit disable).

Note 2: This register does not change at software reset, watchdog timer reset and oscillation stop detection reset.

Power supply detection register 2 (Note 1)

b7 b b	0 0 0 0 0	Symbol VCR2	Address After 001A ₁₆	reset (Note 6) 0016	
		Bit symbol	Bit name	Function	RW
	1111111111111	(b4-b0)	Reserved bit	Must set to "0"	RW
1.		VC25	RAM retention limit detection monitor bit (Notes 3, 4, 7)	Disable RAM retention limit detection circuit Enable RAM retention limit detection circuit	RW
		VC26	Reset level monitor bit (Notes 2, 3, 7)	O: Disable reset level detection circuit 1: Enable reset level detection circuit	RW
		VC27	Power supply down monitor bit (Note 5)	Or Disable power supply down detection circuit 1: Enable power supply down detection circuit	RW

- Note 1: Write to this register after setting the PRC3 bit in the PRCR register to "1" (write enable).
- Note 2: To use hardware reset 2, set the VC26 bit to "1" (reset level detection circuit enable).

 Note 3: To use hardware reset 2 in stop mode, set the VC25 bit to "1" (RAM retention limit detection circuit enable). VC26 bit is disabled in stop mode. (The microcomputer is not reset even if the voltage input to Vcc1 pin becomes lower than Vdet3.)
- Note 4: To use the WDC5 bit in the WDC register, set the VC25 bit to "1" (RAM retention limit detection circuit enable). Note 5: Where the VC13 bit in the VCR1 register and D42 bit in the D4INT register are used or the D40 bit is set to "1" (power supply down detection interrupt enable), set the VC27 bit to "1" (power supply down detection circuit
- Note 6: This register does not change at software reset, watchdog timer reset and oscillation stop detection reset. Note 7: The detection circuit does not start operation until td(E-A) elapses after the VC25 bit, VC26 bit, or VC27 bit is set to "1".

Power supply down detection interrupt register (Note 1)

b7 b6 b5 b4 b3 b2 b1 b0	Symbol D4INT		r reset 1016	
	Bit symbol	Bit name	Function	RW
	D40	Power supply down detection interrupt enable bit (Note 5)	0 : Disable 1 : Enable	RW
	D41	STOP mode deactivation control bit (Note 4)	Disable (do not use the power supply down detection interrupt to get out of stop mode) Tenable (use the power supply down detection interrupt to get out of stop mode)	RW
	D42	Power supply change detection flag (Note 2)	0: Not detected 1: Vdet4 passing detection	RW (Note 3)
	D43	WDT overflow detect flag	0: Not detected 1: Detected	RW (Note 3)
	DF0	Sampling clock select bit	b5b4 00 : CPU clock divided by 8 01 : CPU clock divided by 16	RW
[DF1		10 : CPU clock divided by 32 11 : CPU clock divided by 64	RW
	(b7-b6)	Nothing is assigned. When writ content is "0".	te, set to "0". When read, its	

Note 1: Write to this register after setting the PRC3 bit in the PRCR register to "1" (write enable)

Note 2: Useful when the VC27 bit in the VCR2 register is set to "1" (power supply down detection circuit enabled). If the VC27 bit is set to "0" (power supply down detection circuit disable), the D42 bit is set to "0" (Not detect).

Note 3: This bit is set to "0" by writing a "0" in a program. (Writing a "1" has no effect.)

Note 4: If the power supply down detection interrupt needs to be used to get out of stop mode again after once

used for that purpose, reset the D41 bit by writing a "0" and then a "1" Note 5: The D40 bit is useful where the VC27 bit in the VCR2 register is set to "1"

Figure 1.5.6. VCR1 Register, VCR2 Register, and D4INT Register

^{qe}elobweut Nuqet

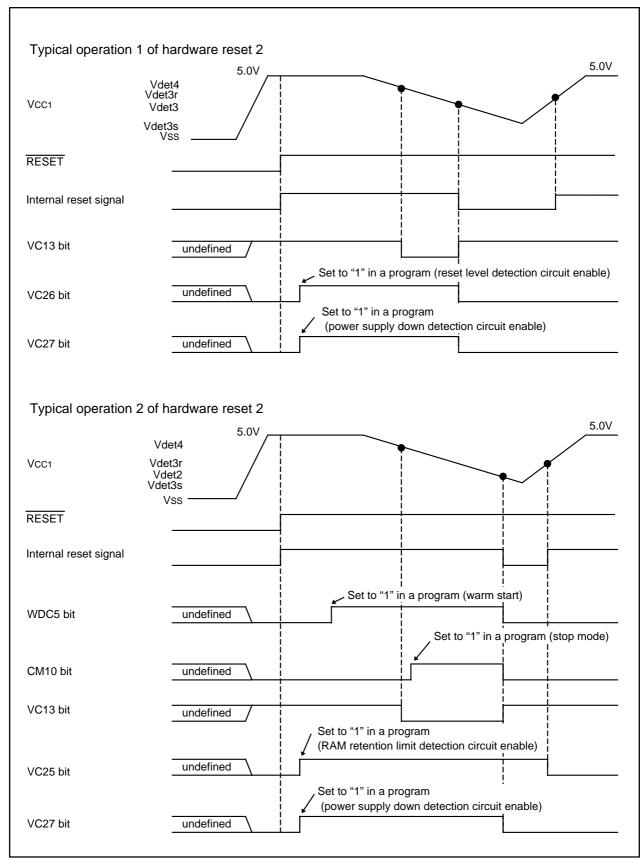


Figure 1.5.7. Typical Operation of Hardware Reset 2

Power Supply Down Detection Interrupt

A power supply down detection interrupt request is generated when the input voltage at the VCC1 pin rises to Vdet4 or more or drops below Vdet4 while the D40 bit in the D4INT register is set to "1" (power supply down detection interrupt enable). The power supply down detection interrupt shares the interrupt vector with the watchdog timer interrupt and oscillation stop, re-oscillation detection interrupt.

To use the power supply down detection interrupt to get out of stop mode, set the D41 bit in the D4INT register to "1" (enable).

The D42 bit in the D4INT register becomes "1" when passing through Vdet4 is detected after the voltage inputted to the Vcc1 pin is up or down.

A power supply down detection interrupt is generated when the D42 bit changes state from "0" to "1". The D42 bit needs to be set to "0" in a program. However, where the D41 bit is "1" and the stop mode is selected, the power supply down detection interrupt request arises, and the microcomputer is reset from the stop mode with no regard for the status of D42 bit if it is detected that the voltage applied to the Vcc1 pin has increased, passing through Vdet4.

Table 1.5.2 shows the power supply down detection interrupt request generation conditions.

It is possible to set the sampling clock detecting that the voltage applied to the Vcc1 pin has passed through Vdet4 with the DF1 to DF0 bits of D4INT register. Table 1.5.3 shows sampling clock periods.

Table 1.5.2. Power Supply Down Detection Interrupt Request Generation Conditions

	Bi	t, Vdet4 passing d	etection, operation n	node d	condition		Power supply down detection	
VC27 bit	D40 bit	Vdet4 passing detection	D42 bit	D41 bit	VC13 bit	Operation mode (Notes 1, 2)	Interrupt request	
0	_	_	_	_	_	_	Not generated	
1	0	_	_	_	_	_		
	1	Not detected	_	_	_	_		
		Detected	From 0 to 1	0	_	Normal, wait	Generated	
						Stop	Not generated	
				1	_	_	Generated	
			From 1 to 1	0	_	_	Not generated	
			(No change)	1	From 0 to 1	Normal, wait		
					(Up)	Stop	Generated	
					From 1 to 0 (Down)	_	Not generated	

Note 1: The status except the wait mode and stop mode is handled as the normal mode. (Refer to "Clock generating circuit") Note 2: Refer to "Limitations on stop mode", "Limitations on wait mode".

Table 1.5.3. Sampling Clock Periods

CPU clock		Sampling of	lock (µs)	
(MHz)	divided by 8	divided by 16	divided by 32	divided by 64
16	1.5	3.0	6.0	12.0

Precautions

1. Limitations on Stop Mode

If the CM10 bit in the CM1 register is set to "1" (stop mode) when the VC13 bit in the VCR1 register is "1" (VCC1 ≥ Vdet4) while the VC27 bit in the VCR2 register is "1" (power supply down detection circuit enable) and the D40 bit in the D4INT register is "1" (power supply down detection interrupt enable) and D41 bit in the D4INT register is "1" (power supply down detection interrupt is used to get out of stop mode), a power supply down detection interrupt is immediately generated, causing the microcomputer to exit stop mode. In systems where the microcomputer enters stop mode when the input voltage at the VCC1 pin drops below Vdet4 and exits stop mode when the input voltage rises to Vdet4 or more, make sure the CM10 bit is set to "1" when VC13 bit is "0" (VCC1 < Vdet4).

^{qe}elobweut Nuqet

2. Limitations on WAIT Instruction

If the WAIT instruction is executed when the VC13 bit in the VCR1 register is "1" (Vcc1 ≥ Vdet4) while the VC27 bit in the VCR2 register is "1" (power supply down detection circuit enable) and the D40 bit in the D4INT register is "1" (power supply down detection interrupt enable), a power supply down detection interrupt is immediately generated, causing the microcomputer to exit wait mode.

In systems where the microcomputer enters wait mode when the input voltage at the VCC1 pin drops below Vdet4 and exits wait mode when the input voltage rises to Vdet4 or more, make sure the WAIT instruction is executed when VC13 bit is "0" (Vcc1 < Vdet4).

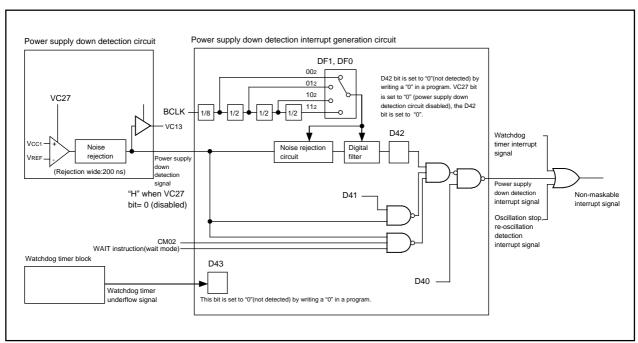


Figure 1.5.8. Power Supply Down Detection Interrupt Generation Block

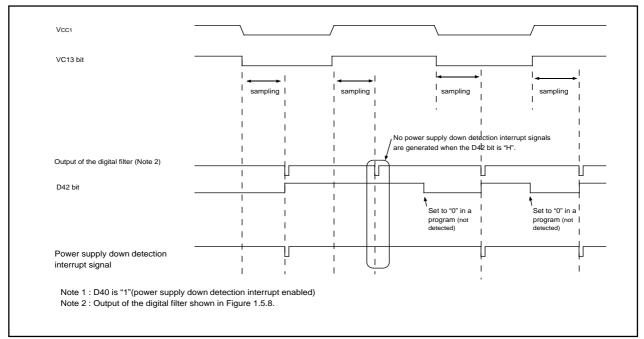


Figure 1.5.9. Power Supply Down Detection Interrupt Generation Circuit Operation Example

(1) Types of Processor Mode

Three processor modes are available to choose from: single-chip mode, memory expansion mode, and microprocessor mode. Table 1.6.1 shows the features of these processor modes.

Table 1.6.1. Features of Processor Modes

Processor modes	Access space	Pins which are assigned I/O ports
Single-chip mode	SFR, internal RAM, internal ROM	All pins are I/O ports or peripheral function I/O pins
Memory expansion mode	SFR, internal RAM, internal ROM, external area (Note)	Some pins serve as bus control pins (Note)
Microprocessor mode	SFR, internal RAM, external area (Note)	Some pins serve as bus control pins (Note)

Note: Refer to "Bus".

(2) Setting Processor Modes

Processor mode is set by using the CNVss pin and the PM01 to PM00 bits in the PM0 register.

Table 1.6.2 shows the processor mode after hardware reset. Table 1.6.3 shows the PM01 to PM00 bit set values and processor modes.

Table 1.6.2. Processor Mode After Hardware Reset

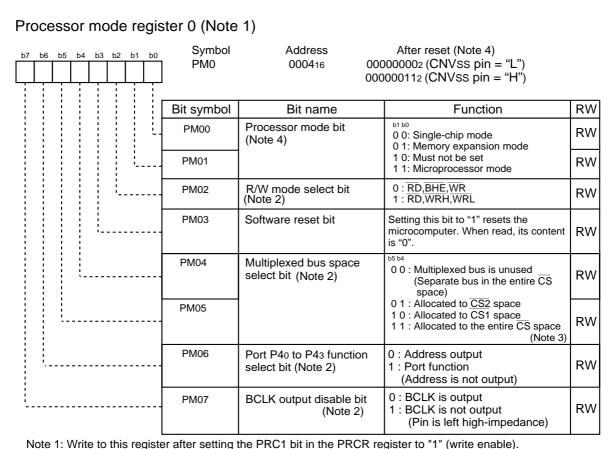
CNVss pin input level	Processor mode
Vss	Single-chip mode
Vcc1 (Note 1, Note 2)	Microprocessor mode

Note 1: If the microcomputer is reset in hardware by applying VCC1 to the CNVss pin (hardware reset 1 or hardware reset 2), the internal ROM cannot be accessed regardless of PM10 to PM00 bits.

Note 2: The multiplexed bus cannot be assigned to the entire CS space.

Table 1.6.3. PM01 to PM00 Bits Set Values and Processor Modes

PM01 to PM00 bits	Processor modes
002	Single-chip mode
012	Memory expansion mode
102	Must not be set
112	Microprocessor mode


Rewriting the PM01 to PM00 bits places the microcomputer in the corresponding processor mode regardless of whether the input level on the CNVss pin is "H" or "L". Note, however, that the PM01 to PM00 bits cannot be rewritten to "012" (memory expansion mode) or "112" (microprocessor mode) at the same time the PM07 to PM02 bits are rewritten. Note also that these bits cannot be rewritten to enter microprocessor mode in the internal ROM, nor can they be rewritten to exit microprocessor mode in areas overlapping the internal ROM.

If the microcomputer is reset in hardware by applying VCC1 to the CNVss pin (hardware reset 1 or hardware reset 2), the internal ROM cannot be accessed regardless of PM01 to PM00 bits.

Figures 1.6.1 and 1.6.2 show the registers associated with processor modes. Figure 1.6.3 show the memory map in single chip mode.

Under

Note 2: Effective when the PM01 to PM00 bits are set to "012" (memory expansion mode) or "112" (microprocessor mode).

Note 3: To set the PM01 to PM00 bits are "012" and the PM05 to PM04 bits are "112" (multiplexed bus assigned to the entire CS space), apply an "H" signal to the BYTE pin (external data bus is 8 bits wide). While the CNVss pin is held "H" (= Vcc1), do not rewrite the PM05 to PM04 bits to "112" after reset. If the PM05 to PM04 bits are set to "112" during memory expansion mode, P31 to P37 and P40 to P43 become I/O ports, in which case the accessible area for each $\overline{\text{CS}}$ is 256 bytes.

Note 4: The PM01 to PM00 bits do not change at software reset, watchdog timer reset and oscillation stop detection reset.

Figure 1.6.1. PM0 Register

Processor mode register 1 (Note 1)

b7	b6	_	b4	b3	3 b2	b1	b0	Symbol PM1		After reset 0X0010002	
								Bit symbol	Bit name	Function	RW
							,	PM10	CS2 area switch bit (data block enable bit) (Note 2)	0: 0800016 to 26FFF16 (block A disable) 1: 1000016 to 26FFF16 (block A enable)	RW
-				!		١.		PM11	Port P37 to P34 function select bit (Note 3	0 : Address output) 1 : Port function	RW
								PM12	Watchdog timer function select bit	0 : Watchdog timer interrupt 1 : Watchdog timer reset (Note 4)	RW
				į				PM13	Internal reserved area expansion bit	See Note 6	RW
			į_					PM14	Memory area expansion bit (Note 3)	0 0 : 1 Mbyte mode (Do not expand)	RW
		1						PM15		0 1 : Must not be set 1 0 : Must not be set 1 1 : 4 Mbyte mode	RW
	į							(b6)	Reserved bit	Should be set to "0".	RW
į.								PM17	Wait bit (Note 5)	0 : No wait state 1 : With wait state (1 wait)	RW

- Note 1: Write to this register after setting the PRC1 bit in the PRCR register to "1" (write enable).
- Note 2: For the mask ROM version, this bit must be set to "0" . For the flash memory version, the PM10 bit also controls block A by enabling or disabling it. However, the PM10 bit is automatically set to "1" when the FMR01 bit in the FMR0 register is "1" (CPU rewrite mode).

 Note 3: Effective when the PM01 to PM00 bits are set to "012" (memory expansion mode) or "112" (microprocessor
- Note 4: PM12 bit is set to "1" by writing a "1" in a program. (Writing a "0" has no effect.)
- Note 5: When PM17 bit is set to "1" (with wait state), one wait state is inserted when accessing the internal RAM, internal ROM, or an external area. If the CSiW bit (i = 0 to 3) in the CSR register is "0" (with wait state), the CSi area is always accessed with one or more wait states regardless of whether the PM17 bit is set or not. Where the RDY signal is used or multiplex bus is used, set the CSiW bit to "0" (with wait state).
- Note 6: The access area is changed by the PM13 bit as listed in the table below.

Access area		PM13=0	PM13=1
Internal	RAM	Up to addresses 0040016 to 03FFF16 (15 Kbytes)	The entire area is usable
	ROM	Up to addresses D000016 to FFFFF16 (192 Kbytes)	The entire area is usable
External		Addresses 0400016 to 07FFF16 are usable	Addresses 0400016 to 07FFF16 are reserved
		Addresses 8000016 to CFFFF16 are usable	Addresses 8000016 to CFFFF16 are reserved

Figure 1.6.2. PM1 Register

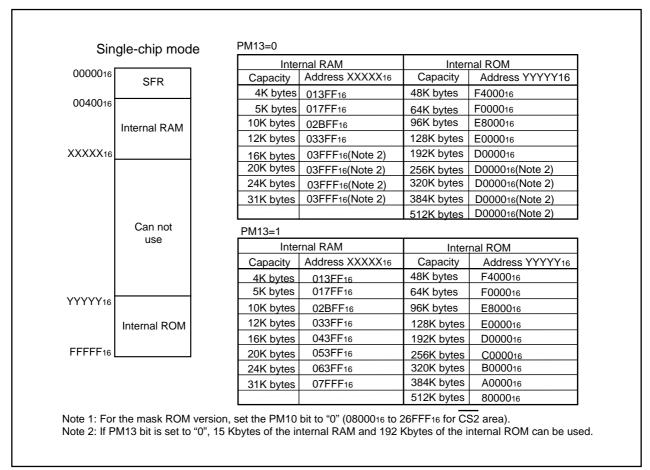


Figure 1.6.3. Memory Map in Single Chip Mode

Bus

development

During memory expansion or microprocessor mode, some pins serve as the bus control pins to perform data input/output to and from external devices. These bus control pins include A₀ to A₁₉, D₀ to D₁₅, $\overline{\text{CSO}}$ to $\overline{\text{CS3}}$, $\overline{\text{RD}}$, $\overline{\text{WRL/WR}}$, $\overline{\text{WRH/BHE}}$, ALE, $\overline{\text{RDY}}$, $\overline{\text{HOLD}}$, $\overline{\text{HLDA}}$ and BCLK.

Bus Mode

The bus mode, either multiplexed or separate, can be selected using the PM05 to PM04 bits.

Separate Bus

In this bus mode, data and address are separate.

Multiplexed Bus

In this bus mode, data and address are multiplexed. If the data bus is 8 bits wide, Do to D7 and A0 to A7 are multiplexed. If the data bus is 16 bits wide, D0 to D7 and A1 to A8 are multiplexed, with D8 to D15 not multiplexed. In this case, external devices connecting to the multiplexed bus are mapped to the even addresses of the microcomputer.

Bus Control

The following describes the signals needed for accessing external devices and the functionality of software wait.

(1) Address Bus

The address bus consists of 20 lines, Ao to A19. The address bus width can be chosen to be 12, 16 or 20 bits by using the PM06 bit in the PM0 register and the PM11 bit in the PM1 register. Table 1.7.1 shows the PM06 and PM11 bit set values and address bus widths.

Table 1.7.1. PM06 and PM11 Bits Set Value and Address Bus Width

Set value(Note)	Pin function	Address bus wide	
PM11=1	P34 to P37	12 bits	
PM06=1	P40 to P43	12 bits	
PM11=0	A12 to A15	40 hita	
PM06=1	P40 to P43	16 bits	
PM11=0	A12 to A15	00 hit-	
PM06=0	A16 to A19	20 bits	

Note 1: No values other than those shown above can be set.

When processor mode is changed from single-chip mode to memory extension mode, the address bus is indeterminate until any external area is accessed.

(2) Data Bus

When input on the BYTE pin is high, 8 lines D₀ to D₇ comprise the data bus; when input on the BYTE pin is low, 16 lines D₀ to D₁₅ comprise the data bus.

Do not change the input level on the BYTE pin while in operation.

(3) Chip Select Signal

The chip select (hereafter referred to as the \overline{CSi}) signals are output from the \overline{CSi} (i = 0 to 3) pins. These pins can be chosen to function as I/O ports or as \overline{CS} by using the CSi bit in the CSR register. Figure 1.7.1 shows the CSR register.

During 1 Mbyte mode, the external area can be separated into up to 4 by the \overline{CSi} signal which is output from the \overline{CSi} pin. During 4 Mbyte mode, \overline{CSi} signal or bank number is output from the \overline{CSi} pin. Refer to "Memory space expansion function". Figure 1.7.2 shows the example of address bus and \overline{CSi} signal output in 1 Mbyte mode.

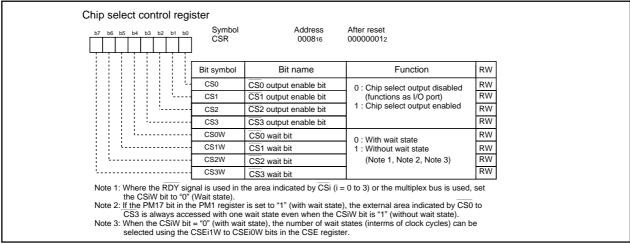


Figure 1.7.1. CSR Register

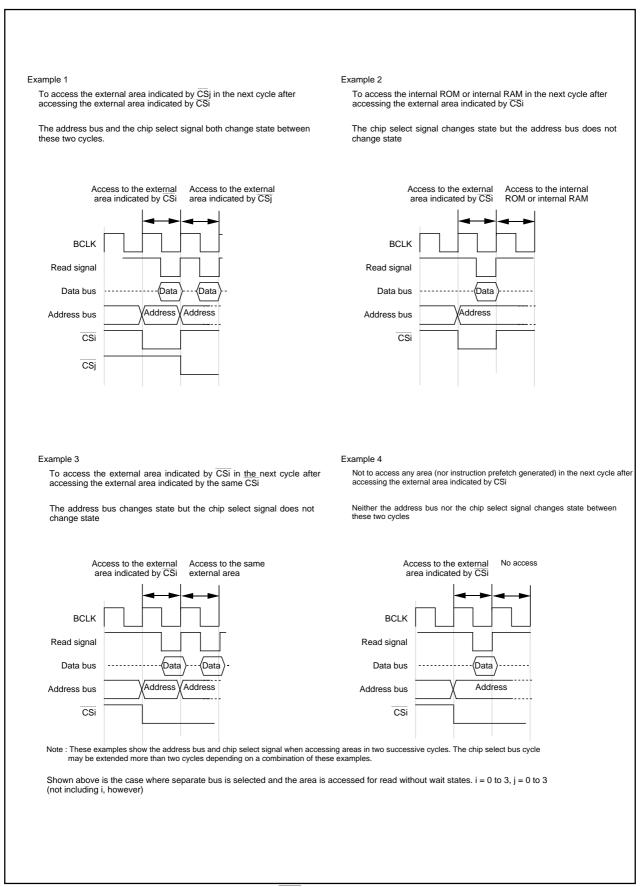


Figure 1.7.2. Example of Address Bus and CSi Signal Output in 1 Mbyte Mode

(4) Read and Write Signals

When the data bus is 16 bits wide, the read and write signals can be chosen to be a combination of \overline{RD} , \overline{BHE} and \overline{WR} or a combination of \overline{RD} , \overline{WRL} and \overline{WRH} by using the PM02 bit in the PM0 register. When the data bus is 8 bits wide, use a combination of \overline{RD} , \overline{WR} and \overline{BHE} .

Table 1.7.2 shows the operation of \overline{RD} , \overline{WRL} , and \overline{WRH} signals. Table 1.7.3 shows the operation of operation of \overline{RD} , \overline{WR} , and \overline{BHE} signals.

Table 1.7.2. Operation of RD, WRL and WRH Signals

Data bus width	RD	WRL	WRH	Status of external data bus
40 hit	L	Н	Н	Read data
16-bit (BYTE pin input	Н	L	Н	Write 1 byte of data to an even address
= "L")	Н	Н	L	Write 1 byte of data to an odd address
,	Н	L	L	Write data to both even and odd addresses

Table 1.7.3. Operation of RD, WR and BHE Signals

Data bus width	RD	WR	BHE	A0	Status of external data bus		
	Н	L	L	Н	Write 1 byte of data to an odd address		
	L	Н	L	Н	Read 1 byte of data from an odd address		
16-bit	Н	L	Н	L	Write 1 byte of data to an even address		
(BYTE pin input	L	Н	Н	L	Read 1 byte of data from an even address		
= "L")	Н	L	L	L	Write data to both even and odd addresses		
	L	Н	L	L	Read data from both even and odd addresses		
8-bit (BYTE pin	Н	L	— (Note)	H or L	Write 1 byte of data		
input = "H")	L	Н	— (Note)	H or L	Read 1 byte of data		

Note: Do not use.

(5) ALE Signal

The ALE signal latches the address when accessing the multiplex bus space. Latch the address when the ALE signal falls.

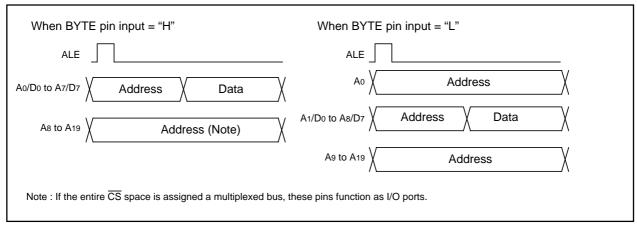


Figure 1.7.3. ALE Signal, Address Bus, Data Bus

(6) The RDY Signal

This signal is provided for accessing external devices which need to be accessed at low speed. If input on the \overline{RDY} pin is asserted low at the last falling edge of BCLK of the bus cycle, one wait state is inserted in the bus cycle. While in a wait state, the following signals retain the state in which they were when the \overline{RDY} signal was acknowledged.

A0 to A19, D0 to D15, CS0 to CS3, RD, WRL, WRH, WR, BHE, ALE, HLDA

Then, when the input on the \overline{RDY} pin is detected high at the falling edge of BCLK, the remaining bus cycle is executed. Figure 1.7.4 shows example in which the wait state was inserted into the read cycle by the \overline{RDY} signal. To use the \overline{RDY} signal, set the corresponding bit (CS3W to CS0W bits) in the CSR register to "0" (with wait state). When not using the \overline{RDY} signal, process the \overline{RDY} pin as an unused pin.

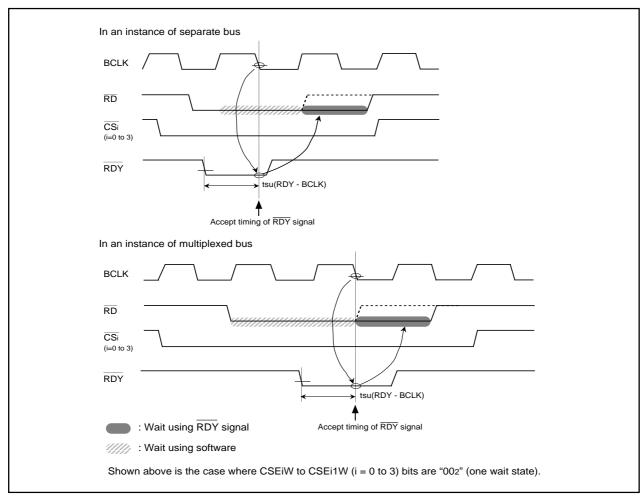


Figure 1.7.4. Example in which Wait State was Inserted into Read Cycle by RDY Signal

(7) Hold Signal

This signal is used to transfer control of the bus from the CPU or DMA to an external circuit. When input on the HOLD pin is asserted "L", the microcomputer goes to a hold state after completing the bus access then in progress. While the HOLD pin is held "L", the microcomputer remains in a hold state, outputting a low signal from the HLDA pin.

Table 1.7.4 shows the microcomputer status in the hold state.

Bus-using priorities are given to HOLD, DMAC, and CPU in order of decreasing precedence.

HOLD > DMAC > CPU

Figure 1.7.5. Bus-using Priorities

Table 1.7.4. Microcomputer Status in Hold State

Ite	m	Status	
BCLK		Output	
A ₀ to A ₁₉ , D ₀ to D ₁₅ , CSO to CS3,	RD, WRL, WRH, WR, BHE	High-impedance	
I/O ports	P0, P1, P3, P4(Note 2)	High-impedance	
	P6 to P14(Note 1)	Maintains status when hold signal is received	
HLDA		Output "L"	
Internal peripheral circuits		ON (but watchdog timer stops)	
ALE signal		Undefined	

Note 1: P11 to P14 are included in the 128-pin version.

Note 2: When I/O port function is selected.

(8) BCLK Output

If the PM07 bit in the PM0 register is set to "0" (output enable), a clock with the same frequency as that of the CPU clock is output as BCLK from the BCLK pin. Refer to "CPU clock and pheripheral clock".

Table 1.7.5. Pin Functions for Each Processor Mode

Processor	Memory expansion mode										
PM05–PM0	4 bits	002(separat	e bus)	others are for 102(CS1 is for mu	012(CS2 is for multiplexed bus and others are for separate bus) 102(CS1 is for multiplexed bus and others are for separate bus)						
Data bus wi	dth	8 bits	16 bits	8 bits							
BYTE pin		"H"	"L"	"H"	"L"	"H"					
P00 to P07		Do to D7	Do to D7	Do to D7	Do to D7	I/O ports					
P10 to P17		I/O ports	D8 to D15	I/O ports	D8 to D15	I/O ports					
P20		Ao	Ao	Ao/Do(Note 2)	Ao	Ao/Do					
P21 to P27		A1 to A7	A1 to A7	A1 to A7/D1 to D7 (Note 2)	A1 to A7/D0 to D6 (Note 2)	A1 to A7/D1 to D7					
P30		A8	A8	A8	A8/D7(Note 2)	A8					
P31 to P33		A9 to A11	•	•		I/O ports					
P34 to P37	PM11=0	A12 to A15				I/O ports					
İ	PM11=1	I/O ports	I/O ports								
P40 to P43	PM06=0	A16 to A19									
İ	PM06=1	I/O ports	I/O ports								
P44	CS0=0	I/O ports									
	CS0=1	CS ₀	CS0								
P45	CS1=0	I/O ports									
	CS1=1	CS1									
P46	CS2=0	I/O ports									
	CS2=1	CS2									
P47	CS3=0	I/O ports									
	CS3=1	CS3									
P50	PM02=0	WR									
	PM02=1	— (Note 3)	WRL	— (Note 3)	WRL	— (Note 3)					
P51	PM02=0	BHE									
	PM02=1	— (Note 3)	WRH	— (Note 3)	WRH	— (Note 3)					
P52		RD									
P53		BCLK									
P54		HLDA									
P55		HOLD									
P56		ALE									
P57		RDY									

I/O ports: Function as I/O ports or peripheral function I/O pins.

Note 1: To set the PM01 to PM00 bits are set to "012" and the PM05 to PM04 bits are set to "112" (multiplexed bus assigned to the entire CS space), apply "H" to the BYTE pin (external data bus 8 bits wide). While the CNVss pin is held "H" (= Vcc1), do not rewrite the PM05 to PM04 bits to "112" after reset. If the PM05 to PM04 bits are set to "112" during memory expansion mode, P31 to P37 and P40 to P43 become I/O ports, in which case the accessible and for sheep the product by the

Note 2: In separate bus mode, these pins serve as the address bus.

Note 3: If the data bus is 8 bits wide, make sure the PM02 bit is set to "0" $(\overline{RD}, \overline{BHE}, \overline{WR})$.

(9) External Bus Status When Internal Area Accessed

Table 1.7.6 shows the external bus status when the internal area is accessed.

Table 1.7.6. External Bus Status When Internal Area Accessed

Item		SFR accessed	Internal ROM, RAM accessed		
A0 to A19		Address output	Maintain status before accessed		
			address of external area or SFR		
D0 to D15	When read	High-impedance	High-impedance		
	When write	Output data	Undefined		
$\overline{RD},\overline{WR},\overline{WF}$	RL, WRH	RD, WR, WRL, WRH output	Output "H"		
BHE		BHE output	Maintain status before accessed		
			status of external area or SFR		
CS0 to CS3		Output "H"	Output "H"		
ALE		Output "L"	Output "L"		

(10) Software Wait

Software wait states can be inserted by using the PM17 bit in the PM1 register, the CS0W to CS3W bits in the CSR register, and the CSE register.

To use the RDY signal, set the corresponding CS3W to CS0W bit to "0". Figure 1.7.6 shows the CSE register. Table 1.7.7 shows the software wait related bits and bus cycles. Figure 1.7.7 and 1.7.8 show the typical bus timings using software wait.

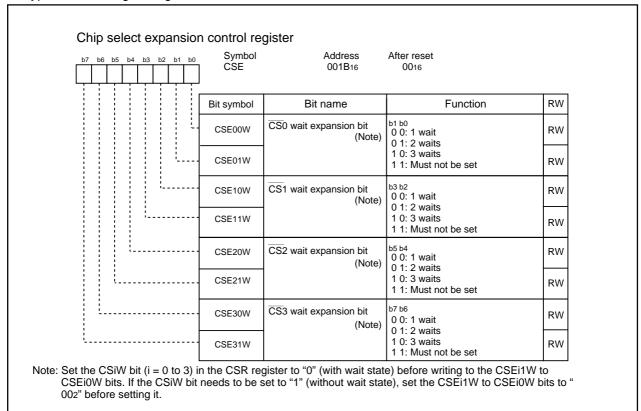


Figure 1.7.6. CSE Register

Under development

Table 1.7.7. Bit and Bus Cycle Related to Software Wait

Area	Bus mode	PM1 register PM17 bit	CSR register CS3W bit (Note 1) CS2W bit (Note 1) CS1W bit (Note 1) CS0W bit (Note 1)	CSE register CSE31W to CSE30W bit CSE21W to CSE20W bit CSE11W to CSE10W bit CSE01W to CSE00W bit	Software wait	Bus cycle
Internal	_	0			No wait	1 BCLK cycle (Note 3)
RAM, ROM	—	1	_	_	1 wait	2 BCLK cycles
		0	1	002	No wait	1 BCLK cycle (read)
	Separate bus	U	'	002	No wait	2 BCLK cycles (write)
		_	0	002	1 wait	2 BCLK cycles (Note 3)
			0	012	2 waits	3 BCLK cycles
External area		_	0	102	3 waits	4 BCLK cycles
		1	1	002	1 wait	2 BCLK cycles
		_	0	002	1 wait	3 BCLK cycles
	Multiplexed bus	_	0	012	2 waits	3 BCLK cycles
	(Note 2)		0	102	3 waits	4 BCLK cycles
		1	0	002	1 wait	3 BCLK cycles

Note 1: To use the RDY signal, set this bit to "0".

Note 2: To access in multiplexed bus mode, set the corresponding bit of CS0W to CS3W to "0" (with wait state).

Note 3: After reset, the PM17 bit is set to "0" (without wait state), all of the CS0W to CS3W bits are set to "0" (with wait state), and the CSE register is set to "0016" (one wait state for CS0 to CS3). Therefore, the internal RAM and internal ROM are accessed with no wait states, and all external areas are accessed with one wait state.

^{de_Aelobwe_{ut}}

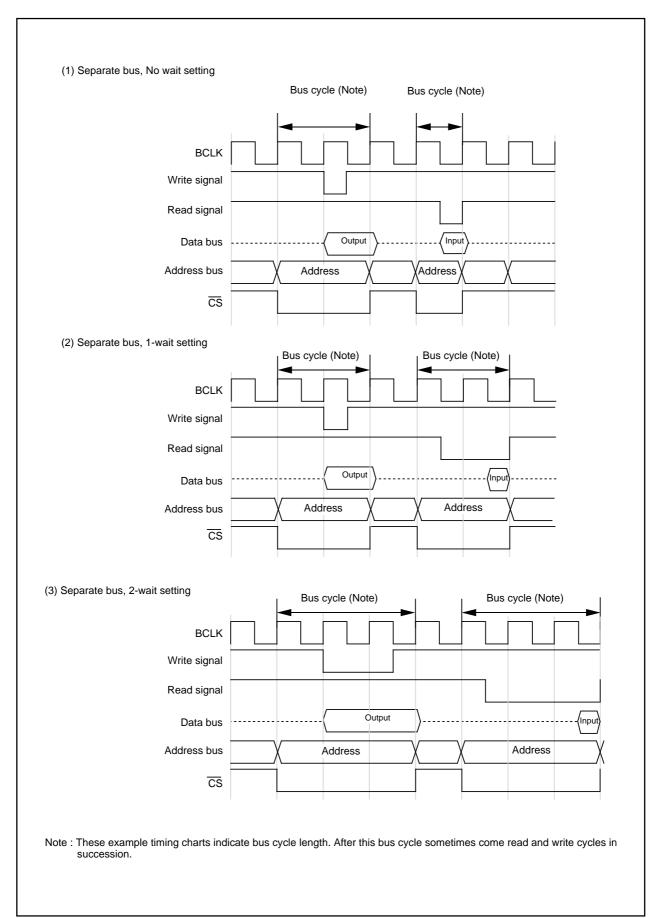


Figure 1.7.7. Typical Bus Timings Using Software Wait (1)

^{de_Aelobweut}

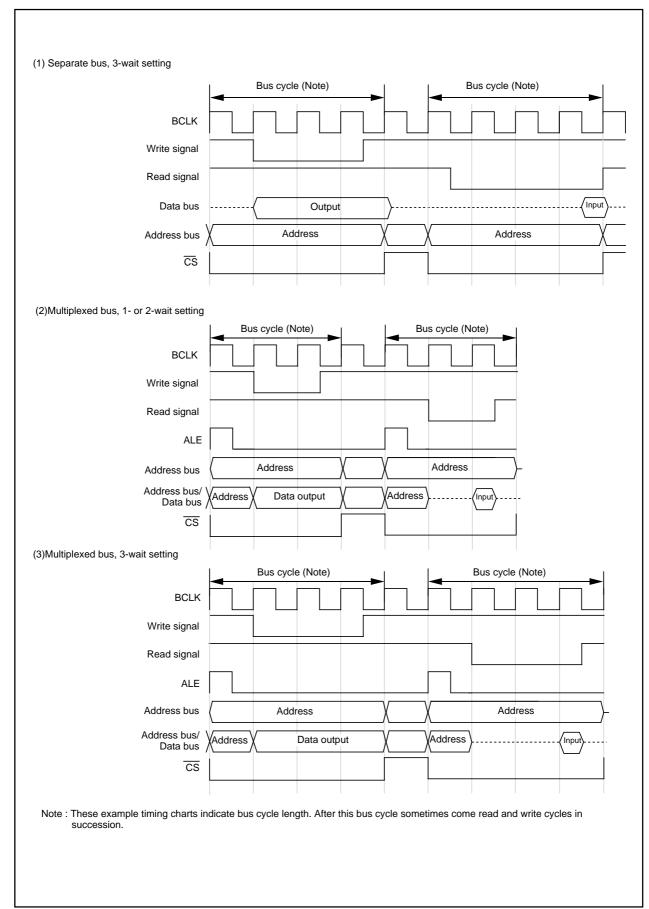


Figure 1.7.8. Typical Bus Timings Using Software Wait (2)

^{qe_Aelobwe}ut

Memory Space Expansion Function

The following describes a memory space extension function.

During memory expansion or microprocessor mode, the memory space expansion function allows the access space to be expanded using the appropriate register bits.

Table 1.8.1 shows the way of setting memory space expansion function, memory spaces.

Table 1.8.1. The Way of Setting Memory Space Expansion Function, Memory Space

Memory space expansion function	How to set (PM15 to PM14)	Memory space
1 Mbytes mode	002	1 Mbytes (no expansion)
4 Mbytes mode	112	4 Mbytes

(1) 1 Mbyte Mode

In this mode, the memory space is 1 Mbytes. In 1 Mbyte mode, the external area to be accessed is specified using the \overline{CSi} (i = 0 to 3) signals (hereafter referred to as the \overline{CSi} area). Figures 1.8.2 to 1.8.3 show the memory mapping and \overline{CS} area in 1 Mbyte mode.

(2) 4 Mbyte Mode

In this mode, the memory space is 4 Mbytes. Figure 1.8.1 shows the DBR register. The BSR2 to BSR0 bits select a bank number which is to be accessed to read or write data. Setting the OFS bit to "1" (with offset) allows the accessed address to be offset by 4000016.

In 4 Mbyte mode, the $\overline{\text{CSi}}$ (i=0 to 3) pin functions differently for each area to be accessed.

Addresses 0400016 to 3FFFF16, C000016 to FFFF16

• The $\overline{\text{CSi}}$ signal is output from the $\overline{\text{CSi}}$ pin (same operation as 1 Mbyte mode. However the last address of $\overline{\text{CS1}}$ area is 3FFFF16)

Addresses 4000016 to BFFFF16

- The CS0 pin outputs "L"
- The CS1 to CS3 pins output the value of the BSR2 to BSR0 bits (bank number)

Figures 1.8.4 to 1.8.5 show the memory mapping and \overline{CS} area in 4 Mbyte mode. Note that banks 0 to 6 are data-only areas. Locate the program in bank 7 or the \overline{CSi} area.

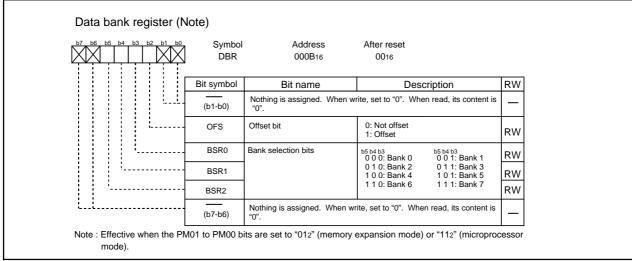


Figure 1.8.1. DBR Register

Memory Space Expansion Function

^{develobwe}ut

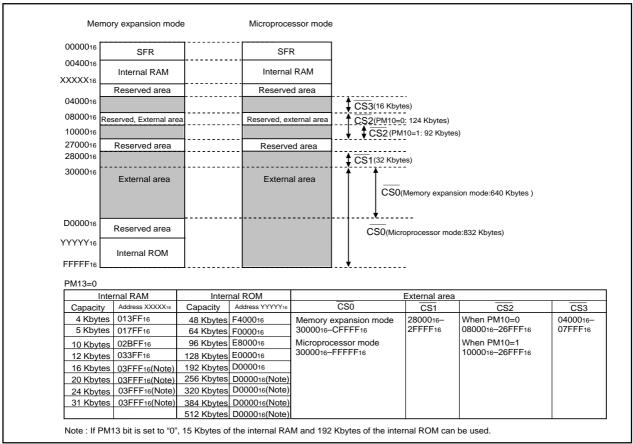


Figure 1.8.2. Memory Mapping and CS Area in 1 Mbyte Mode (PM13=0)

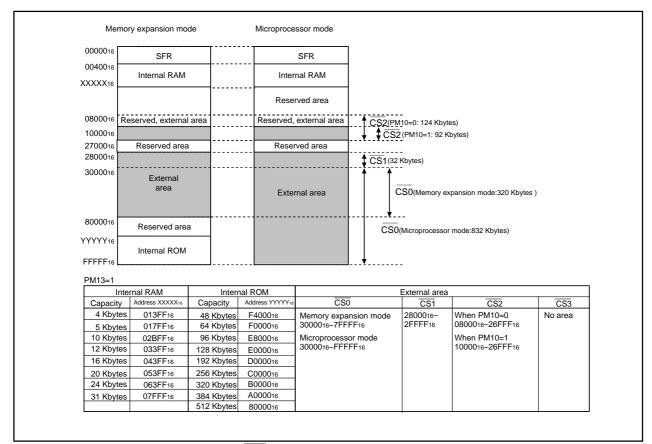


Figure 1.8.3. Memory Mapping and CS Area in 1 Mbyte Mode (PM13=1)

^{qe_Aelobwe}ut

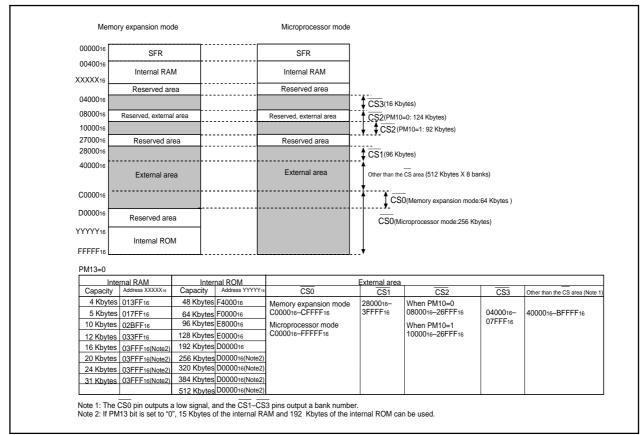


Figure 1.8.4. Memory Mapping and CS Area in 4 Mbyte Mode (PM13=0)

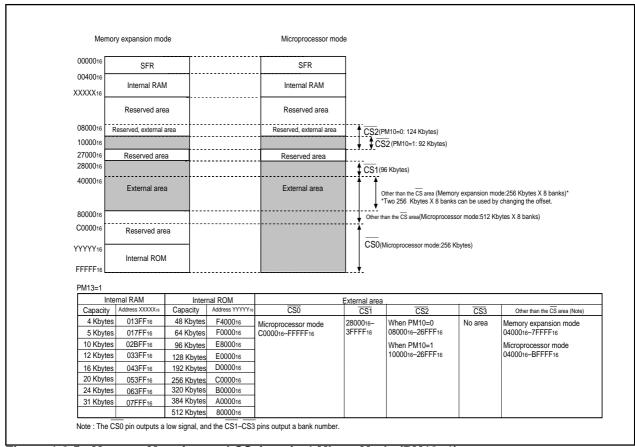


Figure 1.8.5. Memory Mapping and CS Area in 4 Mbyte Mode (PM13=1)

^{develobwe}ut

Figure 1.8.6 shows the external memory connect example in 4 Mbyte mode.

In this example, the $\overline{\text{CS}}$ pin of 4-Mbyte ROM is connected to the $\overline{\text{CS0}}$ pin of microcomputer. The address input AD21, AD20 and AD19 pins are connected to the $\overline{\text{CS3}}$, $\overline{\text{CS2}}$ and $\overline{\text{CS1}}$ pins of microcomputer, respectively. The address input AD18 pin is connected to the A19 pin of microcomputer. Figures 1.8.7 to 1.8.9 show the relationship of addresses between the 4-Mbyte ROM and the microcomputer for the case of a connection example in Figure 1.8.6.

In microprocessor mode, or in memory expansion mode where the PM13 bit is "0", banks are located every 512 Kbytes. Setting the OFS bit to "1" allows the accessed address to be offset by 4000016, so that even the data overlapping a bank boundary can be accessed in succession.

In memory expansion mode where the PM13 bit is "1", each 512-Kbyte bank can be accessed in 256 Kbyte units by switching them over with the OFS bit.

Because the SRAM can be accessed on condition that the chip select signals S2 = "H" and $\overline{S1}$ ="L", $\overline{CS0}$ and $\overline{CS2}$ can be connected to $\overline{S2}$ and $\overline{S1}$, respectively. If the SRAM does not have the input pins to accept "H" active and "L" active chip select signals, $\overline{CS0}$ and $\overline{CS2}$ should be decoded external to the chip.

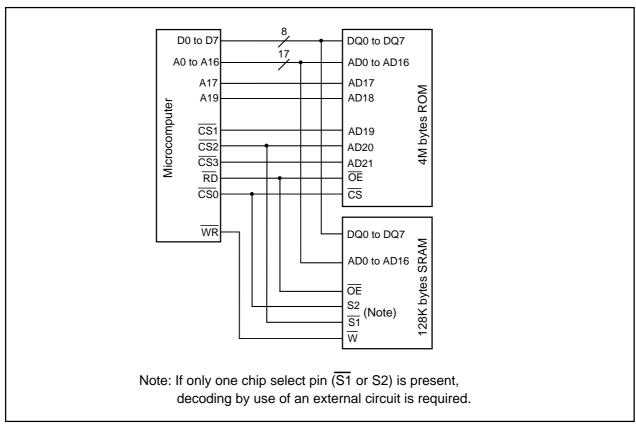


Figure 1.8.6. External Memory Connect Example in 4M Byte Mode

Figure

1.8.7.

Relationship Between Addresses

on 4-M Byte

ROM and Those on Microcomputer (1)

Microcomputer address OFS bit of the DBR register=0 OFS bit of the DBR register=1 4000016 -hank 0 4000016

BFFFF16

4000016

BFFFF16

4000016

BFFFF16

4000016

BFFFF16

4000016

BFFFF16

4000016

BFFFF16

4000016

BFFFF16

4000016

BFFFF16

bank 5 -----

- bank 2 ------

-bank 1

-bank 3

-bank 4

-bank 6

bank 7

bank 0 ----

BFFFF16

4000016

BFFFF16

4000016

BFFFF16

4000016

BFFFF16

4000016

BFFFF16

4000016

BFFFF16

4000016

BFFFF16

-bank 6 ----

bank 5 ----

bank 4 ····

bank 3 ····

bank 2 ----

bank 1 ····

ROM address

00000016

04000016

08000016

0C000016

10000016

14000016

18000016

1C000016

20000016

24000016

28000016

2C000016

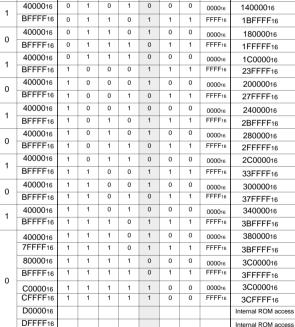
30000016

34000016

38000016

3C000016

3FFFFF16


Data

Program or data

Program or data

6	
6	
6	
16	
6	
16	
6	
6	
6	
6	
6	
16	
6	
16	
6	
6	
6	
6	
6	
16	
6	
16	
6	
6	
6	
6	
6	
16	
6	
16	
6	
16	
6	
16	
access	
access access access	
access	
access	
t for 4-	
M	

00000016	
07FFFF16	
04000016	
0BFFFF16	
08000016	
0FFFF16	
0C000016	
13FFFF16	
10000016	
17FFFF16	
14000016	
1BFFFF16	
18000016	
1FFFFF16	
1C000016	
23FFFF16	
20000016	
27FFFF16	
24000016	
2BFFFF16	
28000016	
2FFFFF16	
2C000016	
33FFFF16	
30000016	
37FFFF16	
34000016	
3BFFFF16	
38000016	
3BFFFF16	
3C000016	
3FFFF16	
3C000016	
3CFFF16	
nternal ROM access	
ddress input for 4- Mbyte ROM	
	l

A21 A20 A19 A18 N.C. A17 A16 A15-A0

Address input for 4-Mbyte ROM

Output from the microcomputer pins

CS3 CS2 CS1 A19 A18 A17 A16 A15-A0

0 0

0

0

0 1 1 1

0

0

0 1 0

0 0 1 0 0

0

0 0

0

Address output

0 0 000016

Internal RC

Internal RC

Address in

000016

Memory expansion mode where PM13 =0

OFS number

0

0

3

4000016

BFFFF16

4000016

BFFFF16

4000016

BFFFF16

4000016

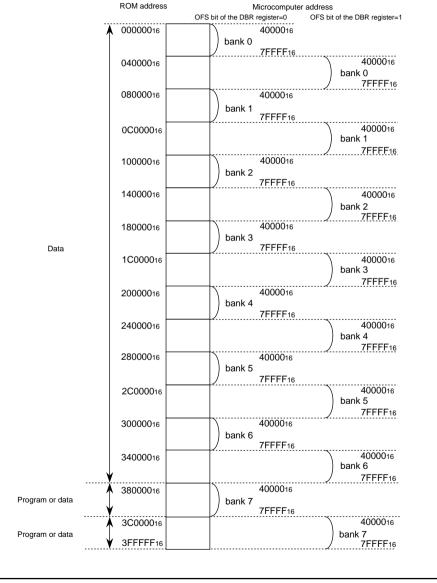
BFFFF16

4000016

BFFFF16

D000016

DFFFF16


N.C.: No connected

Expansion Function

Memory expansion mode where PM13 =1

					Output fi	om the	microc	omnute	r nine		
Bank	OFS	Access	Output from the microcomputer pins CS output Address output								
number	UFS	area	CS3	CS2	CS1	A19	A18	A17	A16	A15-A0	
	_	4000016	0	0	0	0	1	0	0	000016	00000016
_	0	7FFFF16	0	0	0	0	1	1	1	FFFF16	03FFFF16
0		4000016	0	0	0	1	0	0	0	000016	04000016
	1	7FFFF16	0	0	0	1	0	1	1	FFFF16	07FFFF16
	0	4000016	0	0	1	0	1	0	0	000016	08000016
1	0	7FFFF16	0	0	1	0	1	1	1	FFFF16	0BFFFF16
' '	1	4000016	0	0	1	1	0	0	0	000016	0C000016
	'	7FFFF16	0	0	1	1	0	1	1	FFFF16	0FFFFF16
	0	4000016	0	1	0	0	1	0	0	000016	10000016
2	0	7FFFF16	0	1	0	0	1	1	1	FFFF16	13FFFF16
	1	4000016	0	1	0	1	0	0	0	000016	14000016
	'	7FFFF16	0	1	0	1	0	1	1	FFFF16	17FFFF16
	0	4000016	0	1	1	0	1	0	0	000016	18000016
3	0	7FFFF16	0	1	1	0	1	1	1	FFFF16	1BFFFF16
٦	1	4000016	0	1	1	1	0	0	0	000016	1C000016
	'	7FFFF16	0	1	1	1	0	1	1	FFFF16	1FFFFF16
	0	4000016	1	0	0	0	1	0	0	000016	20000016
4		7FFFF16	1	0	0	0	1	1	1	FFFF16	23FFFF16
	1	4000016	1	0	0	1	0	0	0	000016	24000016
	'	7FFFF16	1	0	0	1	0	1	1	FFFF16	27FFFF16
	0	4000016	1	0	1	0	1	0	0	000016	28000016
5	U	7FFFF16	1	0	1	0	1	1	1	FFFF16	2BFFFF16
	1	4000016	1	0	1	1	0	0	0	000016	2C000016
		7FFFF16	1	0	1	1	0	1	1	FFFF16	2FFFFF16
	0	4000016	1	1	0	0	1	0	0	000016	30000016
6	U	7FFFF16	1	1	0	0	1	1	1	FFFF16	33FFFF16
"	1	4000016	1	1	0	1	0	0	0	000016	34000016
	·	7FFFF16	1	1	0	1	0	1	1	FFFF16	37FFFF16
		4000016	1	1	1	0	1	0	0	000016	38000016
7	0	7FFFF16	1	1	1	0	1	1	1	FFFF16	3BFFFF16
′	0	8000016									Internal ROM access
		FFFFF16									Internal ROM access
		4000016	1	1	1	1	0	0	0	000016	3C000016
7	1	7FFFF16	1	1	1	1	0	1	1	FFFF16	3FFFFF16
		8000016									Internal ROM access
		FFFFF16									Internal ROM access
			A21	A20	A19	A18	N.C.	A17	A16	A15-A0	Address input for 4- Mbyte ROM
					Ad	ddress	input fo	r 4-Mby	te ROM	1	Wibyto NOW

N.C.: No connected

Figure

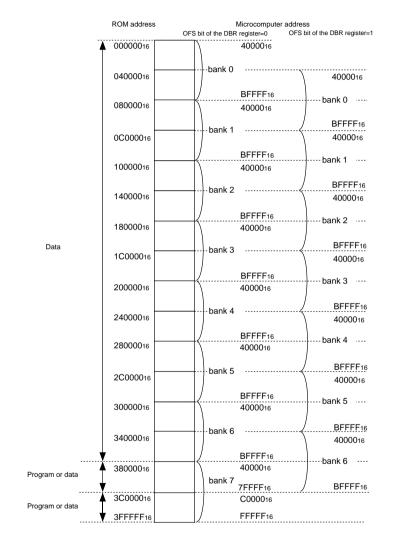
1.8.8.

Relationship

Between

Addresses

on 4-M Byte ROM and Those on Microcomputer


2

Figure

1.8.9.

Microprocessor mode

			ı	Output from the microcomputer pins							
Bank number	OFS	Access area		CS output Address output							
Humber	0.0	alea	CS3	CS2	CS1	A19	A18	A17	A16	A15-A0	
	0	4000016	0	0	0	0	1	0	0	000016	00000016
0	U	BFFFF16	0	0	0	1	0	1	1	FFFF16	07FFFF16
"	1	4000016	0	0	0	1	0	0	0	000016	04000016
	'	BFFFF16	0	0	1	0	1	1	1	FFFF16	0BFFFF16
	0	4000016	0	0	1	0	1	0	0	000016	08000016
1		BFFFF16	0	0	1	1	0	1	1	FFFF16	0FFFFF16
'	1	4000016	0	0	1	1	0	0	0	000016	0C000016
	'	BFFFF16	0	1	0	0	1	1	1	FFFF16	13FFFF16
	0	4000016	0	1	0	0	1	0	0	000016	10000016
2	U	BFFFF16	0	1	0	1	0	1	1	FFFF16	17FFFF16
-	1	4000016	0	1	0	1	0	0	0	000016	14000016
	,	BFFFF16	0	1	1	0	1	1	1	FFFF16	1BFFFF16
	0	4000016	0	1	1	0	1	0	0	000016	18000016
3	0	BFFFF16	0	1	1	1	0	1	1	FFFF16	1FFFFF16
	1	4000016	0	1	1	1	0	0	0	000016	1C000016
	'	BFFFF16	1	0	0	0	1	1	1	FFFF16	23FFFF16
	0	4000016	1	0	0	0	1	0	0	000016	20000016
4		BFFFF16	1	0	0	1	0	1	1	FFFF16	27FFFF16
~	1	4000016	1	0	0	1	0	0	0	000016	24000016
	'	BFFFF16	1	0	1	0	1	1	1	FFFF16	2BFFFF16
	0	4000016	1	0	1	0	1	0	0	000016	28000016
5	U	BFFFF16	1	0	1	1	0	1	1	FFFF16	2FFFFF16
	1	4000016	1	0	1	1	0	0	0	000016	2C000016
	·	BFFFF16	1	1	0	0	1	1	1	FFFF16	33FFFF16
	0	4000016	1	1	0	0	1	0	0	000016	30000016
6	0	BFFFF16	1	1	0	1	0	1	1	FFFF16	37FFFF16
"	1	4000016	1	1	0	1	0	0	0	000016	34000016
	·	BFFFF16	1	1	1	0	1	1	1	FFFF16	3BFFFF16
		4000016	1	1	1	0	1	0	0	000016	38000016
		7FFFF16	1	1	1	0	1	1	1	FFFF16	3BFFFF16
7	0	8000016	1	1	1	1	0	0	0	000016	3C000016
′		BFFFF16	1	1	1	1	0	1	1	FFFF16	3FFFFF16
		C000016	1	1	1	1	1	0	0	000016	3C000016
FFFFF16			1	1	1	1	1	1	1	FFFF16	3FFFFF16
			A21	A20	A19	A18 ddress i	N.C.	A17	A16	A15-A0	Address input for 4- Mbyte ROM
				A	udress	input fo	i 4-MDy	te KON	1	,	

N.C.: No connected

Relationship Between Addresses on 4-M Byte ROM and Those on Microcomputer

Clock Generation Circuit

The clock generation circuit contains four oscillator circuits as follows:

- (1) Main clock oscillation circuit
- (2) Sub clock oscillation circuit
- (3) Ring oscillator (oscillation stop detect function)
- (4) PLL frequency synthesizer

Table 1.9.1 lists the clock generation circuit specifications. Figure 1.9.1 shows the clock generation circuit. Figures 1.9.2 to 1.9.6 show the clock-related registers.

Table 1.9.1. Clock Generation Circuit Specifications

Item	Main clock oscillation circuit	Sub clock oscillation circuit	Ring oscillator	PLL frequency synthesizer
Use of clock	CPU clock source Peripheral function clock source	•CPU clock source • Timer A, B's clock source	CPU clock source Peripheral function clock source CPU and peripheral function clock sources when the main clock stops oscillating	CPU clock source Peripheral function clock source
Clock frequency	0 to 16 MHz	32.768 kHz	About 1 MHz	10 to 24 MHz
Usable oscillator	Ceramic oscillator Crystal oscillator	Crystal oscillator		
Pins to connect oscillator	XIN, XOUT	XCIN, XCOUT		
Oscillation stop, restart function	Presence	Presence	Presence	Presence
Oscillator status after reset	Oscillating	Stopped	Stopped	Stopped
Other	Externally derived clo	ock can be input		

^{development}

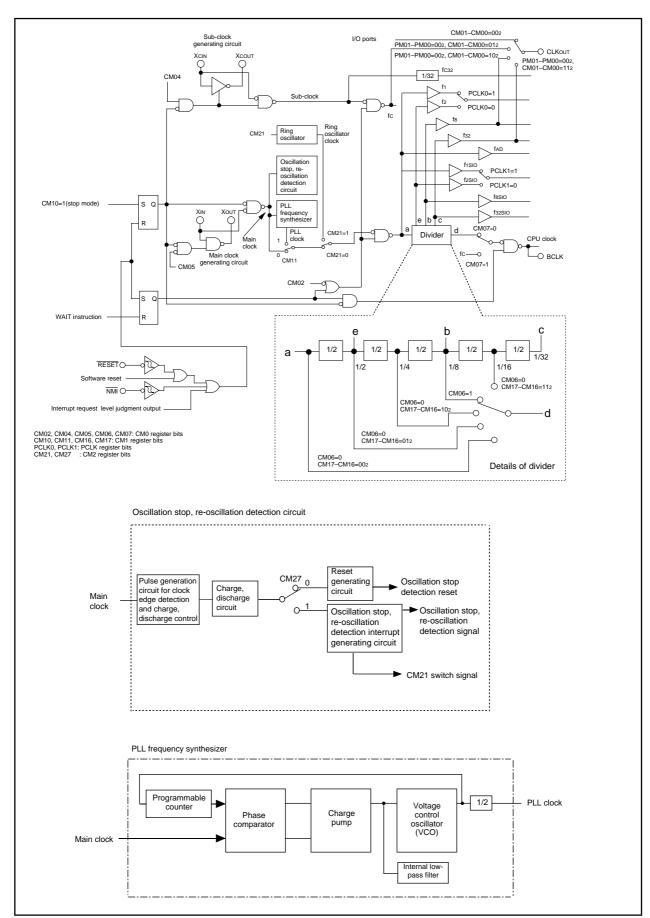
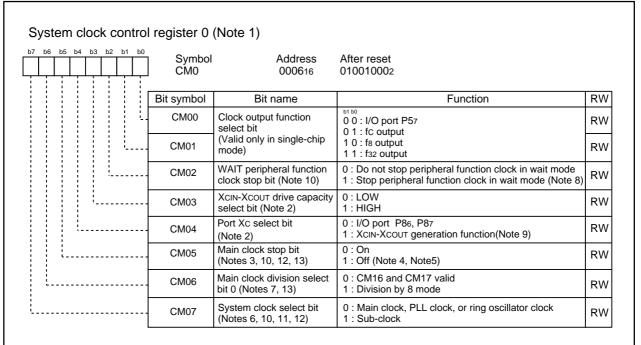
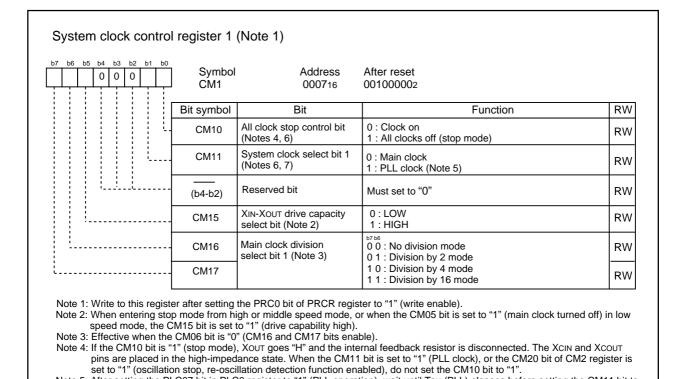



Figure 1.9.1. Clock Generation Circuit



- Note 1: Write to this register after setting the PRC0 bit of PRCR register to "1" (write enable).
- Note 2: The CM03 bit is set to "1" (high) when the CM04 bit is set to "0" (I/O port) or the microcomputer goes to a stop mode.
- Note 3: This bit is provided to stop the main clock when the low power dissipation mode or ring oscillator low power dissipation mode is selected. This bit cannot be used for detection as to whether the main clock stopped or not. To stop the main clock, the following setting is required:
 - (1) Set the CM07 bit to "1" (Sub-clock select) or the CM21 bit of CM2 register to "1" (Ring oscillator select) with the sub-clock stably oscillating.
 - (2) Set the CM20 bit of CM2 register to "0" (Oscillation stop, re-oscillation detection function disabled).
 - (3) Set the CM05 bit to "1" (Stop).
- Note 4: During external clock input, only the clock oscillation buffer is turned off and clock input is accepted.
- Note 5: When CM05 bit is set to "1, the Xout pin goes "H". Furthermore, because the internal feedback resistor remains connected, the XIN pin is pulled "H" to the same level as XOUT via the feedback resistor.
- Note 6: After setting the CM04 bit to "1" (XCIN-XCOUT oscillator function), wait until the sub-clock oscillates stably before switching the CM07 bit from "0" to "1" (sub-clock).
- Note 7: When entering stop mode from high or middle speed mode, ring oscillator mode or ring oscillator low power mode, the CM06 bit is set to "1" (divide-by-8 mode).
- Note 8: The fc32 clock does not stop. During low speed or low power dissipation mode, do not set this bit to "1" (peripheral clock turned off when in wait mode).
- Note 9: To use a sub-clock, set this bit to "1". Also make sure ports P86 and P87 are directed for input, with no pull-ups. Note 10: When the PM21 bit of PM2 register is set to "1" (clock modification disable), writing to the CM02, CM05, and CM07 bits has no effect
- Note 11: If the PM21 bit needs to be set to "1", set the CM07 bit to "0" (main clock) before setting it.
- Note 12: To use the main clock as the clock source for the CPU clock, follow the procedure below.
 - (1) Set the CM05 bit to "0" (oscillate).
 - (2) Wait until td(M-L) elapses or the main clock oscillation stabilizes, whichever is longer.
 - (3) Set the CM11, CM21 and CM07 bits all to "0"
- Note 13: If the CM05 bit is set to "1" (main clock turned off) in low speed mode, the CM06 bit is set to "1" (divide-by-8 mode) and the CM15 bit is set to "1" (drive capability high). Avoid changing the CM06 bit in low power dissipation mode. During ring oscillator mode, the CM06 and CM15 bits do not change even if the CM05 bit is set to "1". During ring oscillator low power dissipation mode, the divide-by-n value can be selected using the CM06 and CM17 to CM16 bits. To return to high or middle speed mode, however, set the CM06 bit to "1" and the CM15 bit to "1" before selecting the desired mode.

Figure 1.9.2. CM0 Register

^{qe_nelobweu}t Nuqe_t

Note 5: After setting the PLC07 bit in PLC0 register to "1" (PLL operation), wait until Tsu (PLL) elapses before setting the CM11 bit to

Note 6: When the PM21 bit of PM2 register is set to "1" (clock modification disable), writing to the CM10, CM011 bits has no effect.

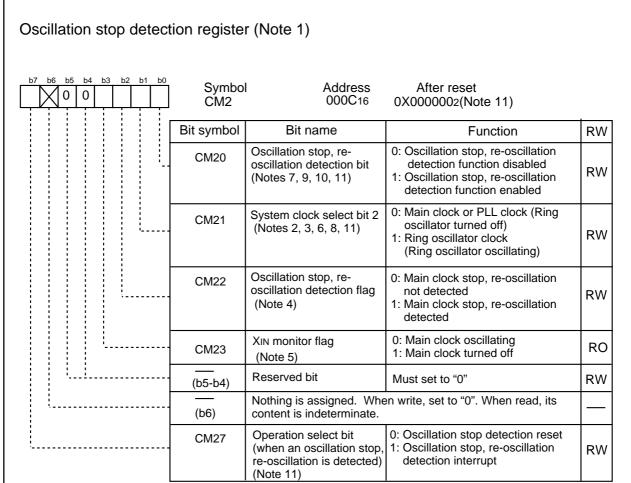

When the PM22 bit of PM2 register is set to "1" (watchdog timer count source is ring oscillator clock), writing to the CM10 bit

Figure 1.9.3. CM1 Register

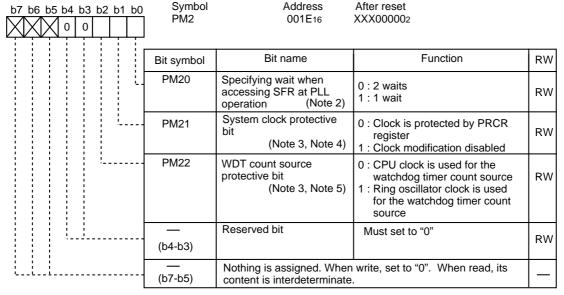
"1" (PLL clock).

has no effect.

Note 7: Effective when CM07 bit is "0" and CM21 bit is "0".

- Note 1: Write to this register after setting the PRC0 bit of PRCR register to "1" (write enable).
- Note 2: When the CM20 bit is "1" (oscillation stop, re-oscillation detection function enabled), the CM27 bit is "1" (oscillation stop, re-oscillation detection interrupt), and the CPU clock source is the main clock, the CM21 bit is set to "1" (ring oscillator clock) if the main clock stop is detected. Note 3: If the CM20 bit is "1" and the CM23 bit is "1" (main clock turned off), do not set the CM21 bit to "0".
- Note 4: This bit becomes "1" at main clock stop detection and main clock re-oscillation detection. When this bit changes from "0" to "1", there arise oscillation stop, re-oscillation detection interrupt. Use this register to discriminate the causes for oscillation stop, re-oscillation detection interrupt and watchdog timer interrupt in the interrupt processing program. By writing "0" in the program, this bit becomes "0". (Even when "1" is written in the program, no change is identified for the bit. Also, this bit is not set to "0" where there occur oscillation stop, re-oscillation detection interrupt.) When the CM22 bit is "1", no oscillation stop, reoscillation detection interrupt occur even if oscillation stop or re-oscillation is detected.
- Note 5: Read the CM23 bit in an oscillation stop, re-oscillation detection interrupt handling routine to determine the main clock status.
- Note 6: Effective when the CM07 bit of CM0 register is "0".
- Note 7: When the PM21 bit of PM2 register is "1" (clock modification disabled), writing to the CM20 bit has no
- Note 8: Where the CM20 bit is "1" (oscillation stop, re-oscillation detection function enabled), the CM27 bit is "1" (oscillation stop, re-oscillation detection interrupt), and the CM11 bit is "0" (the CPU clock source is PLL clock), the CM21 bit remains unchanged even when main clock stop is detected. If the CM22 bit is "0" under these conditions, oscillation stop, re-oscillation detection interrupt occur at main clock stop detection; it is, therefore, necessary to set the CM21 bit to "1" (ring oscillator clock) inside the interrupt routine.
- Note 9: Set the CM20 bit to "0" (disable) before entering stop mode. After exiting stop mode, set the CM20 bit back to "1" (enable).
- Note 10: Set the CM20 bit to "0" (disable) before setting the CM05 bit of CM0 register.
- Note 11: The CM20, CM21 and CM27 bits do not change at oscillation stop detection reset.

Figure 1.9.4. CM2 Register



Peripheral clock select register (Note)

_t	7	b6	b5	b4	b3	b2	2 b1	b0	Symbol		When reset			
(0	0	0	0	0			PCLKR	025E ₁₆ 000000112				
									Bit symbol	Bit name	Function	RW		
									PCLK0	Timers A, B clock select bit (Clock source for the timers A, B, and the dead time timer)	0 : f2 1 : f1	RW		
							<u>.</u>		PCLK1	SI/O clock select bit (Clock source for UART0 to UART2, SI/O3, SI/O4)	0 : f2SIO 1 : f1SIO	RW		
		. <u>i</u> .	- i -	- i -	- i-	i.			(b7-b2)	Reserved bit	Must set to "0"	RW		

Note: Write to this register after setting the PRC0 bit of PRCR register to "1" (write enable).

Processor mode register 2 (Note 1)

- Note 1: Write to this register after setting the PRC1 bit of PRCR register to "1" (write enable).
- Note 2: This bit can only be rewritten while the PLC07 bit is "0" (PLL turned off). Also, to select a 16 MHz or higher PLL clock, set this bit to "0" (2 waits). Note that if the clock source for the CPU clock is to be changed from the PLL clock to another, the PLC07 bit must be set to "0" before setting the PM20 bit.
- Note 3: Once this bit is set to "1", it cannot be cleared to "0" in a program. Note 4: Setting the PM21 bit to "1" results in the following conditions:
- - The BCLK is not halted by executing the WAIT instruction.
 - Writing to the following bits has no effect.

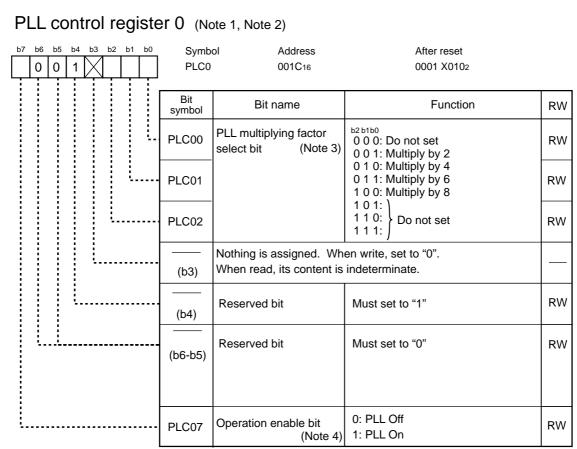
CM02 bit of CM0 register

CM05 bit of CM0 register (main clock is not halted)

CM07 bit of CM0 register (CPU clock source does not change)

CM10 bit of CM1 register (stop mode is not entered)
CM11 bit of CM1 register (CPU clock source does not change)

CM20 bit of CM2 register (oscillation stop, re-oscillation detection function settings do not change)


All bits of PLC0 register (PLL frequency synthesizer settings do not change)

Note 5: Setting the PM22 bit to "1" results in the following conditions:

- The ring oscillator starts oscillating, and the ring oscillator clock becomes the watchdog timer count source.
- The CM10 bit of CM1 register is disabled against write. (Writing a "1" has no effect, nor is stop mode entered.)
- The watchdog timer does not stop when in wait mode or hold state.

Figure 1.9.5. PCLKR Register and PM2 Register

Note 1: Write to this register after setting the PRC0 bit of PRCR register to "1" (write enable).

- Note 2: When the PM21 bit of PM2 register is "1" (clock modification disable), writing to this register has no effect.
- Note 3: These three bits can only be modified when the PLC07 bit = 0 (PLL turned off). The value once written to this bit cannot be modified.
- Note 4: Before setting this bit to "1", set the CM07 bit to "0" (main clock), set the CM17 to CM16 bits to "002" (main clock undivided mode), and set the CM06 bit to "0" (CM16 and CM17 bits enable).

Figure 1.9.6. PLC0 Register

The following describes the clocks generated by the clock generation circuit.

(1) Main Clock

This clock is used as the clock source for the CPU and peripheral function clocks. This clock is used as the clock source for the CPU and peripheral function clocks. The main clock oscillator circuit is configured by connecting a resonator between the XIN and XOUT pins. The main clock oscillator circuit contains a feedback resistor, which is disconnected from the oscillator circuit during stop mode in order to reduce the amount of power consumed in the chip. The main clock oscillator circuit may also be configured by feeding an externally generated clock to the XIN pin. Figure 1.9.7 shows the examples of main clock connection circuit.

After reset, the main clock divided by 8 is selected for the CPU clock.

The power consumption in the chip can be reduced by setting the CM05 bit of CM0 register to "1" (main clock oscillator circuit turned off) after switching the clock source for the CPU clock to a sub clock or ring oscillator clock. In this case, XOUT goes "H". Furthermore, because the internal feedback resistor remains on, XIN is pulled "H" to XOUT via the feedback resistor. Note that if an externally generated clock is fed into the XIN pin, the main clock cannot be turned off by setting the CM05 bit to "1". If necessary, use an external circuit to turn off the clock.

During stop mode, all clocks including the main clock are turned off. Refer to "power control".

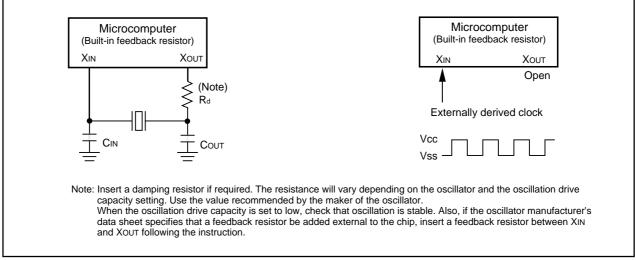


Figure 1.9.7. Examples of Main Clock Connection Circuit

(2) Sub Clock

The sub clock is generated by the sub clock oscillation circuit. This clock is used as the clock source for the CPU clock, as well as the timer A and timer B count sources. In addition, an fc clock with the same frequency as that of the sub clock can be output from the CLKOUT pin.

The sub clock oscillator circuit is configured by connecting a crystal resonator between the XCIN and XCOUT pins. The sub clock oscillator circuit contains a feedback resistor, which is disconnected from the oscillator circuit during stop mode in order to reduce the amount of power consumed in the chip. The sub clock oscillator circuit may also be configured by feeding an externally generated clock to the XCIN pin. Figure 1.9.8 shows the examples of sub clock connection circuit.

After reset, the sub clock is turned off. At this time, the feedback resistor is disconnected from the oscillator circuit.

To use the sub clock for the CPU clock, set the CM07 bit of CM0 register to "1" (sub clock) after the sub clock becomes oscillating stably.

During stop mode, all clocks including the sub clock are turned off. Refer to "power control".

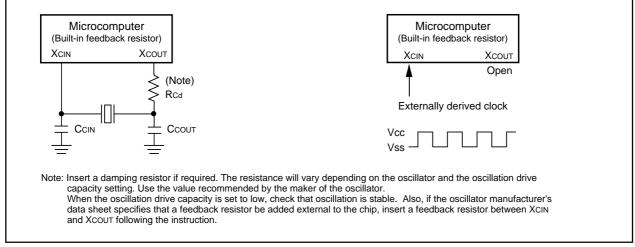


Figure 1.9.8. Examples of Sub Clock Connection Circuit

^{qenelobwe}ut Nuqe_t

(3) Ring Oscillator Clock

This clock, approximately 1 MHz, is supplied by a ring oscillator. This clock is used as the clock source for the CPU and peripheral function clocks. In addition, if the PM22 bit of PM2 register is "1" (ring oscillator clock for the watchdog timer count source), this clock is used as the count source for the watchdog timer. After reset, the ring oscillator clock is turned off. It is turned on by setting the CM21 bit of CM2 register to "1" (ring oscillator clock), and is used as the clock source for the CPU and peripheral function clocks, in place of the main clock. If the main clock stops oscillating when the CM20 bit of CM2 register is "1" (oscillation stop, re-oscillation detection function enabled) and the CM27 bit is "1" (oscillation stop, re-oscillation detection interrupt), the ring oscillator automatically starts operating, supplying the necessary clock for the microcomputer.

(4) PLL Clock

The PLL clock is generated from the main clock by a PLL frequency synthesizer. This clock is used as the clock source for the CPU and peripheral function clocks. After reset, the PLL clock is turned off. The PLL frequency synthesizer is activated by setting the PLC07 bit to "1" (PLL operation). When the PLL clock is used as the clock source for the CPU clock, wait tsu(PLL) for the PLL clock to be stable, and then set the CM11 bit in the CM1 register to "1".

To enter wait or stop mode, set the CM11 bit to "0" (main clock for the CPU clock source) and then the PLC07 bit of PLC0 register to "0" (PLL off) before entering that mode. Figure 1.9.9 shows the procedure for using the PLL clock as the clock source for the CPU.

The PLL clock frequency is determined by the equation below.

PLL clock frequency=f(XIN) X (multiplying factor set by the PLC02 to PLC00 bits PLC0 register (However, 10 MHz ≤ PLL clock frequency ≤ 24 MHz)

The PLC02 to PLC00 bits can be set only once after reset. Table 1.9.2 shows the example for setting PLL clock frequencies.

Table 1.9.2. Example for Setting PLL Clock Frequencies

XIN (MHz)	PLC02	PLC01	PLC00	Multiplying factor	PLL clock (MHz)(Note)
10	0	0	1	2	
5	0	1	0	4	
3.33	0	1	1	6	20
2.5	1	0	0	8	
12	0	0	1	2	
6	0	1	0	4	
4	0	1	1	6	24
3	1	0	0	8	

Note: 10MHz≤PLL clock frequency≤24MHz.

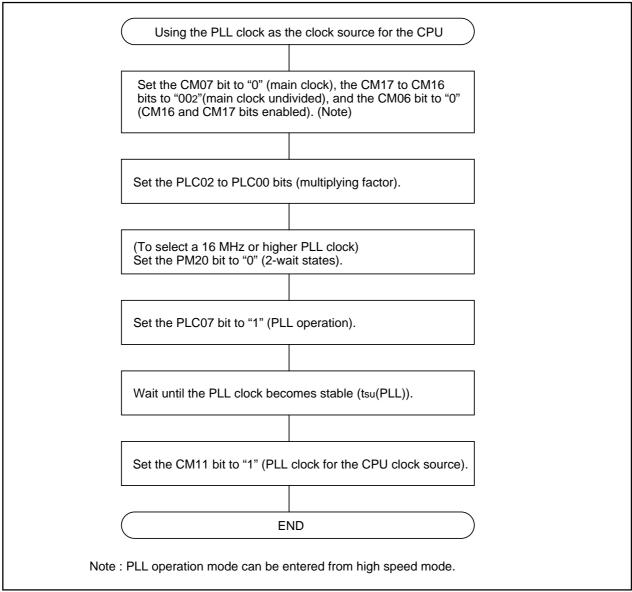


Figure 1.9.9. Procedure to Use PLL Clock as CPU Clock Source

^{qe_nelobweu}t Nuqe_t

CPU Clock and Peripheral Function Clock

Two type clocks: CPU clock to operate the CPU and peripheral function clocks to operate the peripheral functions.

(1) CPU Clock and BCLK

These are operating clocks for the CPU and watchdog timer.

The clock source for the CPU clock can be chosen to be the main clock, sub clock, ring oscillator clock or the PLL clock.

If the main clock or ring oscillator clock is selected as the clock source for the CPU clock, the selected clock source can be divided by 1 (undivided), 2, 4, 8 or 16 to produce the CPU clock. Use the CM06 bit in CM0 register and the CM17 to CM16 bits in CM1 register to select the divide-by-n value.

When the PLL clock is selected as the clock source for the CPU clock, the CM06 bit should be set to "0" and the CM17 to CM16 bits to "002" (undivided).

After reset, the main clock divided by 8 provides the CPU clock.

During memory expansion or microprocessor mode, a BCLK signal with the same frequency as the CPU clock can be output from the BCLK pin by setting the PM07 bit of PM0 register to "0" (output enabled).

Note that when entering stop mode from high or middle speed mode, ring oscillator mode or low power ring oscillator mode, or when the CM05 bit of CM0 register is set to "1" (main clock turned off) in low-speed mode, the CM06 bit of CM0 register is set to "1" (divide-by-8 mode).

(2) Peripheral Function Clock(f1, f2, f8, f32, f1SIO, f2SIO, f8SIO, f32SIO, fAD, fC32)

These are operating clocks for the peripheral functions.

Of these, fi (i = 1, 2, 8, 32) and fisio are derived from the main clock, PLL clock or ring oscillator clock by dividing them by i. The clock fi is used for timers A and B, and fisio is used for serial I/O. The f8 and f32 clocks can be output from the CLKout pin.

The fAD clock is produced from the main clock, PLL clock or ring oscillator clock, and is used for the A-D converter.

When the WAIT instruction is executed after setting the CM02 bit of CM0 register to "1" (peripheral function clock turned off during wait mode), or when the microcomputer is in low power dissipation mode, the fi, fisio and fAD clocks are turned off.

The fC32 clock is produced from the sub clock, and is used for timers A and B. This clock can be used when the sub clock is on.

Clock Output Function

During single-chip mode, the f8, f32 or fC clock can be output from the CLKout pin. Use the CM01 to CM00 bits of CM0 register to select.

Power Control

development

There are three power control modes. For convenience' sake, all modes other than wait and stop modes are referred to as normal operation mode here.

(1) Normal Operation Mode

Normal operation mode is further classified into seven modes.

In normal operation mode, because the CPU clock and the peripheral function clocks both are on, the CPU and the peripheral functions are operating. Power control is exercised by controlling the CPU clock frequency. The higher the CPU clock frequency, the greater the processing capability. The lower the CPU clock frequency, the smaller the power consumption in the chip. If the unnecessary oscillator circuits are turned off, the power consumption is further reduced.

Before the clock sources for the CPU clock can be switched over, the new clock source to which switched must be oscillating stably. If the new clock source is the main clock, sub clock or PLL clock, allow a sufficient wait time in a program until it becomes oscillating stably.

Note that operation modes cannot be changed directly from low speed or low power dissipation mode to ring oscillator or ring oscillator low power dissipation mode. Nor can operation modes be changed directly from ring oscillator or ring oscillator low power dissipation mode to low speed or low power dissipation mode. Where the CPU clock source is changed from the ring oscillator to the main clock, change the operation mode to the medium speed mode (divided by 8 mode) after the clock was divided by 8 (the CM06 bit of CM0 register was set to "1") in the ring oscillator mode.

High-speed Mode

The main clock divided by 1 provides the CPU clock. If the sub clock is on, fC32 can be used as the count source for timers A and B.

• PLL Operation Mode

The main clock multiplied by 2, 4, 6 or 8 provides the PLL clock, and this PLL clock serves as the CPU clock. If the sub clock is on, fC32 can be used as the count source for timers A and B. PLL operation mode can be entered from high speed mode. If PLL operation mode is to be changed to wait or stop mode, first go to high speed mode before changing.

Medium-speed Mode

The main clock divided by 2, 4, 8 or 16 provides the CPU clock. If the sub clock is on, fc32 can be used as the count source for timers A and B.

Low-speed Mode

The sub clock provides the CPU clock. The main clock is used as the clock source for the peripheral function clock when the CM21 bit is set to "0" (ring oscillator turned off), and the ring oscillator clock is used when the CM21 bit is set to "1" (ring oscillator oscillating).

The fc32 clock can be used as the count source for timers A and B.

Low Power Dissipation Mode

In this mode, the main clock is turned off after being placed in low speed mode. The sub clock provides the CPU clock. The fc32 clock can be used as the count source for timers A and B. fc32 is the only peripheral function clock available when the CM21 bit is set to "0" (ring oscillator turned off). If the CM21 bit is set to "1" (ring oscillator oscillating), then fc32 and the ring oscillator clock can be used. Simultaneously when this mode is selected, the CM06 bit of CM0 register becomes "1" (divided by 8 mode). In the low power dissipation mode, do not change the CM06 bit. Consequently, the medium speed (divided by 8) mode is to be selected when the main clock is operated next.

Ring Oscillator Mode

The ring oscillator clock divided by 1 (undivided), 2, 4, 8 or 16 provides the CPU clock. The ring oscillator clock is also the clock source for the peripheral function clocks. If the sub clock is on, fC32 can be used as the count source for timers A and B.

Ring Oscillator Low Power Dissipation Mode

The main clock is turned off after being placed in ring oscillator mode. The CPU clock can be selected as in the ring oscillator mode. The ring oscillator clock is the clock source for the peripheral function clocks. If the sub clock is on, fC32 can be used as the count source for timers A and B. When the operation mode is returned to the high and medium speed modes, set the CM06 bit to "1" (divided by 8 mode).

Table 1.9.3. Setting Clock Related Bit and Modes

N4. 1		CM2 register	CN	//1 register	CM0 register			
Modes		CM21	CM11	CM17, CM16	CM07	CM06	CM05	CM04
PLL operat	ion mode	0	1	002	0	0	0	_
High-speed	d mode	0	0	002	0	0	0	
Midium-	divided by 2	0	0	012	0	0	0	
speed	divided by 4	0	0	102	0	0	0	
mode	divided by 8	0	0	_	0	1	0	
	divided by 16	0	0	112	0	0	0	
Low-speed	mode		_		1		0	1
Low power	dissipation mode		_		1	1(Note 1)	1(Note 1)	1
Ring	divided by 1	1	_	002	0	0	0	
oscillator	divided by 2	1		012	0	0	0	
mode	divided by 4	1		102	0	0	0	
	divided by 8	1			0	1	0	
	divided by 16	1		112	0	0	0	_
Ring oscilla dissipation	tor low power mode	1		(Note 2)	0	(Note 2)	1	_

Note 1: When the CM05 bit is set to "1" (main clock turned off) in low-speed mode, the mode goes to low power dissipation mode and CM06 bit is set to "1" (divided by 8 mode) simultaneously.

Note 2: The divide-by-n value can be selected the same way as in ring oscillator mode.

(2) Wait Mode

In wait mode, the CPU clock is turned off, so are the CPU (because operated by the CPU clock) and the watchdog timer. However, if the PM22 bit of PM2 register is "1" (ring oscillator clock for the watchdog timer count source), the watchdog timer remains active. Because the main clock, sub clock, ring oscillator clock and PLL clock all are on, the peripheral functions using these clocks keep operating.

Peripheral Function Clock Stop Function

If the CM02 bit is "1" (peripheral function clocks turned off during wait mode), the f1, f2, f8, f32, f1SIO, f8SIO, f32SIO and fAD clocks are turned off when in wait mode, with the power consumption reduced that much. However, fc32 remains on.

Entering Wait Mode

The microcomputer is placed into wait mode by executing the WAIT instruction.

If the CM11 bit is "1" (PLL clock for the CPU clock source), set the CM11 bit to "0" (main clock for the CPU clock source) and then the PLC07 bit to "0" (PLL turned off) before entering wait mode.

Pin Status During Wait Mode

Table 1.9.4 lists pin status during wait mode

Exiting Wait Mode

The microcomputer is moved out of wait mode by a hardware reset, NMI interrupt or peripheral function interrupt.

If the microcomputer is to be moved out of exit wait mode by a hardware reset or NMI interrupt, set the peripheral function interrupt priority ILVL2 to ILVL0 bits to "0002" (interrupts disabled) before executing the WAIT instruction.

The peripheral function interrupts are affected by the CM02 bit. If CM02 bit is "0" (peripheral function clocks not turned off during wait mode), all peripheral function interrupts can be used to exit wait

Under

mode. If CM02 bit is "1" (peripheral function clocks turned off during wait mode), the peripheral functions using the peripheral function clocks stop operating, so that only the peripheral functions clocked by external signals can be used to exit wait mode.

Table 1.9.4. Pin Status During Wait Mode

	Pin	Memory expansion mode	Single-chip mode
		Microprocessor mode	
A ₀ to A ₁₉ , D ₀ to D	$\overline{CS0}$ to $\overline{CS3}$,	Retains status before wait mode	
BHE			
RD, WR, WRL, V	VRH	"H"	
HLDA,BCLK		"H"	
ALE		"H"	
I/O ports		Retains status before wait mode	Retains status before wait mode
CLKout	When fc selected		Does not stop
	When f8, f32 selected		Does not stop when the CM02
			bit is "0".
			When the CM02 bit is "1", the
			status immediately prior to
			entering wait mode is main-
			tained.

Table 1.9.5. Interrupts to Exit Wait Mode

Interrupt	CM02=0	CM02=1
NMI interrupt	Can be used	Can be used
Serial I/O interrupt	Can be used when operating with internal or external clock	Can be used when operating with external clock
key input interrupt	Can be used	Can be used
A-D conversion interrupt	Can be used in one-shot mode or single sweep mode	— (Do not use)
Timer A interrupt Timer B interrupt	Can be used in all modes	Can be used in event counter mode or when the count source is fC32
INT interrupt	Can be used	Can be used

Table 1.9.5 lists the interrupts to exit wait mode.

If the microcomputer is to be moved out of wait mode by a peripheral function interrupt, set up the following before executing the WAIT instruction.

- 1. In the ILVL2 to ILVL0 bits of interrupt control register, set the interrupt priority level of the periph eral function interrupt to be used to exit wait mode.
 - Also, for all of the peripheral function interrupts not used to exit wait mode, set the ILVL2 to ILVL0 bits to "0002" (interrupt disable).
- 2. Set the I flag to "1".
- Enable the peripheral function whose interrupt is to be used to exit wait mode.
 In this case, when an interrupt request is generated and the CPU clock is thereby turned on, an interrupt routine is executed.

The CPU clock turned on when exiting wait mode by a peripheral function interrupt is the same CPU clock that was on when the WAIT instruction was executed.

(3) Stop Mode

In stop mode, all oscillator circuits are turned off, so are the CPU clock and the peripheral function clocks. Therefore, the CPU and the peripheral functions clocked by these clocks stop operating. The least amount of power is consumed in this mode. If the voltage applied to Vcc1 and Vcc2 pins is VRAM or more, the internal RAM is retained. When applying 2.7 or less voltage to Vcc1 and Vcc2 pins, make sure Vcc1≥Vcc2≥VRAM.

However, the peripheral functions clocked by external signals keep operating. The following interrupts can be used to exit stop mode.

- NMI interrupt
- Key interrupt
- INT interrupt
- Timer A, Timer B interrupt (when counting external pulses in event counter mode)
- Serial I/O interrupt (when external clock is seleted)

• Entering Stop Mode

The microcomputer is placed into stop mode by setting the CM10 bit of CM1 register to "1" (all clocks turned off). At the same time, the CM06 bit of CM0 register is set to "1" (divide-by-8 mode) and the CM15 bit of CM10 register is set to "1" (main clock oscillator circuit drive capability high).

Before entering stop mode, set the CM20 bit to "0" (oscillation stop, re-oscillation detection function disable).

Also, if the CM11 bit is "1" (PLL clock for the CPU clock source), set the CM11 bit to "0" (main clock for the CPU clock source) and the PLC07 bit to "0" (PLL turned off) before entering stop mode.

Pin Status in Stop Mode

Table 1.9.6 lists pin status during stop mode

Exiting Stop Mode

The microcomputer is moved out of stop mode by a hardware reset, $\overline{\text{NMI}}$ interrupt or peripheral function interrupt.

If the microcomputer is to be moved out of stop mode by a hardware reset or $\overline{\text{NMI}}$ interrupt, set the peripheral function interrupt priority ILVL2 to ILVL0 bits to "0002" (interrupts disable) before setting the CM10 bit to "1".

If the microcomputer is to be moved out of stop mode by a peripheral function interrupt, set up the following before setting the CM10 bit to "1".

- 1. In the ILVL2 to ILVL0 bits of interrupt control register, set the interrupt priority level of the peripheral function interrupt to be used to exit stop mode.
 - Also, for all of the peripheral function interrupts not used to exit stop mode, set the ILVL2 to ILVL0 bits to "0002".
- 2. Set the I flag to "1".
- Enable the peripheral function whose interrupt is to be used to exit stop mode.
 In this case, when an interrupt request is generated and the CPU clock is thereby turned on, an interrupt service routine is executed.

Which CPU clock will be used after exiting stop mode by a peripheral function or NMI interrupt is determined by the CPU clock that was on when the microcomputer was placed into stop mode as follows:

If the CPU clock before entering stop mode was derived from the sub clock: sub clock

If the CPU clock before entering stop mode was derived from the main clock: main clock divide-by-8 If the CPU clock before entering stop mode was derived from the ring oscillator clock: ring oscillator clock divide-by-8

Under

Table 1.9.6. Pin Status in Stop Mode

	Pin	Memory expansion mode Microprocessor mode	Single-chip mode		
A ₀ to A ₁₉ , D	to D ₁₅ , $\overline{\text{CS0}}$ to $\overline{\text{CS3}}$,	Retains status before stop mode			
BHE					
\overline{RD} , \overline{WR} , \overline{W}	/RL, WRH	"H"			
HLDA, BCL	_K	"H"			
ALE		"H"			
I/O ports		Retains status before stop mode	Retains status before stop mode		
CLKout	When fc selected		"H"		
	When f8, f32 selected		Retains status before stop mode		

Figure 1.9.10 shows the state transition from normal operation mode to stop mode and wait mode. Figure 1.9.11 shows the state transition in normal operation mode.

Table 1.9.7 shows a state transition matrix describing allowed transition and setting. The vertical line shows current state and horizontal line shows state after transition.

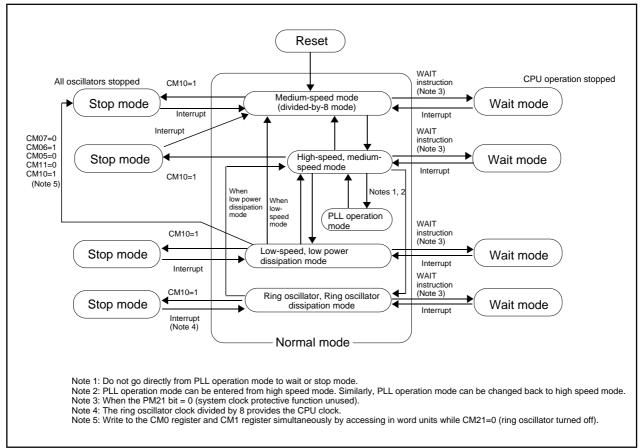


Figure 1.9.10. State Transition to Stop Mode and Wait Mode

^{developme}nt

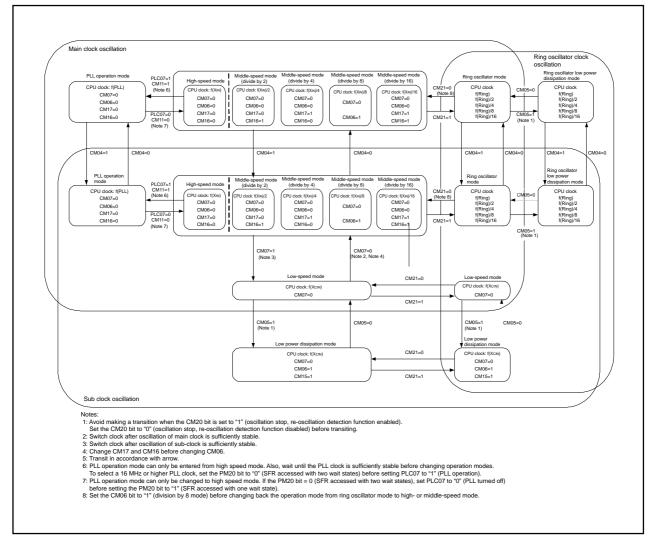


Figure 1.9.11. State Transition in Normal Mode

Under development

Table 1.9.7. Allowed Transition and Setting

					State afte	er transition			
		High-speed mode, middle-speed mode	Low-speed mode ¹	Low power dissipation mode ¹	PLL operation mode ¹	Ring oscillator mode	Ring oscillator low power dissipation mode	Stop mode	Wait mode
	High-speed mode, middle-speed mode	See Table A	(9)7		(13) ³	(15)		(16) ¹	(17)
	Low-speed mode ²	(8)		(11)1, 6				(16)1	(17)
ate	Low power dissipation mode ²		(10)					(16)1	(17)
Current state	PLL operation mode ²	(12) ³							
Curre	Ring oscillator mode	(14) ⁴				See Table A	(11) ¹	(16)1	(17)
	Ring oscillator low power dissipation mode					(10)	See Table A	(16)1	(17)
	Stop mode	(18) ⁵	(18)	(18)		(18) ⁵	(18) ⁵		
	Wait mode	(18)	(18)	(18)		(18)	(18)		

--: Cannot transit

Table 1. State Transition with Main Clock Division Ration in High- or Middle-speed Mode Ring Oscillator Mode, and Ring Oscillator Low Power Dissipation Mode

			Su	b clock os	cillating			Su	b clock tu	rned off	
		No	Divided	Divided	Divided	Divided	No	Divided	Divided	Divided	Divided
		division	by 2	by 4	by 8	by 16	division	by 2	by 4	by 8	by 16
	No division		(4)	(5)	(7)	(6)	(1)				
* 0	Divided by 2	(3)		(5)	(7)	(6)		(1)			
Sub clock oscillating	Divided by 4	(3)	(4)		(7)	(6)			(1)		
Sub	Divided by 8	(3)	(4)	(5)		(6)				(1)	
	Divided by 16	(3)	(4)	(5)	(7)			-			(1)
	No division	(2)						(4)	(5)	(7)	(6)
clock	Divided by 2		(2)	-			(3)		(5)	(7)	(6)
med med	Divided by 4			(2)			(3)	(4)		(7)	(6)
Sub	Divided by 8			-	(2)		(3)	(4)	(5)		(6)
	Divided by 16					(2)	(3)	(4)	(5)	(7)	

--: Cannot transit

- Notes:

 1. Avoid making a transition when the CM21 bit is set to "1" (oscillation stop, re-oscillation detection function enabled). Set the CM21 bit to "0" (oscillation stop, re-oscillation detection function disabled) before transiting.

 2. Ring oscillator clock oscillates and stops in low-speed mode and low power dissipation mode. In these mode, the ring oscillator can be used as peripheral function clock.

 Sub clock oscillates and stops in PLL operation mode. In this mode, sub clock can be used as peripheral function clock.
- Sub clock oscillates and stops in PLL operation mode. In this mode, sub clock can be used as peripheral function clock.

 3. PLL operation mode can only be entered from and changed to high-speed mode.

 4. Set the CM06 bit to "1" (division by 8 mode) before transiting from ring oscillator mode to high- or middle-speed mode.

 5. When exiting stop mode, the CM06 bit is set to "1" (division by 8 mode).

 6. If the CM05 bit is set to "1" (main clock stop), then the CM06 bit is set to "1" (division by 8 mode).

 7. A transition can be made only when sub clock is oscillating.

Table B. Setting and Operation

		Setting	Operation		
	(1)	CM04 = 0	Sub clock turned off		
	(2)	CM04 = 1	Sub clock oscillating		
	(3)	CM06 = 0, CM17 = 0 , CM16 = 0	CPU clock no division mode		
	(4)	CM06 = 0, CM17 = 0 , CM16 = 1	CPU clock division by 2 mode		
	(5)	CM06 = 0, CM17 = 1 , CM16 = 0	CPU clock division by 4 mode		
_	(6)	CM06 = 0, CM17 = 1 , CM16 = 1	CPU clock division by 16 mode		
	(7)	CM06 = 1	CPU clock division by 8 mode		
	(8)	CM07 = 0	Main clock, PLL clock, or ring oscillator clock selected		
	(9)	CM07 = 1	Sub clock selected		
	(10)	CM05 = 0	Main clock oscillating		
	(11)	CM05 = 1	Main clock turned off		
	(12)	PLC07 = 0, CM11 = 0	Main clock selected		
	(13)	PLC07 = 1, CM11 = 1	PLL clock selected		
	(14)	CM21 = 0	Main clock or PLL clock selected		
	(15)	CM21 = 1	Ring oscillator clock selected		
	(16)	CM10 = 1	Transition to stop mode		
	(17)	wait	Transition to wait mode		
	(18)	Hardware interrupt	Exit stop mode or wait mode		

System Clock Protective Function

When the main clock is selected for the CPU clock source, this function disables the clock against modifications in order to prevent the CPU clock from becoming halted by run-away.

If the PM21 bit of PM2 register is set to "1" (clock modification disabled), the following bits are protected against writes:

- CM02, CM05, and CM07 bits in CM0 register
- CM10, CM11 bits in CM1 register
- CM20 bit in CM2 register
- All bits in PLC0 register

Before the system clock protective function can be used, the following register settings must be made while the CM05 bit of CM0 register is "0" (main clock oscillating) and CM07 bit is "0" (main clock selected for the CPU clock source):

- (1) Set the PRC1 bit of PRCR register to "1" (enable writes to PM2 register).
- (2) Set the PM21 bit of PM2 register to "1" (disable clock modification).
- (3) Set the PRC1 bit of PRCR register to "0" (disable writes to PM2 register).

Do not execute the WAIT instruction when the PM21 bit is "1".

Oscillation Stop and Re-oscillation Detect Function

The oscillation stop and re-oscillation detect function is such that main clock oscillation circuit stop and re-oscillation are detected. At oscillation stop, re-oscillation detection, reset or oscillation stop, re-oscillation detection interrupt are generated. Which is to be generated can be selected using the CM27 bit of CM2 register. Table 1.9.4 lists an specification overview of the oscillation stop and re-oscillation detect function.

Table 1.9.7. Specification Overview of Oscillation Stop and Re-oscillation Detect Function

Item	Specification
Oscillation stop detectable clock and	$f(X_{IN}) \ge 2 MHz$
frequency bandwidth	
Enabling condition for oscillation stop,	Set CM20 bit to "1"(enable)
re-oscillation detection function	
Operation at oscillation stop,	•Reset occurs (when CM27 bit =0)
re-oscillation detection	Oscillation stop, re-oscillation detection interrupt occurs(when CM27 bit =1)

(1) Operation When CM27 bit = 0 (Oscillation Stop Detection Reset)

Where main clock stop is detected when the CM20 bit is "1" (oscillation stop, re-oscillation detection function enabled), the microcomputer is initialized, coming to a halt (oscillation stop reset; refer to "SFR", "Reset").

This status is reset with hardware reset 1 or hardware reset 2. Also, even when re-oscillation is detected, the microcomputer can be initialized and stopped; it is, however, necessary to avoid such usage. (During main clock stop, do not set the CM20 bit to "1" and the CM27 bit to "0".)

(2) Operation When CM27 bit = 0 (Oscillation Stop and Re-oscillation Detect Interrupt)

Where the main clock corresponds to the CPU clock source and the CM20 bit is "1" (oscillation stop and re-oscillation detect function enabled), the system is placed in the following state if the main clock comes to a halt:

- Oscillation stop and re-oscillation detect interrupt request occurs.
- The ring oscillator starts oscillation, and the ring oscillator clock becomes the CPU clock and clock source for peripheral functions in place of the main clock.
- CM21 bit = 1 (ring oscillator clock for CPU clock source)
- CM22 bit = 1 (main clock stop detected)
- CM23 bit = 1 (main clock stopped)

Where the PLL clock corresponds to the CPU clock source and the CM20 bit is "1", the system is placed in the following state if the main clock comes to a halt: Since the CM21 bit remains unchanged, set it to "1" (ring oscillator clock) inside the interrupt routine.

- Oscillation stop and re-oscillation detect interrupt request occurs.
- CM22 bit = 1 (main clock stop detected)
- CM23 bit = 1 (main clock stopped)
- CM21 bit remains unchanged

Where the CM20 bit is "1", the system is placed in the following state if the main clock re-oscillates from the stop condition:

- Oscillation stop and re-oscillation detect interrupt request occurs.
- CM22 bit = 1 (main clock re-oscillation detected)
- CM23 bit = 0 (main clock oscillation)
- CM21 bit remains unchanged

How to Use Oscillation Stop and Re-oscillation Detect Function

- The oscillation stop and re-oscillation detect interrupt shares the vector with the watchdog timer interrupt. If the re-oscillation detection and watchdog timer interrupts both are used, read the CM22 bit in an interrupt routine to determine which interrupt source is requesting the interrupt.
- Where the main clock re-oscillated after oscillation stop, return the main clock to the CPU clock and peripheral function clock source in the program. Figure 1.9.12 shows the procedure for switching the clock source from the ring oscillator to the main clock.
- Simultaneously with oscillation stop, re-oscillation detection interrupt occurrence, the CM22 bit becomes "1". When the CM22 bit is set at "1", oscillation stop, re-oscillation detection interrupt are disabled. By setting the CM22 bit to "0" in the program, oscillation stop, re-oscillation detection interrupt are enabled.
- If the main clock stops during low speed mode where the CM20 bit is "1", an oscillation stop, re-oscillation detection interrupt request is generated. At the same time, the ring oscillator starts oscillating. In this case, although the CPU clock is derived from the sub clock as it was before the interrupt occurred, the peripheral function clocks now are derived from the ring oscillator clock.
- To enter wait mode while using the oscillation stop, re-oscillation detection function, set the CM02 bit to "0" (peripheral function clocks not turned off during wait mode).
- Since the oscillation stop, re-oscillation detection function is provided in preparation for main clock stop due to external factors, set the CM20 bit to "0" (Oscillation stop, re-oscillation detection function disabled) where the main clock is stopped or oscillated in the program, that is where the stop mode is selected or the CM05 bit is altered.
- This function cannot be used if the main clock frequency is 2 MHz or less. In that case, set the CM20 bit to "0".

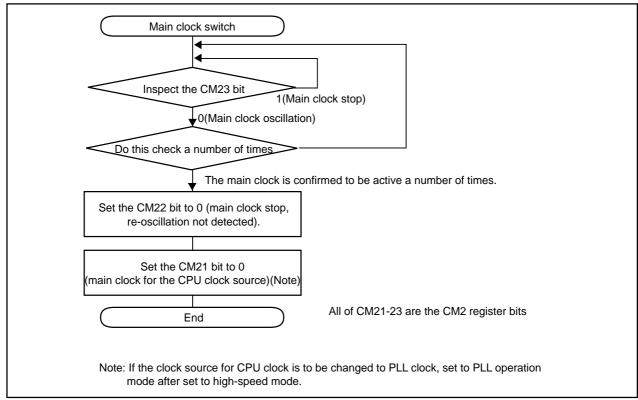


Figure 1.9.12. Procedure to Switch Clock Source From Ring Oscillator to Main Clock

^{qe_Aelobweu}t Nuqe_L

Protection

In the event that a program runs out of control, this function protects the important registers so that they will not be rewritten easily. Figure 1.10.1 shows the PRCR register. The following lists the registers protected by the PRCR register.

- Registers protected by PRC0 bit: CM0, CM1, CM2, PLC0 and PCLKR registers
- Registers protected by PRC1 bit: PM0, PM1, PM2, TB2SC, INVC0 and INVC1 registers
- Registers protected by PRC2 bit: PD9, S3C and S4C registers
- Registers protected by PRC3 bit: VCR2 and D4INT registers

Set the PRC2 bit to "1" (write enabled) and then write to any address, and the PRC2 bit will be cleared to "0" (write protected). The registers protected by the PRC2 bit should be changed in the next instruction after setting the PRC2 bit to "1". Make sure no interrupts or DMA transfers will occur between the instruction in which the PRC2 bit is set to "1" and the next instruction. The PRC0, PRC1 and PRC3 bits are not automatically cleared to "0" by writing to any address. They can only be cleared in a program.

Figure 1.10.1. PRCR Register

Interrupts

Type of Interrupts

Figure 1.11.1 shows types of interrupts.

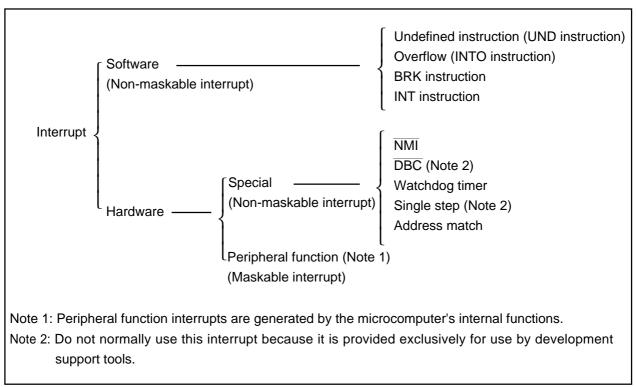


Figure 1.11.1. Interrupts

- Maskable Interrupt: An interrupt which can be enabled (disabled) by the interrupt enable flag (I flag) or whose interrupt priority <u>can be changed</u> by priority level.
- Non-maskable I0nterrupt: An interrupt which cannot be enabled (disabled) by the interrupt enable flag
 (I flag) or whose interrupt priority cannot be changed by priority level.

Software Interrupts

A software interrupt occurs when executing certain instructions. Software interrupts are non-maskable interrupts.

• Undefined Instruction Interrupt

An undefined instruction interrupt occurs when executing the UND instruction.

Overflow Interrupt

An overflow interrupt occurs when executing the INTO instruction with the O flag set to "1" (the operation resulted in an overflow). The following are instructions whose O flag changes by arithmetic: ABS, ADC, ADCF, ADD, CMP, DIV, DIVU, DIVX, NEG, RMPA, SBB, SHA, SUB

BRK Interrupt

A BRK interrupt occurs when executing the BRK instruction.

• INT Instruction Interrupt

An INT instruction interrupt occurs when executing the INT instruction. Software interrupt Nos. 0 to 63 can be specified for the INT instruction. Because software interrupt Nos. 4 to 31 are assigned to peripheral function interrupts, the same interrupt routine as for peripheral function interrupts can be executed by executing the INT instruction.

In software interrupt Nos. 0 to 31, the U flag is saved to the stack during instruction execution and is cleared to "0" (ISP selected) before executing an interrupt sequence. The U flag is restored from the stack when returning from the interrupt routine. In software interrupt Nos. 32 to 63, the U flag does not change state during instruction execution, and the SP then selected is used.

Under

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Hardware Interrupts

Hardware interrupts are classified into two types — special interrupts and peripheral function interrupts.

(1) Special Interrupts

Special interrupts are non-maskable interrupts.

• NMI Interrupt

An $\overline{\text{NMI}}$ interrupt is generated when input on the $\overline{\text{NMI}}$ pin changes state from high to low. For details about the NMI interrupt, refer to the section "NMI interrupt".

DBC Interrupt

Do not normally use this interrupt because it is provided exclusively for use by development support

Watchdog Timer Interrupt

Generated by the watchdog timer. Once a watchdog timer interrupt is generated, be sure to initialize the watchdog timer. For details about the watchdog timer, refer to the section "watchdog timer".

Oscillation Stop and Re-oscillation Detection Interrupt

Generated by the oscillation stop and re-oscillation detection function. For details about the oscillation stop detection function, refer to the section "clock generating circuit".

Power Supply Down Detection Interrupt

Generated by the voltage detection circuit. For details about the voltage detection circuit, refer to the section "voltage detection circuit".

Single-step Interrupt

Do not normally use this interrupt because it is provided exclusively for use by development support tools.

Address Match Interrupt

An address match interrupt is generated immediately before executing the instruction at the address indicated by the RMAD0 to RMAD3 register that corresponds to one of the AIER register's AIER0 or AIER1 bit or the AIER2 register's AIER20 or AIER21 bit which is "1" (address match interrupt enabled). For details about the address match interrupt, refer to the section "address match interrupt".

(2) Peripheral Function Interrupts

Peripheral function interrupts are maskable interrupts and generated by the microcomputer's internal functions. The interrupt sources for peripheral function interrupts are listed in Table 1.11.2. For details about the peripheral functions, refer to the description of each peripheral function in this manual.

Interrupts and Interrupt Vector

One interrupt vector consists of 4 bytes. Set the start address of each interrupt routine in the respective interrupt vectors. When an interrupt request is accepted, the CPU branches to the address set in the corresponding interrupt vector. Figure 1.11.2 shows the interrupt vector.

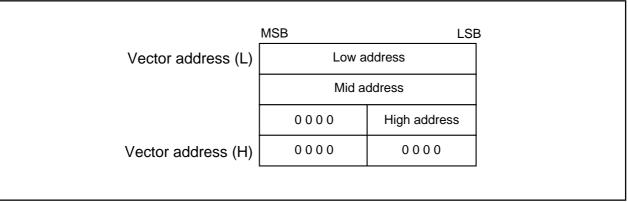


Figure 1.11.2. Interrupt Vector

• Fixed Vector Tables

The fixed vector tables are allocated to the addresses from FFFDC₁₆ to FFFFF₁₆. Table 1.11.1 lists the fixed vector tables. In the flash memory version of microcomputer, the vector addresses (H) of fixed vectors are used by the ID code check function. For details, refer to the section "flash memory rewrite disabling function".

Table 1.11.1. Fixed Vector Tables

Interrupt source	Vector table addresses	Remarks	Reference
	Address (L) to address (H)		
Undefined instruction	FFFDC16 to FFFDF16	Interrupt on UND instruction	M16C/60, M16C/20
Overflow	FFFE016 to FFFE316	Interrupt on INTO instruction	serise software
BRK instruction	FFFE416 to FFFE716	If the contents of address FFFE716 is FF16, program execution starts from the address shown by the vector in the relocatable vector table.	maual
Address match	FFFE816 to FFFEB16		Address match interrupt
Single step (Note)	FFFEC16 to FFFEF16		
Watchdog timer	FFFF016 to FFFF316		Watchdog timer
Oscillation stop and			
re-oscillation detection			Clock generating circuit
Power supply down			
detection			Voltage detection circuit
DBC (Note)	FFFF416 to FFFF716		
NMI	FFFF816 to FFFFB16		NMI interrupt
Reset	FFFFC16 to FFFFF16		Reset

Note: Do not normally use this interrupt because it is provided exclusively for use by development support tools.

• Relocatable Vector Tables

The 256 bytes beginning with the start address set in the INTB register comprise a reloacatable vector table area. Table 1.11.2 lists the relocatable vector tables. Setting an even address in the INTB register results in the interrupt sequence being executed faster than in the case of odd addresses.

Table 1.11.2. Relocatable Vector Tables

Interrupt source	Vector address (Note 1) Address (L) to address (H)	Software interrupt number	Reference	
BRK instruction (Note 5)	+0 to +3 (000016 to 000316)	0	M16C/60, M16C/20	
(Reserved)		1 to 3	series software manual	
ĪNT3	+16 to +19 (001016 to 001316)	4	INT interrupt	
Timer B5	+20 to +23 (001416 to 001716)	5	Timer	
(Note 4) Timer B4, UART1 bus collision detect	+24 to +27 (001816 to 001B16)	6	Timer	
(Note 4) Timer B3, UART0 bus collision detect	+28 to +31 (001C16 to 001F16)	7	Serial I/O	
SI/O4, INT5 (Note 2)	+32 to +35 (002016 to 002316)	8	INT interrupt	
SI/O3, INT4 (Note 2)	+36 to +39 (002416 to 002716)	9	Serial I/O	
UART 2 bus collision detection	+40 to +43 (002816 to 002B16)	10	Serial I/O	
DMA0	+44 to +47 (002C16 to 002F16)	11	D144.0	
DMA1	+48 to +51 (003016 to 003316)	12	DMAC	
Key input interrupt	+52 to +55 (003416 to 003716)	13	Key input interrupt	
A-D	+56 to +59 (003816 to 003B16)	14	A-D convertor	
UART2 transmit, NACK2 (Note 3)	+60 to +63 (003C16 to 003F16)	15		
UART2 receive, ACK2 (Note 3)	+64 to +67 (004016 to 004316)	16		
UART0 transmit, NACK0(Note 3)	+68 to +71 (004416 to 004716)	17	0	
UART0 receive, ACK0 (Note 3)	+72 to +75 (004816 to 004B16)	18	Serial I/O	
UART1 transmit, NACK1(Note 3)	+76 to +79 (004C16 to 004F16)	19		
UART1 receive, ACK1 (Note 3)	+80 to +83 (005016 to 005316)	20		
Timer A0	+84 to +87 (005416 to 005716)	21		
Timer A1	+88 to +91 (005816 to 005B16)	22		
Timer A2	+92 to +95 (005C16 to 005F16)	23		
Timer A3	+96 to +99 (006016 to 006316)	24		
Timer A4	+100 to +103 (006416 to 006716)	25	Timer	
Timer B0	+104 to +107 (006816 to 006B16)	26		
Timer B1	+108 to +111 (006C16 to 006F16)	27		
Timer B2	+112 to +115 (007016 to 007316)	28		
ĪNT0	+116 to +119 (007416 to 007716)	29		
ĪNT1	+120 to +123 (007816 to 007B16)	30	INT interrupt	
ĪNT2	+124 to +127 (007C16 to 007F16)	31	•	
Software interrupt (Note 5)	+128 to +131 (008016 to 008316) to +252 to +255 (00FC16 to 00FF16)	32 to 63	M16C/60, M16C/20 series software manual	

Note 1: Address relative to address in INTB.

Note 2: Use the IFSR register's IFSR6 and IFSR7 bits to select.

Note 3: During I²C mode, NACK and ACK interrupts comprise the interrupt source.

Note 4: Use the IFSR2A register's IFSR26 and IFSR27 bits to select.

Note 5: These interrupts cannot be disabled using the I flag.

Interrupt Control

The following describes how to enable/disable the maskable interrupts, and how to set the priority in which order they are accepted. What is explained here does not apply to nonmaskable interrupts.

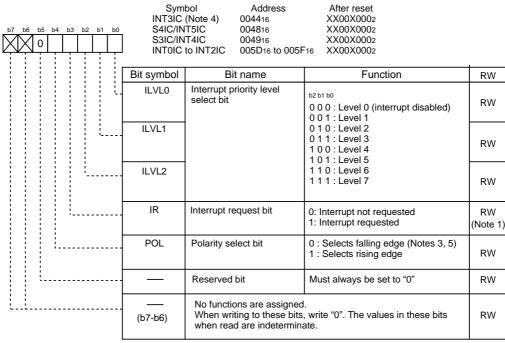
Use the FLG register's I flag, IPL, and each interrupt control register's ILVL2 to ILVL0 bits to enable/disable the maskable interrupts. Whether an interrupt is requested is indicated by the IR bit in each interrupt control register.

Figure 1.11.3 shows the interrupt control registers.

Interrupts

,		
Symbol	Address	After reset
TB5IC	004516	XXXXX0002
TB4IC/U1BCNIC (Note 3)	004616	XXXXX0002
TB3IC/U0BCNIC (Note 3)	004716	XXXXX0002
BCNIC	004A16	XXXXX0002
DM0IC, DM1IC	004B16, 004C16	XXXXX0002
KUPIC	004D ₁₆	XXXXX0002
ADIC	004E ₁₆	XXXXX0002
S0TIC to S2TIC	005116, 005316, 004F16	XXXXX0002
S0RIC to S2RIC	005216, 005416, 005016	XXXXX0002
TA0IC to TA4IC	005516 to 005916	XXXXX0002
TB0IC to TB2IC	005A ₁₆ to 005C ₁₆	XXXXX0002
t symbol Bit name	Func	tion

Bit symbol	Bit name	Function	RW
ILVL0	Interrupt priority level select bit	b2 b1 b0 0 0 0 : Level 0 (interrupt disabled) 0 0 1 : Level 1 0 1 0 : Level 2 0 1 1 : Level 3 1 0 0 : Level 4 1 0 1 : Level 5 1 1 0 : Level 6 1 1 1 : Level 7	RW RW
IR	Interrupt request bit	0 : Interrupt not requested 1 : Interrupt requested	RW (Note 1)
(b7-b4)	No functions are assigned When writing to these bits, when read are indetermina	write "0". The values in these bits	


Note 1: This bit can only be reset by writing "0" (Do not write "1").

Note 2: To rewrite the interrupt control registers, do so at a point that does not generate the interrupt request for that register. For details, see the precautions for interrupts.

Address

After reset

Note 3: Use the IFSR2A register to select.

Note 1: This bit can only be reset by writing "0" (Do not write "1").

Note 2: To rewrite the interrupt control register, do so at a point that does not generate the interrupt request for that register. For details, see the precautions for interrupts.

Note 3: If the IFSR register's IFSRi bit (i = 0 to 5) is "1" (both edges), set the INTIIC register's POL bit to "0 "(falling edge).

Note 4: During memory expansion and microprocessor modes, set the INT3IC register's ILVL2 to ILVL0 bits to '0002' (interrupt disabled).

Note 5: Set the S3IC or S4IC register's POL bit to "0" (falling edge) when the IFSR register's IFSR6 bit = 0 (SI/O3 selected) or IFSR7 bit = 0 (SI/O4 selected), respectively.

Figure 1.11.3. Interrupt Control Registers

I Flag

The I flag enables or disables the maskable interrupt. Setting the I flag to "1" (= enabled) enables the maskable interrupt. Setting the I flag to "0" (= disabled) disables all maskable interrupts.

IR Bit

The IR bit is set to "1" (= interrupt requested) when an interrupt request is generated. Then, when the interrupt request is accepted and the CPU branches to the corresponding interrupt vector, the IR bit is cleared to "0" (= interrupt not requested).

The IR bit can be cleared to "0" in a program. Note that do not write "1" to this bit.

ILVL2 to ILVL0 Bits and IPL

Interrupt priority levels can be set using the ILVL2 to ILVL0 bits.

Table 1.11.3 shows the settings of interrupt priority levels and Table 1.11.4 shows the interrupt priority levels enabled by the IPL.

The following are conditions under which an interrupt is accepted:

- · I flag = "1"
- · IR bit = "1"
- · interrupt priority level > IPL

The I flag, IR bit, ILVL2 to ILVL0 bits and IPL are independent of each other. In no case do they affect one another.

Table 1.11.3. Settings of Interrupt Priority Levels

ILVL2 to ILVL0 bits	Interrupt priority level	Priority order
0002	Level 0 (interrupt disabled)	
0012	Level 1	Low
0102	Level 2	
0112	Level 3	
1002	Level 4	
1012	Level 5	
1102	Level 6	
1112	Level 7	High

Table 1.11.4. Interrupt Priority Levels **Enabled by IPL**

IPL	Enabled interrupt priority levels
0002	Interrupt levels 1 and above are enabled
0012	Interrupt levels 2 and above are enabled
0102	Interrupt levels 3 and above are enabled
0112	Interrupt levels 4 and above are enabled
1002	Interrupt levels 5 and above are enabled
1012	Interrupt levels 6 and above are enabled
1102	Interrupt levels 7 and above are enabled
1112	All maskable interrupts are disabled

Under

Interrupt Sequence

An interrupt sequence — what are performed over a period from the instant an interrupt is accepted to the instant the interrupt routine is executed — is described here.

If an interrupt occurs during execution of an instruction, the processor determines its priority when the execution of the instruction is completed, and transfers control to the interrupt sequence from the next cycle. If an interrupt occurs during execution of either the SMOVB, SMOVF, SSTR or RMPA instruction, the processor temporarily suspends the instruction being executed, and transfers control to the interrupt sequence.

The CPU behavior during the interrupt sequence is described below. Figure 1.11.4 shows time required for executing the interrupt sequence.

- (1) The CPU gets interrupt information (interrupt number and interrupt request priority level) by reading the address 0000016. Then it clears the IR bit for the corresponding interrupt to "0" (interrupt not requested).
- (2) The FLG register immediately before entering the interrupt sequence is saved to the CPU's internal temporary register(Note 1).
- (3) The I, D and U flags in the FLG register become as follows:
 - The I flag is cleared to "0" (interrupts disabled).
 - The D flag is cleared to "0" (single-step interrupt disabled).
 - The U flag is cleared to "0" (ISP selected).
 - However, the U flag does not change state if an INT instruction for software interrupt Nos. 32 to 63 is
- (4) The CPU's internal temporary register (Note 1) is saved to the stack.
- (5) The PC is saved to the stack.
- (6) The interrupt priority level of the accepted interrupt is set in the IPL.
- (7) The start address of the relevant interrupt routine set in the interrupt vector is stored in the PC.

After the interrupt sequence is completed, the processor resumes executing instructions from the start address of the interrupt routine.

Note: This register cannot be used by user.

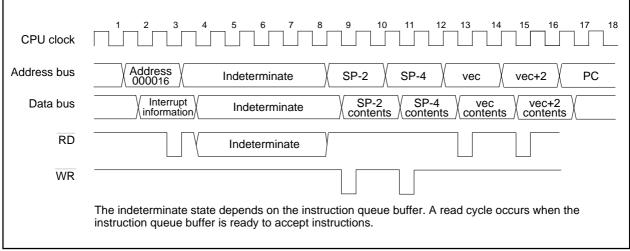


Figure 1.11.4. Time Required for Executing Interrupt Sequence

Interrupt Response Time

Figure 1.11.5 shows the interrupt response time. The interrupt response or interrupt acknowledge time denotes a time from when an interrupt request is generated till when the first instruction in the interrupt routine is executed. Specifically, it consists of a time from when an interrupt request is generated till when the instruction then executing is completed ((a) in Figure 1.11.5) and a time during which the interrupt sequence is executed ((b) in Figure 1.11.5).

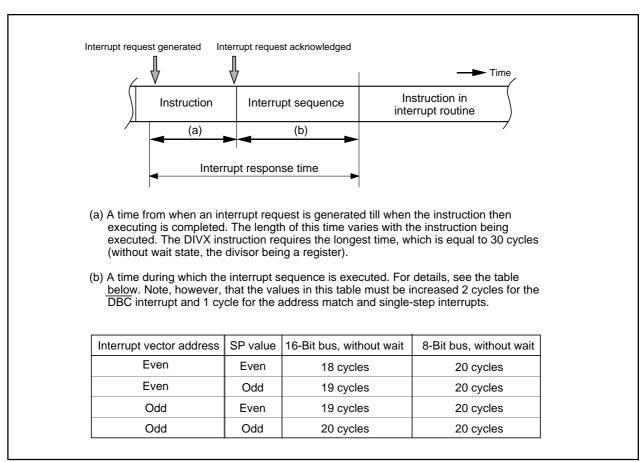


Figure 1.11.5. Interrupt response time

Variation of IPL when Interrupt Request is Accepted

When a maskable interrupt request is accepted, the interrupt priority level of the accepted interrupt is set in the IPL.

When a software interrupt or special interrupt request is accepted, one of the interrupt priority levels listed in Table 1.11.5 is set in the IPL. Shown in Table 1.11.5 are the IPL values of software and special interrupts when they are accepted.

Table 1.11.5. IPL Level That is Set to IPL When A Software or Special Interrupt Is Accepted

Interrupt sources	Level that is set to IPL
Watchdog timer, NMI	7
Software, address match, DBC, single-step	Not changed

Saving Registers

development

Interrupts

In the interrupt sequence, the FLG register and PC are saved to the stack.

At this time, the 4 high-order bits of the PC and the 4 high-order (IPL) and 8 low-order bits of the FLG register, 16 bits in total, are saved to the stack first. Next, the 16 low-order bits of the PC are saved. Figure 1.11.6 shows the stack status before and after an interrupt request is accepted.

The other necessary registers must be saved in a program at the beginning of the interrupt routine. Use the PUSHM instruction, and all registers except SP can be saved with a single instruction.

Figure 1.11.6. Stack StatusBefore and After Acceptance of Interrupt Request

The operation of saving registers carried out in the interrupt sequence is dependent on whether the SP^(Note), at the time of acceptance of an interrupt request, is even or odd. If the stack pointer ^(Note) is even, the FLG register and the PC are saved, 16 bits at a time. If odd, they are saved in two steps, 8 bits at a time. Figure 1.11.7 shows the operation of the saving registers.

Note: When any INT instruction in software numbers 32 to 63 has been executed, this is the SP indicated by the U flag. Otherwise, it is the ISP.

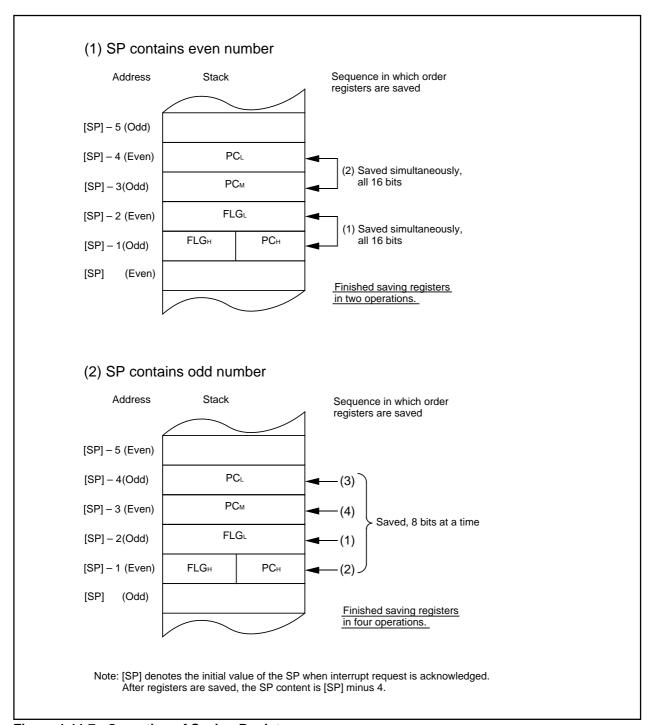


Figure 1.11.7. Operation of Saving Register

Under

Returning from an Interrupt Routine

The FLG register and PC in the state in which they were immediately before entering the interrupt sequence are restored from the stack by executing the REIT instruction at the end of the interrupt routine. Thereafter the CPU returns to the program which was being executed before accepting the interrupt request.

Return the other registers saved by a program within the interrupt routine using the POPM or similar instruction before executing the REIT instruction.

Interrupt Priority

If two or more interrupt requests are generated while executing one instruction, the interrupt request that has the highest priority is accepted.

For maskable interrupts (peripheral functions), any desired priority level can be selected using the ILVL2 to ILVL0 bits. However, if two or more maskable interrupts have the same priority level, their interrupt priority is resolved by hardware, with the highest priority interrupt accepted.

The watchdog timer and other special interrupts have their priority levels set in hardware. Figure 1.11.8 shows the priorities of hardware interrupts.

Software interrupts are not affected by the interrupt priority. If an instruction is executed, control branches invariably to the interrupt routine.

Reset > $\overline{\text{NMI}}$ > $\overline{\text{DBC}}$ > WDT > Peripheral function > Single step > Address match

Figure 1.11.8. Hardware Interrupt Priority

Interrupt Priority Resolution Circuit

The interrupt priority resolution circuit is used to select the interrupt with the highest priority among those requested.

Figure 1.11.9 shows the circuit that judges the interrupt priority level.

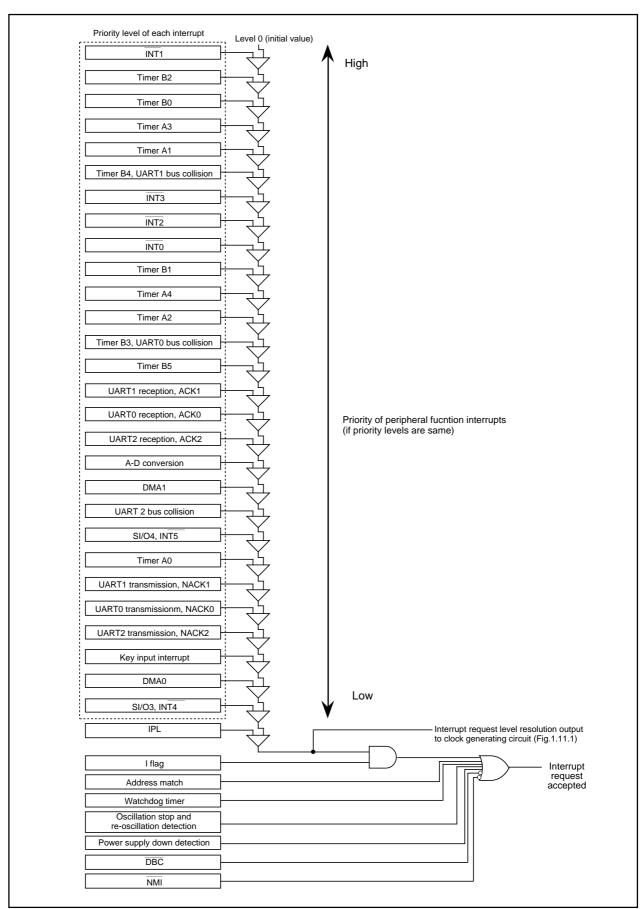


Figure 1.11.9. Interrupts Priority Select Circuit

INT Interrupt

INTi interrupt (i=0 to 5) is triggered by the edges of external inputs. The edge polarity is selected using the IFSR register's IFSRi bit.

 $\overline{\text{INT}4}$ and $\overline{\text{INT}5}$ share the interrupt vector and interrupt control register with SI/O3 and SI/O4, respectively. To use the $\overline{\text{INT}4}$ interrupt, set the IFSR register's IFSR6 bit to "1" (= $\overline{\text{INT}4}$). To use the $\overline{\text{INT}5}$ interrupt, set the IFSR register's IFSR7 bit to "1" (= $\overline{\text{INT}5}$).

After modifying the IFSR6 or IFSR7 bit, clear the corresponding IR bit to "0" (= interrupt not requested) before enabling the interrupt.

Figure 1.11.10 shows the IFSR and IFSR2A registers.

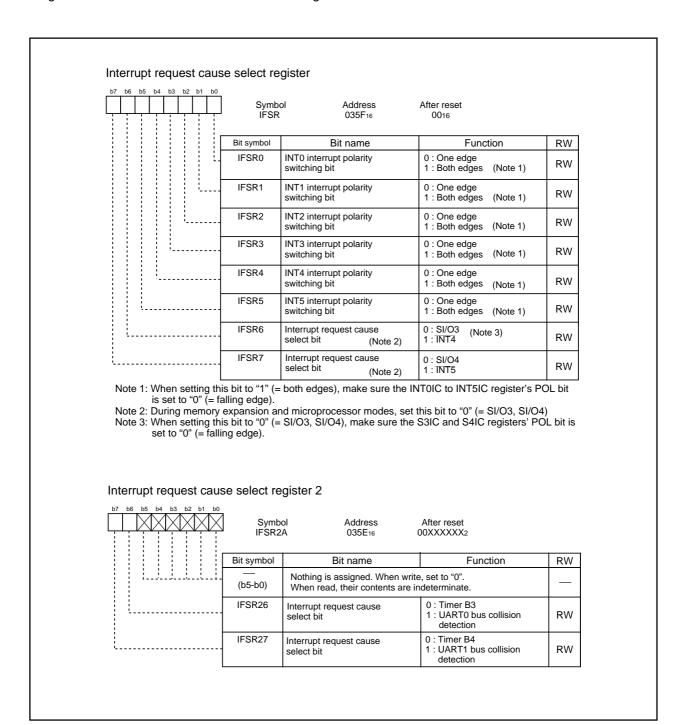


Figure 1.11.10. IFSR Register and IFSR2A Register

NMI Interrupt

An $\overline{\text{NMI}}$ interrupt is generated when input on the $\overline{\text{NMI}}$ pin changes state from high to low. The $\overline{\text{NMI}}$ interrupt is a non-maskable interrupt.

The input level of this $\overline{\text{NMI}}$ interrupt input pin can be read by accessing the P8 register's P8_5 bit.

This pin cannot be used as an input port.

Key Input Interrupt

Of P104 to P107, a key input interrupt is generated when input on any of the P104 to P107 pins which has had the PD10 register's PD10_4 to PD10_7 bits set to "0" (= input) goes low. Key input interrupts can be used as a key-on wakeup function, the function which gets the microcomputer out of wait or stop mode. However, if you intend to use the key input interrupt, do not use P104 to P107 as analog input ports. Figure 1.11.11 shows the block diagram of the key input interrupt. Note, however, that while input on any pin which has had the PD10_4 to PD10_7 bits set to "0" (= input mode) is pulled low, inputs on all other pins of the port are not detected as interrupts.

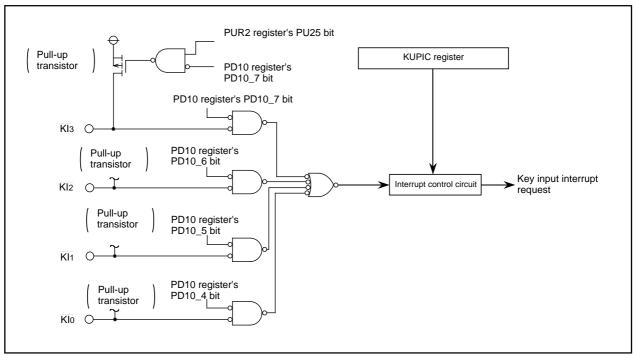


Figure 1.11.11. Key Input Interrupt

Under

Address Match Interrupt

An address match interrupt is generated immediately before executing the instruction at the address indicated by the RMADi register (i=0 to 3). Set the start address of any instruction in the RMADi register. Use the AIER register's AIER0 and AIER1 bits and the AIER2 register's AIER20 and AIER21 bits to enable or disable the interrupt. Note that the address match interrupt is unaffected by the I flag and IPL. For address match interrupts, the value of the PC that is saved to the stack area varies depending on the instruction being executed. Figure 1.11.12 shows the instruction just before execution and address stored in the stack when there occurs interruption.

Note that when using the external data bus in width of 8 bits, the address match interrupt cannot be used for external area.

Figure 1.11.13 shows the AIER, AIER2, and RMAD0 to RMAD3 registers.

- (1) Instructions in which the "return destination + 2" address is stored in the stack when address match interrupt occurs
- 16-bit operation code
- Instruction shown below among 8-bit operation code instructions

ADD.B:S	#IMM8,dest	SUB.B:S	#IMM8,dest	AND.B:S	#IMM8,dest
OR.B:S	#IMM8,dest	MOV.B:S	#IMM8,dest	STZ.B:S	#IMM8,dest
STNZ.B:S	#IMM8,dest	STZX.B:S	#IMM81,#IMM82,	dest	
CMP.B:S	#IMM8,dest	PUSHM	src	POPM des	t
JMPS	#IMM8	JSRS	#IMM8		
MOV.B:S	#IMM,dest (However, dest = A0 or A1)				

- (2) Instructions in which the "return destination + 1" address is stored in the stack when address match interrupt occurs
- · Instructions other than the above

Figure 1.11.12. Instruction Just Before Execution and Address Stored in Stack When There **Occurs Interrupts**

Table 1.11.6. Relationship Between Address Match Interrupt Sources and Associated Registers

Address match interrupt sources	Address match interrupt enable bit	Address match interrupt register
Address match interrupt 0	AIER0	RMAD0
Address match interrupt 1	AIER1	RMAD1
Address match interrupt 2	AIER20	RMAD2
Address match interrupt 3	AIER21	RMAD3

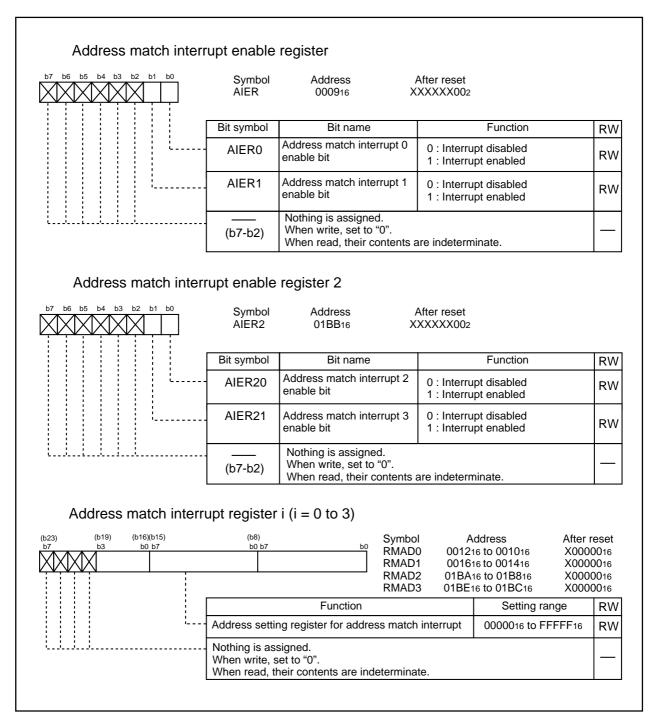


Figure 1.11.13. AIER Register, AIER2 Register and RMAD0 to RMAD3 Registers

Under

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Precautions for Interrupts

(1) Reading Address 0000016

• Do not read the address 0000016 in a program. When a maskable interrupt request is accepted, the CPU reads interrupt information (interrupt number and interrupt request priority level) from the address 0000016 during the interrupt sequence. At this time, the IR bit for the accepted interrupt is cleared to "0". If the address 0000016 is read in a program, the IR bit for the interrupt which has the highest priority among the enabled interrupts is cleared to "0". This causes a problem that the interrupt is canceled, or an unexpected interrupt is generated.

(2) SP Setting

 Set any value in the SP before accepting an interrupt. The SP is cleared to '000016' after reset. Therefore, if an interrupt is accepted before setting any value in the SP, the program may go out of control. Especially when using NMI interrupt, set a value in the SP at the beginning of the program. For the first and only the first instruction after reset, all interrupts including NMI interrupt are disabled.

(3) NMI Interrupt

- The NMI interrupt cannot be disabled. If this interrupt is unused, connect the NMI pin to Vcc via a resistor (pull-up).
- The input level of the NMI pin can be read by accessing the P8 register's P8_5 bit. Note that the P8_5 bit can only be read when determining the pin level after an NMI interrupt is generated.
- Stop mode cannot be entered into while input on the NMI pin is low. This is because while input on the NMI pin is low the CM1 register's CM10 bit is fixed to "0".
- Do not go to wait mode while input on the NMI pin is low. This is because when input on the NMI pin goes low, the CPU stops but CPU clock remains active; therefore, the current consumption in the chip does not drop. In this case, normal condition is restored by an interrupt generated thereafter.
- The low and high level durations of the input signal to the NMI pin must each be 2 CPU clock cycles + 300 ns or more.

(4) INT Interrupt

- Either an "L" level or an "H" level of at least 250 ns width is necessary for the signal input to the INTo through INT5 pins regardless of the CPU clock.
- When the polarity of the INTo to INTo pins is changed, the IR bit is sometimes set to "1" (=interrupt requested). After changing the polarity, set the IR bit to "0" (=interrupt not requested). Figure 1.11.13 shows the procedure for changing the INT interrupt generate factor.

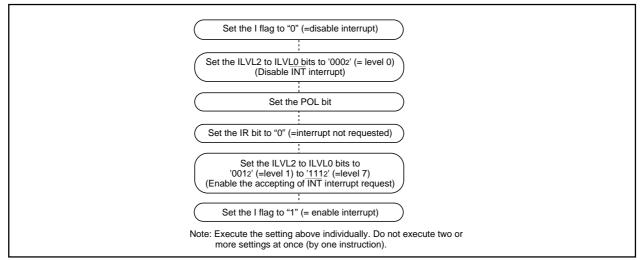


Figure 1.11.14. Switching Procedure for INT Interrupt Request

(5) Watchdog Timer Interrupt

• Initialize the watchdog timer after the watchdog timer interrupt occurs.

(6) Modifying Interrupt Control Register

• Each interrupt control register can only be modified while no interrupt requests corresponding to that register are generated. If interrupt requests managed by any interrupt control register are likely to occur, disable the interrupts before modifying the register. A sample program is shown below.

Example 1:

```
INT_SWITCH1:
   FCLR
```

; Disable interrupts.

AND.B #00h, 0055h : Set the TAOIC register to "0016".

; Four NOP instructions are required when using HOLD function. NOP

NOP

FSET ; Enable interrupts.

Example 2:

INT_SWITCH2:

FCLR ; Disable interrupts.

AND.B #00h, 0055h; Set the TA0IC register to "0016".

MOV.W MEM, R0 Dummy read. **FSET** ; Enable interrupts.

Example 3:

INT_SWITCH3:

PUSHC FLG ; Push Flag register onto stack

FCLR ; Disable interrupts.

; Set the TA0IC register to "0016". AND.B #00h, 0055h

POPC FLG ; Enable interrupts.

Why the FSET I instruction is preceded by two NOP instructions (four when using HOLD function) in Example 1 and why the FSET I instruction is preceded by a dummy read in Example 2

This is to prevent the I flag from being set to "1" before writing to the interrupt control register for reasons of the instruction queue buffer.

To modify any interrupt control register after disabling interrupts, be careful with the instructions used.

Modifying other than the IR bit

If an interrupt request corresponding to that register is generated while executing the instruction, the IR bit may not be set to "1" (= interrupt requested), with the result that the interrupt request is ignored. If this presents a problem, use the following instructions to modify the register.

Instructions to use: AND, OR, BCLR, BSET

Modifying the IR bit

Even when the IR bit is cleared to "0" (= interrupt not requested), it may not actually be cleared to "0" depending on the instruction used. Therefore, use the MOV instruction to clear the IR bit.

Watchdog Timer

The watchdog timer is the function of detecting when the program is out of control. Therefore, we recommend using the watchdog timer to improve reliability of a system. The watchdog timer contains a 15-bit counter which counts down the clock derived by dividing the CPU clock using the prescaler. Whether to generate a watchdog timer interrupt request or apply a watchdog timer reset as an operation to be performed when the watchdog timer underflows after reaching the terminal count can be selected using the PM12 bit of PM1 register. The PM12 bit can only be set to "1" (reset). Once this bit is set to "1", it cannot be set to "0" (watchdog timer interrupt) in a program.

The pin, CPU and SFR initialized where the monitor timer underflows when the PM12 bit is "1" are the same as in software reset.

When the main clock is selected for CPU clock, the divide-by-N value for the prescaler can be chosen to be 16 or 128. If a sub-clock is selected for CPU clock, the divide-by-N value for the prescaler is always 2 no matter how the WDC7 bit is set. The period of watchdog timer can be calculated as given below. The period of watchdog timer is, however, subject to an error due to the prescaler.

For example, when CPU clock = 16 MHz and the divide-by-N value for the prescaler= 16, the watchdog timer period is approx. 32.8 ms.

The watchdog timer is initialized by writing to the WDTS register. The prescaler is initialized after reset. Note that the watchdog timer and the prescaler both are inactive after reset, so that the watchdog timer is activated to start counting by writing to the WDTS register.

In stop mode, wait mode and hold state, the watchdog timer and prescaler are stopped. Counting is resumed from the held value when the modes or state are released.

Figure 1.12.1 shows the block diagram of the watchdog timer. Figure 1.12.2 shows the watchdog timer-related registers.

• Count source protective mode

In this mode, a ring oscillator clock is used for the watchdog timer count source. The watchdog timer can be kept being clocked even when CPU clock stops as a result of run-away.

Before this mode can be used, the following register settings are required:

- (1) Set the PRC1 bit of PRCR register to "1" (enable writes to PM1 and PM2 registers).
- (2) Set the PM12 bit of PM1 register to "1" (reset when the watchdog timer underflows).
- (3) Set the PM22 bit of PM2 register to "1" (ring oscillator clock used for the watchdog timer count source).
- (4) Set the PRC1 bit of PRCR register to "0" (disable writes to PM1 and PM2 registers).
- (5) Write to the WDTS register (watchdog timer starts counting).

Setting the PM22 bit to "1" results in the following conditions

- The ring oscillator starts oscillating, and the ring oscillator clock becomes the watchdog timer count source.
- The CM10 bit of CM1 register is disabled against write. (Writing a "1" has no effect, nor is stop mode entered.)
- The watchdog timer does not stop when in wait mode or hold state.

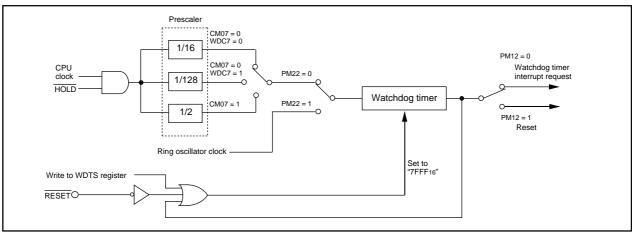


Figure 1.12.1. Watchdog Timer Block Diagram

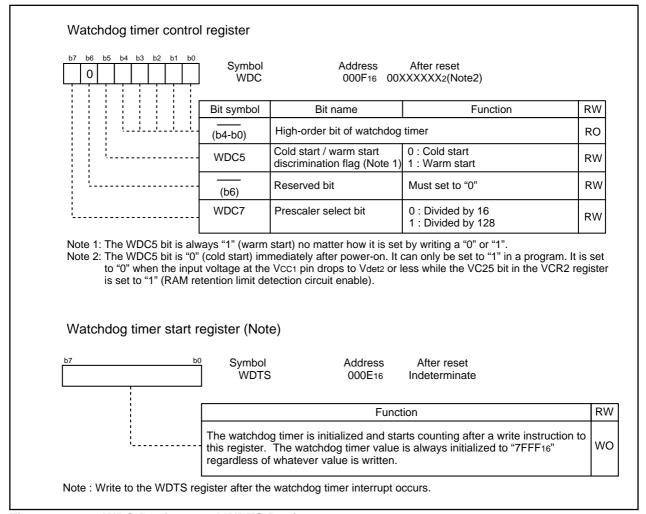


Figure 1.12.2. WDC Register and WDTS Register

DMAC

The DMAC (Direct Memory Access Controller) allows data to be transferred without the CPU intervention. Two DMAC channels are included. Each time a DMA request occurs, the DMAC transfers one (8 or 16-bit) data from the source address to the destination address. The DMAC uses the same data bus as used by the CPU. Because the DMAC has higher priority of bus control than the CPU and because it makes use of a cycle steal method, it can transfer one word (16 bits) or one byte (8 bits) of data within a very short time after a DMA request is generated. Figure 1.13.1 shows the block diagram of the DMAC. Table 1.13.1 shows the DMAC specifications. Figures 1.13.2 to 1.13.4 show the DMAC-related registers.

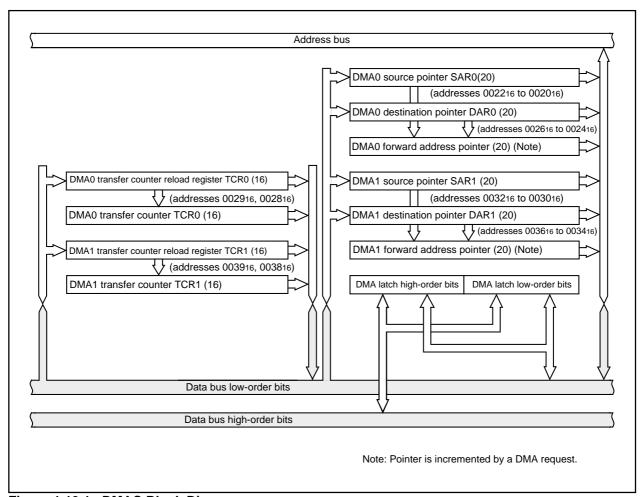


Figure 1.13.1. DMAC Block Diagram

A DMA request is generated by a write to the DMiSL register (i = 0-1)'s DSR bit, as well as by an interrupt request which is generated by any function specified by the DMiSL register's DMS and DSEL3–DSEL0 bits. However, unlike in the case of interrupt requests, DMA requests are not affected by the I flag and the interrupt control register, so that even when interrupt requests are disabled and no interrupt request can be accepted, DMA requests are always accepted. Furthermore, because the DMAC does not affect interrupts, the interrupt control register's IR bit does not change state due to a DMA transfer.

A data transfer is initiated each time a DMA request is generated when the DMiCON register's DMAE bit = "1" (DMA enabled). However, if the cycle in which a DMA request is generated is faster than the DMA transfer cycle, the number of transfer requests generated and the number of times data is transferred may not match. For details, refer to "DMA Requests".

Table 1.13.1. DMAC Specifications

Ite	m	Specification	
No. of channels	3	2 (cycle steal method)	
Transfer memory space		• From any address in the 1M bytes space to a fixed address	
		 From a fixed address to any address in the 1M bytes space 	
		 From a fixed address to a fixed address 	
Maximum No. of	bytes transferred	128K bytes (with 16-bit transfers) or 64K bytes (with 8-bit transfers)	
DMA request fa	actors	Falling edge of INT0 or INT1	
(Note 1, Note 2	2)	Both edge of INT0 or INT1	
		Timer A0 to timer A4 interrupt requests	
		Timer B0 to timer B5 interrupt requests	
		UART0 transfer, UART0 reception interrupt requests	
		UART1 transfer, UART1 reception interrupt requests	
		UART2 transfer, UART2 reception interrupt requests	
		SI/O3, SI/O4 interrpt requests	
		A-D conversion interrupt requests	
		Software triggers	
Channel priority	/	DMA0 > DMA1 (DMA0 takes precedence)	
Transfer unit		8 bits or 16 bits	
Transfer addres	ss direction	forward or fixed (The source and destination addresses cannot both be	
		in the forward direction.)	
Transfer mode	•Single transfer	Transfer is completed when the DMAi transfer counter (i = 0-1)	
		underflows after reaching the terminal count.	
	•Repeat transfer	When the DMAi transfer counter underflows, it is reloaded with the value	
		of the DMAi transfer counter reload register and a DMA transfer is con	
		tinued with it.	
DMA interrupt requ	est generation timing	When the DMAi transfer counter underflowed	
DMA startup		Data transfer is initiated each time a DMA request is generated when the	
		DMAiCON register's DMAE bit = "1" (enabled).	
DMA shutdown	•Single transfer	When the DMAE bit is set to "0" (disabled)	
		After the DMAi transfer counter underflows	
	•Repeat transfer	When the DMAE bit is set to "0" (disabled)	
Reload timing	for forward ad-	When a data transfer is started after setting the DMAE bit to "1" (en	
dress pointer a		abled), the forward address pointer is reloaded with the value of the	
counter		SARi or the DARi pointer whichever is specified to be in the forward	
Counter		direction and the DMAi transfer counter is reloaded with the value of the	
		DMAi transfer counter reload register.	

Notes:

- 1. DMA transfer is not effective to any interrupt. DMA transfer is affected neither by the I flag nor by the interrupt control register.
- 2. The selectable causes of DMA requests differ with each channel.
- 3. Make sure that no DMAC-related registers (addresses 002016–003F16) are accessed by the DMAC.

^{de_Aelobwe_{ut}}

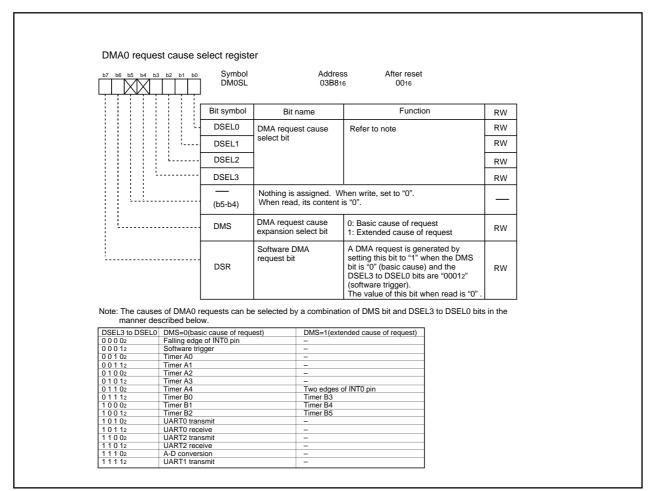
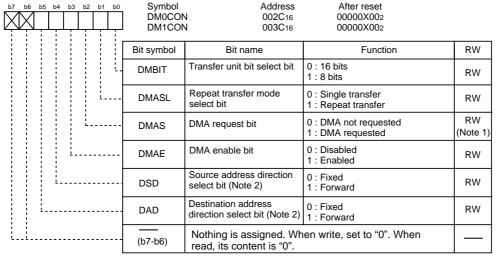



Figure 1.13.2. DM0SL Register

Note: The causes of DMA1 requests can be selected by a combination of DMS bit and DSEL3 to DSEL0 bits in the manner described below

- manner des	scribed below.	
DSEL3 to DSEL0	DMS=0(basic cause of request)	DMS=1(extended cause of request)
0 0 0 02	Falling edge of INT1 pin	_
0 0 0 12	Software trigger	_
0 0 1 02	Timer A0	_
0 0 1 12	Timer A1	_
0 1 0 02	Timer A2	_
0 1 0 12	Timer A3	SI/O3
0 1 1 02	Timer A4	SI/O4
0 1 1 12	Timer B0	Two edges of INT1
1 0 0 02	Timer B1	
1 0 0 12	Timer B2	_
1 0 1 02	UART0 transmit	_
1 0 1 12	UART0 receive/ACK0	_
1 1 0 02	UART2 transmit	_
1 1 0 12	UART2 receive/ACK2	=
1 1 1 02	A-D conversion	_
1 1 1 12	UART1 receive/ACK1	

DMAi control register(i=0,1)

Note 1: The DMAS bit can be set to "0" by writing "0" in a program (This bit remains unchanged even if "1" is written). Note 2: At least one of the DAD and DSD bits must be "0" (address direction fixed).

Figure 1.13.3. DM1SL Register, DM0CON Register, and DM1CON Registers

_{development} _{Under}

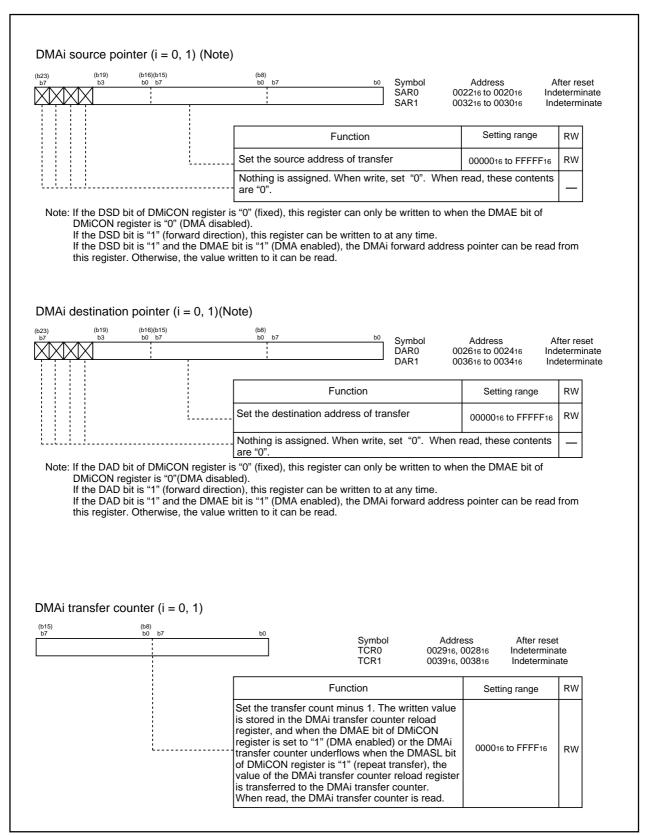


Figure 1.13.4. SAR0, SAR1, DAR0, DAR1, TCR0, and TCR1 Registers

1. Transfer Cycles

The transfer cycle consists of a memory or SFR read (source read) bus cycle and a write (destination write) bus cycle. The number of read and write bus cycles is affected by the source and destination addresses of transfer. During memory extension and microprocessor modes, it is also affected by the BYTE pin level. Furthermore, the bus cycle itself is extended by a software wait or $\overline{\text{RDY}}$ signal.

(a) Effect of Source and Destination Addresses

If the transfer unit and data bus both are 16 bits and the source address of transfer begins with an odd address, the source read cycle consists of one more bus cycle than when the source address of transfer begins with an even address.

Similarly, if the transfer unit and data bus both are 16 bits and the destination address of transfer begins with an odd address, the destination write cycle consists of one more bus cycle than when the destination address of transfer begins with an even address.

(b) Effect of BYTE Pin Level

During memory extension and microprocessor modes, if 16 bits of data are to be transferred on an 8-bit data bus (input on the BYTE pin = high), the operation is accomplished by transferring 8 bits of data twice. Therefore, this operation requires two bus cycles to read data and two bus cycles to write data. Furthermore, if the DMAC is to access the internal area (internal ROM, internal RAM, or SFR), unlike in the case of the CPU, the DMAC does it through the data bus width selected by the BYTE pin.

(c) Effect of Software Wait

For memory or SFR accesses in which one or more software wait states are inserted, the number of bus cycles required for that access increases by an amount equal to software wait states.

(d) Effect of RDY Signal

During memory extension and microprocessor modes, DMA transfers to and from an external area are affected by the \overline{RDY} signal. Refer to " \overline{RDY} signal".

Figure 1.13.5 shows the example of the cycles for a source read. For convenience, the destination write cycle is shown as one cycle and the source read cycles for the different conditions are shown. In reality, the destination write cycle is subject to the same conditions as the source read cycle, with the transfer cycle changing accordingly. When calculating transfer cycles, take into consideration each condition for the source read and the destination write cycle, respectively. For example, when data is transferred in 16 bit units using an 8-bit bus ((2) in Figure 1.13.5), two source read bus cycles and two destination write bus cycles are required.

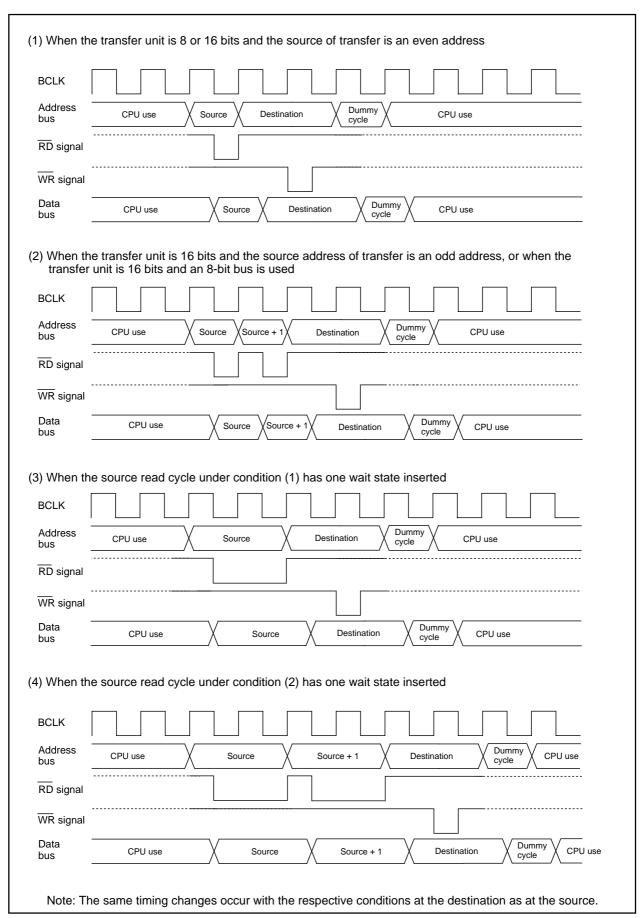


Figure 1.13.5. Transfer Cycles for Source Read

2. DMA Transfer Cycles

Any combination of even or odd transfer read and write addresses is possible. Table 1.13.2 shows the number of DMA transfer cycles. Table 1.13.3 shows the Coefficient j, k.

The number of DMAC transfer cycles can be calculated as follows:

No. of transfer cycles per transfer unit = No. of read cycles x j + No. of write cycles x k

Table 1.13.2. DMA Transfer Cycles

			Single-chip mode		Memory expansion mode		
Transfer unit	Bus width	Access address			Microprocessor mode		
			No. of read	No. of write	No. of read	No. of write	
			cycles	cycles	cycles	cycles	
	16-bit	Even	1	1	1	1	
8-bit transfers	(BYTE= "L")	Odd	1	1	1	1	
(DMBIT= "1")	8-bit	Even	_	_	1	1	
	(BYTE = "H")	Odd	_	_	1	1	
	16-bit	Even	1	1	1	1	
16-bit transfers	(BYTE = "L")	Odd	2	2	2	2	
(DMBIT= "0")	8-bit	Even	_	_	2	2	
	(BYTE = "H")	Odd	_	_	2	2	

Table 1.13.3. Coefficient j, k

	Internal area			External area							
	Internal R	OM, RAM	M, RAM SFR		Separate bus			Multiplex bus			
	No wait	With wait	1-wait ²	2-wait ²	No wait	wait With wait ¹			With wait ¹		
						1 wait	2 waits	3 waits	1wait	2 waits	3 waits
j	1	2	2	3	1	2	3	4	3	3	4
k	1	2	2	3	2	2	3	4	3	3	4

- Depends on the set value of CSE register.
 Depends on the set value of PM20 bit in PM2 register.

3. DMA Enable

When a data transfer starts after setting the DMAE bit in DMiCON register (i = 0, 1) to "1" (enabled), the DMAC operates as follows:

- (1) Reload the forward address pointer with the SARi register value when the DSD bit in DMiCON register is "1" (forward) or the DARi register value when the DAD bit of DMiCON register is "1" (forward).
- (2) Reload the DMAi transfer counter with the DMAi transfer counter reload register value.

If the DMAE bit is set to "1" again while it remains set, the DMAC performs the above operation. However, if a DMA request may occur simultaneously when the DMAE bit is being written, follow the steps below. Step 1: Write "1" to the DMAE bit and DMAS bit in DMiCON register simultaneously.

Step 2: Make sure that the DMAi is in an initial state as described above (1) and (2) in a program. If the DMAi is not in an initial state, the above steps should be repeated.

4. DMA Request

The DMAC can generate a DMA request as triggered by the cause of request that is selected with the DMS and DSEL3 to DSEL0 bits of DMiSL register (i = 0, 1) on either channel. Table 1.13.4 shows the timing at which the DMAS bit changes state.

Whenever a DMA request is generated, the DMAS bit is set to "1" (DMA requested) regardless of whether or not the DMAE bit is set. If the DMAE bit was set to "1" (enabled) when this occurred, the DMAS bit is set to "0" (DMA not requested) immediately before a data transfer starts. This bit cannot be set to "1" in a program (it can only be set to "0").

The DMAS bit may be set to "1" when the DMS or the DSEL3 to DSEL0 bits change state. Therefore, always be sure to set the DMAS bit to "0" after changing the DMS or the DSEL3 to DSEL0 bits.

Because if the DMAE bit is "1", a data transfer starts immediately after a DMA request is generated, the DMAS bit in almost all cases is "0" when read in a program. Read the DMAE bit to determine whether the DMAC is enabled.

Table 1.13.4. Timing at Which the DMAS Bit Changes State

<u> </u>						
DMA factor	DMAS bit of the DMiCON register					
Divir (Idoloi	Timing at which the bit is set to "1"	Timing at which the bit is set to "0"				
Software trigger	When the DSR bit of DMiCON register is set to "1"	Immediately before a data transfer starts When set by writing "0" in a program				
Peripheral function	When the interrupt control register for the peripheral function that is selected by the DSEL3 to DSEL0 and DMS bits of DMiCON register has its IR bit set to "1"					

Channel Priority and DMA Transfer Timing

If both DMA0 and DMA1 are enabled and DMA transfer request signals from DMA0 and DMA1 are detected active in the same sampling period (one period from a falling edge to the next falling edge of BCLK), the DMAS bit on each channel is set to "1" (DMA requested) at the same time. In this case, the DMA requests are arbitrated according to the channel priority, DMA0 > DMA1. The following describes DMAC operation when DMA0 and DMA1 requests are detected active in the same sampling period. Figure 1.13.6 shows an example of DMA transfer effected by external factors.

In Figure 1.13.6, because DMA0 and DMA1 requests occurred at the same time, DMA0 which has higher channel priority is accepted first and a DMA transfer on it starts. When DMA0 finishes one transfer unit, it relinquishes control of the bus to the CPU, and when the CPU finishes one bus access, DMA1 starts a transfer next and after completion of one transfer unit, returns control of the bus to the CPU.

Note that because there is only one DMAS bit on each channel, the number of times DMA is requested cannot be counted. Therefore, even if multiple DMA requests occurred before gaining control of the bus as in the case of DMA1 in Figure 1.13.6, the DMAS bit is set to "0" when control of the bus is gained and after completion of one transfer unit, control of the bus is returned to the CPU.

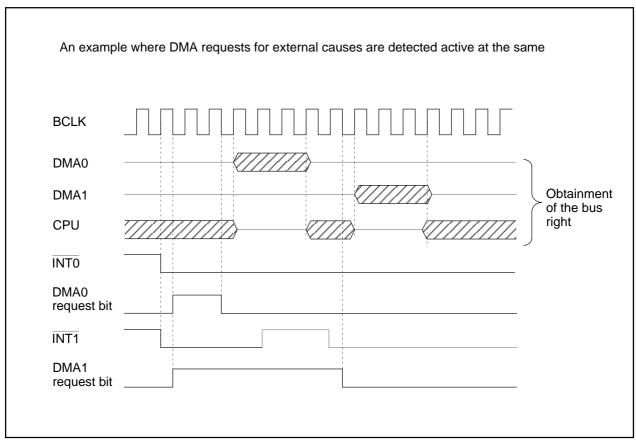


Figure 1.13.6. DMA Transfer by External Factors

Timers

Eleven 16-bit timers, each capable of operating independently of the others, can be classified by function as either timer A (five) and timer B (six). The count source for each timer acts as a clock, to control such timer operations as counting, reloading, etc. Figures 1.14.1 and 1.14.2 show block diagrams of timer A and timer B configuration, respectively.

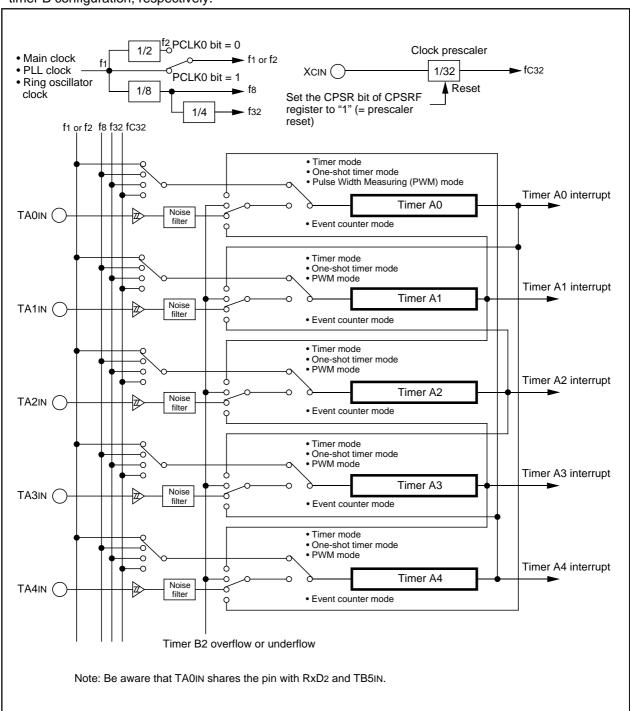


Figure 1.14.1. Timer A Configuration

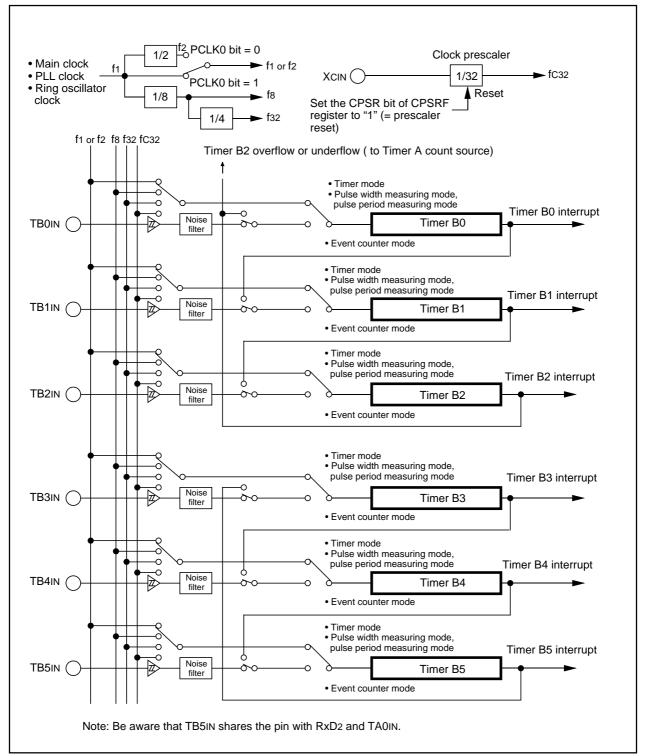


Figure 1.14.2. Timer B Configuration

Timer A

Figure 1.14.3 shows a block diagram of the timer A. Figures 1.14.4 to 1.14.6 show registers related to the timer A.

The timer A supports the following four modes. Except in event counter mode, timers A0 to A4 all have the same function. Use the TMOD1 to TMOD0 bits of TAiMR register (i = 0 to 4) to select the desired mode.

- Timer mode: The timer counts an internal count source.
- Event counter mode: The timer counts pulses from an external device or overflows and underflows of other timers.
- One-shot timer mode: The timer outputs a pulse only once before it reaches the minimum count "000016."
- Pulse width modulation (PWM) mode: The timer outputs pulses in a given width successively.

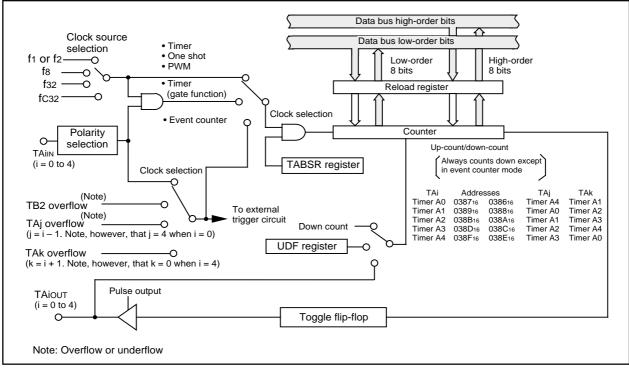


Figure 1.14.3. Timer A Block Diagram

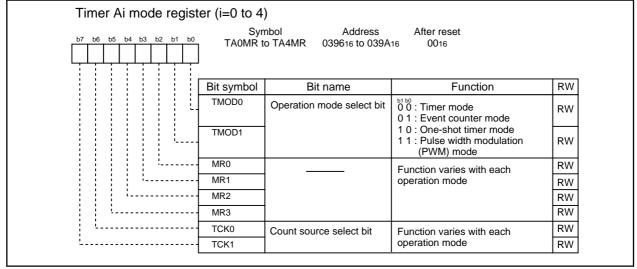


Figure 1.14.4. TA0MR to TA4MR Registers

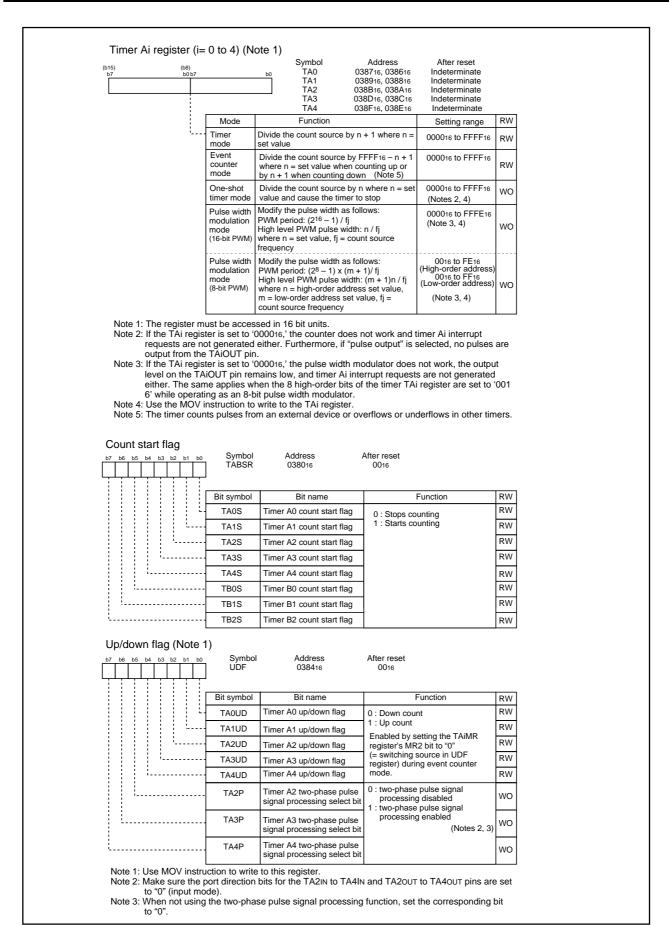


Figure 1.14.5. TA0 to TA4 Registers, TABSR Register, and UDF Register

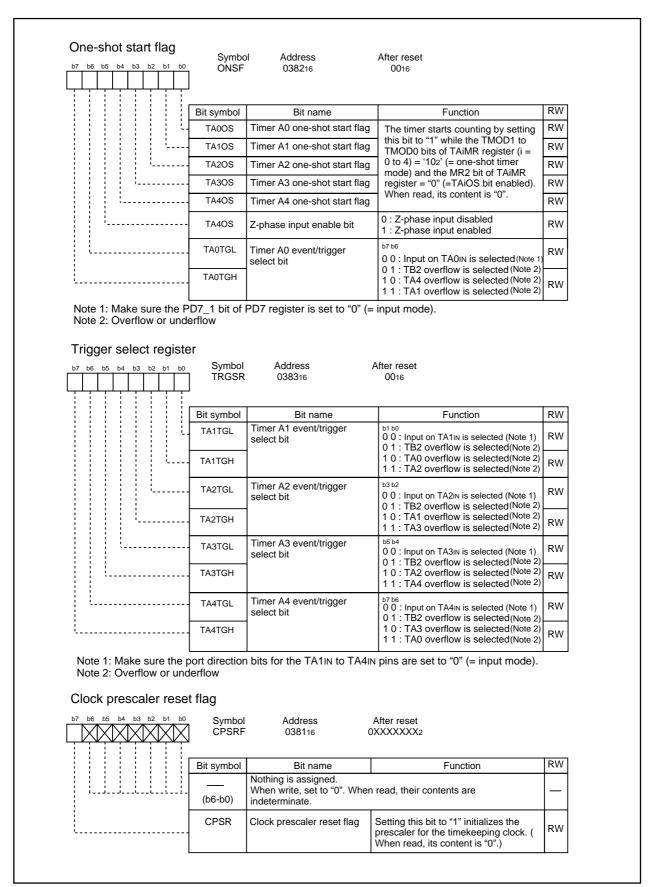


Figure 1.14.6. ONSF Register, TRGSR Register, and CPSRF Register

1. Timer Mode

In timer mode, the timer counts a count source generated internally (see Table 1.14.1). Figure 1.14.7 shows TAiMR register in timer mode.

Table 1.14.1. Specifications in Timer Mode

Item	Specification		
Count source	f1, f2, f8, f32, fC32		
Count operation	Down-count		
	When the timer underflows, it reloads the reload register contents and continues counting		
Divide ratio	1/(n+1) n: set value of TAiMR register (i= 0 to 4) 000016 to FFFF16		
Count start condition	Set TAiS bit of TABSR register to "1" (= start counting)		
Count stop condition	Set TAiS bit to "0" (= stop counting)		
Interrupt request generation timing	Timer underflow		
TAilN pin function	I/O port or gate input		
TAiout pin function	I/O port or pulse output		
Read from timer	Count value can be read by reading TAi register		
Write to timer	When not counting and until the 1st count source is input after counting start		
	Value written to TAi register is written to both reload register and counter		
	When counting (after 1st count source input)		
	Value written to TAi register is written to only reload register		
	(Transferred to counter when reloaded next)		
Select function	Gate function		
	Counting can be started and stopped by an input signal to TAiIN pin		
	Pulse output function		
	Whenever the timer underflows, the output polarity of TAio∪T pin is inverted.		
	When not counting, the pin outputs a low.		

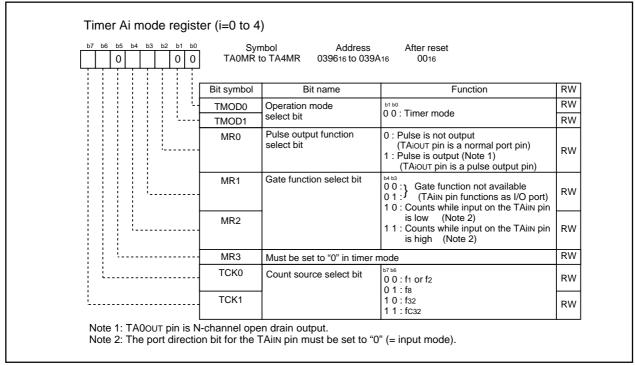


Figure 1.14.7. Timer Ai Mode Register in Timer Mode

2. Event Counter Mode

In event counter mode, the timer counts pulses from an external device or overflows and underflows of other timers. Timers A2, A3 and A4 can count two-phase external signals. Table 1.14.2 lists specifications in event counter mode (when <u>not</u> processing two-phase pulse signal). Table 1.14.3 lists specifications in event counter mode (when processing two-phase pulse signal with the timers A2, A3 and A4). Figure 1.14.8 shows TAiMR register in event counter mode (when <u>not</u> processing two-phase pulse signal). Figure 1.14.9 shows TA2MR to TA4MR registers in event counter mode (when processing two-phase pulse signal with the timers A2, A3 and A4).

Table 1.14.2. Specifications in Event Counter Mode (when not processing two-phase pulse signal)

Item	Specification			
Count source	• External signals input to TAilN pin (i=0 to 4) (effective edge can be selected			
	in program)			
	• Timer B2 overflows or underflows,			
	timer Aj (j=i-1, except j=4 if i=0) overflows or underflows,			
	timer Ak (k=i+1, except k=0 if i=4) overflows or underflows			
Count operation	Up-count or down-count can be selected by external signal or program			
	When the timer overflows or underflows, it reloads the reload register con-			
	tents and continues counting. When operating in free-running mode, the			
	timer continues counting without reloading.			
Divided ratio	1/ (FFFF16 - n + 1) for up-count			
	1/(n + 1) for down-count n : set value of TAi register 000016 to FFFF16			
Count start condition	Set TAiS bit of TABSR register to "1" (= start counting)			
Count stop condition	Set TAiS bit to "0" (= stop counting)			
Interrupt request generation timing	Timer overflow or underflow			
TAilN pin function	I/O port or count source input			
TAiout pin function	I/O port, pulse output, or up/down-count select input			
Read from timer	Count value can be read by reading TAi register			
Write to timer	When not counting and until the 1st count source is input after counting start			
	Value written to TAi register is written to both reload register and counter			
	When counting (after 1st count source input)			
	Value written to TAi register is written to only reload register			
	(Transferred to counter when reloaded next)			
Select function	Free-run count function			
	Even when the timer overflows or underflows, the reload register content is			
	not reloaded to it			
	Pulse output function			
	Whenever the timer underflows or underflows, the output polarity of TAiOUT			
	pin is inverted . When not counting, the pin outputs a low.			

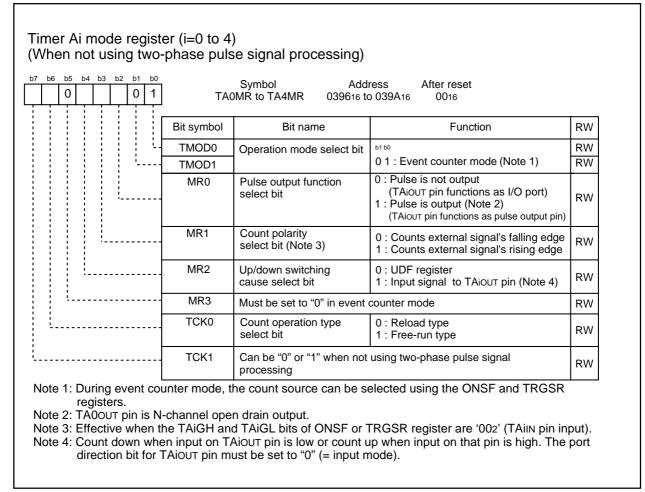


Figure 1.14.8. TAIMR Register in Event Counter Mode (when not using two-phase pulse signal processing)

Table 1.14.3. Specifications in Event Counter Mode (when processing two-phase pulse signal with timers A2, A3 and A4)

Item	Specification		
Count source	• Two-phase pulse signals input to TAin or TAio∪T pins (i = 2 to 4)		
Count operation	 Up-count or down-count can be selected by two-phase pulse signal When the timer overflows or underflows, it reloads the reload register contents and continues counting. When operating in free-running mode, the timer continues counting without reloading. 		
Divide ratio	1/ (FFFF16 - n + 1) for up-count 1/ (n + 1) for down-count n: set value of TAi register 000016 to FFFF16		
Count start condition	Set TAiS bit of TABSR register to "1" (= start counting)		
Count stop condition	Set TAiS bit to "0" (= stop counting)		
Interrupt request generation timing	Timer overflow or underflow		
TAilN pin function	Two-phase pulse input		
TAIOUT pin function	Two-phase pulse input		
Read from timer	Count value can be read by reading timer A2, A3 or A4 register		
Write to timer	 When not counting and until the 1st count source is input after counting start Value written to TAi register is written to both reload register and counter When counting (after 1st count source input) Value written to TAi register is written to reload register (Transferred to counter when reloaded next) 		
Select function (Note)	Normal processing operation (timer A2 and timer A3) The timer counts up rising edges or counts down falling edges on TAjIN pin when input signals on TAjOUT pin is "H". TAjOUT TAjIN (j=2,3) Up- Up- Up- Down- Down- Down- count count count count Multiply-by-4 processing operation (timer A3 and timer A4) If the phase relationship is such that TAkIN(k=3, 4) pin goes "H" when the input signal on TAkOUT pin is "H", the timer counts up rising and falling edges on TAkOUT and TAkIN pins. If the phase relationship is such that TAKIN pin goes "L" when the input signal on TAkOUT pin is "H", the timer counts down rising and falling edges on TAKOUT and TAKIN pins. TAKOUT Count up all edges Count down all edges Count down all edges Count down all edges		
	Count up all edges Count down all edges • Counter initialization by Z-phase input (timer A3)		
	The timer count value is initialized to 0 by Z-phase input.		

Notes:

1. Only timer A3 is selectable. Timer A2 is fixed to normal processing operation, and timer A4 is fixed to multiply-by-4 processing operation.

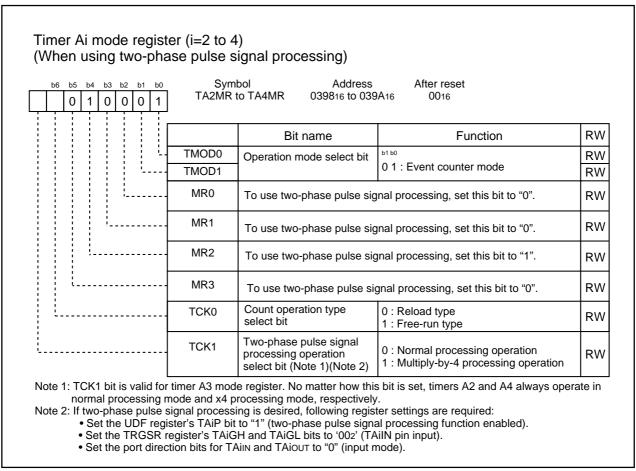


Figure 1.14.9. TA2MR to TA4MR Registers in Event Counter Mode (when using two-phase pulse signal processing with timer A2, A3 or A4)

Counter Initialization by Two-Phase Pulse Signal Processing

This function initializes the timer count value to "0" by Z-phase (counter initialization) input during two-phase pulse signal processing.

This function can only be used in timer A3 event counter mode during two-phase pulse signal processing, free-running type, x4 processing, with Z-phase entered from the INT2 pin.

Counter initialization by Z-phase input is enabled by writing "000016" to the TA3 register and setting the TAZIE bit in ONSF register to "1" (= Z-phase input enabled).

Counter initialization is accomplished by detecting Z-phase input edge. The active edge can be chosen to be the rising or falling edge by using the POL bit of INT2IC register. The Z-phase pulse width applied to the INT2 pin must be equal to or greater than one clock cycle of the timer A3 count source.

The counter is initialized at the next count timing after recognizing Z-phase input. Figure 1.14.10 shows the relationship between the two-phase pulse (A phase and B phase) and the Z phase.

If timer A3 overflow or underflow coincides with the counter initialization by Z-phase input, a timer A3 interrupt request is generated twice in succession. Do not use the timer A3 interrupt when using this function.

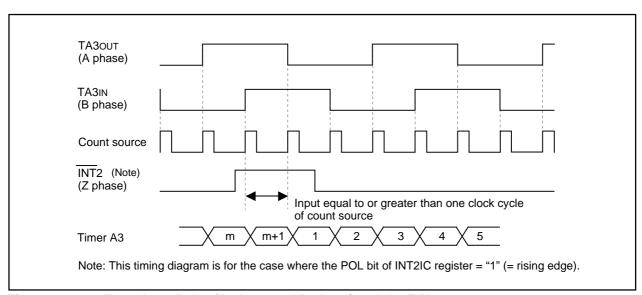


Figure 1.14.10. Two-phase Pulse (A phase and B phase) and the Z Phase

3. One-shot Timer Mode

In one-shot timer mode, the timer is activated only once by one trigger. (See Table 1.14.4.) When the trigger occurs, the timer starts up and continues operating for a given period. Figure 1.14.12 shows the TAIMR register in one-shot timer mode.

Table 1.14.4. Specifications in One-shot Timer Mode

Item	Specification			
Count source	f1, f2, f8, f32, fC32			
Count operation	Down-count			
	When the counter reaches 000016, it stops counting after reloading a new value			
	If a trigger occurs when counting, the timer reloads a new count and restarts counting			
Divide ratio	1/n n: set value of TAi register 000016 to FFFF16			
	However, the counter does not work if the divide-by-n value is set to 000016.			
Count start condition	TAiS bit of TABSR register = "1" (start counting) and one of the following			
	triggers occurs.			
	• External trigger input from the TAilN pin			
	Timer B2 overflow or underflow,			
	timer Aj (j=i-1, except j=4 if i=0) overflow or underflow,			
	timer Ak (k=i+1, except k=0 if i=4) overflow or underflow			
	• The TAiOS bit of ONSF register is set to "1" (= timer starts)			
Count stop condition	When the counter is reloaded after reaching "000016"			
	• TAiS bit is set to "0" (= stop counting)			
Interrupt request generation timing	When the counter reaches "000016"			
TAilN pin function	I/O port or trigger input			
TAIOUT pin function	I/O port or pulse output			
Read from timer	An indeterminate value is read by reading TAi register			
Write to timer	When not counting and until the 1st count source is input after counting start			
	Value written to TAi register is written to both reload register and counter			
	When counting (after 1st count source input)			
	Value written to TAi register is written to only reload register			
	(Transferred to counter when reloaded next)			
Select function	Pulse output function			
	The timer outputs a low when not counting and a high when counting.			

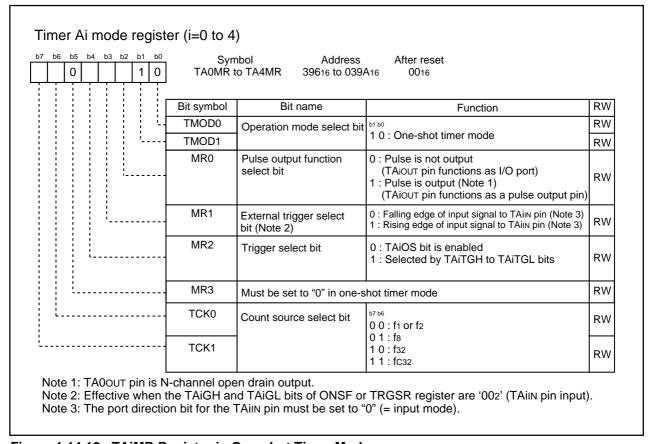


Figure 1.14.12. TAiMR Register in One-shot Timer Mode

4. Pulse Width Modulation (PWM) Mode

In PWM mode, the timer outputs pulses of a given width in succession (see Table 1.14.5). The counter functions as either 16-bit pulse width modulator or 8-bit pulse width modulator. Figure 1.14.13 shows TAiMR register in pulse width modulation mode. Figures 1.14.14 and 1.14.15 show examples of how a 16-bit pulse width modulator operates and how an 8-bit pulse width modulator operates.

Table 1.14.5. Specifications in PWM Mode

Item	Specification			
Count source	f1, f2, f8, f32, fC32			
Count operation	Down-count (operating as an 8-bit or a 16-bit pulse width modulator)			
	The timer reloads a new value at a rising edge of PWM pulse and continues counting			
	The timer is not affected by a trigger that occurs during counting			
16-bit PWM	High level width n / fj n : set value of TAi register (i=o to 4)			
	• Cycle time (2 ¹⁶ -1) / fj fixed fj: count source frequency (f1, f2, f8, f32, fC32)			
8-bit PWM	High level width n x (m+1) / fj n : set value of TAiMR register high-order address			
	• Cycle time (2 ⁸ -1) x (m+1) / fj m: set value of TAiMR register low-order address			
Count start condition	External trigger input from the TAilN pin			
	• Timer B2 overflow or underflow,			
	timer Aj (j=i-1, except j=4 if i=0) overflow or underflow,			
	timer Ak (k=i+1, except k=0 if i=4) overflow or underflow			
	TAiS bit of TABSR register is set to "1" (= start counting)			
Count stop condition	TAiS bit is set to "0" (= stop counting)			
Interrupt request generation timing	PWM pulse goes "L"			
TAilN pin function	I/O port or trigger input			
TAiout pin function	Pulse output			
Read from timer	An indeterminate value is read by reading TAi register			
Write to timer	When not counting and until the 1st count source is input after counting start			
	Value written to TAi register is written to both reload register and counter			
	When counting (after 1st count source input)			
	Value written to TAi register is written to only reload register			
	(Transferred to counter when reloaded next)			

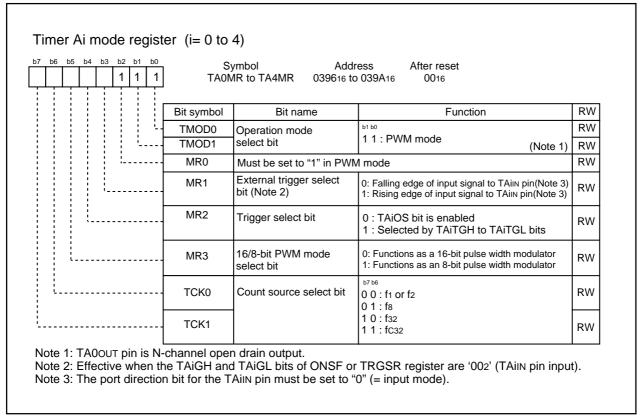


Figure 1.14.13. TAIMR Register in PWM Mode

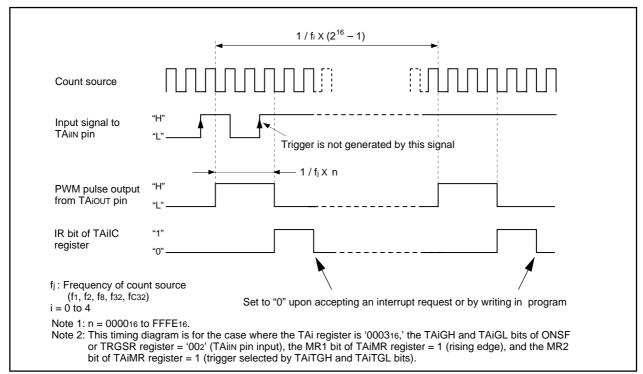


Figure 1.14.14. Example of 16-bit Pulse Width Modulator Operation

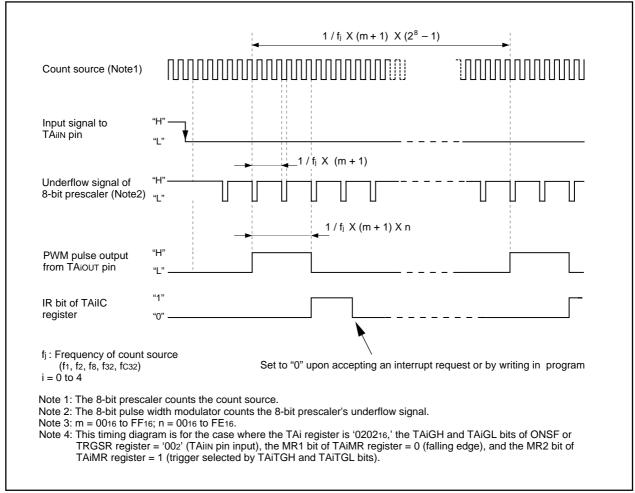


Figure 1.14.15. Example of 8-bit Pulse Width Modulator Operation

Timer B

^{qe_nelobwe}ut

Figure 1.15.1 shows a block diagram of the timer B. Figures 1.15.2 and 1.15.3 show registers related to the timer B.

Timer B supports the following three modes. Use the TMOD1 and TMOD0 bits of TBiMR register (i = 0 to 5) to select the desired mode.

- Timer mode: The timer counts an internal count source.
- Event counter mode: The timer counts pulses from an external device or overflows or underflows of other timers.
- Pulse period/pulse width measuring mode: The timer measures an external signal's pulse period or pulse width.

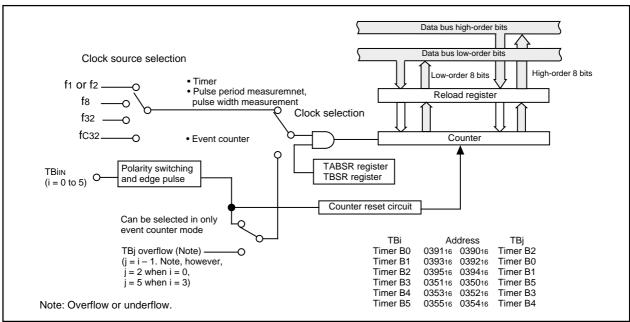


Figure 1.15.1. Timer B Block Diagram

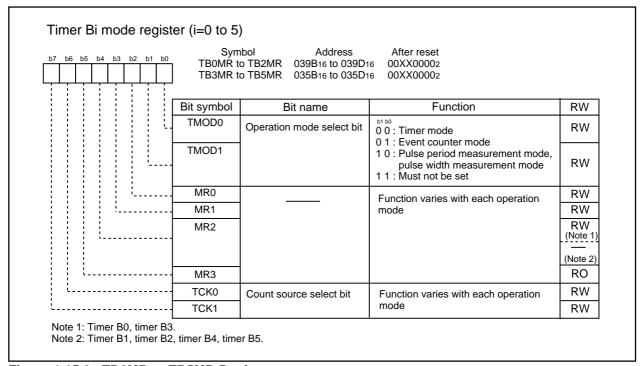


Figure 1.15.2. TB0MR to TB5MR Registers

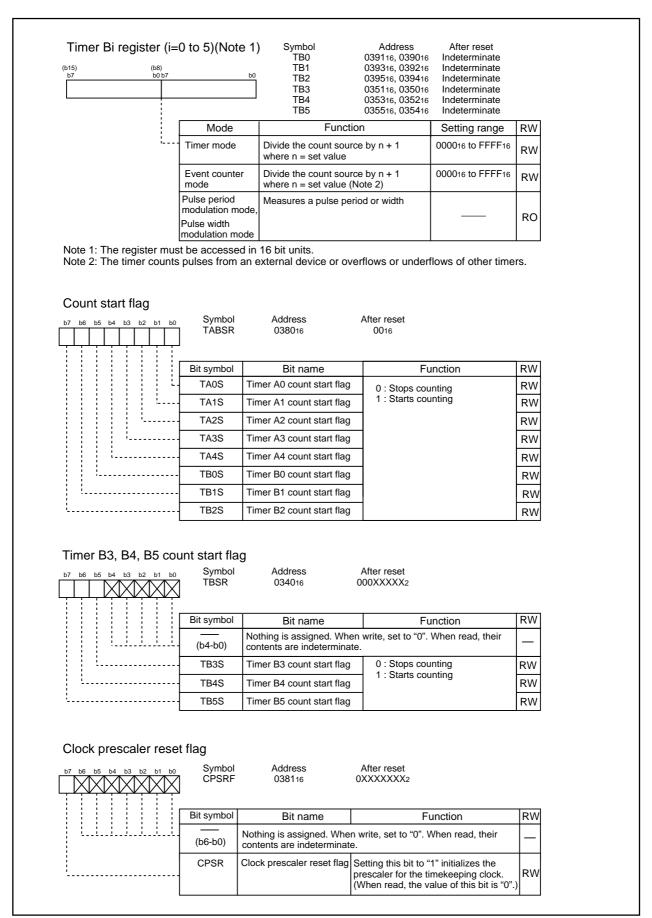


Figure 1.15.3. TB0 to TB5 Registers, TABSR Register, TBSR Register, CPSRF Register

1. Timer Mode

In timer mode, the timer counts a count source generated internally (see Table 1.15.1). Figure 1.15.4 shows TBiMR register in timer mode.

Table 1.15.1. Specifications in Timer Mode

Item	Specification		
Count source	f1, f2, f8, f32, fC32		
Count operation	Down-count		
	When the timer underflows, it reloads the reload register contents and		
	continues counting		
Divide ratio	1/(n+1) n: set value of TBiMR register (i= 0 to 5) 000016 to FFFF16		
Count start condition	Set TBiS bit ^(Note) to "1" (= start counting)		
Count stop condition	Set TBiS bit to "0" (= stop counting)		
Interrupt request generation timing	Timer underflow		
TBiin pin function	I/O port		
Read from timer	Count value can be read by reading TBi register		
Write to timer	When not counting and until the 1st count source is input after counting start		
	Value written to TBi register is written to both reload register and counter		
	When counting (after 1st count source input)		
	Value written to TBi register is written to only reload register		
	(Transferred to counter when reloaded next)		

Note: The TB0S to TB2S bits are assigned to the TABSR register bit 5 to bit 7, and the TB3S to TB5S bits are assigned to the TBSR register bit 5 to bit 7.

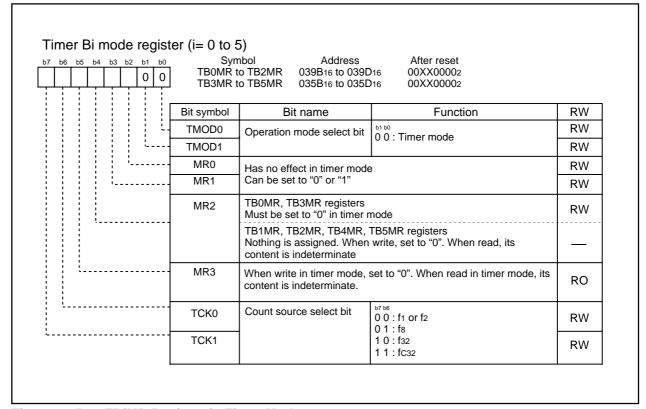


Figure 1.15.4. TBiMR Register in Timer Mode

2. Event Counter Mode

In event counter mode, the timer counts pulses from an external device or overflows and underflows of other timers (see Table 1.15.2) . Figure 1.15.5 shows TBiMR register in event counter mode.

Table 1.15.2. Specifications in Event Counter Mode

Item	Specification			
Count source	• External signals input to TBiIN pin (i=0 to 5) (effective edge can be selected			
	in program)			
	• Timer Bj overflow or underflow (j=i-1, except j=2 if i=0, j=5 if i=3)			
Count operation	Down-count			
	When the timer underflows, it reloads the reload register contents and			
	continues counting			
Divide ratio	1/(n+1) n: set value of TBi register 000016 to FFFF16			
Count start condition	Set TBiS bit ¹ to "1" (= start counting)			
Count stop condition	Set TBiS bit to "0" (= stop counting)			
Interrupt request generation timing	Timer underflow			
TBilN pin function	Count source input			
Read from timer	Count value can be read by reading TBi register			
Write to timer	When not counting and until the 1st count source is input after counting start			
	Value written to TBi register is written to both reload register and counter			
	When counting (after 1st count source input)			
	Value written to TBi register is written to only reload register			
	(Transferred to counter when reloaded next)			

Notes:

1. The TB0S to TB2S bits are assigned to the TABSR register bit 5 to bit 7, and the TB3S to TB5S bits are assigned to the TBSR register bit 5 to bit 7.

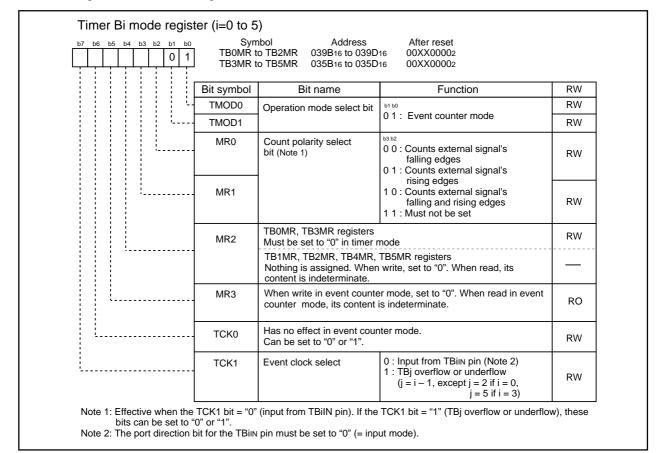


Figure 1.15.5. TBiMR Register in Event Counter Mode

3. Pulse Period and Pulse Width Measurement Mode

In pulse period and pulse width measurement mode, the timer measures pulse period or pulse width of an external signal (see Table 1.15.3). Figure 1.15.6 shows TBiMR register in pulse period and pulse width measurement mode. Figure 1.15.7 shows the operation timing when measuring a pulse period. Figure 1.15.8 shows the operation timing when measuring a pulse width.

Table 1.15.3. Specifications in Pulse Period and Pulse Width Measurement Mode

Item	Specification			
Count source	f1, f2, f8, f32, fC32			
Count operation	• Up-count			
	• Counter value is transferred to reload register at an effective edge of mea-			
	surement pulse. The counter value is set to "000016" to continue counting.			
Count start condition	Set TBiS (i=0 to 5) bit ³ to "1" (= start counting)			
Count stop condition	Set TBiS bit to "0" (= stop counting)			
Interrupt request generation timing	When an effective edge of measurement pulse is input ¹			
	• Timer overflow. When an overflow occurs, MR3 bit of TBiMR register is set			
	to "1" (overflowed) simultaneously. MR3 bit is cleared to "0" (no overflow) by			
	writing to TBiMR register at the next count timing or later after MR3 bit was			
	set to "1". At this time, make sure TBiS bit is set to "1" (start counting).			
TBiin pin function	Measurement pulse input			
Read from timer	Contents of the reload register (measurement result) can be read by reading TBi register ²			
Write to timer	Value written to TBi register is written to neither reload register nor counter			

Notes:

- 1. Interrupt request is not generated when the first effective edge is input after the timer started counting.
- 2. Value read from TBi register is indeterminate until the second valid edge is input after the timer starts counting.
- 3. The TB0S to TB2S bits are assigned to the TABSR register bit 5 to bit 7, and the TB3S to TB5S bits are assigned to the TBSR register bit 5 to bit 7.

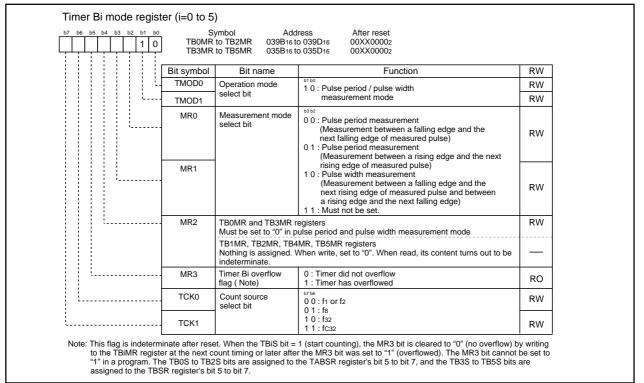


Figure 1.15.6. TBiMR Register in Pulse Period and Pulse Width Measurement Mode

Under

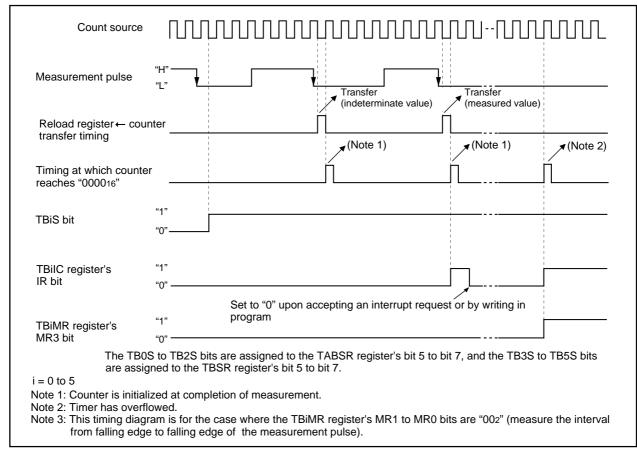


Figure 1.15.7. Operation timing when measuring a pulse period

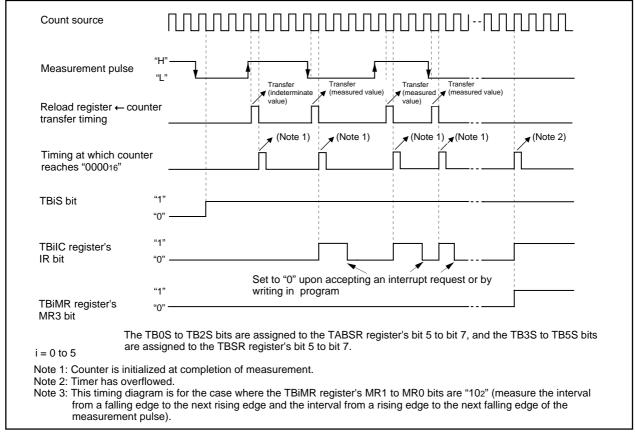


Figure 1.15.8. Operation timing when measuring a pulse width

Three-phase Motor Control Timer Function

Timers A1, A2, A4 and B2 can be used to output three-phase motor drive waveforms. Table 1.16.1 lists the specifications of the three-phase motor control timer function. Figure 1.16.1 shows the block diagram for three-phase motor control timer function. Also, the related registers are shown on Figure 1.16.2 to Figure 1.16.7.

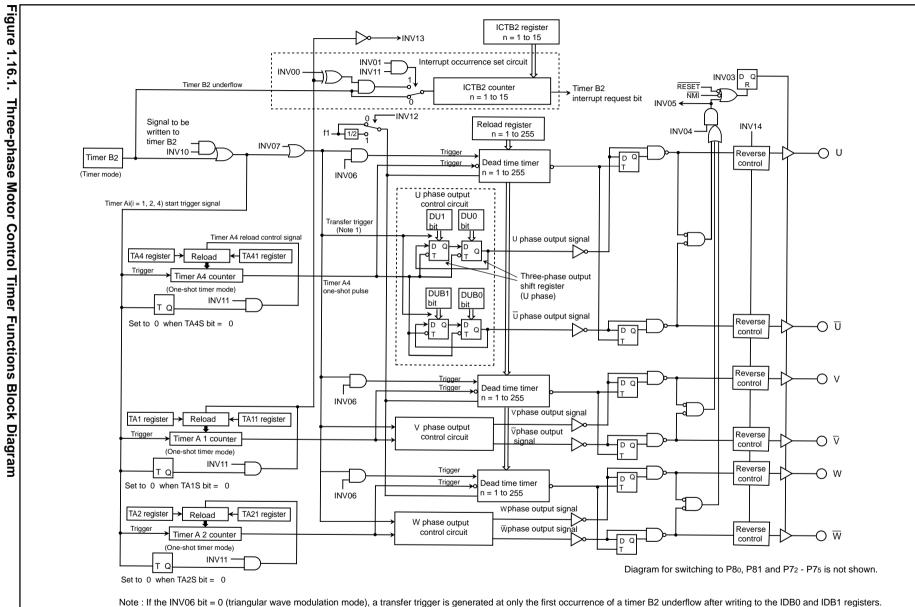
Table 1.16.1. Three-phase Motor Control Timer FunctionS Specifications

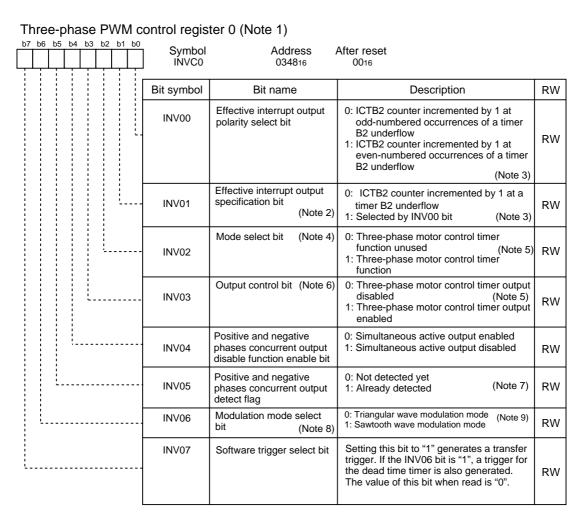
Table 1.16.1. Three-phase Motor Contro		
Item	Specification	
Three-phase waveform output pin	Six pins $(U, \overline{U}, V, \overline{V}, W, \overline{W})$	
Forced cutoff input ¹	Input "L" to NMI pin	
Used Timers	Timer A4, A1, A2 (used in the one-shot timer mode)	
	Timer A4: U- and U-phase waveform control	
	Timer A1: V- and \overline{V} -phase waveform control	
	Timer A2: W- and W-phase waveform control	
	Timer B2 (used in the timer mode)	
	Carrier wave cycle control	
	Dead timer timer (3 eight-bit timer and shared reload register)	
	Dead time control	
Output waveform	Triangular wave modulation, Sawtooth wave modification	
	Enable to output "H" or "L" for one cycle	
	Enable to set positive-phase level and negative-phase	
	level respectively	
Carrier wave cycle	Triangular wave modulation: count source x (m+1) x 2	
	Sawtooth wave modulation: count source x (m+1)	
	m: Setting value of TB2 register, 0 to 65535	
	Count source: f1, f2, f8, f32, fC32	
Three-phase PWM output width	Triangular wave modulation: count source x n x 2	
	Sawtooth wave modulation: count source x n	
	n: Setting value of TA4, TA1 and TA2 register (of TA4,	
	TA41, TA1, TA11, TA2 and TA21 registers when setting	
	the INV11 bit to "1"), 1 to 65535	
	Count source: f1, f2, f8, f32, fC32	
Dead time	Count source x p, or no dead time	
active disable function	p: Setting value of DTT register, 1 to 255	
	Count source: f1, f2, f1 divided by 2, f2 divided by 2	
Active level	Eable to select "H" or "L"	
Positive and negative-phase concurrent	Positive and negative-phases concurrent active disable	
	function	
	Positive and negative-phases concurrent active detect func	
	tion	
Interrupt frequency	For Timer B2 interrupt, select a carrier wave cycle-to-cycle	
	basis through 15 times carrier wave cycle-to-cycle basis	
Notos	, ,	

Notes:

1. Forced cutoff with $\overline{\text{NMI}}$ input is effective when the IVPCR1 bit of TB2SC register is set to "1" (three-phase output forcible cutoff by $\overline{\text{NMI}}$ input enabled). If an "L" signal is applied to the $\overline{\text{NMI}}$ pin when the IVPCR1 bit is "1", the related pins go to a high-impedance state regardless of which functions of those pins are being used.

Related pins P72/CLK2/TA10UT/V


P73/CTS2/RTS2/TA1IN/V


P74/TA2OUT/W
P75/TA2IN/W
P80/TA4OUT/U
P81/TA4IN/U

130

Note 1: Write to this register after setting the PRC1 bit of PRCR register to "1" (write enable). Note also that this register can only be rewritten when timers A1, A2, A4 and B2 are idle.

Note 2: If this bit needs to be set to "1", set any value in the ICTB2 register before writing to it.

Note 3: Effective when the INV11 bit is "1" (three-phase mode 1). If INV11 is "0" (three-phase mode 0), the ICTB2 counter is incremented by "1" each time the timer B2 underflows, regardless of whether the INV00 and INV01 bits are set.

Note 4: Setting the INVO2 bit to "1" <u>activates the dead time timer, UV/W-phase output control circuits and ICTB2 counter.</u>
Note 5: All of the U, U, V, V, W and W pins are placed in the high-impedance state by setting the INVO2 bit to 1 (threephase motor control timer function) and setting the INV03 bit to "0" (three-phase motor control timer output disable).

Note 6: The INV03 bit is set to "0" in the following cases:

• When reset

• When positive and negative go active simultaneously while INV04 bit is "1"

• When set to "0" in a program

• When input on the NMI pin changes state from "H" to "L" (The INV03 bit cannot be set to "1" when NMI input is

Note 7: Can only be set by writing "0" in a program, and cannot be set to "1".

Note 8: The effects of the INV06 bit are described in the table below

Item	INV06=0	INV06=1
Mode	Triangular wave modulation mode	Sawtooth wave modulation mode
Timing at which transferred from IDB0 to IDB1 registers to three-phase output shift register	Transferred only once synchronously with the transfer trigger after writing to the IDB0 to IDB1 registers	Transferred every transfer trigger
Timing at which dead time timer trigger is generated when INV16 bit is "0"	Synchronous with the falling edge of timer A1, A2, or A4 one-shot pulse	Synchronous with the transfer trigger and the falling edge of timer A1, A2, or A4 one-shot pulse
INV13 bit	Effective when INV11 is "1" and INV06 is "0"	Has no effect

Transfer trigger: Timer B2 underflow, write to the INV07 bit or write to the TB2 register when INV10 is "1" Note 9: If the INV06 bit is "1", set the INV11 bit to "0" (three-phase mode 0) and set the PWCON bit to "0" (timer B2 reloaded by a timer B2 underflow).

Figure 1.16.2. INVC0 Register

b6 b5 b4 b3 b2 b1 b0	Symbol INVC1	Address 0349 ₁₆	After reset 0016	
	Bit symbol	Bit name	Description	RW
	INV10	Timer A1, A2, A4 start trigger signal select bit	0: Timer B2 underflow 1: Timer B2 underflow and write to the TB2 register	RW
	INV11	Timer A1-1, A2-1, A4-1 control bit (Note 2)	0: Three-phase mode 0 1: Three-phase mode 1 (Note 3)	RW
	INV12	Dead time timer count source select bit	0 : f1 or f2 1 : f1 divided by 2 or f2 divided by 2	RW
	INV13	Carrier wave detect flag (Note 4)	O: Timer A output at even-numbered occ- urrences (TAj1 register value counted) 1: Timer A output at odd-numbered occ- urrences (TAj1 register value counted)	RO
	INV14	Output polarity control bit	0 : Output waveform "L" active 1 : Output waveform "H" active	RW
1	INV15	Dead time invalid bit	Dead time timer enabled Dead time timer disabled	RW
	INV16	Dead time timer trigger select bit	O: Falling edge of timer A4, A1 or A2 one-shot pulse 1: Rising edge of three-phase output shift register (U, V or W phase) output (Note 5)	RW
	(b7)	Reserved bit	This bit should be set to "0"	RW

Note 1: Write to this register after setting the PRC1 bit of PRCR register to "1" (write enable). Note also that this register can only be rewritten when timers A1, A2, A4 and B2 are idle.

Note 2: The effects of the INV11 bit are described in the table below.

Item	INV11=0	INV11=1
Mode	Three-phase mode 0	Three-phase mode 1
TA11, TA21, TA41 registers	Not used	Used
INV00 bit, INV01 bit	Has no effect. ICTB2 counted every time timer B2 underflows regardless of whether the INV00 to INV01 bits are set.	Effect
INV13 bit	Has no effect	Effective when INV11 bit is "1" and INV06 bit is "0"

Note 3: If the INV06 bit is "1" (sawtooth wave modulation mode), set this bit to "0" (three-phase mode 0). Also, if the INV11 bit is "0", set the PWCON bit to "0" (timer B2 reloaded by a timer B2 underflow).

Note 4: The INV13 bit is effective only when the INV06 bit is "0" (triangular wave modulation mode) and the INV11 bit is "1" (three-phase mode 1).

Note 5: If all of the following conditions hold true, set the INV16 bit to "1" (dead time timer triggered by the rising edge of three-phase output shift register output)

- The INV15 bit is "0" (dead time timer enabled)
- When the INV03 bit is set to "1" (three-phase motor control timer output enabled), the Dij bit and DiBj bit (i:U, V, or W, j: 0 to 1) have always different values (the positive-phase and negative-phase always output different levels during the period other than dead time).

Conversely, if either one of the above conditions holds false, set the INV16 bit to "0" (dead time timer triggered by the falling edge of one-shot pulse).

Figure 1.16.3. INVC1 Register

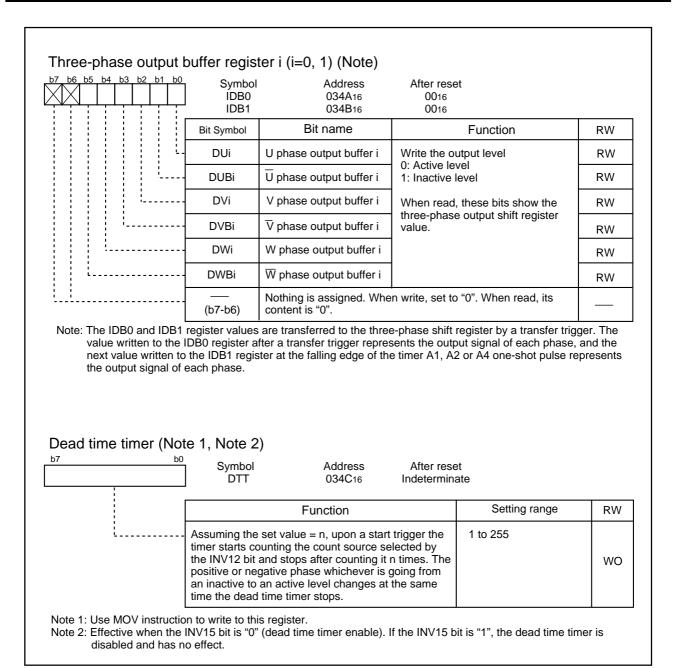
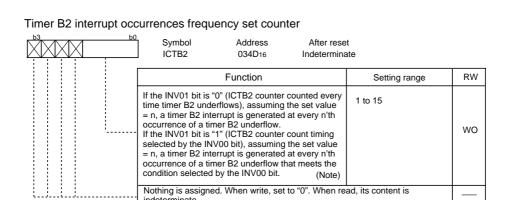



Figure 1.16.4. IDB0 Register, IDB1Register, and DTT Register

Note: Use MOV instruction to write to this register.

If the INV01 bit = "1", make sure the TB2S bit also = "0" (timer B2 count stopped) when writing to this register.

If the INV01 bit = "0", although this register can be written even when the TB2S bit = "1" (timer B2 count start), do not write synchronously with a timer B2 underflow.

Timer Ai, Ai-1 register (i=1, 2, 4) (Note 1, Note 2, Note 3, Note 4, Note 5, Note 6)

				Symbol	Address	After reset	
				TA1	038916-038816	Indeterminate	
				TA2	038B16-038A16	Indeterminate	
(b15) b7	(b8) b0	b7	b0	TA4	038F16-038E16	Indeterminate	
				TA11	034316-034216	Indeterminate	
				TA21	034516-034416	Indeterminate	
				TA41	034716-034616	Indeterminate	
			Function			Setting range	RW
	l		starts counting the it n times. The position	et value = n, upon a start trigger the timer ne count source and stops after counting ositive and negative phases change at mer A, A2 or A4 stops.		000016 to FFFF16	wo

Note 1: The register must be accessed in 16 bit units

Note 2: When the timer Ai register is set to "000016", the counter does not operate and a timer Ai interrupt does not occur

Note 3: Use MOV instruction to write to these registers.

Note 4: If the INV15 bit is "0" (dead time timer enable), the positive or negative phase whichever is going from an inactive to an active level changes at the same time the dead time timer stops.

Note 5: If the INV11 bit is "0" (three-phase mode 0), the TAi register value is transferred to the reload register by a timer Ai (i = 1, 2 or 4) start trigger.

If the INV11 bit is "1" (three-phase mode 1), the TAi1 register value is transferred to the reload register

by a timer Ai start trigger first and then the TAi register value is transferred to the reload register by the next timer Ai start trigger. Thereafter, the TAi1 register and TAi register values are transferred to the reload register alternately.

Note 6: Do not write to these registers synchronously with a timer B2 underflow

Note 7: Write to the TAi1 register as follows:
(1) Write a value to the TAi1 register.

- (2) Wait for one cycle of timer Ai count source.
- (3) Write the same value to the TAi1 register again.

Timer B2 special mode register

b7 b6 b5 b4 b3 b2 b1 b0

	Symbol TB2SC	Address 039E ₁₆	After reset XXXXXX002	
	Bit symbol	Bit name	Function	RW
1.	PWCOM	Timer B2 reload timing switching bit	0 : Timer B2 underflow 1 : Timer A output at odd-numbered occurrences (Note 2)	RW
	IVPCR1	Three phase output port NMI control bit 1 (Note 3)	Three-phase output forcible cutoff by NMI input (high impedance) disabled Three-phase output forcible cutoff by NMI input (high impedance) enabled	RW
	 (b7-b2)	Nothing is assigned. When write, set to "0". When read, its content is "0".		

Note 1: Write to this register after setting the PRC1 bit of PRCR register to "1" (write enable).

Note 2: If the INV11 bit is "0" (three-phase mode 0) or the INV06 bit is "1" (triangular wave modulation mode), set this bit to "0" (timer B2 underflow).

Note 3: Related pins are U(P80), $\overline{U}(P81)$, V(P72), $\overline{V}(P73)$, W(P74) and $\overline{W}(P75)$. If a low-level signal is applied to the NMI pin when the IVPCR1 bit = 1, the target pins go to a high-impedance state regardless of which functions of those pins are being used. After forced interrupt (cutoff), input "H" to the NMI pin and set IVPCR1 bit to "0": this forced cutoff will be reset.

Figure 1.16.5. ICTB2 Register, TA1, TA2, TA4, TA11, TA21 and TA41 Registers, and TB2SC Registers

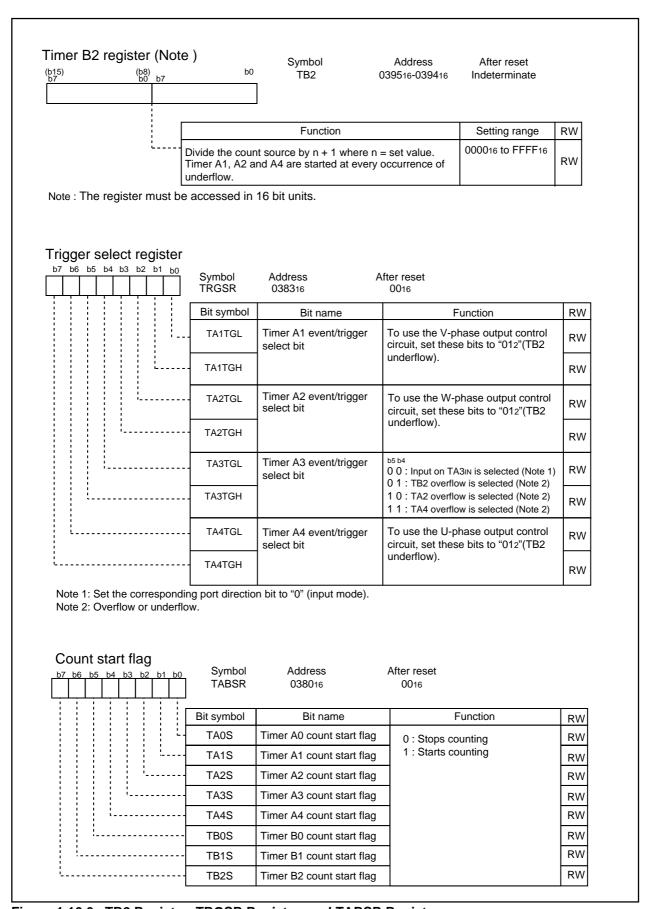


Figure 1.16.6. TB2 Register, TRGSR Register, and TABSR Register

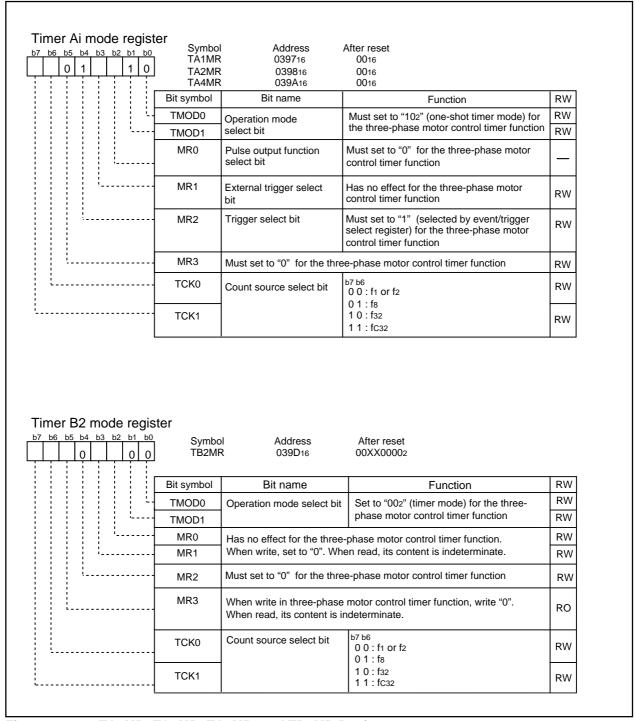


Figure 1.16.7. TA1MR, TA2MR, TA4MR, and TB2MR Registers

The three-phase motor control timer function is enabled by setting the INV02 bit of INVC0 register to "1". When this function is on, timer B2 is used to control the carrier wave, and timers A4, A1 and A2 are used to control three-phase PWM outputs (U, \overline{U} , V, \overline{V} , W and \overline{W}). The dead time is controlled by a dedicated dead time timer. Figure 1.16.8 shows the example of triangular modulation waveform and Figure 1.16.9 shows the example of sawtooth modulation waveform.

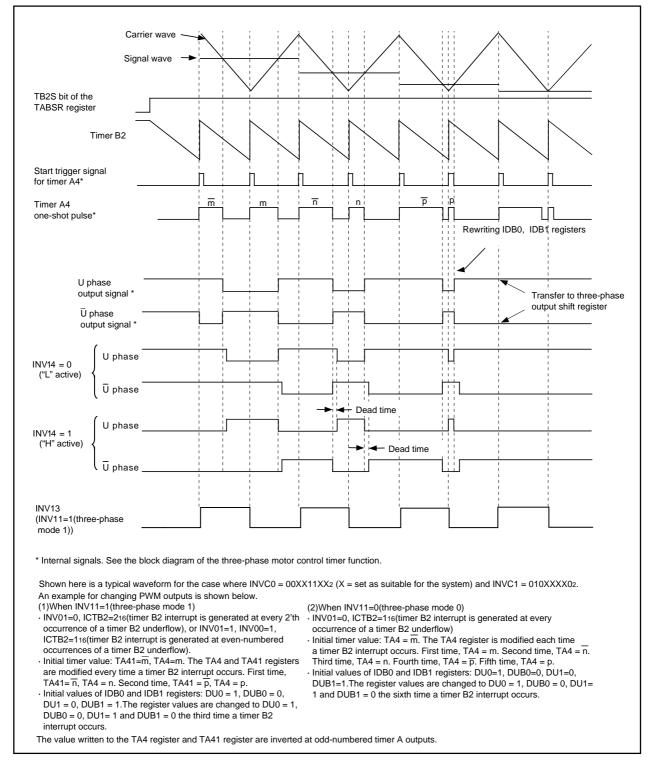


Figure 1.16.8. Triangular Wave Modulation Operation

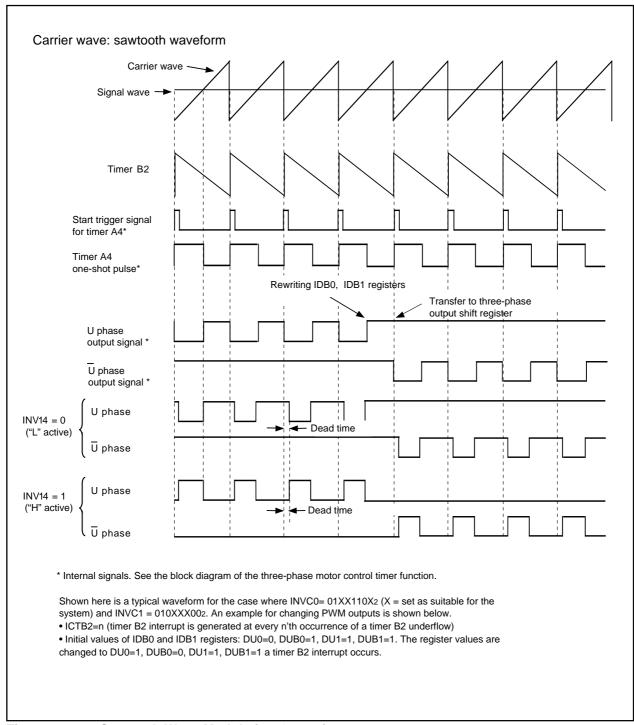


Figure 1.16.9. Sawtooth Wave Modulation Operation

development Under

Serial I/O

Serial I/O is configured with five channels: UART0 to UART2, SI/O3 and SI/O4.

UARTi (i=0 to 2)

UARTi each have an exclusive timer to generate a transfer clock, so they operate independently of each other.

Figure 1.17.1 shows the block diagram of UARTi. Figures 1.17.2 shows the block diagram of the UARTi transmit/receive.

UARTi has the following modes:

- Clock synchronous serial I/O mode
- Clock asynchronous serial I/O mode (UART mode).
- Special mode 1 (I²C mode)
- Special mode 2
- Special mode 3 (Bus collision detection function, IE mode): UART0, UART1
- Special mode 4 (SIM mode): UART2

Figures 1.17.3 to 1.17.8 show the UARTi-related registers.

Refer to tables listing each mode for register setting.

Under

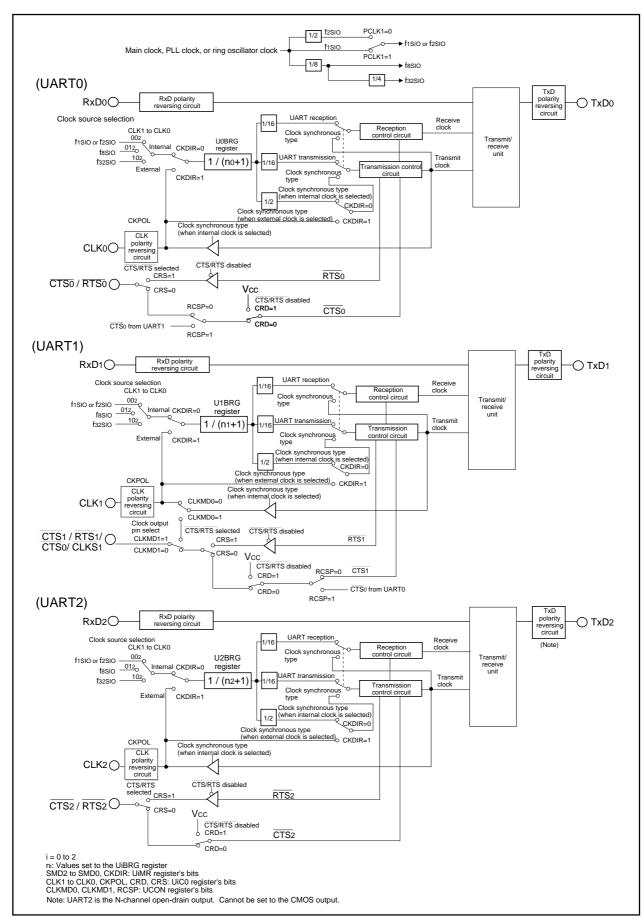


Figure 1.17.1. UARTi Block Diagram

^{de_Aelobweu}t

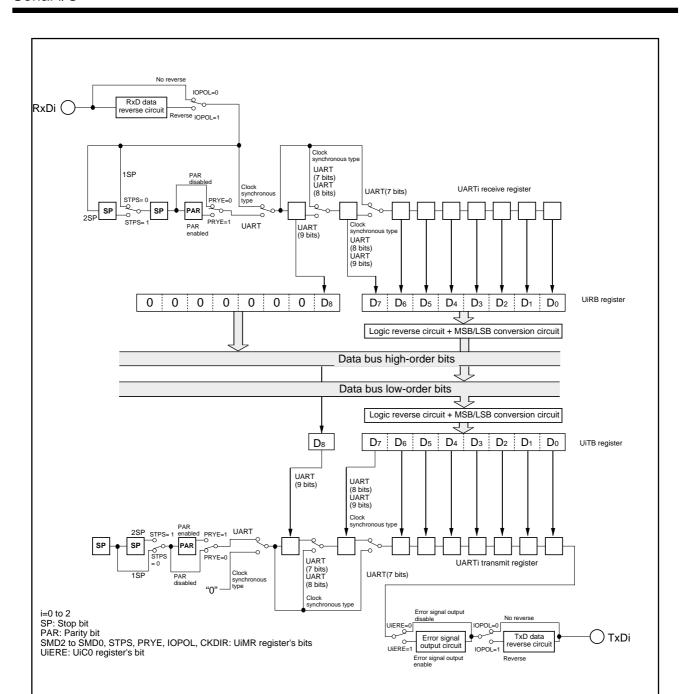
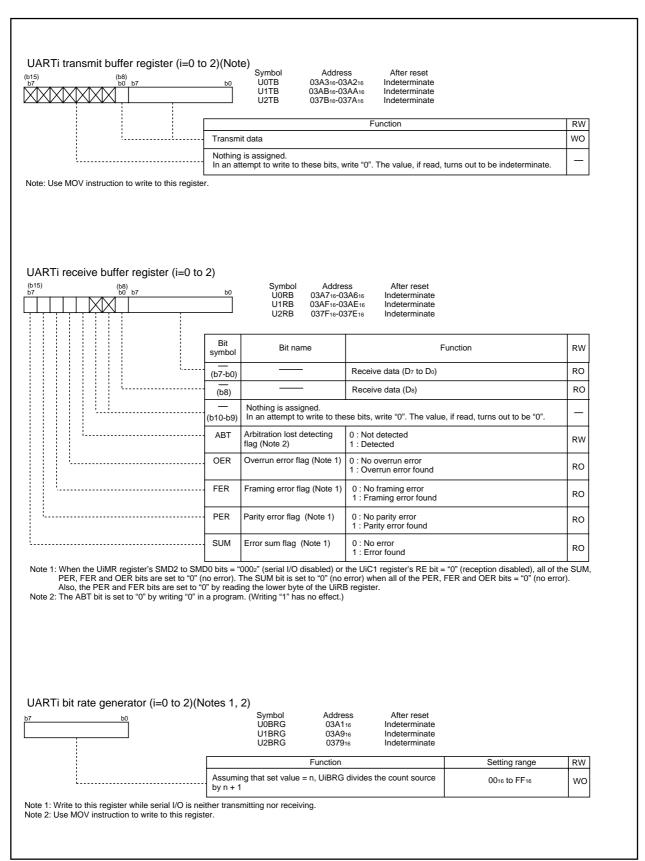
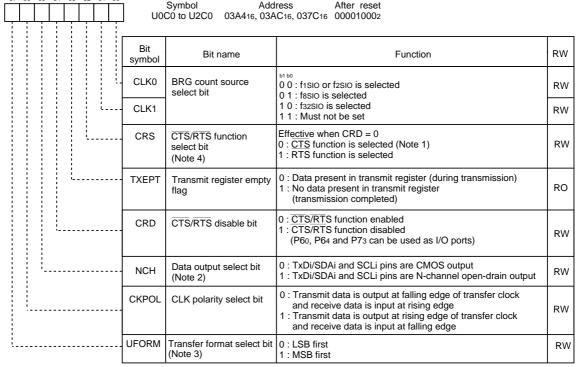


Figure 1.17.2. UARTi Transmit/Receive Unit




Figure 1.17.3. U0TB to U2TB Register, U0RB to U2RB Register, and U0BRG to U2BRG Register

UARTi transmit/receive mode register (i=0 to 2) Symbol Address After reset U0MR to U2MR 03A016, 03A816, 037816 0016 Bit Function Bit name RW symbol SMD0 Serial I/O mode select bit 0 0 0 : Serial I/O disabled RW (Note 2) 0 0 1 : Clock synchronous serial I/O mode 0 1 0 : I2C mode SMD1 (Note 3) RW 1 0 0 : UART mode transfer data 7 bits long 1 0 1 : UART mode transfer data 8 bits long SMD2 1 1 0 : UART mode transfer data 9 bits long RW Must not be set except above **CKDIR** Internal/external clock 0: Internal clock RW select bit 1 : External clock (Note 1) STPS 0 : One stop bit Stop bit length select bit RW 1: Two stop bits Effective when PRYE = 1 PRY Odd/even parity select bit 0: Odd parity RW 1: Even parity **PRYE** 0: Parity disabled Parity enable bit RW 1 : Parity enabled TxD, RxD I/O polarity 0: No reverse IOPOL RW reverse bit 1 : Reverse Note 1: Set the corresponding port direction bit for each CLKi pin to "0" (input mode). Note 2: To receive data, set the corresponding port direction bit for each RxDi pin to "0" (input mode).

- Note 3: Set the corresponding port direction bit for SCL and SDA pins to "0" (input mode)

UARTi transmit/receive control register 0 (i=0 to 2)

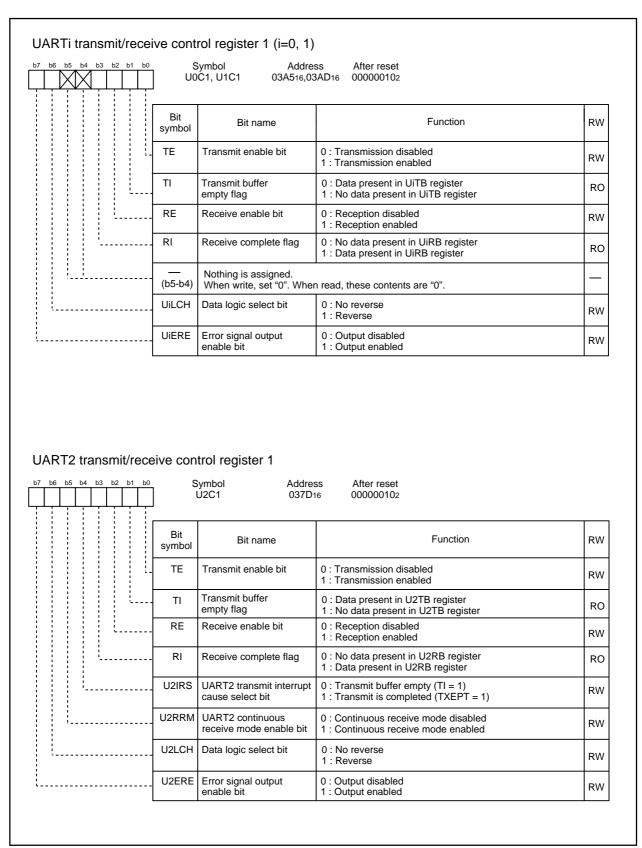
Note 1: Set the corresponding port direction bit for each CTSi pin to "0" (input mode).

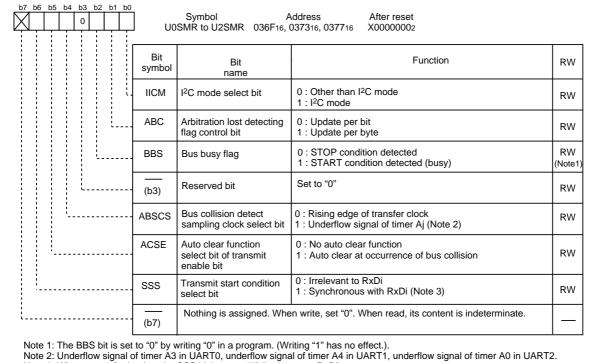
Note 2: TxD2/SDA2 and SCL2 are N-channel open-drain output. Cannot be set to the CMOS output. Set the NCH bit of the U2C0 register to "0"

Note 3: Effective for clock synchronous serial I/O mode and UART mode transfer data 8 bits long.

Note 4: CTS1/RTS1 can be used when the UCON register's CLKMD1 bit = "0" (only CLK1 output) and the UCON register's RCSP bit = "0" (CTS0/RTS0 not separated).

Figure 1.17.4. U0MR to U2MR Register and U0C0 to U2C0 Register




Figure 1.17.5. U0C1 to U2C1 Registers

UART transmit/receive control register 2 Symbol Address After reset ÚCON 03B016 X0000002 Bit Function RW symbol **U0IRS UARTO** transmit 0 : Transmit buffer empty (TI = 1) RW 1 : Transmission completed (TXEPT = 1) interrupt cause select bit U1IRS **UART1** transmit 0: Transmit buffer empty (TI = 1) 1 : Transmission completed (TXEPT = 1) RW interrupt cause select bit U0RRM **UARTO** continuous : Continuous receive mode disabled RW receive mode enable bit 1: Continuous receive mode enable U1RRM **UART1** continuous 0: Continuous receive mode disabled RW receive mode enable bit 1 : Continuous receive mode enabled CLKMD0 UART1 CLK/CLKS Effective when CLKMD1 = "1 RW select bit 0 0 : Clock output from CLK1 1 : Clock output from CLKS1 CLKMD1 UART1 CLK/CLKS 0 : CLK output is only CLK1 RW select bit 1 (Note) 1 : Transfer clock output from multiple pins function Separate UART0 CTS/RTS bit 0: CTS/RTS shared pin RCSP RW 1: CTS/RTS separated (CTSo supplied from the P64 pin) Nothing is assigned. When write, set "0". When read, its content is indeterminate.

Note: When using multiple transfer clock output pins, make sure the following conditions are met: U1MR register's CKDIR bit = "0" (internal clock)

UART2 special mode register (i=0 to 2)

(b7)

Note 3: When a transfer begins, the SSS bit is set to "0" (irrelevant to RxDi).

Figure 1.17.6. UCON Register and U0SMR to U2SMR Registers

Under

UARTi special mode register 2 (i=0 to 2) Symbol Address After reset U0SMR2 to U2SMR2 036E16, 037216, 037616 X00000002 Bit Bit name **Function** RW symbol I²C mode select bit 2 Refer to Table 1.20.4 IICM2 RW CSC 0: Disabled Clock-synchronous bit RW 1: Enabled SCL wait output bit 0: Disabled SWC RW1 : Enabled ALS SDA output stop bit 0: Disabled RW 1: Enabled UARTi initialization bit 0: Disabled STAC RW 1: Enabled SWC2 SCL wait output bit 2 0: Transfer clock RW 1: 0 output 0: Enabled SDHI SDA output disable bit RW 1: Disabled (high impedance) Nothing is assigned. When write, set "0". When read, its content is (b7) indeterminate.

UARTi special mode register 3 (i=0 to 2)

b7 b6 b5 b4 b3 b2 b1 b0	br b6 b5 b4 b3 b2 b1 b0 Symbol Address After reset U0SMR3 to U2SMR3 036D16, 037116, 037516 000X0X0X2				
	Bit symbol	Bit name	Function	RW	
	(b0)	Nothing is assigned. When write, set "0". When	read, its content is indeterminate.	_	
	CKPH	Clock phase set bit	0 : Without clock delay 1 : With clock delay	RW	
	— (b2)	Nothing is assigned. When write, set "0". When read, its content is indeterminate.			
	NODC	Clock output select bit	0 : CLKi is CMOS output 1 : CLKi is N-channel open drain output	RW	
	— (b4)	Nothing is assigned. When write, set "0". Wher	read, its content is indeterminate.		
	DL0	SDAi digital delay setup bit (Note 1, Note 2)	b7 b6 b5 0 0 0 : Without delay 0 0 1 : 1 to 2 cycle(s) of UiBRG count source	RW	
	DL1	(1000 1, 11000 2)	0 1 0 : 2 to 3 cycles of UiBRG count source 0 1 1 : 3 to 4 cycles of UiBRG count source 1 0 0 : 4 to 5 cycles of UiBRG count source	RW	
	DL2		1 0 1:5 to 6 cycles of UiBRG count source 1 1 0:6 to 7 cycles of UiBRG count source 1 1 1:7 to 8 cycles of UiBRG count source	RW	

Note 1 : The DL2 to DL0 bits are used to generate a delay in SDAi output by digital means during I²C mode. In other than I²C mode, set these bits to "0002" (no delay).

Note 2: The amount of delay varies with the load on SCLi and SDAi pins. Also, when using an external clock, the amount of delay increases by about 100 ns.

Figure 1.17.7. U0SMR2 to U2SMR2 Registers and U0SMR3 to U2SMR3 Registers

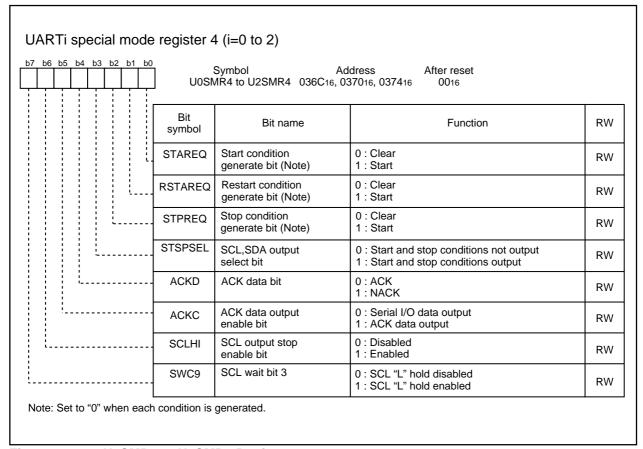


Figure 1.17.8. U0SMR4 to U2SMR4 Registers

Clock Synchronous serial I/O Mode

The clock synchronous serial I/O mode uses a transfer clock to transmit and receive data. Table 1.18.1 lists the specifications of the clock synchronous serial I/O mode. Table 1.18.2 lists the registers used in clock synchronous serial I/O mode and the register values set.

Table 1.18.1. Clock Synchronous Serial I/O Mode Specifications

Item	Specification
Transfer data format	Transfer data length: 8 bits
Transfer clock	• UiMR(i=0 to 2) register's CKDIR bit = "0" (internal clock) : fj/ 2(n+1)
	fj = f1SIO, f2SIO, f8SIO, f32SIO. n: Setting value of UiBRG register 0016 to FF16
	CKDIR bit = "1" (external clock) : Input from CLKi pin
Transmission, reception control	Selectable from CTS function, RTS function or CTS/RTS function disable
Transmission start condition	Before transmission can start, the following requirements must be met (Note 1)
	- The TE bit of UiC1 register= 1 (transmission enabled)
	- The TI bit of UiC1 register = 0 (data present in UiTB register)
	- If CTS function is selected, input on the CTSi pin = "L"
Reception start condition	Before reception can start, the following requirements must be met (Note 1)
	- The RE bit of UiC1 register= 1 (reception enabled)
	- The TE bit of UiC1 register= 1 (transmission enabled)
	- The TI bit of UiC1 register= 0 (data present in the UiTB register)
Interrupt request	For transmission, one of the following conditions can be selected
generation timing	- The UiIRS bit (Note 3) = 0 (transmit buffer empty): when transferring data from the
	UiTB register to the UARTi transmit register (at start of transmission)
	- The UiIRS bit =1 (transfer completed): when the serial I/O finished sending data from
	the UARTi transmit register
	For reception
	When transferring data from the UARTi receive register to the UiRB register (at
	completion of reception)
Error detection	Overrun error (Note 2)
	This error occurs if the serial I/O started receiving the next data before reading the
	UiRB register and received the 7th bit of the next data
Select function	CLK polarity selection
	Transfer data input/output can be chosen to occur synchronously with the rising or
	the falling edge of the transfer clock
	LSB first, MSB first selection
	Whether to start sending/receiving data beginning with bit 0 or beginning with bit 7
	can be selected
	Continuous receive mode selection
	Reception is enabled immediately by reading the UiRB register
	Switching serial data logic
	This function reverses the logic value of the transmit/receive data
	Transfer clock output from multiple pins selection (UART1)
	The output pin can be selected in a program from two UART1 transfer clock pins that
	have been set
	Separate CTS/RTS pins (UART0)
	CTS ₀ and RTS ₀ are input/output from separate pins

Note 1: When an external clock is selected, the conditions must be met while if the UiC0 register's CKPOL bit = "0" (transmit data output at the falling edge and the receive data taken in at the rising edge of the transfer clock), the external clock is in the high state; if the UiC0 register's CKPOL bit = "1" (transmit data output at the rising edge and the receive data taken in at the falling edge of the transfer clock), the external clock is in the low state.

Note 2: If an overrun error occurs, the value of UiRB register will be indeterminate. The IR bit of SiRIC register does not change. Note 3: The U0IRS and U1IRS bits respectively are the UCON register bits 0 and 1; the U2IRS bit is the U2C1 register bit 4.

Under

Table 1. 18. 2. Registers to Be Used and Settings in Clock Synchronous Serial I/O Mode

Register	Bit	Function
UiTB(Note3)	0 to 7	Set transmission data
UiRB(Note3)	0 to 7	Reception data can be read
	OER	Overrun error flag
UiBRG	0 to 7	Set a transfer rate
UiMR(Note3)	SMD2 to SMD0	Set to "0012"
	CKDIR	Select the internal clock or external clock
	IOPOL	Set to "0"
UiC0	CLK1 to CLK0	Select the count source for the UiBRG register
	CRS	Select CTS or RTS to use
	TXEPT	Transmit register empty flag
	CRD	Enable or disable the CTS or RTS function
	NCH	Select TxDi pin output mode (Note 2)
	CKPOL	Select the transfer clock polarity
	UFORM	Select the LSB first or MSB first
UiC1	TE	Set this bit to "1" to enable transmission/reception
	TI	Transmit buffer empty flag
	RE	Set this bit to "1" to enable reception
RI Reception complete flag		Reception complete flag
	U2IRS (Note 1)	Select the source of UART2 transmit interrupt
	U2RRM (Note 1)	Set this bit to "1" to use continuous receive mode
	UiLCH	Set this bit to "1" to use inverted data logic
	UiERE	Set to "0"
UiSMR	0 to 7	Set to "0"
UiSMR2	0 to 7	Set to "0"
UiSMR3	0 to 2	Set to "0"
•	NODC	Select clock output mode
•	4 to 7	Set to "0"
UiSMR4	0 to 7	Set to "0"
UCON	U0IRS, U1IRS	Select the source of UART0/UART1 transmit interrupt
	U0RRM, U1RRM	Set this bit to "1" to use continuous receive mode
	CLKMD0	Select the transfer clock output pin when CLKMD1 = 1
CLKMD1 Set this bit to "1"		Set this bit to "1" to output UART1 transfer clock from two pins
	RCSP	Set this bit to "1" to accept as input the UART0 CTS0 signal from the P64 pin
	7	Set to "0"

Note 1: Set the U0C1 and U1C1 register bit 4 and bit 5 to "0". The U0IRS, U1IRS, U0RRM and U1RRM bits are in the UCON register.

Note 2: TxD2 pin is N channel open-drain output. Set the U2C0 register's NCH bit to "0".

Note 3: Not all register bits are described above. Set those bits to "0" when writing to the registers in clock synchronous serial I/O mode.

i=0 to 2

Under

Table 1.18.3 lists the functions of the input/output pins during clock synchronous serial I/O mode. Table 1.18.3 shows pin functions for the case where the multiple transfer clock output pin select function is deselected. Table 1.18.4 lists the P64 pin functions during clock synchronous serial I/O mode. Note that for a period from when the UARTi operation mode is selected to when transfer starts, the TxDi pin outputs an "H". (If the N-channel open-drain output is selected, this pin is in a high-impedance state.)

Table 1.18.3. Pin Functions (When Not Select Multiple Transfer Clock Output Pin Function)

Pin name	Function	Method of selection
TxDi (i = 0 to 2) (P63, P67, P70)	Serial data output	(Outputs dummy data when performing reception only)
RxDi (P62, P66, P71)	Serial data input	PD6 register's PD6_2 bit=0, PD6_6 bit=0, PD7 register's PD7_1 bit=0 (Can be used as an input port when performing transmission only)
CLKi	Transfer clock output	UiMR register's CKDIR bit=0
(P61, P65, P72)	Transfer clock input	UiMR register's CKDIR bit=1 PD6 register's PD6_1 bit=0, PD6_5 bit=0, PD7 register's PD7_2 bit=0
CTSi/RTSi (P60, P64, P73)	CTS input	UiC0 register's CRD bit=0 UiC0 register's CRS bit=0 PD6 register's PD6_0 bit=0, PD6_4 bit=0, PD7 register's PD7_3 bit=0
	RTS output	UiC0 register's CRD bit=0 UiC0 register's CRS bit=1
	I/O port	UiC0 register's CRD bit=1

Table 1.18.4. P64 Pin Functions

Pin function	Bit set value					
	U1C0 register		UCON register			PD6 register
	CRD	CRS	RCSP	CLKMD1	CLKMD0	PD6_4
P64	1		0	0		Input: 0, Output: 1
CTS ₁	0	0	0	0		0
RTS ₁	0	1	0	0		_
CTS ₀ (Note1)	0	0	1	0		0
CLKS1	<u> </u>			1(Note 2)	1	

Note 1: In addition to this, set the U0C0 register's CRD bit to "0" (CTS0/RTS0 enabled) and the U0 C0 register's CRS bit to "1" (RTS0 selected).

Note 2: When the CLKMD1 bit = 1 and the CLKMD0 bit = 0, the following logic levels are output:

- High if the U1C0 register's CLKPOL bit = 0
- Low if the U1C0 register's CLKPOL bit = 1

Serial I/O (Clock Synchronous Serial I/O)

^{qe_Aelobweu}t

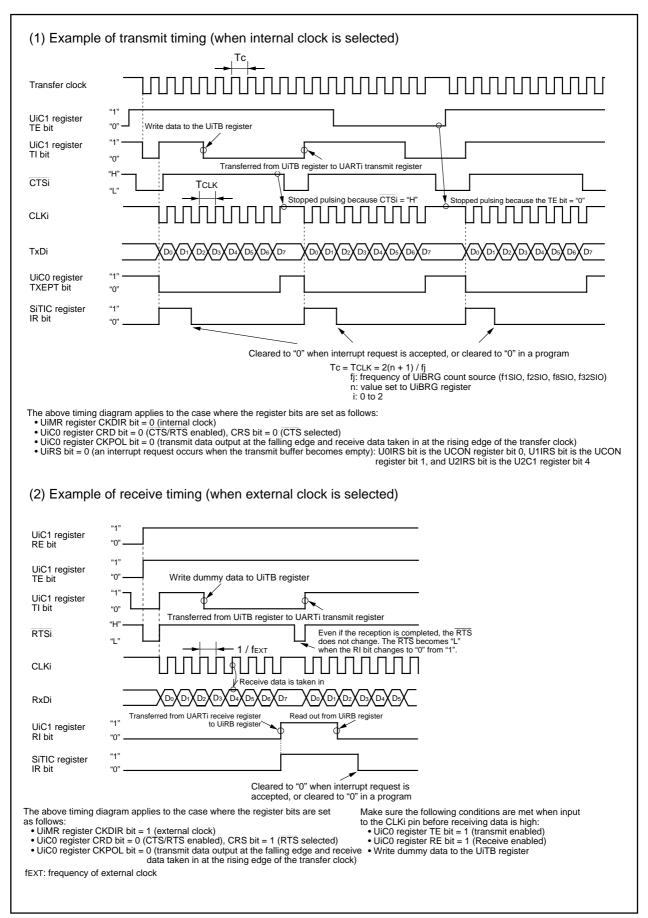


Figure 1.18.1. Transmit and Receive Operation

_{development} _{Under}

(a) CLK Polarity Select Function

Use the UiC0 register (i = 0 to 2)'s CKPOL bit to select the transfer clock polarity. Figure 1.18.2 shows the polarity of the transfer clock.

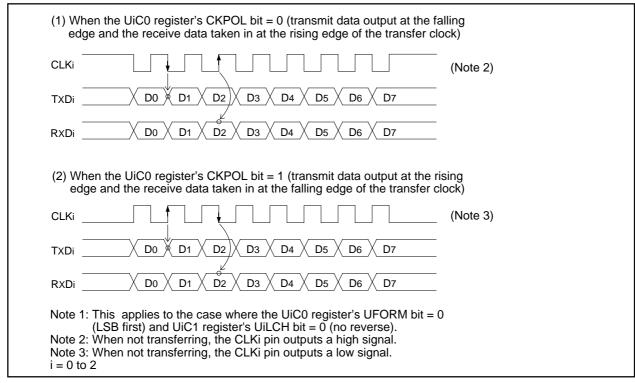


Figure 1.18.2. Transfer Clock Polarity

(b) LSB First/MSB First Select Function

Use the UiC0 register (i = 0 to 2)'s UFORM bit to select the transfer format. Figure 1.18.3 shows the transfer format.

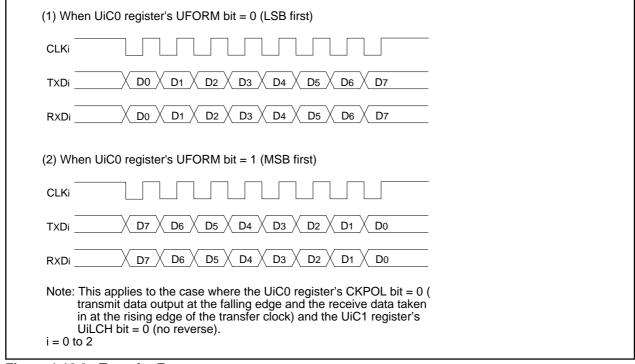


Figure 1.18.3. Transfer Format

^{qe_Aelobweu}t

(c) Continuous Receive Mode

When the UiRRM bit (i = 0 to 2) = 1 (continuous receive mode), the UiC1 register's TI bit is set to "1" (data present in the UiTB register) by reading the UiRB register. In this case, i.e., UiRRM bit = 1, do not write dummy data to the UiTB register in a program. The U0RRM and U1RRM bits are the UCON register bit 2 and bit 3, respectively, and the U2RRM bit is the U2C1 register bit 4.

(d) Serial Data Logic Switching Function

When the UiC1 register (i = 0 to 2)'s UiLCH bit = 1 (reverse), the data written to the UiTB register has its logic reversed before being transmitted. Similarly, the received data has its logic reversed when read from the UiRB register. Figure 1.18.4 shows serial data logic.

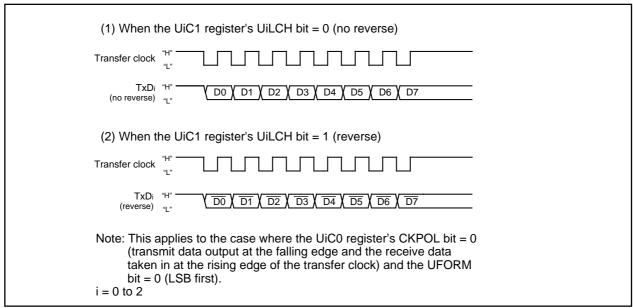


Figure 1.18.4. Serial Data Logic Switching

(e) Transfer Clock Output From Multiple Pins (UART1)

Use the UCON register's CLKMD1 to CLKMD0 bits to select one of the two transfer clock output pins. (See Figure 1.18.5.) This function can be used when the selected transfer clock for UART1 is an internal clock.

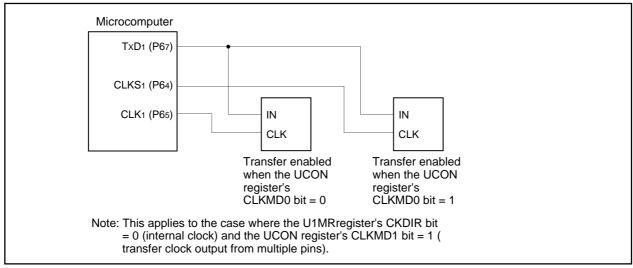


Figure 1.18.5. Transfer Clock Output From Multiple Pins

^{qe_Aelobweu}t

(f) CTS/RTS Separate Function (UART0)

This function separates $\overline{\text{CTS}}_0/\overline{\text{RTS}}_0$, outputs $\overline{\text{RTS}}_0$ from the P60 pin, and accepts as input the $\overline{\text{CTS}}_0$ from the P64 pin. To use this function, set the register bits as shown below.

- U0C0 register's CRD bit = 0 (enables UART0 CTS/RTS)
- U0C0 register's CRS bit = 1 (outputs UART0 RTS)
- U1C0 register's CRD bit = 0 (enables UART1 CTS/RTS)
- U1C0 register's CRS bit = 0 (inputs UART1 CTS)
- UCON register's RCSP bit = 1 (inputs CTSo from the P64 pin)
- UCON register's CLKMD1 bit = 0 (CLKS1 not used)

Note that when using the $\overline{\text{CTS}}/\overline{\text{RTS}}$ separate function, UART1 $\overline{\text{CTS}}/\overline{\text{RTS}}$ separate function cannot be used.

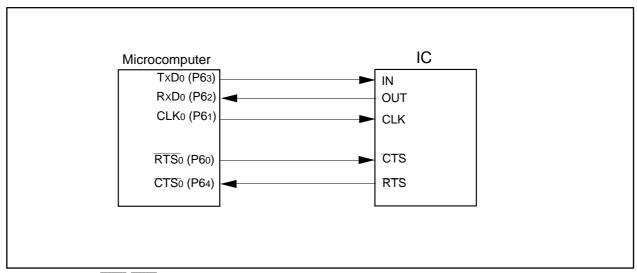


Figure 1.18.6. CTS/RTS Separat Function

Clock Asynchronous Serial I/O (UART) Mode

The UART mode allows transmitting and receiving data after setting the desired transfer rate and transfer data format. Tables 1.19.1 lists the specifications of the UART mode.

Table 1.19.1. UART Mode Specifications

Item	Specification	
Transfer data format	 Character bit (transfer data): Selectable from 7, 8 or 9 bits 	
	Start bit: 1 bit	
	Parity bit: Selectable from odd, even, or none	
	Stop bit: Selectable from 1 or 2 bits	
Transfer clock	• UiMR(i=0 to 2) register's CKDIR bit = 0 (internal clock) : fj/ 16(n+1)	
	fj = f1SIO, f2SIO, f8SIO, f32SIO. n: Setting value of UiBRG register 0016 to FF16	
	CKDIR bit = "1" (external clock) : fEXT/16(n+1)	
	fext: Input from CLKi pin. n:Setting value of UiBRG register 0016 to FF16	
Transmission, reception control	Selectable from CTS function, RTS function or CTS/RTS function disable	
Transmission start condition	Before transmission can start, the following requirements must be met	
	The TE bit of UiC1 register= 1 (transmission enabled)	
	The TI bit of UiC1 register = 0 (data present in UiTB register)	
	- If CTS function is selected, input on the CTS pin = "L"	
Reception start condition	Before reception can start, the following requirements must be met	
	- The RE bit of UiC1 register= 1 (reception enabled)	
	- Start bit detection	
Interrupt request	For transmission, one of the following conditions can be selected	
generation timing	- The UiIRS bit (Note 2) = 0 (transmit buffer empty): when transferring data from the	
	UiTB register to the UARTi transmit register (at start of transmission)	
	- The UiIRS bit =1 (transfer completed): when the serial I/O finished sending data from	
	the UARTi transmit register	
	For reception	
	When transferring data from the UARTi receive register to the UiRB register (at	
	completion of reception)	
Error detection	Overrun error (Note 1)	
	This error occurs if the serial I/O started receiving the next data before reading the	
	UiRB register and received the bit one before the last stop bit of the next data	
	• Framing error	
	This error occurs when the number of stop bits set is not detected	
	Parity error	
	This error occurs when if parity is enabled, the number of 1's in parity and	
	character bits does not match the number of 1's set	
	• Error sum flag	
	This flag is set (= 1) when any of the overrun, framing, and parity errors is encountered	
Select function	• LSB first, MSB first selection	
Gelect function	Whether to start sending/receiving data beginning with bit 0 or beginning with bit 7	
	can be selected	
	Serial data logic switch	
	This function reverses the logic of the transmit/receive data. The start and stop bits	
	are not reversed.	
	TxD, RxD I/O polarity switch	
	This function reverses the polarities of hte TxD pin output and RxD pin input. The	
	logic levels of all I/O data is reversed.	
	Separate CTS/RTS pins (UART0) CTS- and DTS- are insul/output from apparate pins	
	CTS ₀ and RTS ₀ are input/output from separate pins	

Note 1: If an overrun error occurs, the value of UiRB register will be indeterminate. The IR bit of SiRIC register does not change. Note 2: The U0IRS and U1IRS bits respectively are the UCON register bits 0 and 1; the U2IRS bit is the U2C1 register bit 4.

Table 1. 19. 2. Registers to Be Used and Settings in UART Mode

Register	Bit	Function
UiTB	0 to 8	Set transmission data (Note 1)
UiRB	0 to 8	Reception data can be read (Note 1)
	OER,FER,PER,SUM	Error flag
UiBRG		Set a transfer rate
UiMR	SMD2 to SMD0	Set these bits to '1002' when transfer data is 7 bits long
		Set these bits to '1012' when transfer data is 8 bits long
		Set these bits to '1102' when transfer data is 9 bits long
	CKDIR	Select the internal clock or external clock
	STPS	Select the stop bit
	PRY, PRYE	Select whether parity is included and whether odd or even
	IOPOL	Select the TxD/RxD input/output polarity
UiC0	CLK0, CLK1	Select the count source for the UiBRG register
	CRS	Select CTS or RTS to use
	TXEPT	Transmit register empty flag
	CRD	Enable or disable the CTS or RTS function
	NCH	Select TxDi pin output mode (Note 2)
	CKPOL	Set to "0"
	UFORM	LSB first or MSB first can be selected when transfer data is 8 bits long. Set this
		bit to "0" when transfer data is 7 or 9 bits long.
UiC1	TE	Set this bit to "1" to enable transmission
	TI	Transmit buffer empty flag
	RE	Set this bit to "1" to enable reception
	RI	Reception complete flag
	U2IRS (Note 2)	Select the source of UART2 transmit interrupt
	U2RRM (Note 2)	Set to "0"
	UiLCH	Set this bit to "1" to use inverted data logic
	UiERE	Set to "0"
UiSMR	0 to 7	Set to "0"
UiSMR2	0 to 7	Set to "0"
UiSMR3	0 to 7	Set to "0"
UiSMR4	0 to 7	Set to "0"
UCON	U0IRS, U1IRS	Select the source of UART0/UART1 transmit interrupt
	U0RRM, U1RRM	Set to "0"
	CLKMD0	Invalid because CLKMD1 = 0
	CLKMD1	Set to "0"
	RCSP	Set this bit to "1" to accept as input the UART0 CTS0 signal from the P64 pin
	7	Set to "0"

- Note 1: The bits used for transmit/receive data are as follows: Bit 0 to bit 6 when transfer data is 7 bits long; bit 0 to bit 7 when transfer data is 8 bits long; bit 0 to bit 8 when transfer data is 9 bits long.
- Note 2: Set the U0C1 and U1C1 registers bit 4 to bit 5 to "0". The U0IRS, U1IRS, U0RRM and U1RRM bits are included in the UCON register.
- Note 3: TxD2 pin is N channel open-drain output. Set the U2C0 register's NCH bit to "0". i=0 to 2

Table 1.19.3 lists the functions of the input/output pins during UART mode. Table 1.19.4 lists the P64 pin functions during UART mode. Note that for a period from when the UARTi operation mode is selected to when transfer starts, the TxDi pin outputs an "H". (If the N-channel open-drain output is selected, this pin is in a high-impedance state.)

Table 1.19.3. I/O Pin Functions

Pin name	Function	Method of selection	
TxDi (i = 0 to 2) (P63, P67, P70)	Serial data output	(Outputs dummy data when performing reception only)	
RxDi (P62, P66, P71)	Serial data input	PD6 register's PD6_2 bit=0, PD6_6 bit=0, PD7 register's PD7_1 bit=0 (Can be used as an input port when performing transmission only)	
CLKi	Input/output port	UiMR register's CKDIR bit=0	
(P61, P65, P72)	Transfer clock input	UiMR register's CKDIR bit=1 PD6 register's PD6_1 bit=0, PD6_5 bit=0, PD7 register's PD7_2 bit=0	
CTSi/RTSi (P60, P64, P73)	CTS input	UiC0 register's CRD bit=0 UiC0 register's CRS bit=0 PD6 register's PD6_0 bit=0, PD6_4 bit=0, PD7 register's PD7_3 bit=0	
	RTS output	UiC0 register's CRD bit=0 UiC0 register's CRS bit=1	
	Input/output port	UiC0 register's CRD bit=1	

Table 1.19.4. P64 Pin Functions

Pin function	Bit set value				
	U1C0 register		UCON register		PD6 register
	CRD	CRS	RCSP	CLKMD1	PD6_4
P64	1		0	0	Input: 0, Output: 1
CTS ₁	0	0	0	0	0
RTS ₁	0	1	0	0	
CTS ₀ (Note)	0	0	1	0	0

Note: In addition to this, set the U0C0 register's CRD bit to "0" (CTS0/RTS0 enabled) and the U0C0 register's CRS bit to "1" (RTS0 selected).

_{development} _{Under}

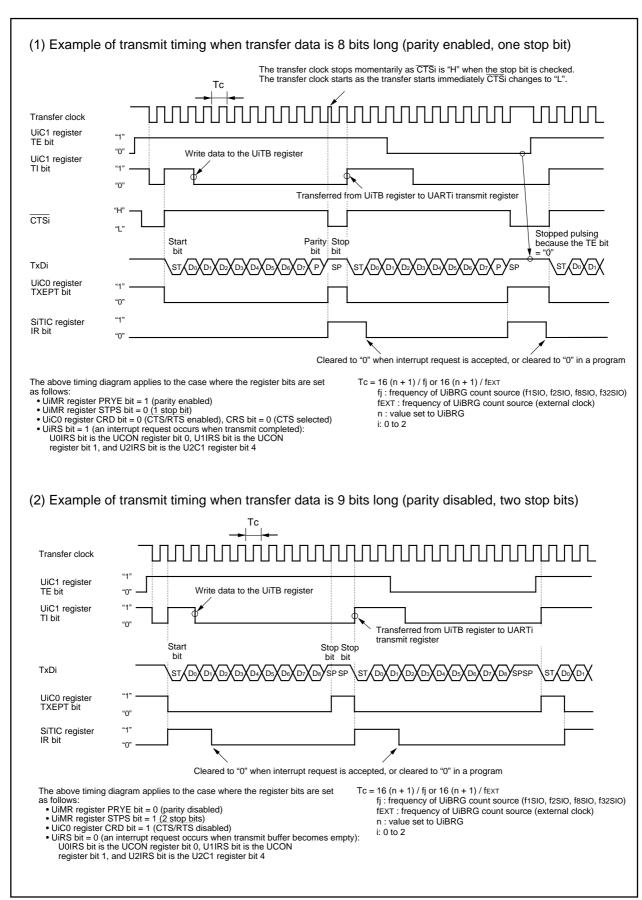


Figure 1.19.1. Transmit Operation

^{qe_Aelobweu}t

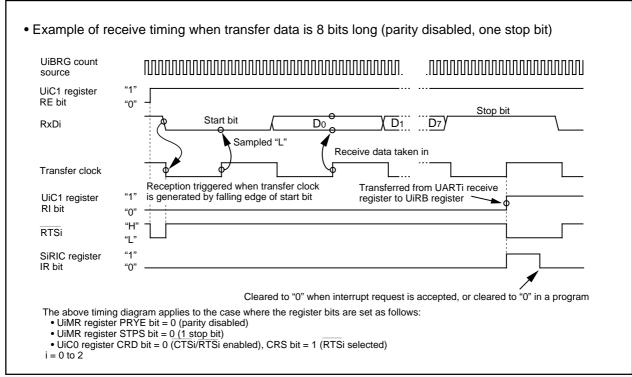


Figure 1.19.2. Receive Operation

(a) LSB First/MSB First Select Function

As shown in Figure 1.19.3, use the UiC0 register's UFORM bit to select the transfer format. This function is valid when transfer data is 8 bits long.

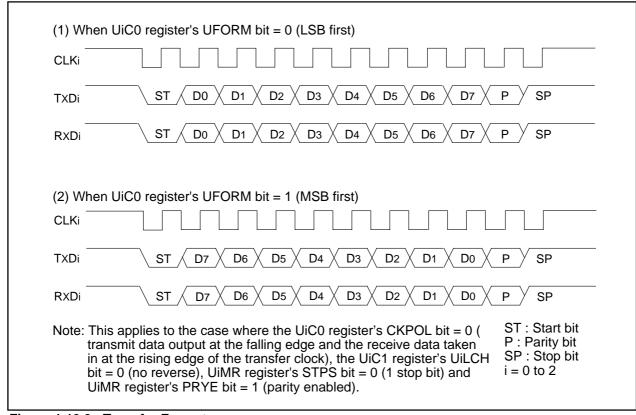


Figure 1.19.3. Transfer Format

_{development} _{Under}

(b) Serial Data Logic Switching Function

The data written to the UiTB register has its logic reversed before being transmitted. Similarly, the received data has its logic reversed when read from the UiRB register. Figure 1.19.4 shows serial data logic.

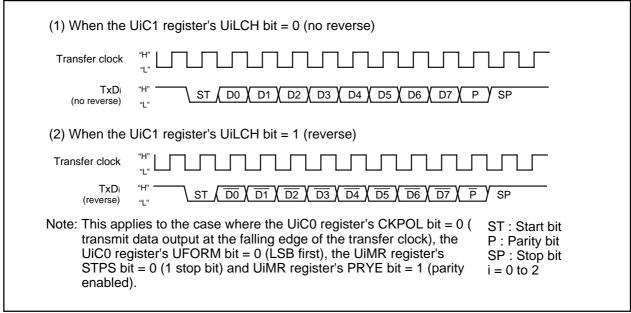


Figure 1.19.4. Serial Data Logic Switching

(c) TxD and RxD I/O Polarity Inverse Function

This function inverses the polarities of the TxDi pin output and RxDi pin input. The logic levels of all input/output data (including the start, stop and parity bits) are inversed. Figure 1.19.5 shows the TxD pin output and RxD pin input polarity inverse.

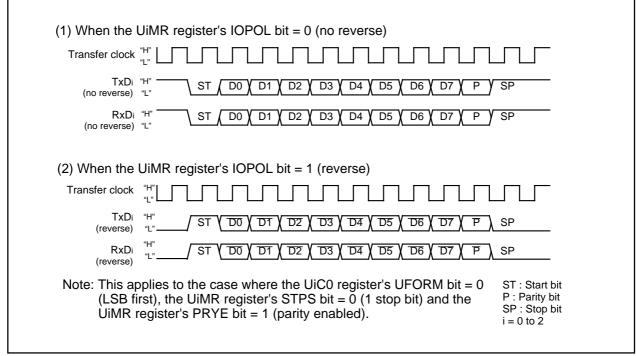


Figure 1.19.5. TxD and RxD I/O Polarity Inverse

(d) CTS/RTS Separate Function (UART0)

This function separates $\overline{\text{CTS}}_0/\overline{\text{RTS}}_0$, outputs $\overline{\text{RTS}}_0$ from the P60 pin, and accepts as input the $\overline{\text{CTS}}_0$ from the P64 pin. To use this function, set the register bits as shown below.

- U0C0 register's CRD bit = 0 (enables UART0 CTS/RTS)
- U0C0 register's CRS bit = 1 (outputs UART0 RTS)
- U1C0 register's CRD bit = 0 (enables UART1 CTS/RTS)
- U1C0 register's CRS bit = 0 (inputs UART1 CTS)
- UCON register's RCSP bit = 1 (inputs CTSo from the P64 pin)
- UCON register's CLKMD1 bit = 0 (CLKS1 not used)

Note that when using the $\overline{\text{CTS}}/\overline{\text{RTS}}$ separate function, UART1 $\overline{\text{CTS}}/\overline{\text{RTS}}$ separate function cannot be used.

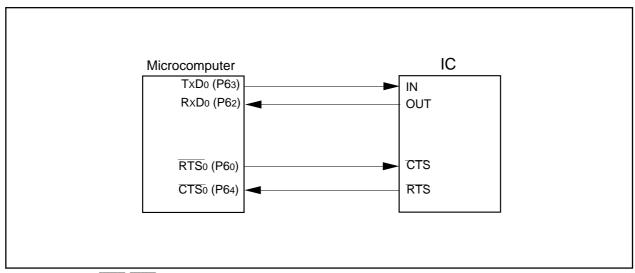


Figure 1.19.6. CTS/RTS Separate Function

Special Mode 1 (I²C mode)

 I^2C mode is provided for use as a simplified I^2C interface compatible mode. Table 1.20.1 lists the specifications of the I^2C mode. Table 1.20.2 lists the registers used in the I^2C mode and the register values set. Figure 1.20.1 shows the block diagram for I^2C mode. Figure 1.20.2 shows SCLi timing.

As shown in Table 1.20.3, the microcomputer is placed in I²C mode by setting the SMD2 to SMD0 bits to '0102' and the IICM bit to "1". Because SDAi transmit output has a delay circuit attached, SDAi output does not change state until SCLi goes low and remains stably low.

Table 1.20.1. I²C Mode Specifications

Item	Specification		
Transfer data format	Transfer data length: 8 bits		
Transfer clock	During master		
	UiMR(i=0 to 2) register's CKDIR bit = "0" (internal clock) : fj/ 2(n+1)		
	fj = f1SIO, f2SIO, f8SIO, f32SIO. n: Setting value of UiBRG register 0016 to FF16		
	During slave		
	CKDIR bit = "1" (external clock) : Input from CLKi pin		
Transmission start condition	Before transmission can start, the following requirements must be met (Note 1)		
	 The TE bit of UiC1 register= 1 (transmission enabled) 		
	The TI bit of UiC1 register = 0 (data present in UiTB register)		
Reception start condition	Before reception can start, the following requirements must be met (Note 1)		
	The RE bit of UiC1 register= 1 (reception enabled)		
	The TE bit of UiC1 register= 1 (transmission enabled)		
	- The TI bit of UiC1 register= 0 (data present in the UiTB register)		
Interrupt request	When start or stop condition is detected, acknowledge undetected, and acknowledge		
generation timing	detected		
Error detection	Overrun error (Note 2)		
	This error occurs if the serial I/O started receiving the next data before reading the		
	UiRB register and received the 8th bit of the next data		
Select function	Arbitration lost		
	Timing at which the UiRB register's ABT bit is updated can be selected		
	SDAi digital delay		
	No digital delay or a delay of 2 to 8 UiBRG count source clock cycles selectable		
	Clock phase setting		
	With or without clock delay selectable		

Note 1: When an external clock is selected, the conditions must be met while the external clock is in the high state.

Note 2: If an overrun error occurs, the value of UiRB register will be indeterminate. The IR bit of SiRIC register does not change.

Under

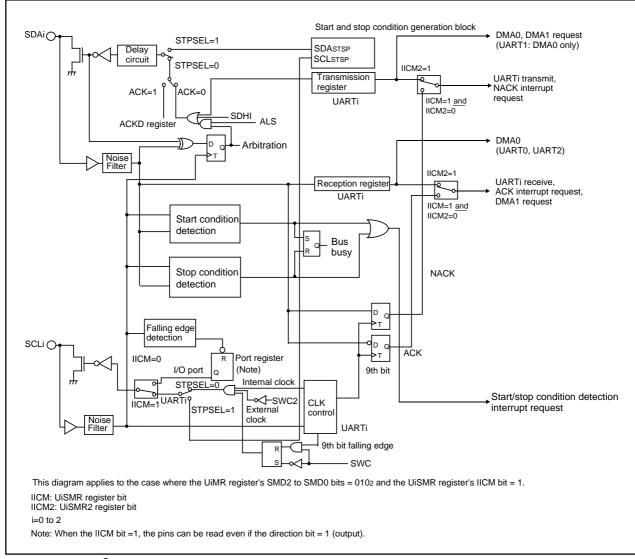


Figure 1.20.1. I²C Mode Block Diagram

Table 1. 20. 2. Registers to Be Used and Settings in I²C Mode (1) (Continued)

Register	Bit	Function			
		Master	Slave		
UiTB ³	0 to 7	Set transmission data	Set transmission data		
UiRB ³	0 to 7	Reception data can be read	Reception data can be read		
	8	ACK or NACK is set in this bit	ACK or NACK is set in this bit		
	ABT	Arbitration lost detection flag	Invalid		
	OER	Overrun error flag	Overrun error flag		
UiBRG		Set a transfer rate	Invalid		
UiMR ³	SMD2 to SMD0	Set to '0102'	Set to '0102'		
	CKDIR	Set to "0"	Set to "1"		
	IOPOL	Set to "0"	Set to "0"		
UiC0	CLK1, CLK0	Select the count source for the UiBRG	Invalid		
		register			
	CRS	Invalid because CRD = 1	Invalid because CRD = 1		
	TXEPT	Transmit buffer empty flag	Transmit buffer empty flag		
	CRD	Set to "1"	Set to "1"		
	NCH	Set to "1" ²	Set to "1" ²		
	CKPOL	Set to "0"	Set to "0"		
	UFORM	Set to "1"	Set to "1"		
UiC1	TE	Set this bit to "1" to enable transmission	Set this bit to "1" to enable transmission		
	TI	Transmit buffer empty flag	Transmit buffer empty flag		
	RE	Set this bit to "1" to enable reception	Set this bit to "1" to enable reception		
	RI	Reception complete flag	Reception complete flag		
	U2IRS ¹	Invalid	Invalid		
	U2RRM ¹ ,	Set to "0"	Set to "0"		
	UiLCH, UiERE				
UiSMR	IICM	Set to "1"	Set to "1"		
	ABC	Select the timing at which arbitration-lost	Invalid		
		is detected			
	BBS	Bus busy flag	Bus busy flag		
	3 to 7	Set to "0"	Set to "0"		
UiSMR2		Refer to Table 1.20.4.	Refer to Table 1.20.4.		
	CSC	Set this bit to "1" to enable clock	Set to "0"		
		synchronization			
	SWC	Set this bit to "1" to have SCLi output	Set this bit to "1" to have SCLi output		
		fixed to "L" at the falling edge of the 9th	fixed to "L" at the falling edge of the 9th		
		bit of clock	bit of clock		
	ALS	Set this bit to "1" to have SDAi output	Set to "0"		
		stopped when arbitration-lost is detected			
	STAC	Set to "0"	Set this bit to "1" to initialize UARTi at		
			start condition detection		
	SWC2	Set this bit to "1" to have SCLi output	Set this bit to "1" to have SCLi output		
		forcibly pulled low	forcibly pulled low		
	SDHI	Set this bit to "1" to disable SDAi output	Set this bit to "1" to disable SDAi output		
	7	Set to "0"	Set to "0"		
UiSMR3	0, 2, 4 and NODC	Set to "0"	Set to "0"		
	СКРН	Refer to Table 1.20.4	Refer to Table 1.20.4		
	DL2 to DL0	Set the amount of SDAi digital delay	Set the amount of SDAi digital delay		

i=0 to 2

Notes:

- 1. Set the U0C1 and U1C1 register bit 4 and bit 5 to "0". The U0IRS, U1IRS, U0RRM and U1RRM bits are in the UCON register.
- 2. TxD2 pin is N channel open-drain output. Set the NCH bit in the U2C0 register to "0".
- 3. Not all register bits are described above. Set those bits to "0" when writing to the registers in I²C mode.

Under

Table 1. 20. 3. Registers to Be Used and Settings in I²C Mode (2) (Continued)

Register	Bit	Function		
		Master	Slave	
UiSMR4	STAREQ	Set this bit to "1" to generate start	Set to "0"	
		condition		
	RSTAREQ	Set this bit to "1" to generate restart	Set to "0"	
		condition		
	STPREQ	Set this bit to "1" to generate stop	Set to "0"	
		condition		
	STSPSEL	Set this bit to "1" to output each condition	Set to "0"	
	ACKD	Select ACK or NACK	Select ACK or NACK	
	ACKC	Set this bit to "1" to output ACK data	Set this bit to "1" to output ACK data	
	SCLHI	Set this bit to "1" to have SCLi output	Set to "0"	
		stopped when stop condition is detected		
	SWC9	Set to "0"	Set this bit to "1" to set the SCLi to "L"	
			hold at the falling edge of the 9th bit of	
			clock	
IFSR2A	IFSR26, ISFR27	Set to "1"	Set to "1"	
UCON	U0IRS, U1IRS	Invalid	Invalid	
	2 to 7	Set to "0"	Set to "0"	

i=0 to 2

development Serial I/O (Special Modes)

Table 1.20.4. I²C Mode Functions

Function	Clock synchronous serial I/O	I ² C mode (SMD2 to SMD0 = 0102, IICM = 1)			
	mode (SMD2 to SMD0 = 0012, IICM = 0)	IICM2 = 0		IICM2 = 1 (UART transmit/ receive interrupt)	
		CKPH = 0 (No clock delay)	CKPH = 1 (Clock delay)	CKPH = 0 (No clock delay)	CKPH = 1 (Clock delay)
Factor of interrupt number 6, 7 and 10 (Note 1)(Refer to Fig 1.20.2)		Start condition d (Refer to Fig 1.2		condition detection	
Factor of interrupt number 15, 17 and 19 (Note 1)(Refer to Fig 1.20.2)	UARTi transmission Transmission started or completed (selected by UiIRS)	No acknowledgr detection (NACk Rising edge of S	<)	UARTi transmission Rising edge of SCLi 9th bit	UARTi transmission Falling edge of SCLi next to the 9th bit
Factor of interrupt number 16, 18 and 20 (Note 1)(Refer to Fig 1.20.2)	UARTi reception When 8th bit received CKPOL = 0 (rising edge) CKPOL = 1 (falling edge)	Acknowledgment detection (ACK) Rising edge of SCLi 9th bit UARTi transmission Falling edge of SCLi 9th bit			
Timing for transferring data from the UART reception shift register to the UiRB register	CKPOL = 0 (rising edge) CKPOL = 1 (falling edge)	Rising edge of S	SCLi 9th bit	Falling edge of SCLi 9th bit	Falling and rising edges of SCLi 9th bit
UARTi transmission output delay	Not delayed	Delayed			
Functions of P63, P67 and P70 pins	TxDi output	SDAi input/outpo	ut		
Functions of P62, P66 and P71 pins	RxDi input	SCLi input/output			
Functions of P61, P65 and P72 pins	CLKi input or output selected	—— (Cann	not be used in I2	² C mode)	
Noise filter width	15ns	200ns			
Read RxDi and SCLi pin levels	Possible when the corresponding port direction bit = 0	Always possible	no matter how	the corresponding po	ort direction bit is set
Initial value of TxDi and SDAi outputs	CKPOL = 0 (H) CKPOL = 1 (L)	The value set in	the port registe	er before setting I ² C n	node (Note 2)
Initial and end values of SCLi		Н	L	Н	L
DMA1 factor (Refer to Fig 1.20.2)	UARTi reception			UARTi reception Falling edge of SCLi 9th bit	
Store received data	1st to 8th bits are stored in UiRB register bit 0 to bit 7	1st to 8th bits ar UiRB register bi		1st to 7th bits are st bit 6 to bit 0, with 8th register bit 8	ored in UiRB register n bit stored in UiRB
					1st to 8th bits are stored in UiRB register bit 7 to bit 0 (Note 3)
Read received data	UiRB register status is read directly as is				Read UiRB register Bit 6 to bit 0 as bit 7 to bit 1, and bit 8 as

i = 0 to 2

- Note 1: To change the interrupt sources from one to another, follow the procedure described below.
 - Disable the interrupt of the corresponding interrupt number to be changed.
 Change interrupt sources from one to another.

 - 3. Set the IR bit for the corresponding interrupt number to 0 (no interrupt request).4. Set the IPL2 to IPL0 bits for the corresponding interrupt number.
- Note 2: Set the initial value of SDAi output while the UiMR register's SMD2 to SMD0 bits = '0002' (serial I/O disabled).
- Note 3: Second data transfer to UiRB register (Rising edge of SCLi 9th bit) Note 4. First data transfer to UiRB register (Falling edge of SCLi 9th bit)

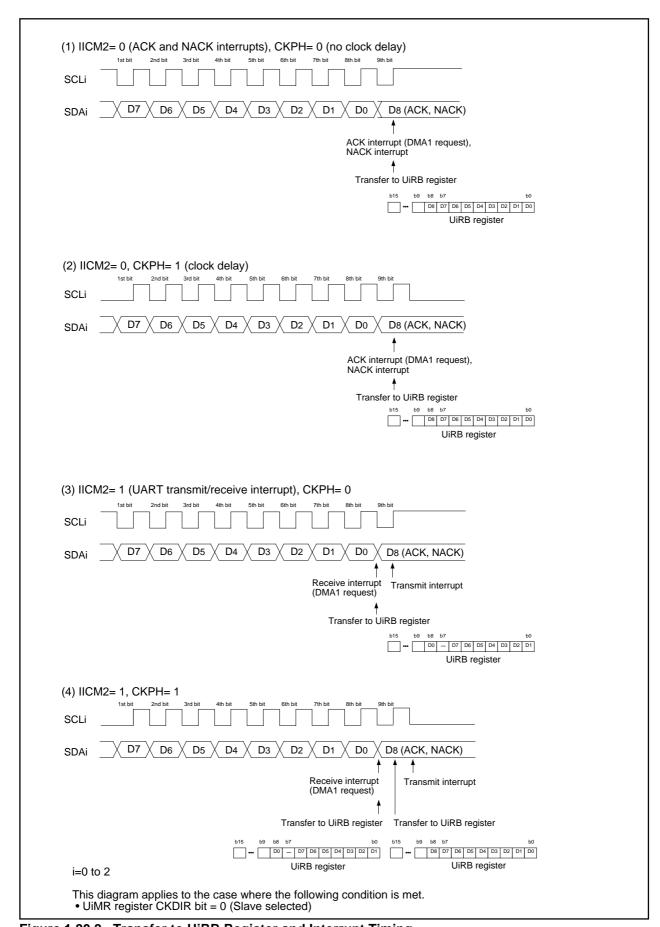


Figure 1.20.2. Transfer to UiRB Register and Interrupt Timing

Detection of Start and Stop Condtion

Whether a start or a stop condition has been detected is determined.

A start condition-detected interrupt request is generated when the SDAi pin changes state from high to low while the SCLi pin is in the high state. A stop condition-detected interrupt request is generated when the SDAi pin changes state from low to high while the SCLi pin is in the high state.

Because the start and stop condition-detected interrupts share the interrupt control register and vector, check the UiSMR register's BBS bit to determine which interrupt source is requesting the interrupt.

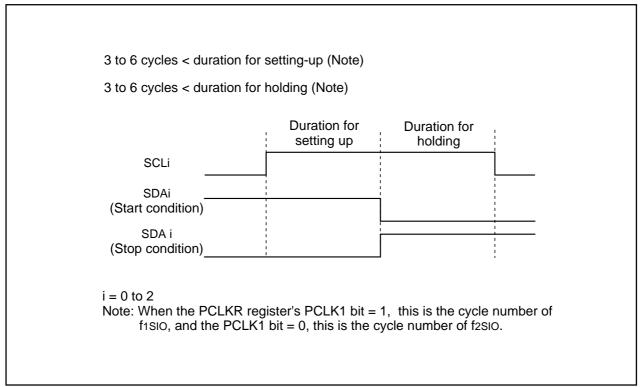


Figure 1.20.3. Detection of Start and Stop Condition

Output of Start and Stop Condition

A start condition is generated by setting the UiSMR4 register (i = 0 to 2)'s STAREQ bit to "1" (start).

A restart condition is generated by setting the UiSMR4 register's RSTAREQ bit to "1" (start).

A stop condition is generated by setting the UiSMR4 register's STPREQ bit to "1" (start).

A start condition is output by setting the STAREQ bit to "1" and then the UiSMR4 register's STSPSEL bit to "1" (start). Similarly, a restart condition is output by setting the RSTAREQ bit to "1" and then the STSPSEL bit to "1", and a stop condition is output by setting the STPREQ bit to "1" and then the STSPSEL bit to "1".

Table 1.20.5 and Figure 1.20.4 show the functions of the STSPSEL.

If start, stop and restart conditions are to be output, make sure no interrupts will occur between the instruction that sets the STAREQ, STPREQ or RSTAREQ bit to "1" and the instruction that sets the STSPSEL bit to "1".

Also, if a start condition is to be output, make sure the STAREQ bit is set to "1" before setting the STSPSEL bit to "1".

Table 1.20.5. STSPSEL Bit Functions

Function	STSPSEL = 0	STSPSEL = 1
Output of SCLi and SDAi pins	Output of transfer clock and	Output of a start/stop condition
	data	according to the STAREQ,
	Output of start/stop condition is	RSTAREQ and STPREQ bit
	accomplished by a program	
	using ports (not automatically	
	generated in hardware)	
Star/stop condition interrupt	Start/stop condition detection	Finish generating start/stop condi-
request generation timing		tion

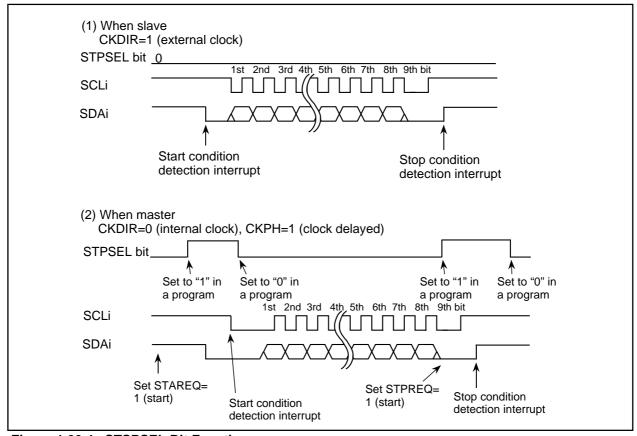


Figure 1.20.4. STSPSEL Bit Functions

Arbitration

Unmatching of the transmit data and SDAi pin input data is checked synchronously with the rising edge of SCLi. Use the UiSMR register's ABC bit to select the timing at which the UiRB register's ABT bit is updated. If the ABC bit = 0 (updated bitwise), the ABT bit is set to "1" at the same time unmatching is detected during check, and is cleared to "0" when not detected. In cases when the ABC bit is set to "1", if unmatching is detected even once during check, the ABT bit is set to "1" (unmatching detected) at the falling edge of the clock pulse of 9th bit. If the ABT bit needs to be updated bytewise, clear the ABT bit to "0" (undetected) after detecting acknowledge in the first byte, before transferring the next byte.

Setting the UiSMR2 register's ALS bit to "1" (SDA output stop enabled) causes arbitration-lost to occur, in which case the SDAi pin is placed in the high-impedance state at the same time the ABT bit is set to "1" (unmatching detected).

Transfer Clock

Data is transmitted/received using a transfer clock like the one shown in Figure 1.20.4.

The UiSMR2 register's CSC bit is used to synchronize the internally generated clock (internal SCLi) and an external clock supplied to the SCLi pin. In cases when the CSC bit is set to "1" (clock synchronization enabled), if a falling edge on the SCLi pin is detected while the internal SCLi is high, the internal SCLi goes low, at which time the UiBRG register value is reloaded with and starts counting in the low-level interval. If the internal SCLi changes state from low to high while the SCLi pin is low, counting stops, and when the SCLi pin goes high, counting restarts.

In this way, the UARTi transfer clock is comprised of the logical product of the internal SCLi and SCLi pin signal. The transfer clock works from a half period before the falling edge of the internal SCLi 1st bit to the rising edge of the 9th bit. To use this function, select an internal clock for the transfer clock. The UiSMR2 register's SWC bit allows to select whether the SCLi pin should be fixed to or freed from low-level output at the falling edge of the 9th clock pulse.

If the UiSMR4 register's SCLHI bit is set to "1" (enabled), SCLi output is turned off (placed in the high-impedance state) when a stop condition is detected.

Setting the UiSMR2 register's SWC2 bit = 1 (0 output) makes it possible to forcibly output a low-level signal from the SCLi pin even while sending or receiving data. Clearing the SWC2 bit to "0" (transfer clock) allows the transfer clock to be output from or supplied to the SCLi pin, instead of outputting a low-level signal.

If the UiSMR4 register's SWC9 bit is set to "1" (SCL hold low enabled) when the UiSMR3 register's CKPH bit = 1, the SCLi pin is fixed to low-level output at the falling edge of the clock pulse next to the ninth. Setting the SWC9 bit = 0 (SCL hold low disabled) frees the SCLi pin from low-level output.

SDA Output

The data written to the UiTB register bit 7 to bit 0 (D7 to D0) is sequentially output beginning with D7. The ninth bit (D8) is ACK or NACK.

The initial value of SDAi transmit output can only be set when IICM = 1 (I^2C mode) and the UiMR register's SMD2 to SMD0 bits = '0002' (serial I/O disabled).

The UiSMR3 register's DL2 to DL0 bits allow to add no delays or a delay of 2 to 8 UiBRG count source clock cycles to SDAi output.

Setting the UiSMR2 register's SDHI bit = 1 (SDA output disabled) forcibly places the SDAi pin in the high-impedance state. Do not write to the SDHI bit synchronously with the rising edge of the UARTi transfer clock. This is because the ABT bit may inadvertently be set to "1" (detected).

SDA Input

When the IICM2 bit = 0, the 1st to 8th bits (D7 to D0) of received data are stored in the UiRB register bit 7 to bit 0. The 9th bit (D8) is ACK or NACK.

When the IICM2 bit = 1, the 1st to 7th bits (D7 to D1) of received data are stored in the UiRB register bit 6 to bit 0 and the 8th bit (D0) is stored in the UiRB register bit 8. Even when the IICM2 bit = 1, providing the CKPH bit = 1, the same data as when the IICM2 bit = 0 can be read out by reading the UiRB register after the rising edge of the corresponding clock pulse of 9th bit.

ACK and NACK

If the STSPSEL bit in the UiSMR4 register is set to "0" (start and stop conditions not generated) and the ACKC bit in the UiSMR4 register is se to "1" (ACK data output), the value of the ACKD bit in the UiSMR4 register is output from the SDAi pin.

If the IICM2 bit = 0, a NACK interrupt request is generated if the SDAi pin remains high at the rising edge of the 9th bit of transmit clock pulse. An ACK interrupt request is generated if the SDAi pin is low at the rising edge of the 9th bit of transmit clock pulse.

If ACKi is selected for the cause of DMA1 request, a DMA transfer can be activated by detection of an acknowledge.

• Initialization of Transmission/Reception

If a start condition is detected while the STAC bit = 1 (UARTi initialization enabled), the serial I/O operates as described below.

- The transmit shift register is initialized, and the content of the UiTB register is transferred to the transmit shift register. In this way, the serial I/O starts sending data synchronously with the next clock pulse applied. However, the UARTi output value does not change state and remains the same as when a start condition was detected until the first bit of data is output synchronously with the input clock.
- The receive shift register is initialized, and the serial I/O starts receiving data synchronously with the next clock pulse applied.
- The SWC bit is set to "1" (SCL wait output enabled). Consequently, the SCLi pin is pulled low at the falling edge of the ninth clock pulse.

Note that when UARTi transmission/reception is started using this function, the TI does not change state. Note also that when using this function, the selected transfer clock should be an external clock.

Special Mode 2

Multiple slaves can be serially communicated from one master. Synchronous clock polarity and phase are selectable. Table 1.20.6 lists the specifications of Special Mode 2. Table 1.20.7 lists the registers used in Special Mode 2 and the register values set. Figure 1.20.5 shows communication control example for Special Mode 2.

Table 1.20.6. Special Mode 2 Specifications

Item	Specification
Transfer data format	Transfer data length: 8 bits
Transfer clock	Master mode
	UiMR(i=0 to 2) register's CKDIR bit = "0" (internal clock) : fj/ 2(n+1)
	fj = f1sio, f2sio, f8sio, f32sio. n: Setting value of UiBRG register 0016 to FF16
	Slave mode
	CKDIR bit = "1" (external clock selected) : Input from CLKi pin
Transmit/receive control	Controlled by input/output ports
Transmission start condition	Before transmission can start, the following requirements must be met (Note 1)
	 The TE bit of UiC1 register= 1 (transmission enabled)
	The TI bit of UiC1 register = 0 (data present in UiTB register)
Reception start condition	Before reception can start, the following requirements must be met (Note 1)
	The RE bit of UiC1 register= 1 (reception enabled)
	 The TE bit of UiC1 register= 1 (transmission enabled)
	 The TI bit of UiC1 register= 0 (data present in the UiTB register)
Interrupt request	For transmission, one of the following conditions can be selected
generation timing	- The UiIRS bit of UiC1 register = 0 (transmit buffer empty): when transferring data
	from the UiTB register to the UARTi transmit register (at start of transmission)
	 The UiIRS bit =1 (transfer completed): when the serial I/O finished sending data from
	the UARTi transmit register
	For reception
	When transferring data from the UARTi receive register to the UiRB register (at
	completion of reception)
Error detection	Overrun error (Note 2)
	This error occurs if the serial I/O started receiving the next data before reading the
	UiRB register and received the 7th bit of the next data
Select function	Clock phase setting
	Selectable from four combinations of transfer clock polarities and phases

Note 1: When an external clock is selected, the conditions must be met while if the UiC0 register's CKPOL bit = "0" (transmit data output at the falling edge and the receive data taken in at the rising edge of the transfer clock), the external clock is in the high state; if the UiC0 register's CKPOL bit = "1" (transmit data output at the rising edge and the receive data taken in at the falling edge of the transfer clock), the external clock is in the low state

Note 2: If an overrun error occurs, the value of UiRB register will be indeterminate. The IR bit of SiRIC register does not change.

Figure 1.20.5. Serial Bus Communication Control Example (UART2)

Table 1. 20. 7. Registers to Be Used and Settings in Special Mode 2

Register	Bit	Function
UiTB(Note3)	0 to 7	Set transmission data
UiRB(Note3)	0 to 7	Reception data can be read
	OER	Overrun error flag
UiBRG	0 to 7	Set a transfer rate
UiMR(Note3)	SMD2 to SMD0	Set to '0012'
	CKDIR	Set this bit to "0" for master mode or "1" for slave mode
	IOPOL	Set to "0"
UiC0	CLK1, CLK0	Select the count source for the UiBRG register
	CRS	Invalid because CRD = 1
	TXEPT	Transmit register empty flag
	CRD	Set to "1"
	NCH	Select TxDi pin output format(Note 2)
	CKPOL	Clock phases can be set in combination with the UiSMR3 register's CKPH bit
	UFORM	Set to "0"
UiC1	TE	Set this bit to "1" to enable transmission
	TI	Transmit buffer empty flag
	RE	Set this bit to "1" to enable reception
	RI	Reception complete flag
	U2IRS (Note 1)	Select UART2 transmit interrupt cause
	U2RRM(Note 1),	Set to "0"
	U2LCH, UiERE	
UiSMR	0 to 7	Set to "0"
UiSMR2	0 to 7	Set to "0"
UiSMR3	CKPH	Clock phases can be set in combination with the UiC0 register's CKPOL bit
	NODC	Set to "0"
	0, 2, 4 to 7	Set to "0"
UiSMR4	0 to 7	Set to "0"
UCON	U0IRS, U1IRS	Select UART0 and UART1 transmit interrupt cause
	U0RRM, U1RRM	Set to "0"
	CLKMD0	Invalid because CLKMD1 = 0
	CLKMD1, RCSP, 7	Set to "0"

Note 1: Set the U0C0 and U1C1 register bit 4 and bit 5 to "0". The U0IRS, U1IRS, U0RRM and U1RRM bits are in the UCON register.

Note 2: TxD2 pin is N channel open-drain output. Set the U2C0 register's NCH bit to "0".

Note 3: Not all register bits are described above. Set those bits to "0" when writing to the registers in Special Mode 2.

i = 0 to 2

Clock Phase Setting Function

One of four combinations of transfer clock phases and polarities can be selected using the UiSMR3 register's CKPH bit and the UiC0 register's CKPOL bit.

Make sure the transfer clock polarity and phase are the same for the master and salves to be communicated.

(a) Master (Internal Clock)

Figure 1.20.6 shows the transmission and reception timing in master (internal clock).

(b) Slave (External Clock)

Figure 1.20.7 shows the transmission and reception timing (CKPH=0) in slave (external clock) while Figure 1.20.8 shows the transmission and reception timing (CKPH=1) in slave (external clock).

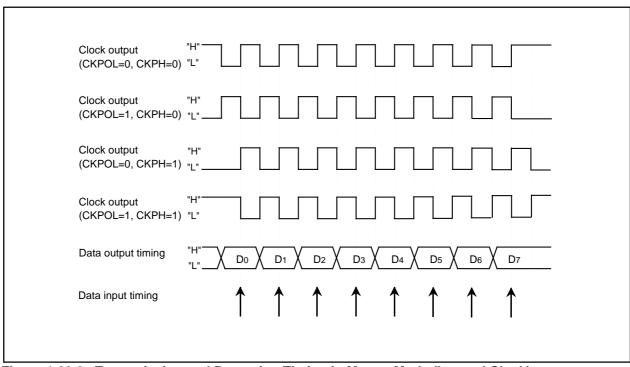


Figure 1.20.6. Transmission and Reception Timing in Master Mode (Internal Clock)

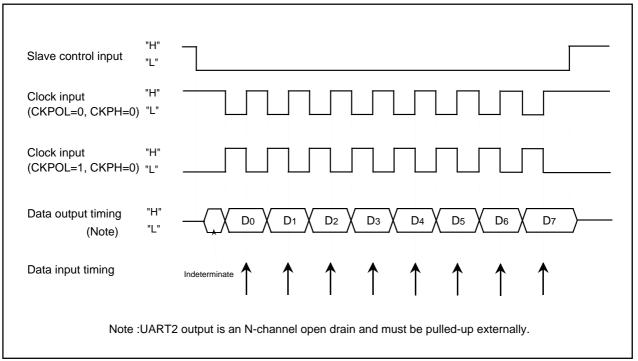


Figure 1.20.7. Transmission and Reception Timing (CKPH=0) in Slave Mode (External Clock)

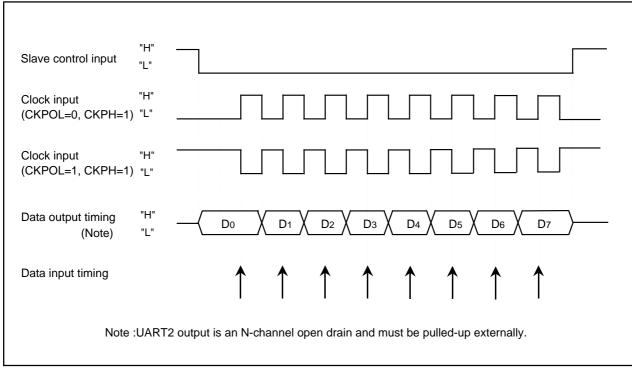


Figure 1.20.8. Transmission and Reception Timing (CKPH=1) in Slave Mode (External Clock)

Special Mode 3 (IE mode)

In this mode, one bit of IEBus is approximated with one byte of UART mode waveform.

Table 1.20.8 lists the registers used in IE mode and the register values set. Figure 1.20.9 shows the functions of bus collision detect function related bits.

If the TxDi pin (i = 0 to 2) output level and RxDi pin input level do not match, a UARTi bus collision detect interrupt request is generated.

Use the IFSR2A register's IFSR26 and IFSR27 bits to enable the UART0/UART1 bus collision detect function.

Table 1. 20. 8. Registers to Be Used and Settings in IE Mode

Register	Bit	Function	
UiTB	0 to 8	Set transmission data	
UiRB(Note3)	0 to 8	Reception data can be read	
` ′.	OER,FER,PER,SUM	Error flag	
UiBRG		Set a transfer rate	
UiMR	SMD2 to SMD0	Set to '1102'	
	CKDIR	Select the internal clock or external clock	
	STPS	Set to "0"	
•	PRY	Invalid because PRYE=0	
•	PRYE	Set to "0"	
	IOPOL	Select the TxD/RxD input/output polarity	
UiC0	CLK1, CLK0	Select the count source for the UiBRG register	
	CRS	Invalid because CRD=1	
·	TXEPT	Transmit register empty flag	
·	CRD	Set to "1"	
•	NCH	Select TxDi pin output mode (Note 2)	
·	CKPOL	Set to "0"	
•	UFORM	Set to "0"	
UiC1	TE	Set this bit to "1" to enable transmission	
·	TI	Transmit buffer empty flag	
·	RE	Set this bit to "1" to enable reception	
·	RI	Reception complete flag	
·	U2IRS (Note 1)	Select the source of UART2 transmit interrupt	
·	UiRRM (Note 1),	Set to "0"	
	UiLCH, UiERE		
UiSMR	0 to 3, 7	Set to "0"	
·	ABSCS	Select the sampling timing at which to detect a bus collision	
·	ACSE	Set this bit to "1" to use the auto clear function of transmit enable bit	
·	SSS	Select the transmit start condition	
UiSMR2	0 to 7	Set to "0"	
UiSMR3	0 to 7	Set to "0"	
UiSMR4	0 to 7	Set to "0"	
IFSR2A	IFSR26, IFSR27	Set to "1"	
UCON	U0IRS, U1IRS	Select the source of UART0/UART1 transmit interrupt	
	U0RRM, U1RRM	Set to "0"	
j	CLKMD0	Invalid because CLKMD1 = 0	
	CLKMD1,RCSP,7	Set to "0"	
Note 1. Set	the LICCO and LICC	registers bit 4 and bit 5 to "0". The UOIRS, U1IRS, U0RRM and U1RRM bits	

Note 1: Set the U0C0 and U1C1 registers bit 4 and bit 5 to "0". The U0IRS, U1IRS, U0RRM and U1RRM bits are in the UCON register.

Note 2: TxD2 pin is N channel open-drain output. Set the U2C0 register's NCH bit to "0".

Note 3: Not all register bits are described above. Set those bits to "0" when writing to the registers in IEmode. i= 0 to 2

Serial I/O (Special Modes)

^{qe}elobweut Nuqer

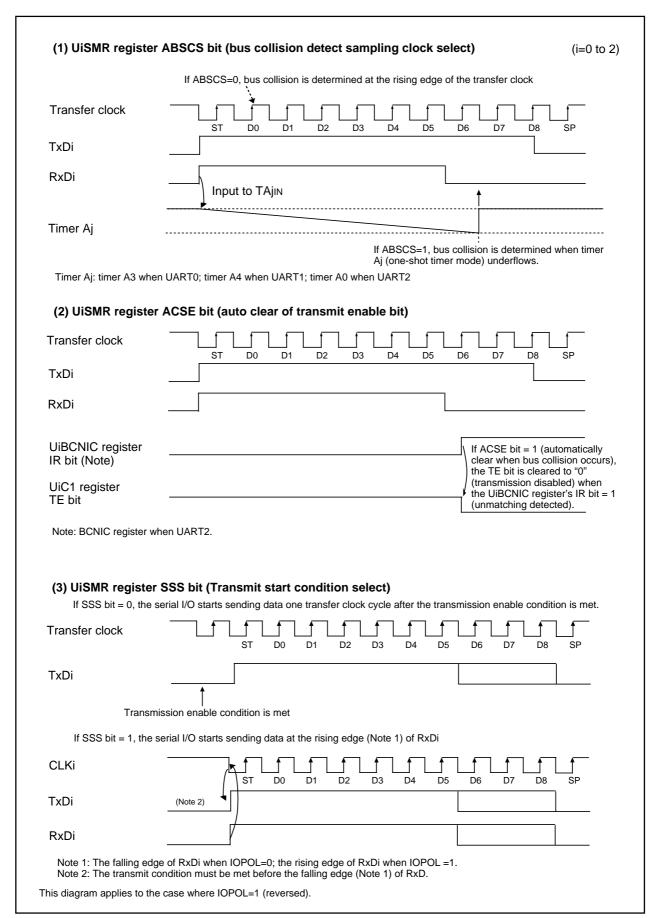


Figure 1.20.9. Bus Collision Detect Function-Related Bits

Special Mode 4 (SIM Mode) (UART2)

Based on UART mode, this is an SIM interface compatible mode. Direct and inverse formats can be implemented, and this mode allows to output a low from the TxD2 pin when a parity error is detected. Tables 1.20.9 lists the specifications of SIM mode. Table 1.20.10 lists the registers used in the SIM mode and the register values set.

Table 1.20.9. SIM Mode Specifications

Item	Specification
Transfer data format	Direct format
	Inverse format
Transfer clock	• U2MR register's CKDIR bit = "0" (internal clock) : fi/ 16(n+1)
	fi = f1SIO, f2SIO, f8SIO, f32SIO. n: Setting value of U2BRG register 0016 to FF16
	• CKDIR bit = "1" (external clock) : fEXT/16(n+1)
	fEXT: Input from CLK2 pin. n: Setting value of U2BRG register 0016 to FF16
Transmission start condition	Before transmission can start, the following requirements must be met
	 The TE bit of U2C1 register= 1 (transmission enabled)
	The TI bit of U2C1 register = 0 (data present in U2TB register)
Reception start condition	Before reception can start, the following requirements must be met
	 The RE bit of U2C1 register= 1 (reception enabled)
	- Start bit detection
Interrupt request	For transmission
generation timing	When the serial I/O finished sending data from the U2TB transfer register (U2IRS bit =1)
	For reception
	When transferring data from the UART2 receive register to the U2RB register (at
	completion of reception)
Error detection	Overrun error (Note)
	This error occurs if the serial I/O started receiving the next data before reading the
	U2RB register and received the bit one before the last stop bit of the next data
	Framing error
	This error occurs when the number of stop bits set is not detected
	Parity error
	During reception, if a parity error is detected, parity error signal is output from the
	TxD2 pin.
	During transmission, a parity error is detected by the level of input to the RxD2 pin
	when a transmission interrupt occurs
	Error sum flag
	This flag is set (= 1) when any of the overrun, framing, and parity errors is encountered

Note: If an overrun error occurs, the value of U2RB register will be indeterminate. The IR bit of S2RIC register does not change.

Table 1. 20. 10. Registers to Be Used and Settings in SIM Mode

Register	Bit	Function
U2TB(Note)	0 to 7	Set transmission data
U2RB(Note)	0 to 7	Reception data can be read
	OER,FER,PER,SUM	Error flag
U2BRG		Set a transfer rate
U2MR	SMD2 to SMD0	Set to '1012'
]	CKDIR	Select the internal clock or external clock
	STPS	Set to "0"
	PRY	Set this bit to "1" for direct format or "0" for inverse format
	PRYE	Set to "1"
	IOPOL	Set to "0"
U2C0	CLK1, CLK0	Select the count source for the U2BRG register
	CRS	Invalid because CRD=1
İ	TXEPT	Transmit register empty flag
İ	CRD	Set to "1"
	NCH	Set to "0"
	CKPOL	Set to "0"
	UFORM	Set this bit to "0" for direct format or "1" for inverse format
U2C1	TE	Set this bit to "1" to enable transmission
	TI	Transmit buffer empty flag
	RE	Set this bit to "1" to enable reception
	RI	Reception complete flag
	U2IRS	Set to "1"
İ	U2RRM	Set to "0"
	U2LCH	Set this bit to "0" for direct format or "1" for inverse format
<u> </u>	U2ERE	Set to "1"
U2SMR(Note)	0 to 3	Set to "0"
U2SMR2	0 to 7	Set to "0"
U2SMR3	0 to 7	Set to "0"
U2SMR4	0 to 7	Set to "0"

Note: Not all register bits are described above. Set those bits to "0" when writing to the registers in SIM mode.

Serial I/O (Special Modes)

development

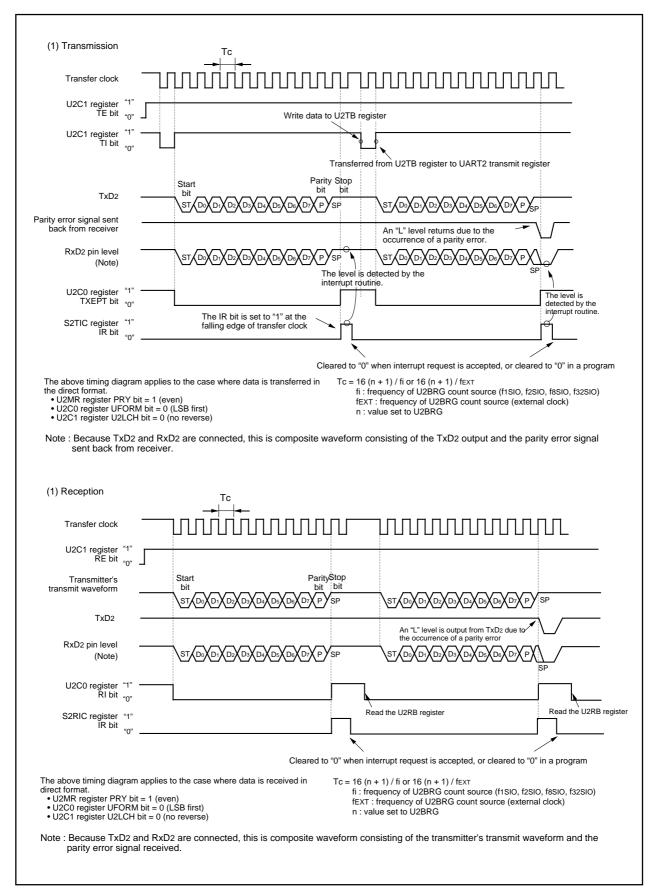


Figure 1.20.10. Transmit and Receive Timing in SIM Mode

Figure 1.20.11 shows the example of connecting the SIM interface. Connect TxD2 and RxD2 and apply pull-up.

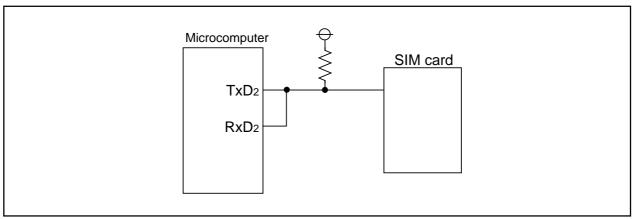


Figure 1.20.11. SIM Interface Connection

(a) Parity Error Signal Output

The parity error signal is enabled by setting the U2C1 register's U2ERE bit to "1".

· When receiving

The parity error signal is output when a parity error is detected while receiving data. This is achieved by pulling the TxD2 output low with the timing shown in Figure 1.20.12. If the R2RB register is read while outputting a parity error signal, the PER bit is cleared to "0" and at the same time the TxD2 output is returned high.

When transmitting

A transmission-finished interrupt request is generated at the falling edge of the transfer clock pulse that immediately follows the stop bit. Therefore, whether a parity signal has been returned can be determined by reading the port that shares the RxD2 pin in a transmission-finished interrupt service routine.

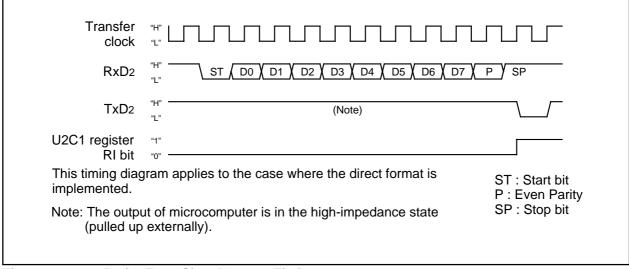


Figure 1.20.12. Parity Error Signal Output Timing

(b) Format

Direct Format

Set the U2MR register's PRY bit to "1", U2C0 register's UFORM bit to "0" and U2C1 register's U2LCH bit to "0".

Inverse Format

Set the PRY bit to "0", UFORM bit to "1" and U2LCH bit to "1".

Figure 1.20.13 shows the SIM interface format.

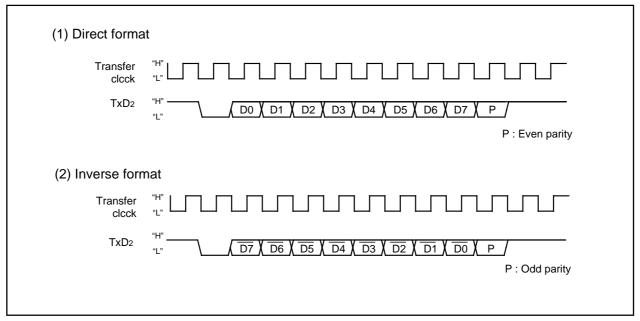


Figure 1.20.13. SIM Interface Format

Under

SI/O3 and SI/O4

SI/O3 and SI/O4 are exclusive clock-synchronous serial I/Os.

Figure 1.21.1 shows the block diagram of SI/O3 and SI/O4, and Figure 1.21.2 shows the SI/O3 and SI/O4related registers.

Table 1.21.1 shows the specifications of SI/O3 and SI/O4.

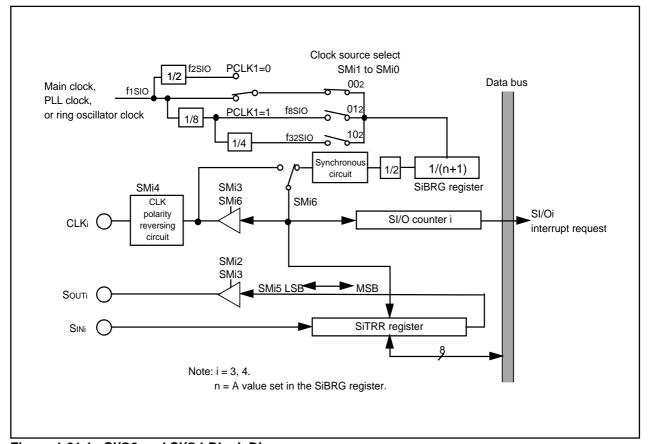
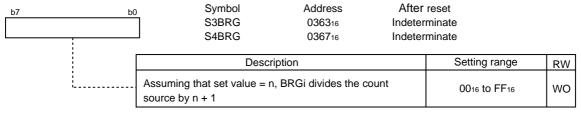


Figure 1.21.1. SI/O3 and SI/O4 Block Diagram

S I/Oi control register (i = 3, 4) (Note 1) Symbol Address After reset 036216 S₃C 010000016 S4C 036616 010000016 Bit Bit name Description RW symbol SMi0 Internal synchronous 0 0 : Selecting f1SIO or f2SIO RW clock select bit 0 1: Selecting f8SIO SMi1 10: Selecting f32SIO RW 11: Must not be set. SMi2 Souti output disable bit 0: Souтi output RW (Note 4) 1: Souti output disable(high impedance) S I/Oi port select bit 0: Input/output port SMi3 RW 1 : Souтi output, CLKi function 0 : Transmit data is output at falling edge of SMi4 CLK polarity select bit transfer clock and receive data is input at rising edge RW 1: Transmit data is output at rising edge of transfer clock and receive data is input at falling edge SMi5 Transfer direction select 0: LSB first RW 1: MSB first 0 : External clock (Note 2) SMi6 Synchronous clock RW 1 : Internal clock (Note 3) select bit SMi7 Effective when SMi3 = 0Souti initial value RW 0: "L" output set bit 1: "H" output

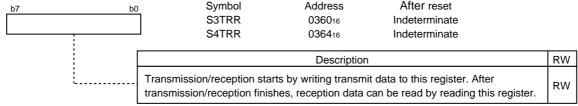

Note 1: Make sure this register is written to by the next instruction after setting the PRCR register's PRC2 bit to "1" (write enable).

Note 2: Set the SMi3 bit to "1" (SouTi output, CLKi function).

Note 3: Set the SMi3 bit to "1" and the corresponding port direction bit to "0" (input mode).

Note 4: Effective when SMi3 bit = 1.

SI/Oi bit rate generator (i = 3, 4) (Notes 1, 2)


Address

After reset

Note 1: Write to this register while serial I/O is neither transmitting nor receiving.

Note 2: Use MOV instruction to write to this register.

SI/Oi transmit/receive register (i = 3, 4) (Note 1, 2)

Note 1: Write to this register while serial I/O is neither transmitting nor receiving.

Note 2: To receive data, set the corresponding port direction bit for SINI to "0" (input mode).

Figure 1.21.2. S3C and S4C Registers, S3BRG and S4BRG Registers, and S3TRR and S4TRR Registers

Table 1.21.1. SI/O3 and SI/O4 Specifications

Item	Specification
Transfer data format	Transfer data length: 8 bits
Transfer clock	• SiC (i=3, 4) register's SMi6 bit = "1" (internal clock) : fj/ 2(n+1)
	fj = f1SIO, f8SIO, f32SIO. n=Setting value of SiBRG register 0016 to FF16.
	SMi6 bit = "0" (external clock) : Input from CLKi pin (Note 1)
Transmission/reception	Before transmission/reception can start, the following requirements must be met
start condition	Write transmit data to the SiTRR register (Notes 2, 3)
Interrupt request	When SiC register's SMi4 bit = 0
generation timing	The rising edge of the last transfer clock pulse (Note 4)
	• When SMi4 = 1
	The falling edge of the last transfer clock pulse (Note 4)
CLKi pin fucntion	I/O port, transfer clock input, transfer clock output
Souti pin function	I/O port, transmit data output, high-impedance
SINi pin function	I/O port, receive data input
Select function	LSB first or MSB first selection
	Whether to start sending/receiving data beginning with bit 0 or beginning with bit 7
	can be selected
	Function for setting an So∪⊤i initial value set function
	When the SiC register's SMi6 bit = 0 (external clock), the Souti pin output level while
	not tranmitting can be selected.
	CLK polarity selection
	Whether transmit data is output/input timing at the rising edge or falling edge of
	transfer clock can be selected.

Note 1: To set the SiC register's SMi6 bit to "0" (external clock), follow the procedure described below.

- If the SiC register's SMi4 bit = 0, write transmit data to the SiTRR register while input on the CLKi pin is high. The same applies when rewriting the SiC register's SMi7 bit.
- If the SMi4 bit = 1, write transmit data to the SiTRR register while input on the CLKi pin is low. The same applies when rewriting the SMi7 bit.
- Because shift operation continues as long as the transfer clock is supplied to the SI/Oi circuit, stop the transfer clock after supplying eight pulses. If the SMi6 bit = 1 (internal clock), the transfer clock automatically stops.
- Note 2: Unlike UART0 to UART2, SI/Oi (i = 3 to 4) is not separated between the transfer register and buffer. Therefore, do not write the next transmit data to the SiTRR register during transmission.
- Note 3: When the SiC register's SMi6 bit = 1 (internal clock), South retains the last data for a 1/2 transfer clock period after completion of transfer and, thereafter, goes to a high-impedance state. However, if transmit data is written to the SiTRR register during this period, South immediately goes to a high-impedance state, with the data hold time thereby reduced.
- Note 4: When the SiC register's SMi6 bit = 1 (internal clock), the transfer clock stops in the high state if the SMi4 bit = 0, or stops in the low state if the SMi4 bit = 1.

Figure 1.21.3 shows the SI/Oi operation timing

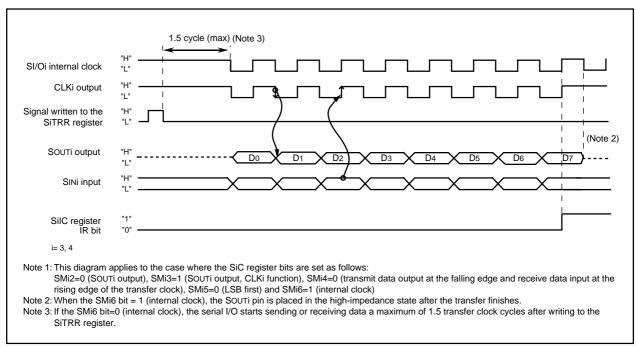


Figure 1.21.3. SI/Oi Operation Timing

(b) CLK Polarity Selection

The SiC register's SMi4 bit allows selection of the polarity of the transfer clock. Figure 1.21.4 shows the polarity of the transfer clock.

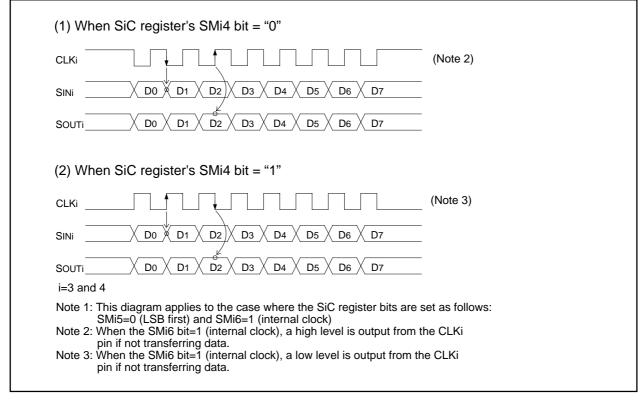


Figure 1.21.4. Polarity of Transfer Clock

(c) Functions for Setting an Souti Initial Value

If the SiC register's SMi6 bit = 0 (external clock), the SOUTi pin output can be fixed high or low when not transferring. Figure 1.21.5 shows the timing chart for setting an SOUTi initial value and how to set it.

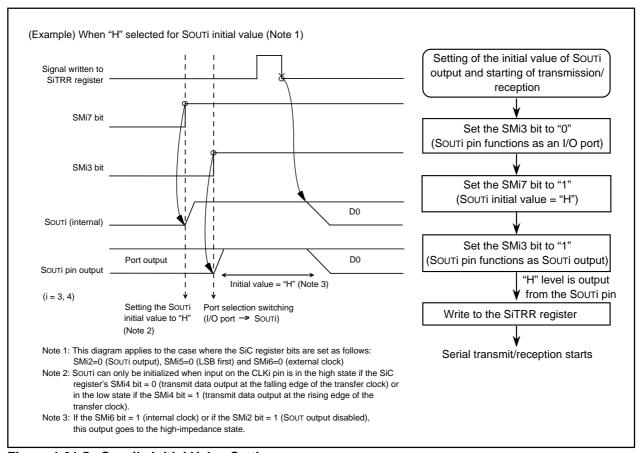


Figure 1.21.5. Souti's Initial Value Setting

A-D Converter

The microcomputer contains one A-D converter circuit based on 10-bit successive approximation method configured with a capacitive-coupling amplifier. The analog inputs share the pins with P100 to P107, P95, P96, P00 to P07, and P20 to P27. Similarly, $\overline{\text{ADTRG}}$ input shares the pin with P97. Therefore, when using these inputs, make sure the corresponding port direction bits are set to "0" (= input mode).

When not using the A-D converter, set the VCUT bit to "0" (= Vref unconnected), so that no current will flow from the VREF pin into the resistor ladder, helping to reduce the power consumption of the chip.

The A-D conversion result is stored in the ADi register bits for ANi, AN0i, and AN2i pins (i = 0 to 7).

Table 1.22.1 shows the performance of the A-D converter. Figure 1.22.1 shows the block diagram of the A-D converter, and Figures 1.22.2 and 1.22.3 show the A-D converter-related registers.

Table 1.22.1. Performance of A-D Converter

Item	Performance
Method of A-D conversion	Successive approximation (capacitive coupling amplifier)
Analog input voltage (Note 1)	0V to AVCC (VCC1)
Operating clock \$\phiAD\$ (Note 2)	fAD/divide-by-2 of fAD/divide-by-3 of fAD/divide-by-4 of fAD/divide-by-6 of
	fAD/divide-by-12 of fAD
Resolution	8-bit or 10-bit (selectable)
Integral nonlinearity error	When AVCC = VREF = 5V
	With 8-bit resolution: ±2LSB
	With 10-bit resolution
	- ANo to AN7 input : ±3LSB
	- ANoo to ANO7 input and AN2o to AN27 input: ±7LSB
	- ANEX0 and ANEX1 input (including mode in which external operation
	amp is connected) : ±7LSB
	When AVCC = VREF = 3.3V
	With 8-bit resolution: ±2LSB
	With 10-bit resolution
	- ANo to AN7 input: ±5LSB
	- AN00 to AN07 input and AN20 to AN27 input: ±7LSB
	- ANEX0 and ANEX1 input (including mode in which external operation
	amp is connected) : ±7LSB
Operating modes	One-shot mode, repeat mode, single sweep mode, repeat sweep mode 0,
	and repeat sweep mode 1
Analog input pins	8 pins (ANo to AN7) + 2 pins (ANEX0 and ANEX1) + 8 pins (AN00 to AN07)
	+ 8 pins (AN20 to AN27)
A-D conversion start condition	Software trigger
	The ADCON0 register's ADST bit is set to "1" (A-D conversion starts)
	External trigger (retriggerable)
	Input on the $\overline{\text{ADTRG}}$ pin changes state from high to low after the ADST bit is
	set to "1" (A-D conversion starts)
Conversion speed per pin	Without sample and hold function
	8-bit resolution: 49 φAD cycles, 10-bit resolution: 59 φAD cycles
	With sample and hold function
	8-bit resolution: 28 φAD cycles, 10-bit resolution: 33 φAD cycles

Note 1: Does not depend on use of sample and hold function.

Note 2: The fAD frequency must be 10 MHz or less.

Without sample-and-hold function, limit the fAD frequency to 250kHz or less.

With the sample and hold function, limit the fAD frequency to 1MHz or less.

Note 3: If VCC2 < VCC1, do not use AN00 to AN07 and AN20 to AN27 as analog input pins.

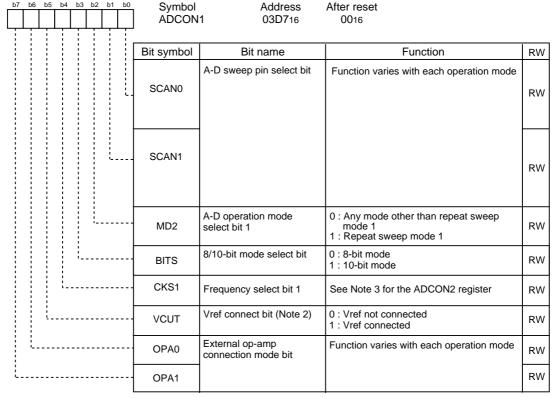



Figure 1.22.1. A-D Converter Block Diagram

A-D control register 0 (Note) Address After reset ADCON0 03D616 00000XXX2 Bit symbol Bit name **Function** RW CH₀ Analog input pin select bit Function varies with each operation mode RW CH1 RW RW CH₂ A-D operation mode 0 0: One-shot mode MD0 RW select bit 0 0 1 : Repeat mode 10: Single sweep mode MD1 1 1 : Repeat sweep mode 0 or RW Repeat sweep mode 1 0 : Software trigger Trigger select bit **TRG** RW 1: ADTRG trigger A-D conversion start flag 0: A-D conversion disabled ADST RW 1: A-D conversion started CKS0 Frequency select bit 0 See Note 3 for the ADCON2 register RW Note: If the ADCON0 register is rewritten during A-D conversion, the conversion result will be indeterminate.

A-D control register 1 (Note 1)

Note 1: If the ADCON1 register is rewritten during A-D conversion, the conversion result will be indeterminate.

Note 2: If the VCUT bit is reset from "0" (Vref unconnected) to "1" (Vref connected), wait for 1 μs or more before starting A-D conversion.

Figure 1.22.2. ADCON0 to ADCON1 Registers

A-D control register 2 (Note 1) Symbol Address After reset 0 ADCON2 03D416 0016 RW Bit symbol Bit name **Function** A-D conversion method 0: Without sample and hold SMP RW 1: With sample and hold select bit A-D input group select bit ADGSEL 0 0 0 : Port P10 group is selected RW 0 1 : Must not be set 10: Port P0 group is selected (Note 3) ADGSEL1 RW 1 1 : Port P2 group is selected Reserved bit Must always be set to "0" RW (b3)0: Selects fAD, fAD divided by 2, or fAD Frequency select bit 2 CKS2 RW divided by 4. (Note 3) 1: Selects fAD divided by 3, fAD divided by 6, or fAD divided by 12. Nothing is assigned. In an attempt to write to these bits, write "0". (b7-b5) The value, if read, turns out to be "0".

Note 1: If the ADCON2 register is rewritten during A-D conversion, the conversion result will be indeterminate.

Note 2: If VCC2 < VCC1, do not use AN00 to AN07 and AN20 to AN27 as analog input pins.

Note 3: The ØAD frequency must be 10 MHz or less. The selected ØAD frequency is determined by a combination of the ADCON0 register's CKS0 bit, ADCON1 register's CKS1 bit, and ADCON2 register's CKS2 bit.

CKS0	CKS1	CKS2	Øad
0	0	0	Divide-by-4 of fAD
0	0	1	Divide-by-2 of fAD
0	1	0	fAD
0	1	1	
1	0	0	Ddivide-by-12 of fAD
1	0	1	Divide-by-6 of fAD
1	1	0	Divide-by-3 of fAD
1	1	1	

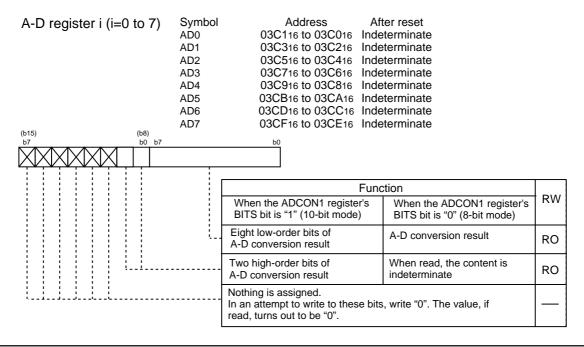


Figure 1.22.3. ADCON2 Register, and AD0 to AD7 Registers

(1) One-shot Mode

In this mode, the input voltage on one selected pin is A-D converted once. Table 1.22.2 shows the specifications of one-shot mode. Figure 1.22.4 shows the ADCON0 to ADCON1 registers in one-shot mode.

Table 1.22.2. One-shot Mode Specifications

Item	Specification
Function	The input voltage on one pin selected by the ADCON0 register's CH2 to CH0
	bits and ADCON2 register's ADGSEL1 to ADGSEL0 bits or the ADCON1
	register's OPA1 to OPA0 bits is A-D converted once.
A-D conversion start condition	When the ADCON0 register's TRG bit is "0" (software trigger)
	The ADCON0 register's ADST bit is set to "1" (A-D conversion starts)
	When the TRG bit is "1" (ADTRG trigger)
	Input on the ADTRG pin changes state from high to low after the ADST bit is
	set to "1" (A-D conversion starts)
A-D conversion stop condtision	Completion of A-D conversion (If a software trigger is selected, the ADST bit
	is cleared to "0" (A-D conversion halted).)
	• Set the ADST bit to "0"
Interrupt request generation timing	Completion of A-D conversion
Analog input pin (Note)	Select one pin from ANo to AN7, AN00 to AN07, AN20 to AN27, ANEX0 to ANEX1
Reading of result of A-D converter	Read one of the AD0 to AD7 registers that corresponds to the selected pin

Note: If VCC2 < VCC1, do not use AN00-AN07 and AN20-AN27 as analog input pins.

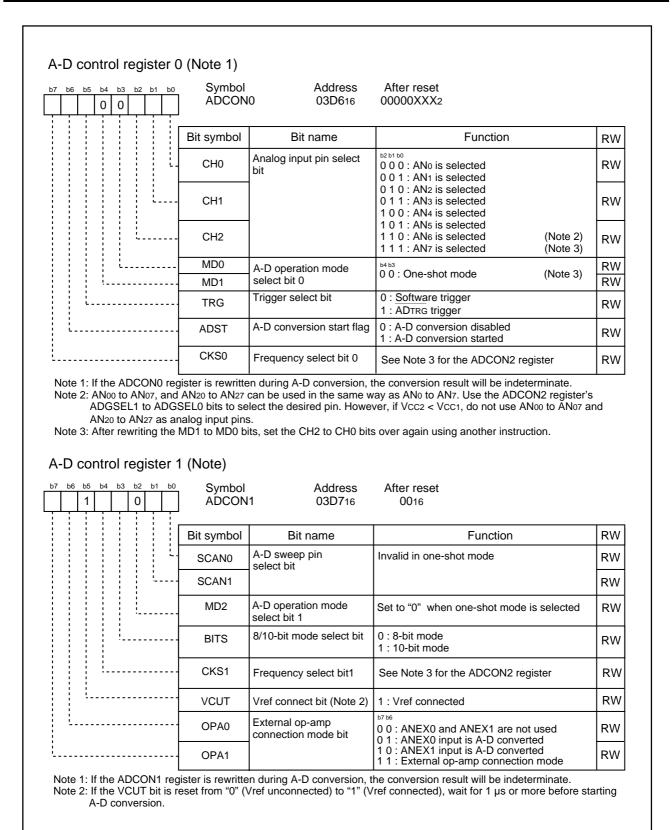


Figure 1.22.4. ADCON0 Register and ADCON1 Register (One-shot Mode)

(2) Repeat mode

In this mode, the input voltage on one selected pin is A-D converted repeatedly. Table 1.22.3 shows the specifications of repeat mode. Figure 1.22.5 shows the ADCON1 registers in repeat mode.

Table 1.22.3. Repeat Mode Specifications

Item	Specification
Function	The input voltage on one pin selected by the ADCON0 register's CH2 to CH0
	bits and ADCON2 register's ADGSEL1 to ADGSEL0 bits or the ADCON1
	register's OPA1 to OPA0 bits is A-D converted repeatdly.
A-D conversion start condition	When the ADCON0 register's TRG bit is "0" (software trigger)
	The ADCON0 register's ADST bit is set to "1" (A-D conversion starts)
	When the TRG bit is "1" (ADTRG trigger)
	Input on the ADTRG pin changes state from high to low after the ADST bit is
	set to "1" (A-D conversion starts)
A-D conversion stop condtision	Set the ADST bit to "0" (A-D conversion halted)
Interrupt request generation timing	None generated
Analog input pin (Note)	Select one pin from ANo to AN7, ANoo to AN07, AN20 to AN27, ANEXO to ANEX1
Reading of result of A-D converter	Read one of the AD0 to AD7 registers that corresponds to the selected pin

Note: If VCC2 < VCC1, do not use AN00-AN07 and AN20-AN27 as analog input pins.

RW

RW

RW

development

A-D control register 0 (Note 1) Address Symbol After reset 0 1 ADCON0 03D616 00000XXX2 Bit symbol RW Bit name **Function** Analog input pin CH₀ 0 0 0: ANo is selected RW select bit 0 0 1: AN1 is selected 0 1 0: AN2 is selected CH1 0 1 1: AN3 is selected RW 1 0 0 : AN4 is selected 1 0 1: AN5 is selected 1 1 0 : AN6 is selected (Note 2) CH2 RW 1 1 1: AN7 is selected (Note 3) MD0 RW A-D operation mode 01: Repeat mode (Note 3) select bit 0 MD1 RW Trigger select bit 0 : Software trigger **TRG** RW 1 : ADTRG trigger A-D conversion start flag 0: A-D conversion disabled **ADST** RW 1: A-D conversion started CKS0 Frequency select bit 0 See Note 3 for the ADCON2 register RW Note 1: If the ADCON0 register is rewritten during A-D conversion, the conversion result will be indeterminate. Note 2: ANot to ANor, and AN20 to AN27 can be used in the same way as ANo to AN7. Use the ADCON2 register's ADGSEL1 to ADGSEL0 bits to select the desired pin. However, if Vcc2 < Vcc1, do not use ANoo to ANo7 and AN20 to AN27 as analog input pins. Note 3: After rewriting the MD1 to MD0 bits, set the CH2 to CH0 bits over again using another instruction. A-D control register 1 (Note) Symbol Address After reset 1 0 ADCON1 03D716 0016 Bit symbol Bit name **Function** RW A-D sweep pin SCAN0 Invalid in repeat mode RW select bit SCAN1 RW A-D operation mode Set to "0" when this mode is selected MD2 RW select bit 1 8/10-bit mode select bit 0:8-bit mode BITS RW 1:10-bit mode CKS1 Frequency select bit 1 See Note 3 for the ADCON2 register RW

Note 1: If the ADCON1 register is rewritten during A-D conversion, the conversion result will be indeterminate.

Note 2: If the VCUT bit is reset from "0" (Vref unconnected) to "1" (Vref connected), wait for 1 μs or more before starting A-D conversion.

1: Vref connected

0 0: ANEX0 and ANEX1 are not used

11: External op-amp connection mode

0 1 : ANEX0 input is A-D converted 1 0 : ANEX1 input is A-D converted

Vref connect bit (Note 2)

External op-amp

connection mode bit

Figure 1.22.5. ADCON0 Register and ADCON1 Register (Repeat Mode)

VCUT

OPA0

OPA1

(3) Single Sweep Mode

In this mode, the input voltages on selected pins are A-D converted, one pin at a time. Table 1.22.4 shows the specifications of single sweep mode. Figure 1.22.6 shows the ADCON0 to ADCON1 registers in single sweep mode.

Table 1.22.4. Single Sweep Mode Specifications

Item	Specification
Function	The input voltages on pins selected by the ADCON1 register's SCAN1 to
	SCAN0 bits and ADCON2 register's ADGSEL1 to ADGSEL0 bits are A-D con-
	verted, one pin at a time.
A-D conversion start condition	When the ADCON0 register's TRG bit is "0" (software trigger)
	The ADCON0 register's ADST bit is set to "1" (A-D conversion starts)
	When the TRG bit is "1" (ADTRG trigger)
	Input on the ADTRG pin changes state from high to low after the ADST bit is
	set to "1" (A-D conversion starts)
A-D conversion stop condtision	• Completion of A-D conversion (If a software trigger is selected, the ADST bit
	is cleared to "0" (A-D conversion halted).)
	• Set the ADST bit to "0"
Interrupt request generation timing	Completion of A-D conversion
Analog input pin	Select from ANo to AN1 (2 pins), ANo to AN3 (4 pins), ANo to AN5 (6 pins), ANo
	to AN7 (8 pins) (Note)
Reading of result of A-D converter	Read one of the AD0 to AD7 registers that corresponds to the selected pin

Note: AN00 to AN07, and AN20 to AN27 can be used in the same way as AN0 to AN7. However, if VCC2 < VCC1, do not use AN00–AN07 and AN20–AN27 as analog input pins.

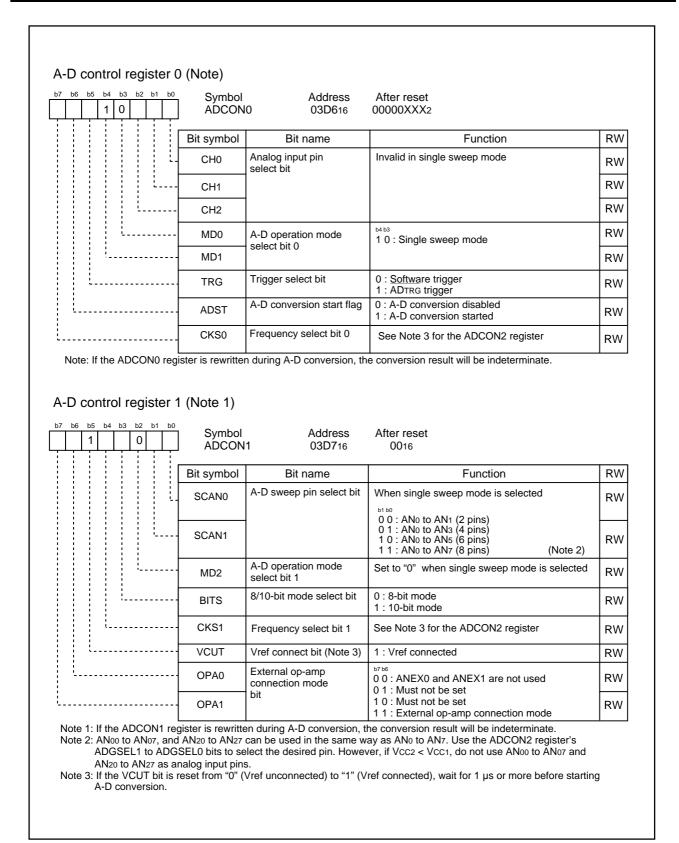


Figure 1.22.6. ADCON0 Register and ADCON1 Register (Single Sweep Mode)

(4) Repeat Sweep Mode 0

In this mode, the input voltages on selected pins are A-D converted repeatedly. Table 1.22.5 shows the specifications of repeat sweep mode 0. Figure 1.22.7 shows the ADCON0 to ADCON1 registers in repeat sweep mode 0.

Table 1.22.5. Repeat Sweep Mode 0 Specifications

Item	Specification
Function	The input voltages on pins selected by the ADCON1 register's SCAN1 to
	SCAN0 bits and ADCON2 register's ADGSEL1 to ADGSEL0 bits are A-D con-
	verted repeatdly.
A-D conversion start condition	When the ADCON0 register's TRG bit is "0" (software trigger)
	The ADCON0 register's ADST bit is set to "1" (A-D conversion starts)
	When the TRG bit is "1" (ADTRG trigger)
	Input on the ADTRG pin changes state from high to low after the ADST bit is
	set to "1" (A-D conversion starts)
A-D conversion stop condtision	Set the ADST bit to "0" (A-D conversion halted)
Interrupt request generation timing	None generated
Analog input pin	Select from ANo to AN1 (2 pins), ANo to AN3 (4 pins), ANo to AN5 (6 pins), ANo
	to AN7 (8 pins) (Note)
Reading of result of A-D converter	Read one of the AD0 to AD7 registers that corresponds to the selected pin

Note: AN00 to AN07, and AN20 to AN27 can be used in the same way as AN0 to AN7. However, if VCC2 < VCC1, do not use AN00–AN07 and AN20–AN27 as analog input pins.

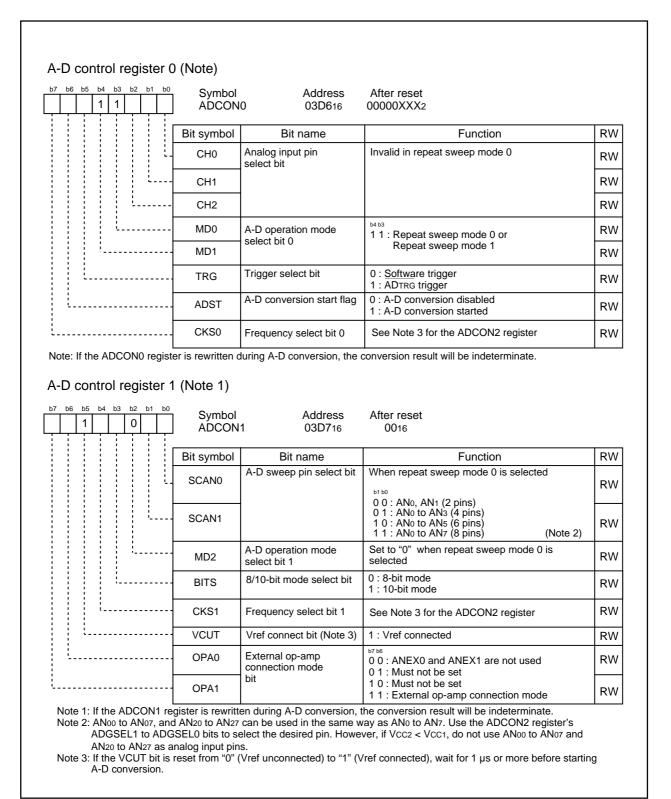


Figure 1.22.7. ADCON0 Register and ADCON1 Registers (Repeat Sweep Mode 0)

(5) Repeat Sweep Mode 1

In this mode, the input voltages on all pins are A-D converted repeatedly, with priority given to the selected pins. Table 1.22.6 shows the specifications of repeat sweep mode 1. Figure 1.22.8 shows the ADCON0 to ADCON1 registers in repeat sweep mode 1.

Table 1.22.6. Repeat Sweep Mode 1 Specifications

Item	Specification
Function	The input voltages on all pins selected by the ADCON2 register's ADGSEL1 to
	ADGSEL0 bits are A-D converted repeatdly, with priority given to pins se-
	lected by the ADCON1 register's SCAN1 to SCAN0 bits and ADGSEL1 to
	ADGSEL0 bits.
	Example: If ANo selected, input voltages are A-D converted in order of
	AN0 \rightarrow AN1 \rightarrow AN0 \rightarrow AN2 \rightarrow AN0 \rightarrow AN3, and so on.
A-D conversion start condition	When the ADCON0 register's TRG bit is "0" (software trigger)
	The ADCON0 register's ADST bit is set to "1" (A-D conversion starts)
	When the TRG bit is "1" (ADTRG trigger)
	Input on the ADTRG pin changes state from high to low after the ADST bit is
	set to "1" (A-D conversion starts)
A-D conversion stop condtision	Set the ADST bit to "0" (A-D conversion halted)
Interrupt request generation timing	None generated
Analog input pins to be given	Select from ANo (1 pins), ANo to AN1 (2 pins), ANo to AN2 (3 pins), ANo to AN3
priority when A-D converted	(4 pins) (Note)
Reading of result of A-D converter	Read one of the AD0 to AD7 registers that corresponds to the selected pin

Note: AN00 to AN07, and AN20 to AN27 can be used in the same way as AN0 to AN7. However, if VCC2 < VCC1, do not use AN00–AN07 and AN20–AN27 as analog input pins.

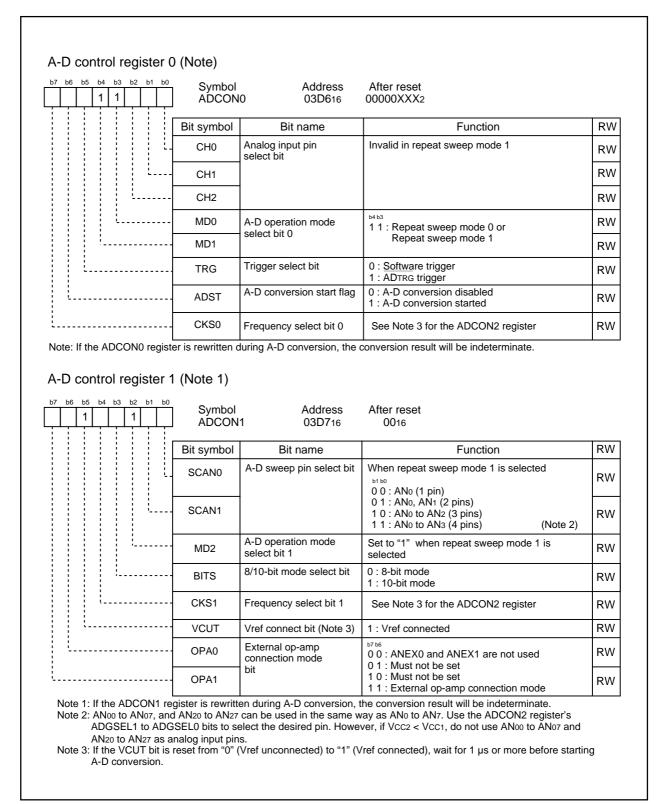


Figure 1.22.8. ADCON0 Register and ADCON1 Register (Repeat Sweep Mode 1)

Under

(a) Resolution Select Function

The desired resolution can be selected using the ADCON1 register's BITS bit. If the BITS bit is set to "1" (10-bit conversion accuracy), the A-D conversion result is stored in the ADi register (i = 0 to 7)'s bit 0 to bit 9. If the BITS bit is set to "0" (8-bit conversion accuracy), the A-D conversion result is stored in the ADi register's bit 0 to bit 7.

(b) Sample and Hold

If the ADCON2 register's SMP bit is set to "1" (with sample-and-hold), the conversion speed per pin is increased to 28 ØAD cycles for 8-bit resolution or 33 ØAD cycles for 10-bit resolution. Sample-and-hold is effective in all operation modes. Select whether or not to use the sample-and-hold function before starting A-D conversion.

(c) Extended Analog Input Pins

In one-shot and repeat modes, the ANEX0 and ANEX1 pins can be used as analog input pins. Use the ADCON1 register's OPA1 to OPA0 bits to select whether or not use ANEX0 and ANEX1.

The A-D conversion results of ANEX0 and ANEX1 inputs are stored in the AD0 and AD1 registers, respectively.

(d) External Operation Amp Connection Mode

Multiple analog inputs can be amplified using a single external op-amp via the ANXE0 and ANEX1 pins. Set the ADCON1 register's OPA1 OPA0 bits to '112' (external op-amp connection mode). The inputs from ANi (i = 0 to 7) (Note 1) are output from the ANEXO pin. Amplify this output with an external op-amp before sending it back to the ANEX1 pin. The A-D conversion result is stored in the corresponding ADi register. The A-D conversion speed depends on the response characteristics of the external op-amp. Note that the ANXE0 and ANEX1 pins cannot be directly connected to each other. Figure 1.22.9 is an example of how to connect the pins in external operation amp.

Note: ANoi and AN2i can be used the same as ANi. However, if VCC2 < VCC1, do not use ANoi and AN2i as analog input pins.

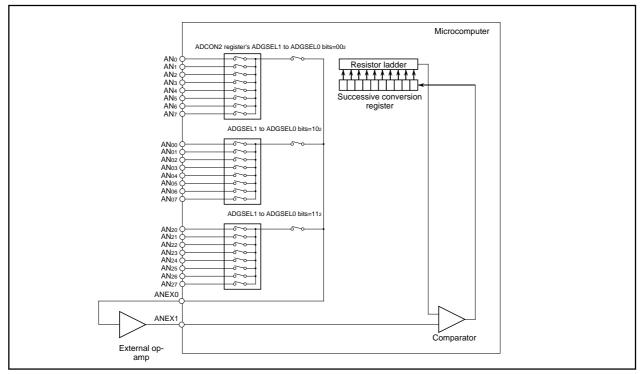


Figure 1.22.9. External Op-amp Connection

(e) Current Consumption Reducing Function

When not using the A-D converter, its resistor ladder and reference voltage input pin (VREF) can be separated using the ADCON1 register's VCUT bit. When separated, no current will flow from the VREF pin into the resistor ladder, helping to reduce the power consumption of the chip.

To use the A-D converter, set the VCUT bit to "1" (VREF connected) and then set the ADCON0 register's ADST bit to "1" (A-D conversion start). The VCUT and ADST bits cannot be set to "1" at the same time. Nor can the VCUT bit be set to "0" (VREF unconnected) during A-D conversion.

Note that this does not affect VREF for the D-A converter (irrelevant).

(f) Analog Input Pin and External Sensor Equivalent Circuit Example

Figure 1.22.10 shows analog input pin and external sensor equivalent circuit example.

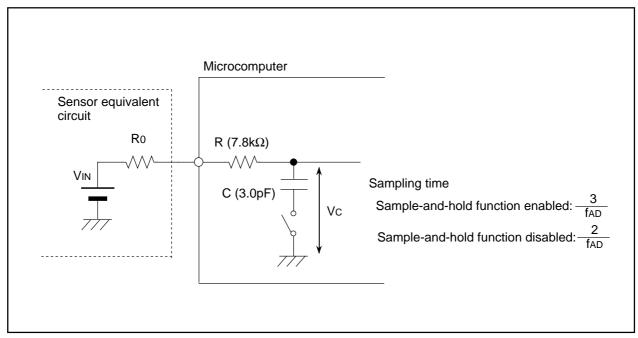


Figure 1.22.10. Analog Input Pin and External Sensor Equivalent Circuit

(g) Caution of Using A-D Converter

- (1) Make sure the port direction bits for those pins that are used as analog inputs are set to "0" (input mode). Also, if the ADCON0 register's TGR bit = 1 (external trigger), make sure the port direction bit for the ADTRG pin is set to "0" (input mode).
- (2) When using key input interrupts, do not use any of the four AN4 to AN7 pins as analog inputs. (A key input interrupt request is generated when the A-D input voltage goes low.)
- (3) To prevent noise-induced device malfunction or latchup, as well as to reduce conversion errors, insert capacitors between the AVCC, VREF, and analog input pins (ANi (i=0 to 7), ANoi, and AN2i) each and the AVss pin. Similarly, insert a capacitor between the VCC pin and the Vss pin. Figure 1.22.11 is an example connection of each pin.
- (4) If VCC2 < VCC1, do not use AN00 to AN07 and AN20 to AN27 as analog input pins.
- (5) If the CPU reads the ADi register (i = 0 to 7) at the same time the conversion result is stored in the ADi register after completion of A-D conversion, an incorrect value may be stored in the ADi register. This problem occurs when a divide-by-n clock derived from the main clock or a subclock is selected for CPU clock.
 - When operating in one-shot or single-sweep mode
 Check to see that A-D conversion is completed before reading the target ADi register. (Check the IR bit in the ADIC register to see if A-D conversion is completed.)
 - When operating in repeat mode or repeat sweep mode 0 or 1
 Use the main clock for CPU clock directly without dividing it.
- (6) If A-D conversion is forcibly terminated while in progress by setting the ADCON0 register's ADST bit to "0" (A-D conversion halted), the conversion result of the A-D converter is indeterminate. The contents of ADi registers irrelevant to A-D conversion may also become indeterminate. If while A-D conversion is underway the ADST bit is cleared to "0" in a program, ignore the values of all ADi registers.

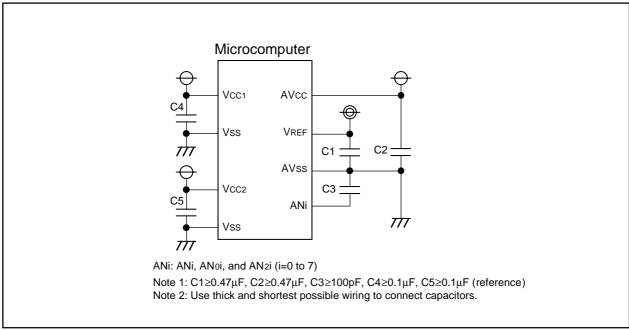


Figure 1.22.11. Vcc, Vss, AVcc, AVss, VREF and ANi Connection

D-A Converter

D-A Converter

This is an 8-bit, R-2R type D-A converter. These are two independent D-A converters.

D-A conversion is performed by writing to the DAi register (i = 0 to 1). To output the result of conversion, set the DACON register's DAiE bit to "1" (output enabled). Before D-A conversion can be used, the corresponding port direction bit must be cleared to "0" (input mode). Setting the DAiE bit to "1" removes a pull-up from the corresponding port.

Output analog voltage (V) is determined by a set value (n : decimal) in the DAi register.

V = VREF X n / 256 (n = 0 to 255)

VREF: reference voltage

Table 1.23.1 lists the performance of the D-A converter. Figure 1.23.1 shows the block diagram of the D-A converter. Figure 1.23.2 shows the D-A converter related registers. Figure 1.23.3 shows the D-A converter equivalent circuit.

Table 1.23.1. D-A Converter Performance

Item	Performance
D-A conversion method	R-2R method
Resolution	8 bits
Analog output pin	2 (DA0 and DA1)

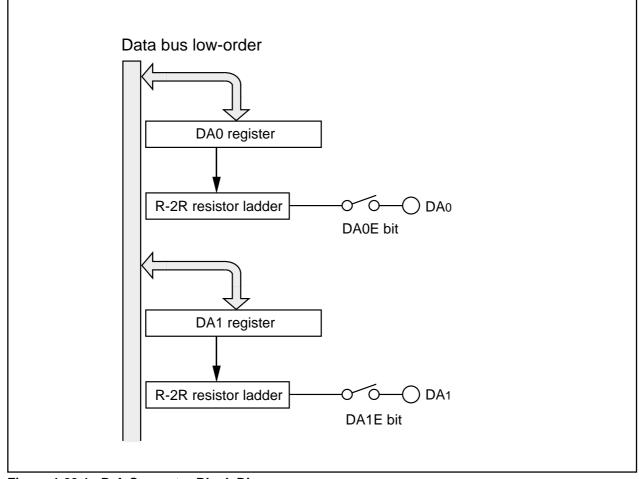


Figure 1.23.1. D-A Converter Block Diagram

^{qe_nelobwe_{ut} Nuqe_t}

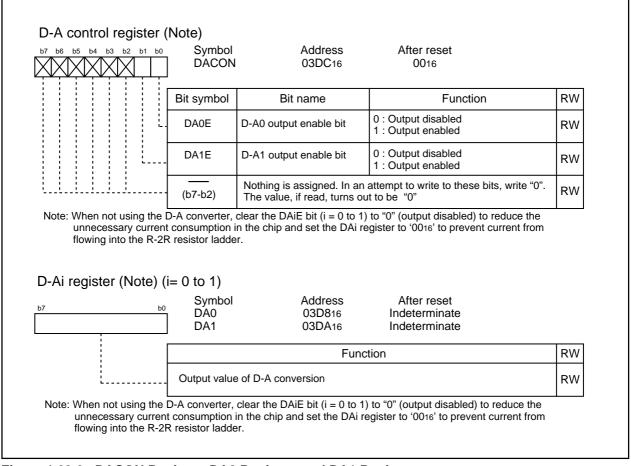


Figure 1.23.2. DACON Register, DA0 Register, and DA1 Register

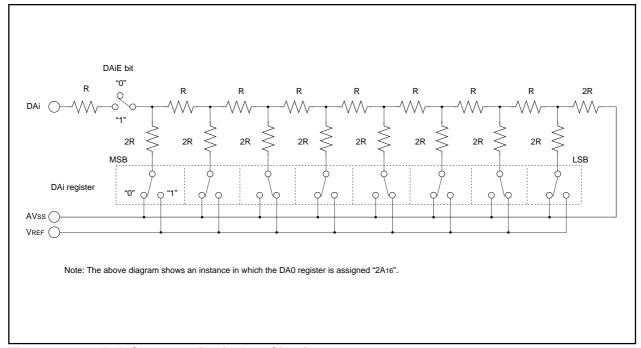


Figure 1.23.3. D-A Converter Equivalent Circuit

CRC Calculation

The Cyclic Redundancy Check (CRC) operation detects an error in data blocks. The microcomputer uses a generator polynomial of CRC_CCITT ($X^{16} + X^{12} + X^5 + 1$) to generate CRC code.

The CRC code consists of 16 bits which are generated for each data block in given length, separated in 8 bit units. After the initial value is set in the CRCD register, the CRC code is set in that register each time one byte of data is written to the CRCIN register. CRC code generation for one-byte data is finished in two cycles.

Figure 1.24.1 shows the block diagram of the CRC circuit. Figure 1.24.2 shows the CRC-related registers. Figure 1.24.3 shows the calculation example using the CRC operation.

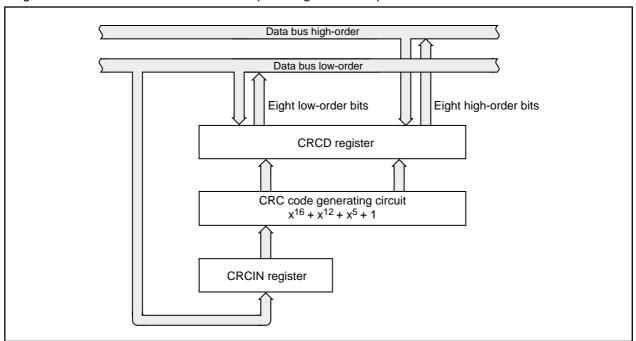


Figure 1.24.1. CRC Circuit Block Diagram

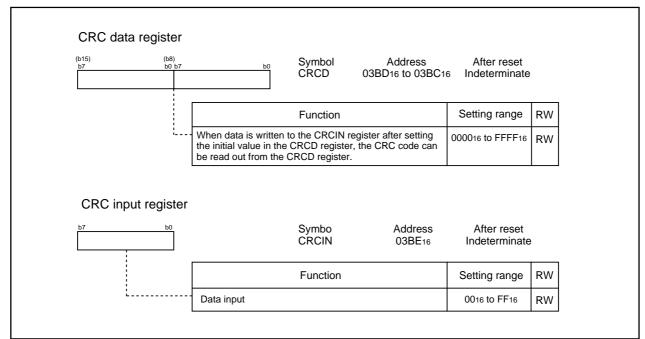
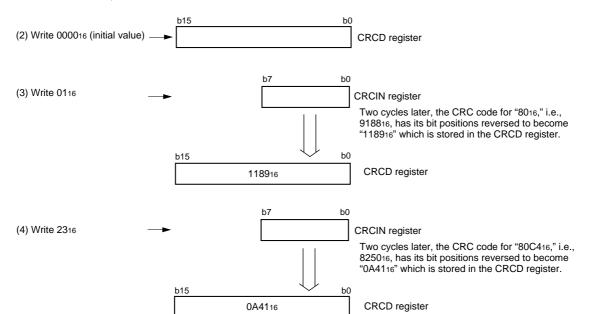


Figure 1.24.2. CRCD Register and CRCIN Register

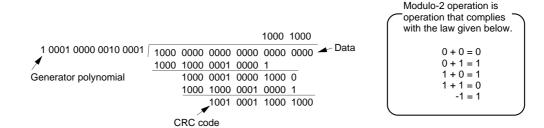
Under

Setup procedure and CRC operation when generating CRC code "80C416"


(a) CRC operation performed by the M16C

CRC code: Remainder of a division in which the value written to the CRCIN register with its bit positions reversed is divided by the generator polynomial

Generator polynomial: $X^{16} + X^{12} + X^5 + 1$ (1 0001 0000 0010 00012)


- (b) Setting procedure
- (1) Reverse the bit positions of the value "80C416" bytewise in a program.

"8016" \rightarrow "0116", "C416" \rightarrow "2316"

(c) Details of CRC operation

In the case of (3) above, the value written to the CRCIN register "0116 (000000012)" has its bit positions reversed to become "100000002." The value "1000 0000 0000 0000 00002" derived from that by adding 16 digits and the CRCD register's initial value "000016" are added, the result of which is divided by the generator polynomial using modulo-2 arithmetic.

The value "0001 0001 1000 10012 (118916)" derived from the remainder "1001 0001 1000 10002 (918816)" by reversing its bit positions may be read from the CRCD register.

If operation (4) above is performed subsequently, the value written to the CRCIN register "2316 (001000112)" has its bit positions reversed to become "110001002. The value "1100 0100 0000 0000 0000 00002" derived from that by adding 16 digits and the remainder in (3) "1001 0001 1000 10002" which is left in the CRCD register are added, the result of which is divided by the generator polynomial using modulo-2 arithmetic.

The value "0000 1010 0100 00012 (0A4116)" derived from the remainder by reversing its bit positions may be read from the CRCD register.

Figure 1.24.3. CRC Calculation

Programmable I/O Ports

The programmable input/output ports (hereafter referred to simply as "I/O ports") consist of 87 lines P0 to P10 (except P85) for the 100-pin version, or 113 lines P0 to P14 (except P85) for the 128-pin version. Each port can be set for input or output every line by using a direction register, and can also be chosen to be or not be pulled high every 4 lines. P85 is an input-only port and does not have a pull-up resistor. Port P85 shares the pin with $\overline{\text{NMI}}$, so that the $\overline{\text{NMI}}$ input level can be read from the P8 register P8_5 bit.

Figures 1.25.1 to 1.25.4 show the I/O ports. Figure 1.25.5 shows the I/O pins.

Each pin functions as an I/O port, a peripheral function input/output, or a bus control pin.

For details on how to set peripheral functions, refer to each functional description in this manual. If any pin is used as a peripheral function input or D-A converter output pin, set the direction bit for that pin to "0" (input mode). Any pin used as an output pin for peripheral functions other than the D-A converter is directed for output no matter how the corresponding direction bit is set.

When using any pin as a bus control pin, refer to "Bus Control."

P0 to P5, P12, and P13 are capable of Vcc2-level input/output; P6 to P11 and P14 are capable of Vcc1-level input/output.

(1) Port Pi Direction Register (PDi Register, i = 0 to 13)

Figure 1.25.6 shows the direction registers.

This register selects whether the I/O port is to be used for input or output. The bits in this register correspond one for one to each port.

During memory extension and microprocessor modes, the PDi registers for the pins functioning as bus control pins (Ao to A19, Do to D15, \overline{CSO} to $\overline{CS3}$, \overline{RD} , $\overline{WRL/WR}$, $\overline{WRH/BHE}$, \overline{ALE} , \overline{RDY} , \overline{HOLD} , \overline{HLDA} , and BCLK) cannot be modified.

No direction register bit for P85 is available.

(2) Port Pi Register (Pi Register, i = 0 to 13)

Figure 1.25.7 and 1.25.8 show the Pi registers.

Data input/output to and from external devices are accomplished by reading and writing to the Pi register. The Pi register consists of a port latch to hold the input/output data and a circuit to read the pin status. For ports set for input mode, the input level of the pin can be read by reading the corresponding Pi register, and data can be written to the port latch by writing to the Pi register.

For ports set for output mode, the port latch can be read by reading the corresponding Pi register, and data can be written to the port latch by writing to the Pi register. The data written to the port latch is output from the pin. The bits in the Pi register correspond one for one to each port.

During memory extension and microprocessor modes, the PDi registers for the pins functioning as bus control pins (Ao to A19, Do to D15, \overline{CSO} to $\overline{CS3}$, \overline{RD} , $\overline{WRL/WR}$, $\overline{WRH/BHE}$, \overline{ALE} , \overline{RDY} , \overline{HOLD} , \overline{HLDA} , and BCLK) cannot be modified.

(3) Pull-up Control Register 0 to Pull-up Control Register 2 (PUR0 to PUR2 Registers) Figure 1.25.9 shows the PUR0 to PUR2 registers.

The PUR0 to PUR2 register bits can be used to select whether or not to pull the corresponding port high in 4 bit units. The port chosen to be pulled high has a pull-up resistor connected to it when the direction bit is set for input mode.

However, the pull-up control register has no effect on P0 to P3, P40 to P43, and P5 during memory extension and microprocessor modes. Although the register contents can be modified, no pull-up resistors are connected.

(4) Port Control Register

Figure 1.25.10 shows the port control register.

When the P1 register is read after setting the PCR register's PCR0 bit to "1", the corresponding port latch can be read no matter how the PD1 register is set.

Programmable I/O Ports

^{qe_nelobweu}t Nuqe_t

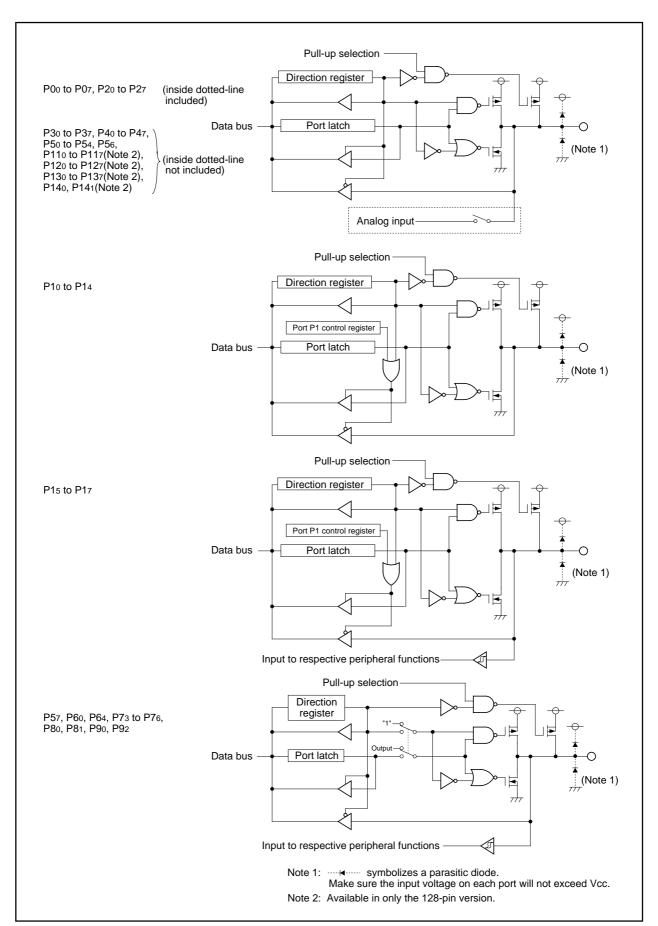


Figure 1.25.1. I/O Ports (1)

^{de_Aelobweu}t

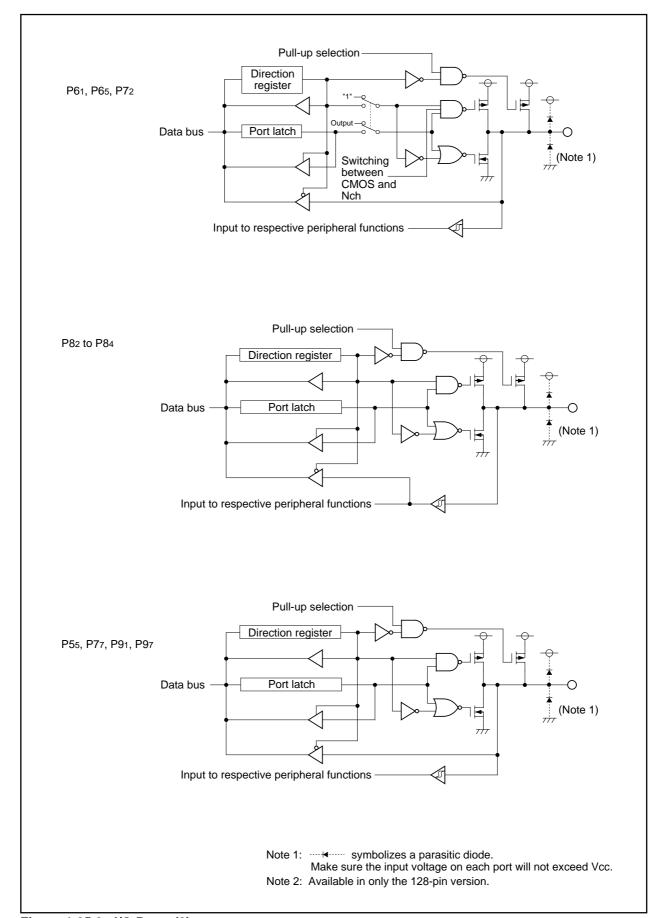


Figure 1.25.2. I/O Ports (2)

development Programmable I/O Ports

Under

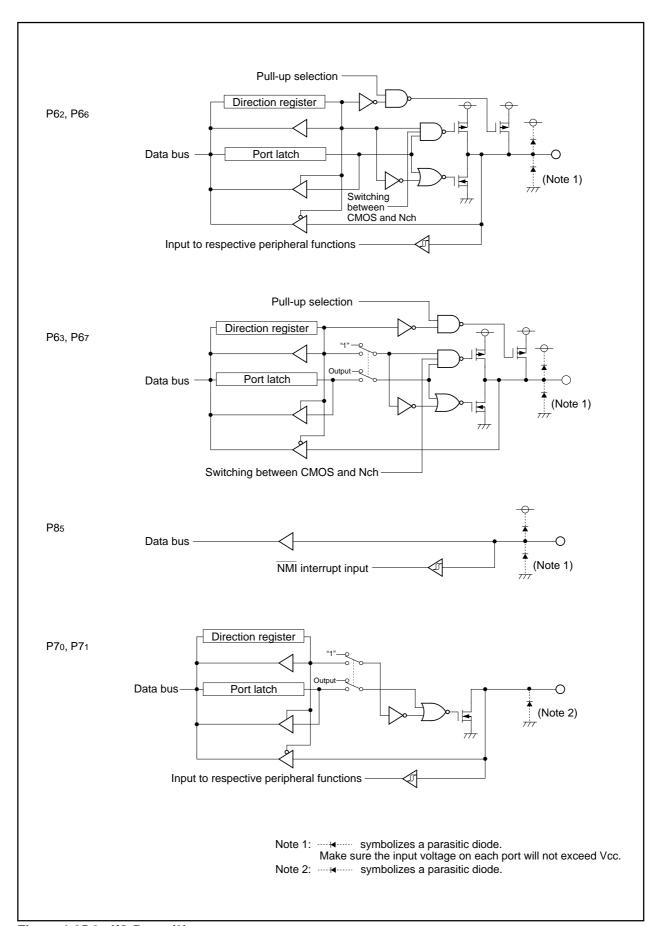


Figure 1.25.3. I/O Ports (3)

^{develobwe}ut

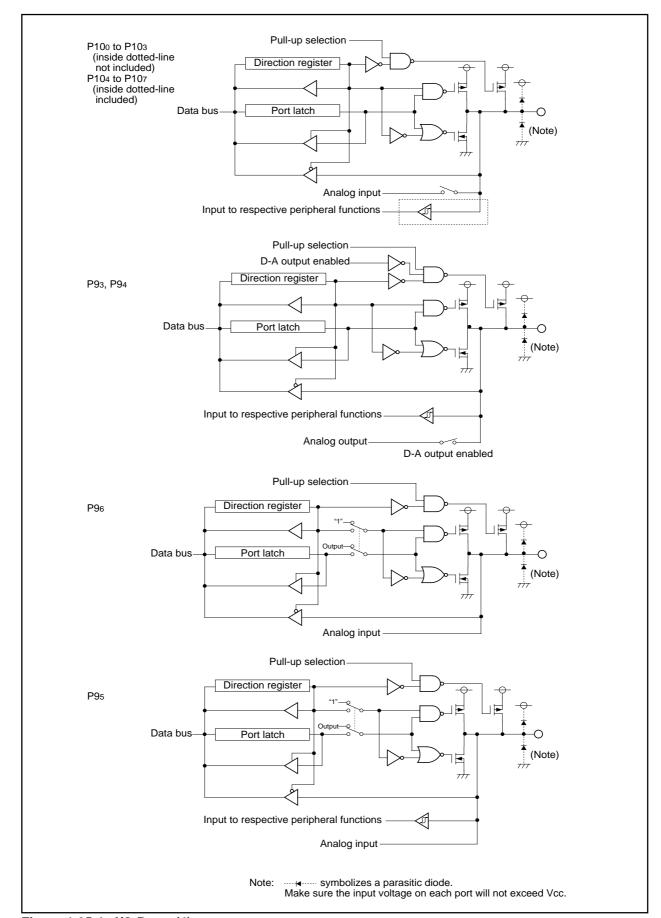


Figure 1.25.4. I/O Ports (4)

Programmable I/O Ports

Under

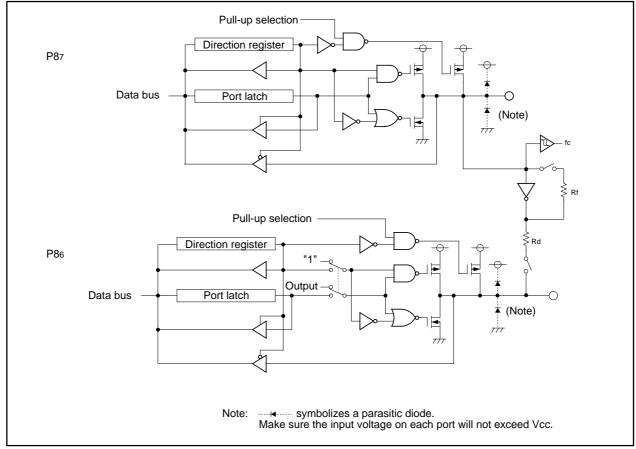


Figure 1.25.5. I/O Ports (5)

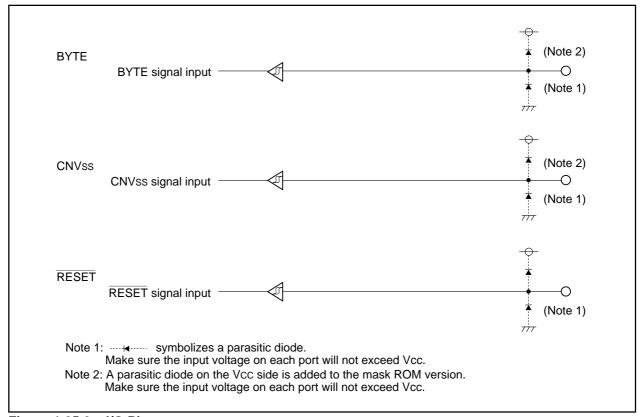


Figure 1.25.6. I/O Pins

Note 1: Make sure the PD9 register is written to by the next instruction after setting the PRCR register's PRC2 bit to "1" (write enabled).

- Note 2: During memory extension and microprocessor modes, the PD register for the pins functioning as bus control pins (Ao to A19, Do to D15, CSo to CS3, RD, WRL/WR, WRH/BHE, ALE, RDY, HOLD, HLDA and BCLK) cannot be modified.
- Note 3: To use ports P11 to P14, set the PUR3 register's PU37 bit to "1" (enable). If this bit is set to "0" (disable), the P11 to P14 pins are placed in the high-impedance state.

Port P8 direction register

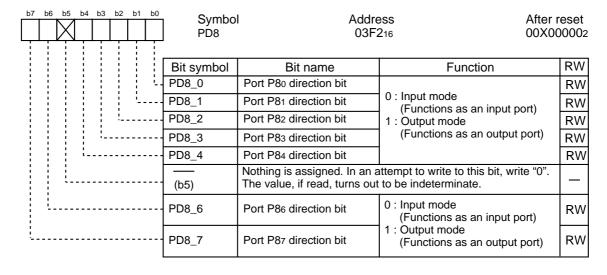
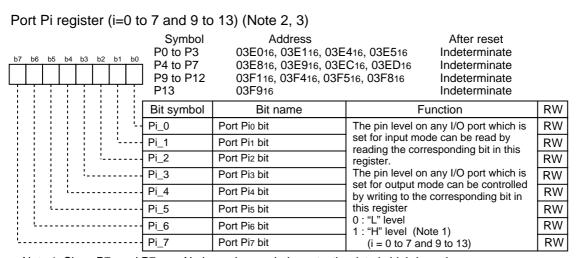



Figure 1.25.7. PD0 to PD13 Registers

Note 1: Since P7₀ and P7₁ are N-channel open drain ports, the data is high-impedance.

Note 2: During memory extension and microprocessor modes, the Pi register for the pins functioning as bus control pins (Ao to A19, Do to D15, CSo to CS3, RD, WRL/WR, WRH/BHE, ALE, RDY, HOLD, HLDA and BCLK) cannot be modified.

Note 3: To use ports P11 to P14, set the PUR3 register's PU37 bit to "1" (enable). If this bit is set to "0" (disable), the P11 to P14 registers are cleared to '0016' and the P11 to P14 pins are placed in the high-impedance state.

Port P8 register

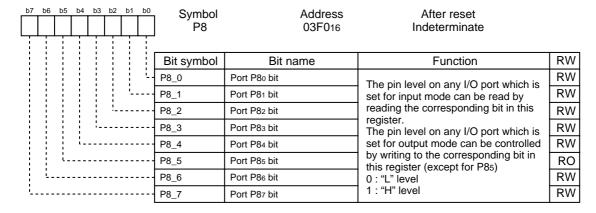


Figure 1.25.8. P0 to P13 Registers

development Programmable I/O Ports

Under

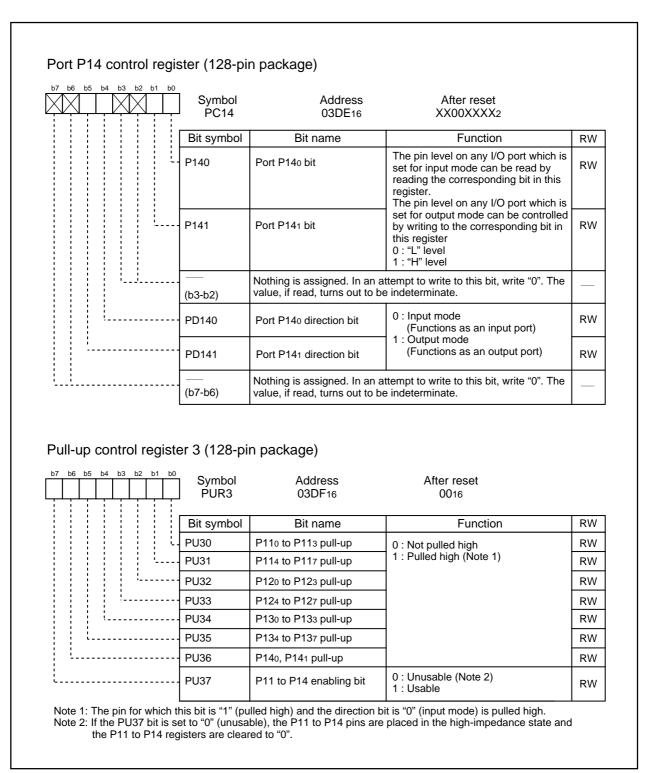
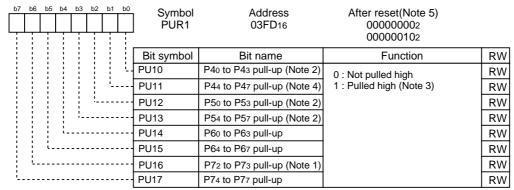


Figure 1.25.9. PC14 Register and PUR3 Register

Programmable I/O Ports


Under

Pull-up control register 0 (Note 1) Symbol Address After reset **PUR0** 03FC16 0016 Bit symbol RW Bit name **Function** PU00 P00 to P03 pull-up RW 0: Not pulled high PU01 P04 to P07 pull-up 1 : Pulled high (Note 2) RW PU02 P10 to P13 pull-up RW PU03 P14 to P17 pull-up RW PU04 RW P20 to P23 pull-up PU05 RW P24 to P27 pull-up RW P30 to P33 pull-up PU06 PU07 P34 to P37 pull-up RW

Note 1: During memory extension and microprocessor modes, the pins are not pulled high although their corresponding register contents can be modified.

Note 2: The pin for which this bit is "1" (pulled high) and the direction bit is "0" (input mode) is pulled high.

Pull-up control register 1

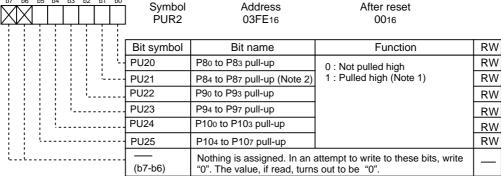
Note 1: The P70 and P71 pins do not have pull-ups

Note 2: During memory extension and microprocessor modes, the pins are not pulled high although the contents of these bits can be modified.

Note 3: The pin for which this bit is "1" (pulled high) and the direction bit is "0" (input mode) is pulled high.

Note 4: If the PM01 to PM00 bits are set to "012" (memory expansion mode) or "112" (microprocessor mode) in a program during single-chip mode, the PU11 bit becomes "1".

Note 5: The values after hardware reset 1 and 2 are as follows:


- 000000002 when input on CNVss pin is "L
- 000000102 when input on CNVss pin is "H"

The values after software reset, watchdog timer reset and oscillation stop detection reset are as follows:

• 000000002 when PM 01 to PM00 bits of PM0 register are "002" (single-chip mode)

- 000000102 when PM 01 to PM00 bits of PM0 register are "012" (memory expansion mode) or "112" (microprocessor mode)

Pull-up control register 2

Note 1: The pin for which this bit is "1" (pulled high) and the direction bit is "0" (input mode) is pulled high. Note 2: The P85 pin does not have pull-up.

Figure 1.25.10. PUR0 to PUR2 Registers

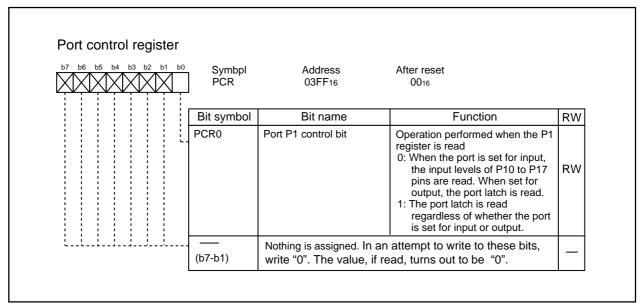


Figure 1.25.11. PCR Register

Table 1.25.1. Unassigned Pin Handling in Single-chip Mode

Pin name	Connection
Ports P0 to P14 (excluding P85)	After setting for input mode, connect every pin to Vss via a resistor(pull-down); or after setting for output mode, leave these pins open. (Note 2)
XOUT (Note 1)	Open
NMI	Connect via resistor to Vcc (pull-up)
AVcc	Connect to Vcc
AVSS, VREF, BYTE	Connect to Vss

Note 1: With external clock input to XIN pin.

Note 2: When not using all of the P11 to P14, the P11 to P14 pins may be left open by setting the PUR3 register's PU37 bit to "0" (unusable) without causing any problem.

Table 1.25.2. Unassigned Pin Handling in Memory Expansion Mode and Microprocessor Mode

Pin name	Connection
Ports P6 to P10 (excluding P85)	After setting for input mode, connect every pin to Vss via a resistor (pull-down); or after setting for output mode, leave these pins open.
P45 / CS1 to P47 / CS3	Connect to Vcc via a resistor (pulled high) by setting the PD4 register's corresponding direction bit for CSi (i=1 to 3) to "0" (input mode) and the CSR register's CSi bit to "0" (chip select disabled).
BHE, ALE, HLDA, XOUT (Note 1), BCLK (Note 2)	Open
HOLD, RDY, NMI	Connect via resistor to VCC (pull-up)
AVcc	Connect to Vcc
AVSS, VREF	Connect to Vss

Note 1: With external clock input to XIN pin.

Note 2: If the PM0 register's PM07 bit is set to "1" (BCLK not output), connect this pin to VCC via a resistor (pulled high).

Note 3: When not using all of the P11 to P14, the P11 to P14 pins may be left open by setting the PUR3 register's PU37 bit to "0" (unusable) without causing any problem.

^{de_Aelobweu}t

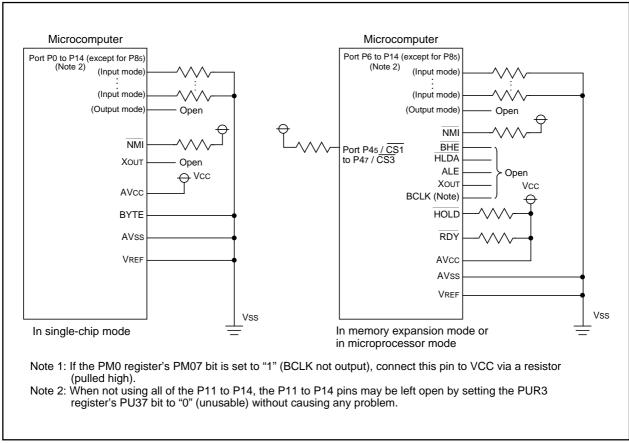


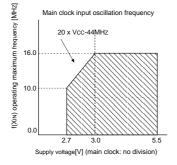
Figure 1.25.12. Unassigned Pins Handling

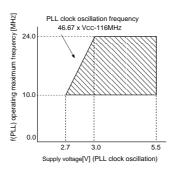
Electrical Characteristics

Table 1.26.1. Absolute Maximum Ratings

Symbol		Parameter	Condition	Rated value	Unit
VCC1, VCC2	Supply vol	tage	Vcc1=AVcc	-0.3 to 6.5	V
VCC2	Supply vol	tage	Vcc2	-0.3 to Vcc1+0.1	V
AVcc	Analog sup	oply voltage	Vcc1=AVcc	-0.3 to 6.5	V
Vı	Input voltage	RESET, CNVss, BYTE, P60 to P67, P72 to P77, P80 to P87, P90 to P97, P100 to P107, P110 to P117, P140, P141, VREF, XIN		-0.3 to Vcc1+0.3	V
		P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P120 to P127, P130 to P137		-0.3 to Vcc2+0.3	V
		P70, P71		-0.3 to 6.5	V
	Output voltage	P60 to P67, P72 to P77, P80 to P84, P86, P87, P90 to P97, P100 to P107, P110 to P117, P140, P141, XOUT		-0.3 to Vcc1+0.3	V
Vo		P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P120 to P127, P130 to P137		-0.3 to Vcc2+0.3	V
		P70, P71		-0.3 to 6.5	V
Pd	Power diss	sipation	Topr=25 °C	300	mW
Topr	Operating	ambient temperature		-20 to 85 / -40 to 85	°C
Tstg	Storage te	mperature		-65 to 150	°C

*Nuge*_t


Table 1.26.2. Recommended Operating Conditions (Note 1)


Cumbal		Parameter		Standard		Unit	
Symbol				Min.	Тур.	Max.	Unit
VCC1, VCC2	Supply voltag	ge(Vcc1≥vcc2)		2.7	5.0	5.5	V
	Analog supply	y voltage		Vcc1		V	
Vss	Supply voltag	je			0		V
AVss	Analog supply	y voltage			0		V
	HIGH input	P31 to P37, P40 to P47, P50 to P57, P120		0.8Vcc2		VCC2	V
	voltage	P00 to P07, P10 to P17, P20 to P27, P30 (during single-chip mode)	0.8Vcc2		Vcc2	V
VIH		P00 to P07, P10 to P17, P20 to P27, P30 (data input function during memory expansion	and microprocessor modes)	0.5Vcc2		VCC2	V
		P60 to P67, P72 to P77, P80 to P87, P90 to P110 to P117, P140, P141, XIN, RESET, CNVss, BYTE	o P97, P100 to P107,	0.8Vcc1		Vcc1	V
AVCC		P70 , P71		0.8Vcc1		6.5	V
	LOW input	P31 to P37, P40 to P47, P50 to P57, P120	to P127, P130 to P137	0		Max. 5.5 Vcc2 Vcc2 Vcc2 Vcc2 Vcc2	V
	voltage	P00 to P07, P10 to P17, P20 to P27, P30 (during single-chip mode)	0		0.2Vcc2	V
VIL		P00 to P07, P10 to P17, P20 to P27, P30 (data input function during memory expansion	and microprocessor modes)	0		0.16Vcc2	V
		P60 to P67, P70 to P77, P80 to P87, P90 to P110 to P117, P140, P141, XIN, RESET, CNVss, BYTE	o P97, P100 to P107,	0		0.2Vcc1	V
I _{OH} (peak)	XIN, RESE1, CNVss, BYTE					-10.0	mA
I _{OH} (avg)	HIGH averag output curren		67,P72 to P77, 100 to P107,			-5.0	mA
I _{OL (peak)}	LOW peak ou current	putput P00 to P07, P10 to P17, P20 to P2 P40 to P47, P50 to P57, P60 to P6 P80 to P84,P86,P87,P90 to P97,P P110 to P117, P120 to P127, P13	67,P70 to P77, 100 to P107,			10.0	mA
I _{OL (avg)}	LOW average output curren		67,P70 to P77, 100 to P107,			5.0	mA
f (YINI)	Main clock in	put oscillation frequency	Vcc=3.0 to 5.5V	0		16	MHz
1 (AIIV)	(Note 4)		Vcc=2.7 to 3.0V	0		20 X Vcc-44	MHz
. ,	Sub-clock osc	cillation frequency	•		32.768	50	kHz
f (Ring)	Ring oscillation	' '			1		MHz
f (PLL)	PLL clock osc	cillation frequency (Note 4)	Vcc=3.0 to 5.5V	10		24	MHz
			Vcc=2.7 to 3.0V	10		116	MHz
f (BCLK)	CPU operatio		T	0		24	MHz
Tsu(PLL)	PLL frequenc	y synthesizer stabilization wait time	Vcc=5.0V			20	ms
			Vcc=3.0V			50	ms

Note 1: Referenced to Vcc = Vcc1 = Vcc2 = 2.7 to 5.5V at Topr = -20 to 85 °C / -40 to 85 °C unless otherwise specified.

Note 2: The mean output current is the mean value within 100ms.

Note 4: Relationship between main clock oscillation frequency, PLL clock oscillation frequency and supply voltage.

Note 3: The total IoL (peak) for ports P0, P1, P2, P86, P87, P9, P10, P11, P140 and P141 must be 80mA max. The total IoL (peak) for ports P3, P4, P5, P6, P7, P80 to P84, P12, and P13 must be 80mA max. The total IoH (peak) for ports P0, P1, and P2 must be -40mA max. The total IoH (peak) for ports P3, P4, P5, P12, and P13 must be -40mA max. The total IoH (peak) for ports P6, P7, and P8o to P84 must be -40mA max. The total IoH (peak) for ports P86, P87, P9, P10, P11, P14o, and P141 must be -40mA max.

Table 1.26.3. A-D Conversion Characteristics (Note 1)

Curahal		Donomoton		Measuring condition	S	tandar	d	Unit
Symbol		Parameter	ľ	Min.	Тур.	Max.	Unit	
_	Resolutio	n	VREF =\				10	Bits
			VREF=	ANo to AN7 input			±3	LSB
INL	Integral non- linearity error	10 bit	VCC1= 5V	ANEX0, ANEX1 input External operation amp connection mode AN00 to AN07 input AN20 to AN27 input			±7	LSB
			VREF=	ANo to AN7 input			±5	LSB
			VCC1= 3.3V	ANEX0, ANEX1 input External operation amp connection mode ANoo to ANo7 input AN20 to AN27 input			±7	LSB
		8 bit	VREF =V	cc1=3.3V			±2	LSB
DNL	Differentia	non-linearity error					±1	LSB
_	Offset erro	or					±3	LSB
-	Gain erro	r					±3	LSB
RLADDER	Ladder re	sistance	VREF =V	CC1	10		40	kΩ
tconv	Conversion time(10bit), Sample & hold function available		VREF =\	/cc1=5V, ØAD=10MHz	3.3			μs
tconv	Conversion time(8bit), Sample & hold function available		VREF =\	/CC1=5V, ØAD=10MHz	2.8			μs
t SAMP	Sampling	time			0.3			μs
VREF	Reference	e voltage			2.0		Vcc1	V
VIA	Analog in	out voltage			0		VREF	V

Note 1: Referenced to Vcc1=AVcc=VREF=3.3 to 5.5V, Vss=AVss=0V at Topr = -20 to 85 °C / -40 to 85 °C unless otherwise specified.

- Note 2: If VCC1 > VCC2, do not use ANoo to ANo7 and AN20 to AN27 as analog input pins.
- Note 3: AD operation clock frequency (ØAD frequency) must be 10 MHz or less. And divide the fAD if VCC1 is less than 4.2V, and make ØAD frequency equal to or lower than fAD/2.
- Note 4: A case without sample & hold function turn ØAD frequency into 250 kHz or more in addition to a limit of Note 3. A case with sample & hold function turn ØAD frequency into 1MHz or more in addition to a limit of Note 3.

Table 1.26.4. D-A Conversion Characteristics (Note 1)

Symbol	Parameter	Measuring condition	S	Unit		
	Farameter	Measuring condition	Min.	Тур.	Max.	Ullik
_	Resolution				8	Bits
_	Absolute accuracy				1.0	%
tsu	Setup time				3	μs
Ro	Output resistance		4	10	20	kΩ
IVREF	Reference power supply input current	(Note 2)			1.5	mA

Note 1: Referenced to Vcc1=VREF=3.3 to 5.5V, Vss=AVss=0V at Topr = -20 to 85 °C / -40 to 85 °C unless otherwise specified.

Table 1.26.5. Flash Memory Version Electrical Characteristics (Note 1)

Parameter	Min.	Тур.	Max	Unit
Word program time		30	200	μs
Block erase time		1	4	s
Erase all unlocked blocks time		1 X n	4 X n	S
Lock bit program time		30	200	μs

Note 1: Referenced to Vcc1=4.5 to 5.5V, 3.0 to 3.6V at Topr = 0 to 60 °C unless otherwise specified.

Table 1.26.6. Flash Memory Version Program/Erase Voltage and Read Operation Voltage Characteristics (at Topr = 0 to 60° C)

Flash program, erase voltage	Flash read operation voltage
$VCC1 = 3.3 \text{ V} \pm 0.3 \text{ V} \text{ or } 5.0 \text{ V} \pm 0.5 \text{ V}$	Vcc1=2.7 to 5.5 V

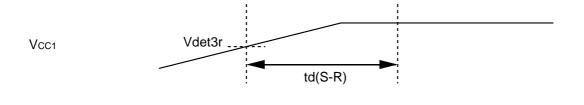
Note 2: This applies when using one D-A converter, with the D-A register for the unused D-A converter set to "0016". The A-D converter's ladder resistance is not included. Also, when D-A register contents are not "0016", the current IVREF always flows even though Vref may have been set to be unconnected by the A-D control register.

Note 2: n denotes the number of block erases.

*Nuge*_t

Table 1.26.7. Low Voltage Detection Circuit Electrical Characteristics (Note 1)

Symbol	Parameter	Parameter Measuring condition		Standard			
Cymbol	raidillotoi	Wisdodining Schamon	Min.	Тур.	Max.	Unit	
Vdet4	Power supply down detection voltage (Notes 1, 2)		3.3	3.8	4.4	V	
Vdet3	Reset level detection voltage (Notes 1, 2)		2.2	2.8	3.6	V	
Vdet3s	Low voltage reset retention voltage	Vcc1=0.8 to 5.5V	0.8			V	
Vdet3r	Low voltage reset release voltage (Note 3)		2.2	2.9	4.0	V	
Vdet2	RAM retention limit detection voltage (Notes 1, 2)		1.4	2.0	2.7	V	


Note 1: Vdet4 > Vdet3 > Vdet2

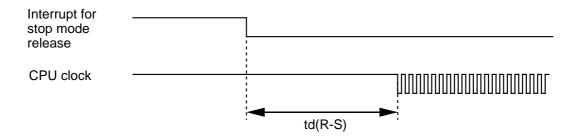

Note 2: Where reset level detection voltage is less than 2.7 V, if the supply power voltage is greater than the reset level detection voltage, the operation at f(BCLK) ≤ 10MHz is guaranteed. Note 3: Vdet3r > Vdet3 is not guaranteed.

Table 1.26.8. Power Supply Circuit Timing Characteristics

Symbol	Parameter Measuring condition			Standard		1 1 14
Cymbol	rainitor	Wiededinig deriamen	Min.	Тур.	Max.	Unit
td(P-R)	Time for internal power supply stabilization during powering-on				2	ms
td(R-S)	STOP release time	Vcc1=2.7 to 5.5V			150	μs
td(M-L)	Time for internal power supply stabilization when main clock oscillation starts				50	μs
td(S-R)	Hardware reset 2 release wait time	Vcc1=Vdet3r to 5.5V		6 (Note)	20	ms
td(E-A)	Low voltage detection circuit operation start time	Vcc1=2.7 to 5.5V			20	μs

Note: When Vcc1 = 5V

VCC1 = VCC2 = 5V

Table 1.26.9. Electrical Characteristics (Note 1)

Symbol	Parameter		neter	Measuring condition		Standard		
Cyrribor				Weasuring condition	Min.	Typ.	Max.	Uni
Vон	HIGH output voltage	P60 to P67,P72 to P7 P100 to P107,P110 t	77,P80 to P84,P86,P87,P90 to P97, o P117,P140,P141	Iон=-5mA	Vcc1-2.0		Vcc1	V
VOH			17,P20 to P27,P30 to P37, 57,P120 to P127,P130 to P137	IoH=-5mA(Note 2)	Vcc2-2.0		VCC2	_ v
Vон	HIGH output voltage	P100 to P107,P110 t		Іон=-200μΑ	Vcc1-0.3		Vcc1	v
VOH			17,P20 to P27,P30 to P37, 57,P120 to P127,P130 to P137	Ioн=-200μA(Note 2)	Vcc2-0.3		VCC2	
	HIGH output	voltage Xout	HIGHPOWER	IOH=-1mA	Vcc1-2.0		Vcc1	V
Vон	Tilorroutput	voltage X001	LOWPOWER	Iон=-0.5mA	Vcc1-2.0		Vcc1	7 °
	HIGH output	voltage Xcout	HIGHPOWER	With no load applied		2.5		V
	·	· ·	LOWPOWER	With no load applied		1.6		1 .
Vol	LOW output voltage	P60 to P67,P70 to P7 P100 to P107,P110 t	77,P80 to P84,P86,P87,P90 to P97, o P117,P140,P141	IoL=5mA			2.0	V
VOL		P40 to P47,P50 to P	17,P20 to P27,P30 to P37, 57,P120 to P127,P130 to P137	IoL=5mA(Note 2)			2.0	
Vol	LOW output voltage	P60 to P67,P70 to P7 P100 to P107,P110 t	77,P80 to P84,P86,P87,P90 to P97, o P117,P140,P141	IoL=200μA			0.45	V
VOL			17,P20 to P27,P30 to P37, 57,P120 to P127,P130 to P137	IoL=200μA(Note 2)			0.45	"
Vol	LOW output	voltage Xout	HIGHPOWER	IoL=1mA			2.0	V
VOL	LOW duput voltage 7001		LOWPOWER	IoL=0.5mA			2.0	7 V
	LOW output voltage Xcout		HIGHPOWER	With no load applied		0		T
	LOW output	voltage ACOUT	LOWPOWER	With no load applied		0		V
VT+-VT-	Hysteresis	HOLD, RDY, TAG TB0IN to TB5IN, IN ADTRG, CTS0 to C CLK0 to CLK4,TA Klo to Kl3, RxD0 to	NT0 to INT5, NMI, CTS2, SCL, SDA,		0.2		1.0	V
VT+-VT-	Hysteresis	RESET			0.2		2.2	V
lін	HIGH input current P00 to P07,P10 to P17,P20 to P27,P30 to P37, P40 to P47,P50 to P57,P60 to P67,P70 to P77, P80 to P87,P90 to P97,P100 to P107,P110 to P117, P120 to P127,P130 to P137,P140,P141, XIM, RESET, CNVss, BYTE		Vi=5V			5.0	μА	
lıL	LOW input current P00 to P07,P10 to P17,P20 to P27,P30 to P37, P40 to P47,P50 to P57,P60 to P67,P70 to P77, P80 to P87,P90 to P97,P100 to P107,P110 to P117, P120 to P127,P130 to P137,P140,P141, XIN, RESET, CNVss, BYTE		Vi=0V			-5.0	μА	
RPULLUP	Pull-up P00 to P07,P10 to P17,P20 to P27,P30 to P37, P40 to P47,P50 to P57,P60 to P67,P72 to P77, P80 to P84,P86,P87,P90 to P97,P100 to P107, P110 to P117,P120 to P127,P130 to P137,P140,P141		VI=0V	30	50	170	kΩ	
RfXIN	Feedback res	sistance XIN				1.5		МΩ
Rfxcin	Feedback res	sistance Xcin				15		MΩ
VRAM	RAM retentio	n voltage		At stop mode	2.0			V

Note 1: Referenced to Vcc=Vcc1=Vcc2=4.2 to 5.5V, Vss=0V at Topr = -20 to 85 °C / -40 to 85 °C, f(BCLK)=24MHz unless otherwise specified. Note 2: Where the product is used at Vcc1 = 5 V and Vcc2 = 3 V, refer to the 3 V version value for the pin specified value on the Vcc2 port side.

Table 1.26.10. Electrical Characteristics (2) (Note 1)

Symbol	Parameter		M	easuring condition	Standard			Unit
Cymbol			· ·		Min.	Тур.	Max.	Unit
		In single-chip mode, the output pins are open and other pins are	Mask ROM	f(BCLK)=24MHz, No division, PLL operation		14	20	mA
	Vss	Vss		No division, Ring oscillation		1		mA
			Flash memory	f(BCLK)=24MHz, No division, PLL operation		18	27	mA
				No division, Ring oscillation		1.8		mA
			Flash memory Program	f(BCLK)=10MHz, Vcc=5.0V		15		mA
			Flash memory Erase	f(BCLK)=10MHz, Vcc=5.0V		25		mA
Icc	Power supply current (Vcc=4.0 to 5.5V)		Mask ROM	f(Xcin)=32kHz, Low power dissipation mode, ROM(Note 3)		25		μА
		vcc=4.0 to 3.5V)	Flash memory	f(BCLK)=32kHz, Low power dissipation mode, RAM(Note 3)		25		μА
				f(BCLK)=32kHz Low power dissipation mode, Flash memory(Note 3)		420		μА
				Ring oscillation, Wait mode		50		μА
			Mask ROM	f(BCLK)=32kHz, Wait mode (Note 2), Oscillation capacity High		7.5		μА
			Flash memory	f(BCLK)=32kHz, Wait mode(Note 2), Oscillation capacity Low		2.0		μА
				Stop mode, Topr=25°C		0.8	3.0	μА
ldet4	Power supply down detection	dissipation current (Note 4)				0.7	4	μΑ
Idet3	Reset area detection dissipation	on current (Note 4)				1.2	8	μА
ldet2	RAM retention limit detection of	dissipation current (Note 4)				1.1	6	μА

Note 1: Referenced to Vcc=Vcc1=Vcc2=4.2 to 5.5V, Vss=0V at Topr = -20 to 85 °C / -40 to 85 °C, f(BCLK)=24MHz unless otherwise specified. Note 2: With one timer operated using fc32.

Note 3: This indicates the memory in which the program to be executed exists.

Note 4: Idet is dissipation current when the following bit is set to "1" (detection circuit enabled).

Idet4: VC27 bit of VCR2 register

Idet3: VC26 bit of VCR2 register

Idet2: VC25 bit of VCR2 register

$$VCC1 = VCC2 = 5V$$

Timing Requirements

(VCC1 = VCC2 = 5V, VSS = 0V, at Topr = -20 to 85°C / -40 to 85°C unless otherwise specified)

Table 1.26.11. External Clock Input

Symbol	Parameter	Stan	dard	Unit
Symbol	7 arameter	Min.	Max.	Offic
tc	External clock input cycle time	62.5		ns
tw(H)	External clock input HIGH pulse width	25		ns
tw(L)	External clock input LOW pulse width	25		ns
tr	External clock rise time		15	ns
tf	External clock fall time		15	ns

Table 1.26.12. Memory Expansion Mode and Microprocessor Mode

Cymbol	Dorometer	Stan	dard	Unit
Symbol	Parameter	Min.	Max.	
tac1(RD-DB)	Data input access time (for setting with no wait)		(Note 1)	ns
tac2(RD-DB)	Data input access time (for setting with wait)		(Note 2)	ns
tac3(RD-DB)	Data input access time (when accessing multiplex bus area)		(Note 3)	ns
tsu(DB-RD)	Data input setup time	40		ns
tsu(RDY-BCLK)	RDY input setup time	30		ns
tsu(HOLD-BCLK)	HOLD input setup time	40		ns
th(RD-DB)	Data input hold time	0		ns
th(BCLK -RDY)	RDY input hold time	0		ns
$t_{\text{h}(\text{BCLK-HOLD})}$	HOLD input hold time	0		ns
td(BCLK-HLDA)	HLDA output delay time		40	ns

Note 1: Calculated according to the BCLK frequency as follows:

Note 2: Calculated according to the BCLK frequency as follows:

$$\frac{(n-0.5) \times 10^9}{f(BCLK)}$$
 - 45 [ns] n is "2" for 1-wait setting, "3" for 2-wait setting and "4" for 3-wait setting.

Note 3: Calculated according to the BCLK frequency as follows:

$$\frac{(n-0.5) \times 10^9}{f(BCLK)} - 45$$
 [ns] n is "2" for 2-wait setting, "3" for 3-wait setting.

VCC1 = VCC2 = 5V

Timing Requirements

(VCC1 = VCC2 = 5V, VSS = 0V, at Topr = -20 to 85°C / -40 to 85°C unless otherwise specified)

Table 1.26.13. Timer A Input (Counter Input in Event Counter Mode)

Cymah al	Danamatan	Stan	dard	1.1:4
Symbol	Parameter	Min.	Max.	Unit
tc(TA)	TAil input cycle time	100		ns
tw(TAH)	TAin input HIGH pulse width	40		ns
tw(TAL)	TAin input LOW pulse width	40		ns

Table 1.26.14. Timer A Input (Gating Input in Timer Mode)

		Stan	dard	
Symbol	Parameter	Min.	Max.	Unit
tc(TA)	TAin input cycle time	400		ns
tw(TAH)	TAilN input HIGH pulse width	200		ns
tw(TAL)	TAin input LOW pulse width	200		ns

Table 1.26.15. Timer A Input (External Trigger Input in One-shot Timer Mode)

Symbol	Parameter	Standard	Unit	
	raidillelei	Min.	Max.	Offic
tc(TA)	TAil input cycle time	200		ns
tw(TAH)	TAin input HIGH pulse width	100		ns
tw(TAL)	TAin input LOW pulse width	100		ns

Table 1.26.16. Timer A Input (External Trigger Input in Pulse Width Modulation Mode)

O. mak al	Davameter	Standard	l lmi4	
Symbol	Parameter	Min.	Max.	Unit
tw(TAH)	TAilN input HIGH pulse width	100		ns
tw(TAL)	TAin input LOW pulse width	100		ns

Table 1.26.17. Timer A Input (Counter Increment/decrement Input in Event Counter Mode)

Symbol	Description	Standard	Linis	
	Parameter	Min.	Max.	Unit
tc(UP)	TAiout input cycle time	2000		ns
tw(UPH)	TAio∪⊤ input HIGH pulse width	1000		ns
tw(UPL)	TAio∪⊤ input LOW pulse width	1000		ns
tsu(UP-TIN)	TAiout input setup time	400		ns
th(TIN-UP)	TAiout input hold time	400		ns

Table 1.26.18. Timer A Input (Two-phase Pulse Input in Event Counter Mode)

Symbol	Danamatan	Standard Min. Max.	Unit	
	Parameter			
tc(TA)	TAilN input cycle time	800		ns
tsu(TAIN-TAOUT)	TAiout input setup time	200		ns
tsu(TAOUT-TAIN)	TAin input setup time	200		ns

$$VCC1 = VCC2 = 5V$$

Timing Requirements

(VCC1 = VCC2 = 5V, VSS = 0V, at Topr = -20 to 85° C / -40 to 85° C unless otherwise specified)

Table 1.26.19. Timer B Input (Counter Input in Event Counter Mode)

Comple al	Devenueles	Star	ndard	Unit
Symbol	Parameter	Min.	Max.	
tc(TB)	TBin input cycle time (counted on one edge)	100		ns
tw(TBH)	TBin input HIGH pulse width (counted on one edge)	40		ns
tw(TBL)	TBin input LOW pulse width (counted on one edge)	40		ns
tc(TB)	TBin input cycle time (counted on both edges)	200		ns
tw(TBH)	TBiin input HIGH pulse width (counted on both edges)	80		ns
tw(TBL)	TBin input LOW pulse width (counted on both edges)	80		ns

Table 1.26.20. Timer B Input (Pulse Period Measurement Mode)

Symbol	Parameter	Stan	dard	Unit
	Farameter	Min.	n. Max.	Offic
tc(TB)	TBin input cycle time	400		ns
tw(TBH)	TBiin input HIGH pulse width	200		ns
tw(TBL)	TBiin input LOW pulse width	200		ns

Table 1.26.21. Timer B Input (Pulse Width Measurement Mode)

Symbol	Parameter	Stan	dard	Unit
	i didiffetei	Min.	Max.	
tc(TB)	TBin input cycle time	400		ns
tw(TBH)	TBiln input HIGH pulse width	200		ns
tw(TBL)	TBiin input LOW pulse width	200		ns

Table 1.26.22. A-D Trigger Input

Symbol	Parameter	Standard	Unit	
Symbol	Faianietei	Min.	Max.	Offic
tc(AD)	ADTRG input cycle time (trigger able minimum)	1000		ns
tw(ADL)	ADTRG input LOW pulse width	125		ns

Table 1.26.23. Serial I/O

Symbol	Parameter	Standard		Unit
Symbol	Farameter	Min.	Max.	Offic
tc(CK)	CLKi input cycle time	200		ns
tw(CKH)	CLKi input HIGH pulse width	100		ns
tw(CKL)	CLKi input LOW pulse width	100		ns
td(C-Q)	TxDi output delay time		80	ns
th(C-Q)	TxDi hold time	0		ns
tsu(D-C)	RxDi input setup time	30		ns
th(C-D)	RxDi input hold time	90		ns

Table 1.26.24. External Interrupt INTi Input

Symbol	Symbol Parameter	Standard		Unit
Syllibol	i alametei	Min.	Max.	Offic
tw(INH)	INTi input HIGH pulse width	250		ns
tw(INL)	INTi input LOW pulse width	250		ns

$$VCC1 = VCC2 = 5V$$

DBi

Switching Characteristics

(VCC1 = VCC2 = 5V, VSS = 0V, at Topr = -20 to 85° C / -40 to 85° C, CM15="1" unless otherwise specified)

Table 1.26.25. Memory Expansion and Microprocessor Modes (for setting with no wait)

0	Danamatan	Measuring condition	ring condition Stand		1.114
Symbol	Parameter	ivieasuring condition	Min.	Max.	Unit
td(BCLK-AD)	Address output delay time			25	ns
th(BCLK-AD)	Address output hold time (refers to BCLK)		4		ns
th(RD-AD)	Address output hold time (refers to RD)		0		ns
th(WR-AD)	Address output hold time (refers to WR)		(Note 2)		ns
td(BCLK-CS)	Chip select output delay time			25	ns
th(BCLK-CS)	Chip select output hold time (refers to BCLK)		4		ns
td(BCLK-ALE)	ALE signal output delay time	Figure 4 00 4		25	ns
th(BCLK-ALE)	ALE signal output hold time	Figure 1.26.1	-4		ns
td(BCLK-RD)	RD signal output delay time			25	ns
th(BCLK-RD)	RD signal output hold time		0		ns
td(BCLK-WR)	WR signal output delay time			25	ns
th(BCLK-WR)	WR signal output hold time		0		ns
td(BCLK-DB)	Data output delay time (refers to BCLK)			40	ns
th(BCLK-DB)	Data output hold time (refers to BCLK)		4		ns
td(DB-WR)	Data output delay time (refers to WR)		(Note 1)		ns
th(WR-DB)	Data output hold time (refers to WR)(Note 3)		(Note 2)		ns

Note 1: Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{\text{f(BCLK)}} - 40$$
 [ns]

Note 2: Calculated according to the BCLK frequency as follows:

Note 3: This standard value shows the timing when the output is off, and does not show hold time of data bus.

Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value.

Hold time of data bus is expressed in

$$t = -CR \times In (1 - VoL / VCC2)$$

by a circuit of the right figure.

For example, when VoL = 0.2VcC2, C = 30pF, R = 1k Ω , hold time of output "L" level is

$$t = -30pF X 1k\Omega X In (1 - 0.2VCC2 / VCC2)$$

= 6.7ns.

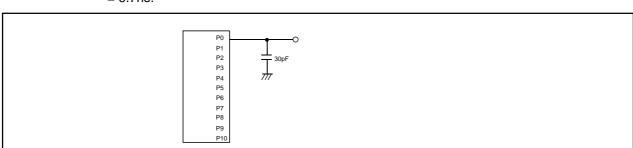


Figure 1.26.1. Ports P0 to P10 Measurement Circuit

Switching Characteristics

(VCC1 = VCC2 = 5V, VSS = 0V, at Topr = -20 to 85° C / -40 to 85° C, CM15="1" unless otherwise specified)

Table 1.26.26. Memory Expansion and Microprocessor Modes (for 1- to 3-wait setting and external area access)

Symbol	Parameter	Measuring condition	ng condition Standard		Unit
Cyrribor	i diametei	Ů	Min.	Max.	Offic
td(BCLK-AD)	Address output delay time			25	ns
th(BCLK-AD)	Address output hold time (refers to BCLK)		4		ns
t h(RD-AD)	Address output hold time (refers to RD)		0		ns
th(WR-AD)	Address output hold time (refers to WR)		(Note 2)		ns
td(BCLK-CS)	Chip select output delay time			25	ns
th(BCLK-CS)	Chip select output hold time (refers to BCLK)		4		ns
td(BCLK-ALE)	ALE signal output delay time			25	ns
th(BCLK-ALE)	ALE signal output hold time	Figure 1.26.1	-4		ns
td(BCLK-RD)	RD signal output delay time			25	ns
th(BCLK-RD)	RD signal output hold time		0		ns
td(BCLK-WR)	WR signal output delay time			25	ns
th(BCLK-WR)	WR signal output hold time		0		ns
td(BCLK-DB)	Data output delay time (refers to BCLK)			40	ns
th(BCLK-DB)	Data output hold time (refers to BCLK)		4		ns
td(DB-WR)	Data output delay time (refers to WR)		(Note 1)		ns
t h(WR-DB)	Data output hold time (refers to WR)(Note 3)		(Note 2)		ns

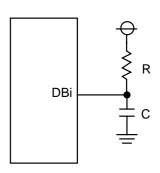
Note 1: Calculated according to the BCLK frequency as follows:

$$\frac{-(\text{n-0.5}) \times 10^9}{\text{f(BCLK)}} - 40 \quad \text{[ns]} \qquad \text{n is "1" for 1-wait setting, "2" for 2-wait setting and "3" for 3-wait setting.}$$

Note 2: Calculated according to the BCLK frequency as follows:

Note 3: This standard value shows the timing when the output is off, and does not show hold time of data bus.

Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value.


Hold time of data bus is expressed in

$$t = -CR \times In (1 - VoL / VCC2)$$

by a circuit of the right figure.

For example, when Vol = 0.2Vcc2, C = 30pF, R = 1k Ω , hold time of output "L" level is

$$t = -30pF X 1k\Omega X In (1 - 0.2VCC2 / VCC2)$$

= 6.7ns.

$$VCC1 = VCC2 = 5V$$

Switching Characteristics

(VCC1 = VCC2 = 5V, VSS = 0V, at Topr = -20 to 85° C / -40 to 85° C, CM15="1" unless otherwise specified)

Table 1.26.27. Memory Expansion and Microprocessor Modes
(for 2- to 3-wait setting, external area access and multiplex bus selection)

0 1 1	5 .	Manageria a condition	Standard		
Symbol	Parameter	Measuring condition	Min.	Max.	Unit
td(BCLK-AD)	Address output delay time			25	ns
th(BCLK-AD)	Address output hold time (refers to BCLK)		4		ns
th(RD-AD)	Address output hold time (refers to RD)		(Note 1)		ns
th(WR-AD)	Address output hold time (refers to WR)		(Note 1)		ns
td(BCLK-CS)	Chip select output delay time			25	ns
th(BCLK-CS)	Chip select output hold time (refers to BCLK)		4		ns
th(RD-CS)	Chip select output hold time (refers to RD)		(Note 1)		ns
th(WR-CS)	Chip select output hold time (refers to WR)		(Note 1)		ns
td(BCLK-RD)	RD signal output delay time			25	ns
th(BCLK-RD)	RD signal output hold time		0		ns
td(BCLK-WR)	WR signal output delay time	Figure 1.26.1		25	ns
th(BCLK-WR)	WR signal output hold time		0		ns
$t_{\text{d}(\text{BCLK-DB})}$	Data output delay time (refers to BCLK)			40	ns
$t_{\text{h(BCLK-DB)}}$	Data output hold time (refers to BCLK)		4		ns
$t_{\text{d(DB-WR)}}$	Data output delay time (refers to WR)		(Note 2)		ns
th(WR-DB)	Data output hold time (refers to WR)		(Note 1)		ns
td(BCLK-ALE)	ALE signal output delay time (refers to BCLK)			25	ns
th(BCLK-ALE)	ALE signal output hold time (refers to BCLK)		-4		ns
td(AD-ALE)	ALE signal output delay time (refers to Address)		(Note 3)		ns
th(ALE-AD)	ALE signal output hold time (refers to Adderss)		30		ns
td(AD-RD)	RD signal output delay from the end of Adress		0		ns
td(AD-WR)	WR signal output delay from the end of Adress		0		ns
$t_{\text{dZ}(\text{RD-AD})}$	Address output floating start time			8	ns

Note 1: Calculated according to the BCLK frequency as follows:

Note 2: Calculated according to the BCLK frequency as follows:

$$\frac{(n-0.5) \times 10^9}{f(BCLK)}$$
 -40 [ns] n is "2" for 2-wait setting, "3" for 3-wait setting.

Note 3: Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{\text{f(BCLK)}}$$
 -25 [ns]

Electrical Characteristics (Vcc1 = Vcc2 = 5V)

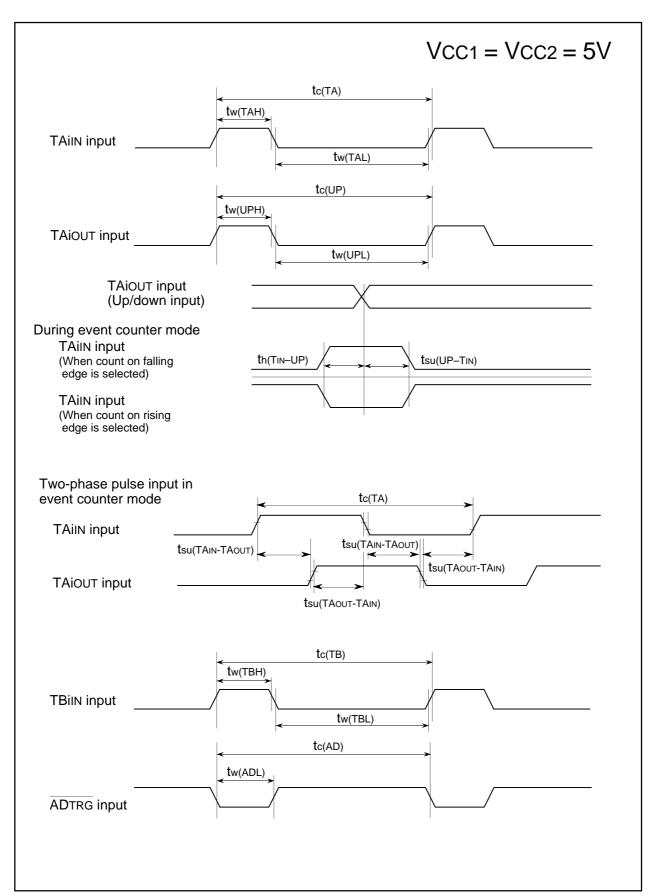


Figure 1.26.2. Timing Diagram (1)

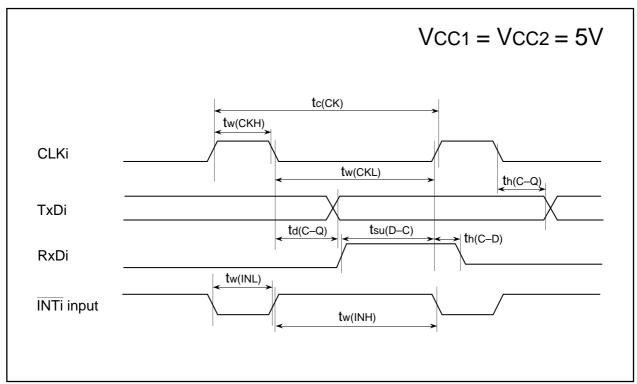


Figure 1.26.3. Timing Diagram (2)

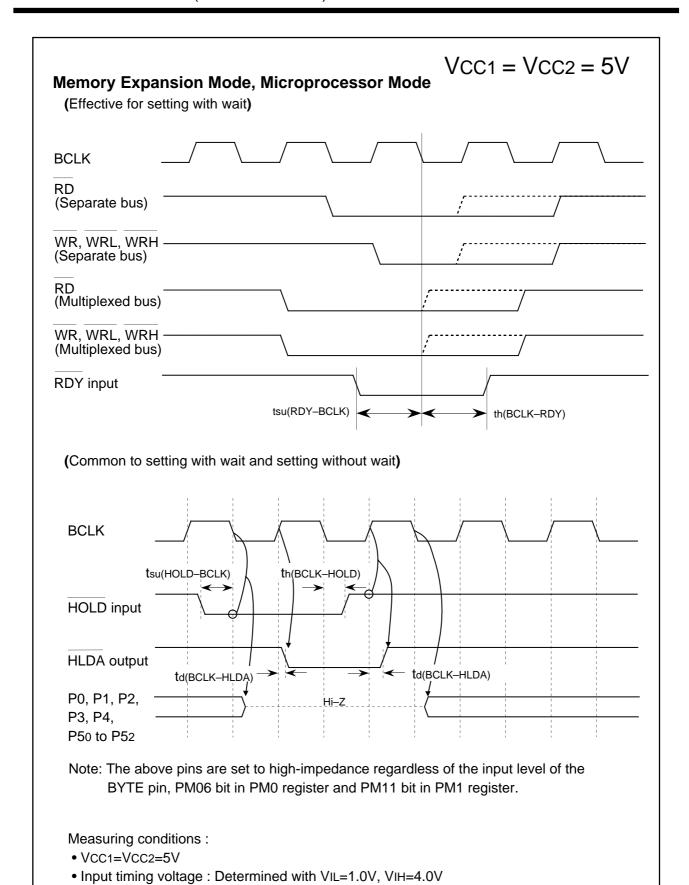


Figure 1.26.4. Timing Diagram (3)

Output timing voltage: Determined with Vol=2.5V, VoH=2.5V

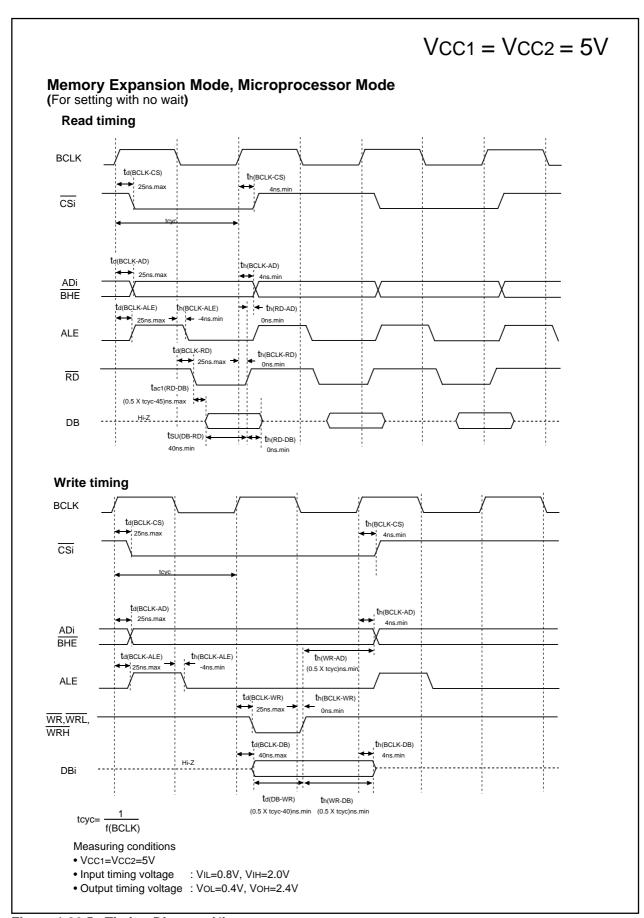


Figure 1.26.5. Timing Diagram (4)

^{qe_nelobwe_{ut} Nuqe_t}

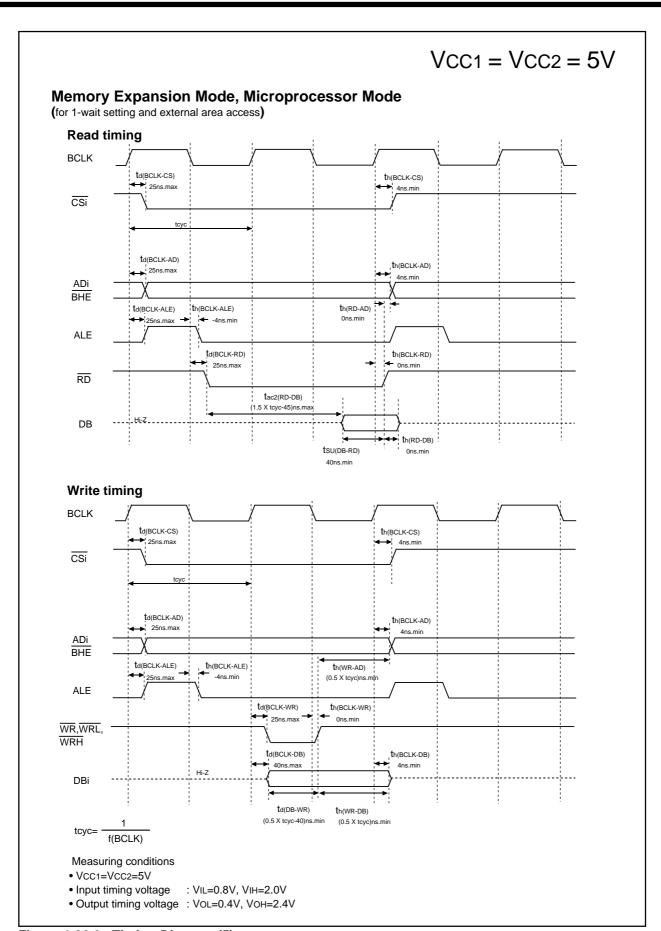


Figure 1.26.6. Timing Diagram (5)

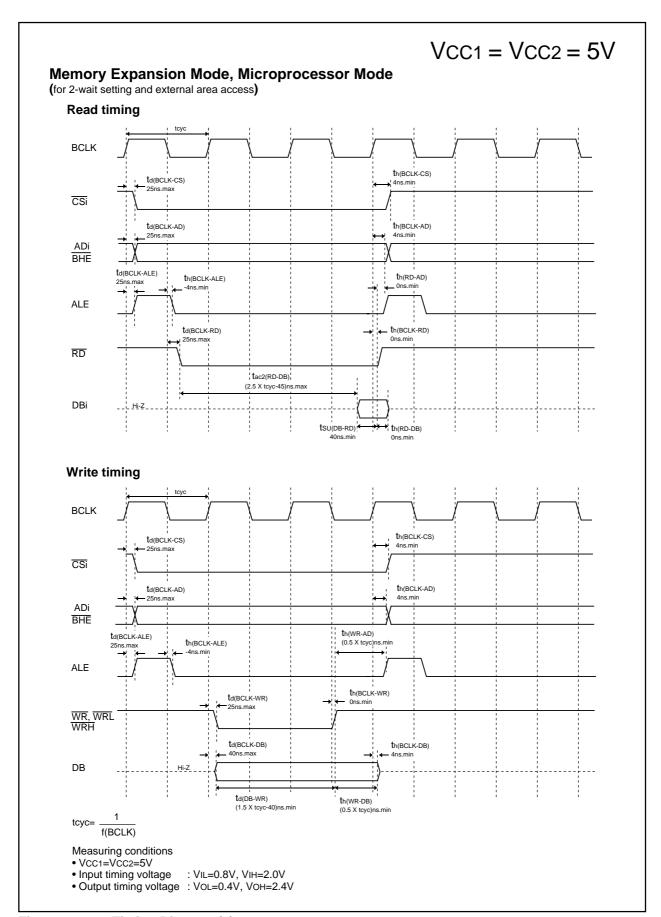


Figure 1.26.7. Timing Diagram (6)

^{denelobwe}ur

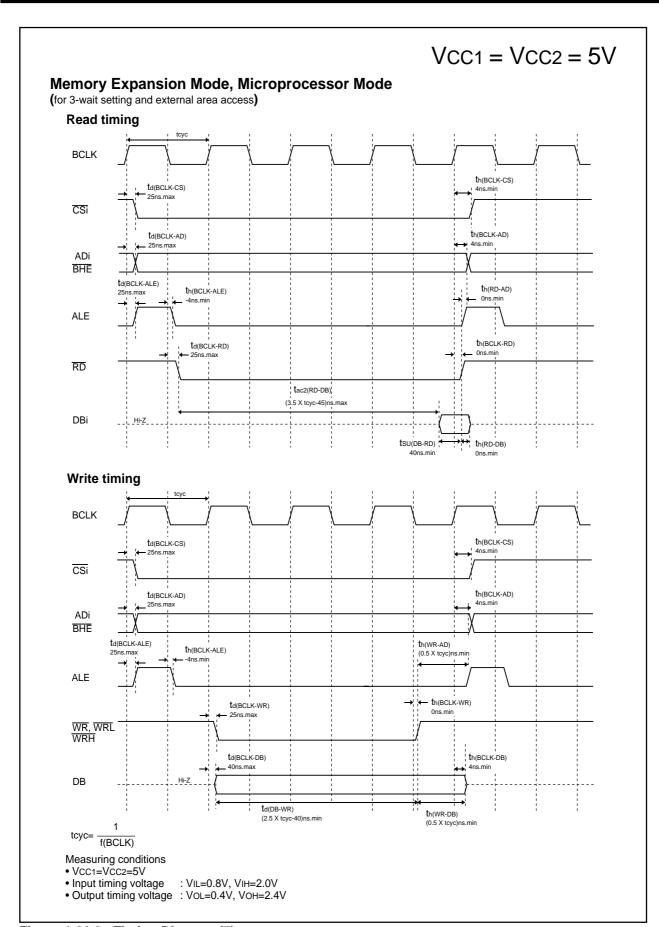


Figure 1.26.8. Timing Diagram (7)

Nuger

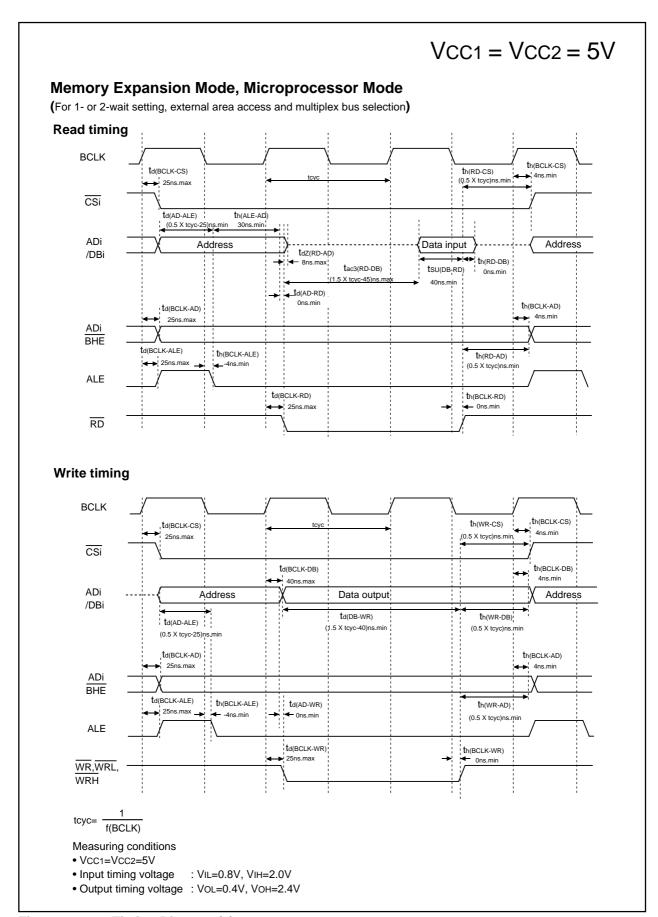


Figure 1.26.9. Timing Diagram (8)

Electrical Characteristics (Vcc1 = Vcc2 = 5V)

^{denelobwe}ut

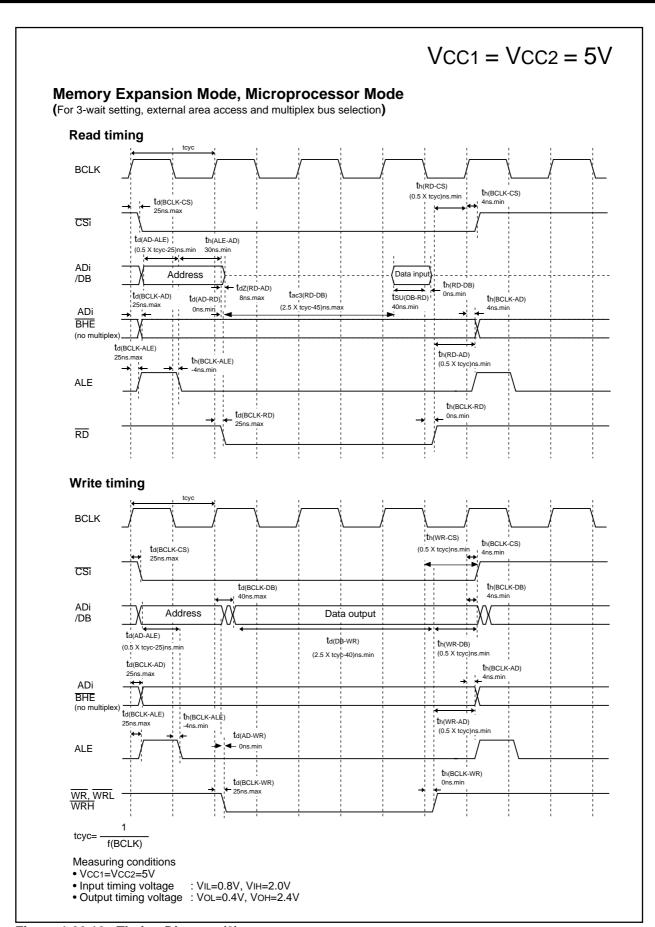


Figure 1.26.10. Timing Diagram (9)

Table 1.26.28. Electrical Characteristics (Note)

Symbol	Pa	rameter	Measuring condition	Standard		d	1.1
Symbol	Га	rainetei	Measuring condition	Min.	Тур.	Max.	Unit
Vон	voltage P40 to P47,P50 P80 to P84,P86	to P17,P20 to P27,P30 to P37, to P57,P60 to P67,P72 to P77, P87,P90 to P97,P100 to P107, 120 to P127,P130 to P137,P140,P141	Іон=-1mA	Vcc-0.5		Vcc	V
	HIGH output voltage Xout	HIGHPOWER	Iон=-0.1mA	Vcc-0.5		Vcc	V
Vон	HIGH output voltage Xout	LOWPOWER	Іон=-50μΑ	Vcc-0.5		Vcc	1 °
	HIGH output voltage Xcou	HIGHPOWER	With no load applied		2.5		V
	- montançan ramaga	LOWPOWER	With no load applied		1.6		7 V
VoL	voltage P40 to P47,P50 P80 to P84,P86	to P17,P20 to P27,P30 to P37, to P57,P60 to P67,P70 to P77, ,P87,P90 to P97,P100 to P107, 120 to P127,P130 to P137,P140,P141	IoL=1mA			0.5	V
		HIGHPOWER	IoL=0.1mA			0.5	
Vol	LOW output voltage XOUT	LOWPOWER	IoL=50μA			0.5	V
	LOW output voltage Xcou	HIGHPOWER	With no load applied		0		
	LOW output voltage XCOO	LOWPOWER	With no load applied		0		V
VT+-VT-	ADTRG, CTSo to CLKo to CLK4,	NOIN to TA4IN, INTO to INT5, NMI, CTS2, SCL, SDA, FA2OUT to TA4OUT, I to RXD2, SIN3,SIN4		0.2		0.8	V
VT+-VT-	Hysteresis RESET			0.2	(0.7)	1.8	V
Іін	current P40 to P47,P50 P80 to P87,P90	to P17,P20 to P27,P30 to P37, to P57,P60 to P67,P70 to P77, to P97,P100 to P107,P110 to P117, 130 to P137,P140,P141, VVss, BYTE	V=3V			4.0	μА
lıL	current P40 to P47,P50 P80 to P87,P90	to P17,P20 to P27,P30 to P37, to P57,P60 to P67,P70 to P77, to P97,P100 to P107,P110 to P117, 130 to P137,P140,P141, NVss, BYTE	Vi=0V			-4.0	μА
RPULLUP	resistance P4 ₀ to P4 ₇ ,P5 ₀ P8 ₀ to P8 ₄ ,P8 ₆ ,	to P17,P20 to P27,P30 to P37, to P57,P60 to P67,P72 to P77, P87,P90 to P97,P100 to P107, 120 to P127,P130 to P137,P140,P141	V _i =0V	66	160	500	kΩ
RfXIN	Feedback resistance XIN				3.0		МΩ
RfXCIN	Feedback resistance Xcin				25		МΩ
VRAM	RAM retention voltage		At stop mode	2.0			V

Note : Referenced to Vcc=Vcc1=Vcc2=2.7 to 3.3V, Vss=0V at Topr = -20 to 85 °C / -40 to 85 °C, f(BCLK)=10MHz unless otherwise specified.

Table 1.26.29. Electrical Characteristics (2) (Note 1)

Symbol	Parameter		Measuring condition		Standard Min. Tvp. Max.			Unit
C y				ŭ		Тур.	Max.	Unit
		In single-chip mode, the output pins are open and other pins are	Mask ROM	f(BCLK)=10MHz, No division		8	11	mA
		Vss		No division, Ring oscillation		1		mA
			Flash memory	f(BCLK)=10MHz, No division		8	13	mA
				No division, Ring oscillation		1.8		mA
			Flash memory Program	f(BCLK)=10MHz, Vcc1=3.0V		12		mA
			Flash memory Erase	f(BCLK)=10MHz, Vcc1=3.0V		22		mA
Icc	Power supply current (Vcc=2.7 to 3.6V)		Mask ROM	f(XCIN)=32kHz, Low power dissipation mode, ROM(Note 3)		25		μА
	(VCC=2.7 to 3.0V)		Flash memory	f(BCLK)=32kHz, Low power dissipation mode, RAM(Note 3)		25		μА
				f(BCLK)=32kHz, Low power dissipation mode, Flash memory(Note 3)		420		μА
				Ring oscillation, Wait mode		45		μА
			Mask ROM	f(BCLK)=32kHz, Wait mode (Note 2), Oscillation capacity High		6.0		μА
			Flash memory	f(BCLK)=32kHz, Wait mode (Note 2), Oscillation capacity Low		1.8		μА
				Stop mode, Topr=25°C		0.7	3.0	μА
Idet4	Power supply down detection	dissipation current (Note 4)				0.6	4	μА
Idet3	Reset level detection dissipation	on current (Note 4)				0.4	2	μА
ldet2	RAM retention limit detection of	dissipation current (Note 4)				0.9	4	μА

Note 1: Referenced to Vcc=Vcc1=Vcc2=2.7 to 3.3V, Vss=0V at Topr=-20 to 85 °C / -40 to 85 °C, f(BCLK)=10MHz unless otherwise specified.

Note 1: Referenced to Vcc=Vcc1=Vcc2=2.7 to 3.3V, Vss=0V at 1 ppr = -20 to 85 °C / -40 to 85 Note 2: With one timer operated using fc32.

Note 3: This indicates the memory in which the program to be executed exists.

Note 4: Idet is dissipation current when the following bit is set to "1" (detection circuit enabled). Idet4: Vc27 bit of VcR2 register Idet3: Vc26 bit of VcR2 register Idet2: Vc25 bit of VcR2 register

$$VCC1 = VCC2 = 3V$$

Timing Requirements

(VCC1 = VCC2 = 3V, VSS = 0V, at Topr = -20 to 85°C / -40 to 85°C unless otherwise specified)

Table 1.26.30. External Clock Input

Symbol	Parameter	Standard		Unit
		Min.	Max.	Offic
tc	External clock input cycle time	100		ns
tw(H)	External clock input HIGH pulse width	40		ns
tw(L)	External clock input LOW pulse width	40		ns
tr	External clock rise time		18	ns
tf	External clock fall time		18	ns

Table 1.26.31. Memory Expansion and Microprocessor Modes

Symbol	Parameter	Stan	Standard	
Symbol	Parameter	Min.	Max.	Unit
tac1(RD-DB)	Data input access time (for setting with no wait)		(Note 1)	ns
tac2(RD-DB)	Data input access time (for setting with wait)		(Note 2)	ns
tac3(RD-DB)	Data input access time (when accessing multiplex bus area)		(Note 3)	ns
tsu(DB-RD)	Data input setup time	50		ns
tsu(RDY-BCLK)	RDY input setup time	40		ns
tsu(HOLD-BCLK)	HOLD input setup time	50		ns
th(RD-DB)	Data input hold time	0		ns
th(BCLK -RDY)	RDY input hold time	0		ns
th(BCLK-HOLD)	HOLD input hold time	0		ns
td(BCLK-HLDA)	HLDA output delay time		40	ns

Note 1: Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \text{ X } 10^9}{\text{f(BCLK)}} - 60$$
 [ns]

Note 2: Calculated according to the BCLK frequency as follows:

$$\frac{(n-0.5) \times 10^9}{f(BCLK)}$$
 - 60 [ns] n is "2" for 1-wait setting, "3" for 2-wait setting and "4" for 3-wait setting.

Note 3: Calculated according to the BCLK frequency as follows:

$$\frac{\text{(n-0.5) X }10^9}{\text{f(BCLK)}} - 60$$
 [ns] n is "2" for 2-wait setting, "3" for 3-wait setting.

VCC1 = VCC2 = 3V

Timing Requirements

(VCC1 = VCC2 = 3V, VSS = 0V, at Topr = -20 to 85° C / -40 to 85° C unless otherwise specified)

Table 1.26.32. Timer A Input (Counter Input in Event Counter Mode)

Symbol	December	Standard		1.1
	Parameter	Min.	Max.	Unit
tc(TA)	TAiın input cycle time	150		ns
tw(TAH)	TAim input HIGH pulse width	60		ns
tw(TAL)	TAiın input LOW pulse width	60		ns

Table 1.26.33. Timer A Input (Gating Input in Timer Mode)

Symbol	Parameter -	Standard		11.3
		Min.	Max.	Unit
tc(TA)	TAil input cycle time	600		ns
tw(TAH)	TAin input HIGH pulse width	300		ns
tw(TAL)	TAin input LOW pulse width	300		ns

Table 1.26.34. Timer A Input (External Trigger Input in One-shot Timer Mode)

Symbol	Parameter	Standard		Unit
		Min.	Max.	Offic
tc(TA)	TAil input cycle time	300		ns
tw(TAH)	TAim input HIGH pulse width	150		ns
tw(TAL)	TAiเท input LOW pulse width	150		ns

Table 1.26.35. Timer A Input (External Trigger Input in Pulse Width Modulation Mode)

Symbol	Parameter	Standard		Unit
		Min.	Max.	Offic
tw(TAH)	TAin input HIGH pulse width	150		ns
tw(TAL)	TAin input LOW pulse width	150		ns

Table 1.26.36. Timer A Input (Counter Increment/decrement Input in Event Counter Mode)

Symbol Paramet	Dovementor	Standard		1.1
	Parameter	Min.	Max.	Unit
tc(UP)	TAiout input cycle time	3000		ns
tw(UPH)	TAiout input HIGH pulse width	1500		ns
tw(UPL)	TAiout input LOW pulse width	1500		ns
tsu(UP-Tin)	TAiout input setup time	600		ns
th(TIN-UP)	TAiout input hold time	600		ns

Table 1.26.37. Timer A Input (Two-phase Pulse Input in Event Counter Mode)

Symbol	Parameter	Standard		Linit
		Min.	Max.	Unit
tc(TA)	TAin input cycle time	2		μs
tsu(TAIN-TAOUT)	TAiout input setup time	500		ns
tsu(TAOUT-TAIN)	TAin input setup time	500		ns

VCC1 = VCC2 = 3V

Timing Requirements

(VCC1 = VCC2 = 3V, VSS = 0V, at Topr = - 20 to 85°C / - 40 to 85°C unless otherwise specified)

Table 1.26.38. Timer B Input (Counter Input in Event Counter Mode)

Symbol	Parameter	Standard		1.1
		Min.	Max.	Unit
tc(TB)	TBiin input cycle time (counted on one edge)	150		ns
tw(TBH)	TBiin input HIGH pulse width (counted on one edge)	60		ns
tw(TBL)	TBiin input LOW pulse width (counted on one edge)	60		ns
tc(TB)	TBiin input cycle time (counted on both edges)	300		ns
tw(TBH)	TBiin input HIGH pulse width (counted on both edges)	160		ns
tw(TBL)	TBiin input LOW pulse width (counted on both edges)	160		ns

Table 1.26.39. Timer B Input (Pulse Period Measurement Mode)

Symbol	Parameter	Standard		Unit
		Min.	Max.	Unit
tc(TB)	TBiin input cycle time	600		ns
tw(TBH)	TBiin input HIGH pulse width	300		ns
tw(TBL)	TBiin input LOW pulse width	300		ns

Table 1.26.40. Timer B Input (Pulse Width Measurement Mode)

Symbol	Parameter	Standard		Unit
		Min.	Max.	Offic
tc(TB)	TBin input cycle time	600		ns
tw(TBH)	TBiเท input HIGH pulse width	300		ns
tw(TBL)	TBin input LOW pulse width	300		ns

Table 1.26.41. A-D Trigger Input

		/ Eggeput			
	Symbol	Parameter	Standard		Unit
Syllibol	i didilielei	Min.	Max.	Offic	
	tc(AD)	ADTRG input cycle time (trigger able minimum)	1500		ns
	tw(ADL)	ADTRG input LOW pulse width	200		ns

Table 1.26.42. Serial I/O

Symbol	Parameter	Standard		Unit
	raidilietei	Min.	Max.	Offic
tc(CK)	CLKi input cycle time	300		ns
tw(CKH)	CLKi input HIGH pulse width	150		ns
tw(CKL)	CLKi input LOW pulse width	150		ns
td(C-Q)	TxDi output delay time		160	ns
th(C-Q)	TxDi hold time	0		ns
tsu(D-C)	RxDi input setup time	50		ns
th(C-D)	RxDi input hold time	90		ns

Table 1.26.43. External Interrupt INTi Input

Symbol	Parameter	Standard		Unit
		Min.	Max.	Offic
tw(INH)	INTi input HIGH pulse width	380		ns
tw(INL)	INTi input LOW pulse width	380		ns

VCC1 ≥ VCC2 = 3V

DBi

Switching Characteristics

(VCC1 = VCC2 = 3V, VSS = 0V, at Topr = -20 to 85° C / -40 to 85° C, CM15="1" unless otherwise specified)

Table 1.26.44. Memory Expansion, Microprocessor Modes (for setting with no wait)

	Parameter	Measuring condition	Standard		1 1 - 4
Symbol		ivieasuring condition	Min.	Max.	Unit
td(BCLK-AD)	Address output delay time			30	ns
th(BCLK-AD)	Address output hold time (refers to BCLK)		4		ns
t h(RD-AD)	Address output hold time (refers to RD)		0		ns
th(WR-AD)	Address output hold time (refers to WR)		(Note 2)		ns
td(BCLK-CS)	Chip select output delay time			30	ns
th(BCLK-CS)	Chip select output hold time (refers to BCLK)		4		ns
td(BCLK-ALE)	ALE signal output delay time	Figure 1.26.11		30	ns
th(BCLK-ALE)	ALE signal output hold time		-4		ns
td(BCLK-RD)	RD signal output delay time			30	ns
th(BCLK-RD)	RD signal output hold time		0		ns
td(BCLK-WR)	WR signal output delay time			30	ns
th(BCLK-WR)	WR signal output hold time		0		ns
td(BCLK-DB)	Data output delay time (refers to BCLK)			40	ns
th(BCLK-DB)	Data output hold time (refers to BCLK)		4		ns
td(DB-WR)	Data output delay time (refers to WR)		(Note 1)		ns
th(WR-DB)	Data output hold time (refers to WR)(Note 3)		(Note 2)		ns

Note 1: Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{\text{f(BCLK)}} -40$$
 [ns]

Note 2: Calculated according to the BCLK frequency as follows:

Note 3: This standard value shows the timing when the output is off, and does not show hold time of data bus.

Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value.

Hold time of data bus is expressed in

$$t = -CR \times In (1 - VoL / VCC2)$$

by a circuit of the right figure.

For example, when Vol = 0.2VCC2, C = 30pF, R = 1k Ω , hold time of output "L" level is

$$t = -30pF X 1k\Omega X In (1 - 0.2VCC2 / VCC2)$$

= 6.7ns.



Figure 1.26.11. Ports P0 to P10 Measurement Circuit

$VCC1 \ge VCC2 = 3V$

Switching Characteristics

(VCC1 = VCC2 = 3V, VSS = 0V, at Topr = -20 to 85° C / -40 to 85° C, CM15="1" unless otherwise specified)

Table 1.26.45. Memory expansion and Microprocessor Modes (for 1- to 3-wait setting and external area access)

Symbol	Parameter	Measuring condition	Standard		Unit
Gyllibol			Min.	Max.	Offic
td(BCLK-AD)	Address output delay time			30	ns
th(BCLK-AD)	Address output hold time (refers to BCLK)		4		ns
th(RD-AD)	Address output hold time (refers to RD)		0		ns
th(WR-AD)	Address output hold time (refers to WR)		(Note 2)		ns
$t_{\text{d}(\text{BCLK-CS})}$	Chip select output delay time			30	ns
th(BCLK-CS)	Chip select output hold time (refers to BCLK)		4		ns
td(BCLK-ALE)	ALE signal output delay time			30	ns
th(BCLK-ALE)	ALE signal output hold time	Figure 1.26.11	-4		ns
td(BCLK-RD)	RD signal output delay time			30	ns
$t_{\text{h(BCLK-RD)}}$	RD signal output hold time		0		ns
td(BCLK-WR)	WR signal output delay time			30	ns
th(BCLK-WR)	WR signal output hold time		0		ns
td(BCLK-DB)	Data output delay time (refers to BCLK)			40	ns
th(BCLK-DB)	Data output hold time (refers to BCLK)		4		ns
td(DB-WR)	Data output delay time (refers to WR)		(Note 1)		ns
th(WR-DB)	Data output hold time (refers to WR)(Note 3)		(Note 2)		ns

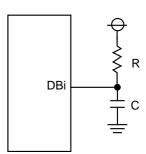
Note 1: Calculated according to the BCLK frequency as follows:

$$\frac{(n-0.5) \times 10^9}{f(BCLK)}$$
 - 40 [ns] n is "1" for 1-wait setting, "2" for 2-wait setting and "3" for 3-wait setting.

Note 2: Calculated according to the BCLK frequency as follows:

Note 3: This standard value shows the timing when the output is off, and does not show hold time of data bus.

Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value.


Hold time of data bus is expressed in

$$t = -CR X In (1 - VoL / VCC2)$$

by a circuit of the right figure.

For example, when VoL = 0.2VCC2, C = 30pF, R = 1k Ω , hold time of output "L" level is

$$t = -30pF X 1k\Omega X In (1 - 0.2VCC2 / VCC2)$$

= 6.7ns.

 $VCC1 \ge VCC2 = 3V$

Switching Characteristics

(VCC1 = VCC2 = 3V, VSS = 0V, at Topr = -20 to 85° C / -40 to 85° C, CM15="1" unless otherwise specified)

Table 1.26.46. Memory expansion and Microprocessor Modes

(for 2- to 3-wait setting, external area access and multiplex bus selection)

0 1 1	Demonstra	Manager and distant	Standard		
Symbol	Parameter	Measuring condition	Min.	Max.	Unit
td(BCLK-AD)	Address output delay time			50	ns
th(BCLK-AD)	Address output hold time (refers to BCLK)		4		ns
th(RD-AD)	Address output hold time (refers to RD)		(Note 1)		ns
th(WR-AD)	Address output hold time (refers to WR)		(Note 1)		ns
td(BCLK-CS)	Chip select output delay time			50	ns
th(BCLK-CS)	Chip select output hold time (refers to BCLK)		4		ns
th(RD-CS)	Chip select output hold time (refers to RD)		(Note 1)		ns
th(WR-CS)	Chip select output hold time (refers to WR)		(Note 1)		ns
td(BCLK-RD)	RD signal output delay time			40	ns
t h(BCLK-RD)	RD signal output hold time		0		ns
td(BCLK-WR)	WR signal output delay time	Figure 1.26.11		40	ns
th(BCLK-WR)	WR signal output hold time		0		ns
td(BCLK-DB)	Data output delay time (refers to BCLK)			50	ns
th(BCLK-DB)	Data output hold time (refers to BCLK)		4		ns
td(DB-WR)	Data output delay time (refers to WR)		(Note 2)		ns
th(WR-DB)	Data output hold time (refers to WR)		(Note 1)		ns
td(BCLK-ALE)	ALE signal output delay time (refers to BCLK)			40	ns
th(BCLK-ALE)	ALE signal output hold time (refers to BCLK)		- 4		ns
td(AD-ALE)	ALE signal output delay time (refers to Address)		(Note 3)		ns
th(ALE-AD)	ALE signal output hold time (refers to Adderss)		30		ns
td(AD-RD)	RD signal output delay from the end of Address		0		ns
td(AD-WR)	WR signal output delay from the end of Address		0		ns
tdZ(RD-AD)	Address output floating start time			8	ns

Note 1: Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{\text{f(BCLK)}}$$
 [ns]

Note 2: Calculated according to the BCLK frequency as follows:

$$\frac{(n-0.5) \times 10^9}{f(BCLK)}$$
 -50 [ns] n is "2" for 2-wait setting, "3" for 3-wait setting.

Note 3: Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{\text{f(BCLK)}}$$
 -40 [ns]

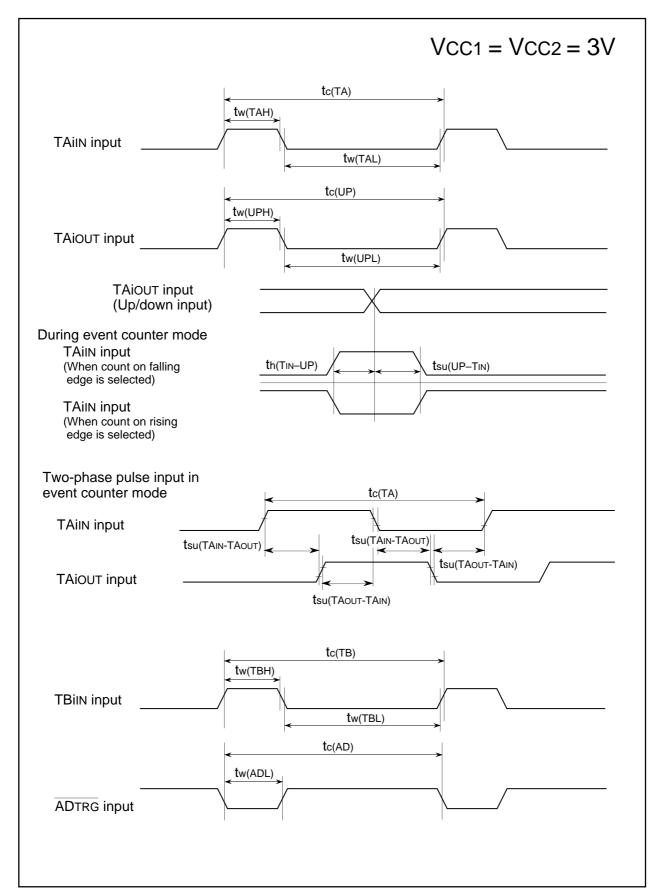


Figure 1.26.12. Timing Diagram (1)

Electrical Characteristics (Vcc1 = Vcc2 = 3V)

Under

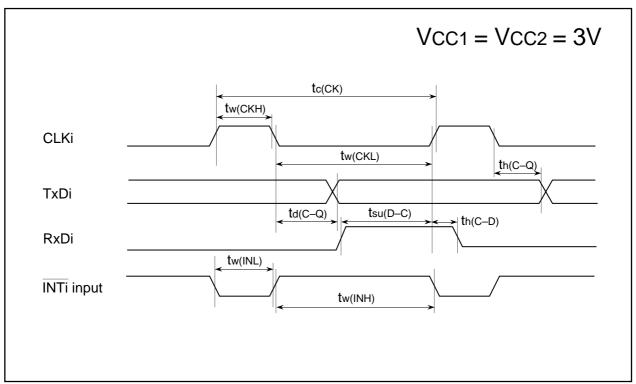


Figure 1.26.13. Timing Diagram (2)

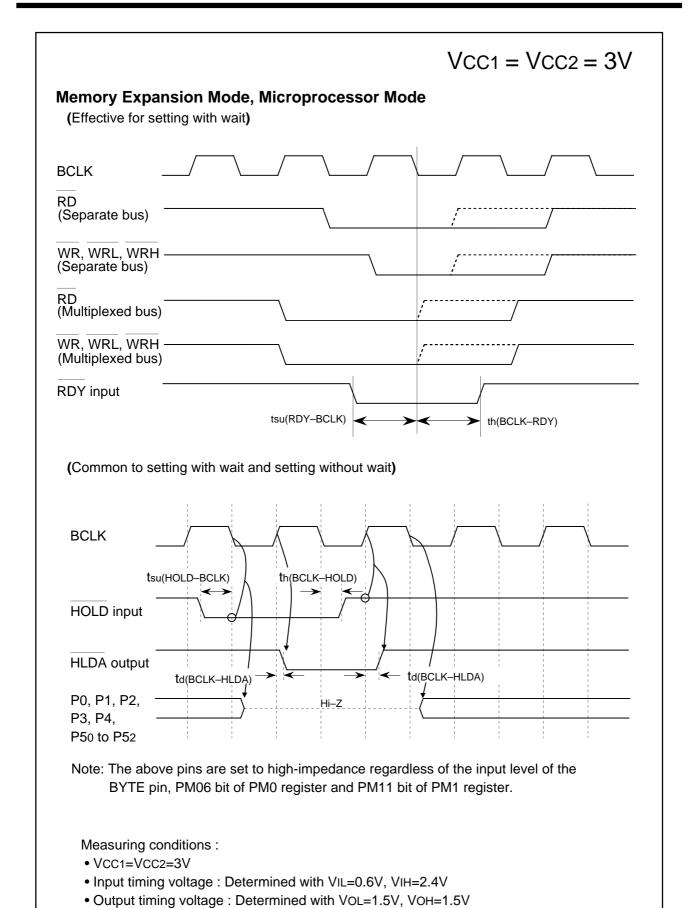


Figure 1.26.14. Timing Diagram (3)

Electrical Characteristics (Vcc1 ≥ Vcc2 = 3V)

Figure 1.26.15. Timing Diagram (4)

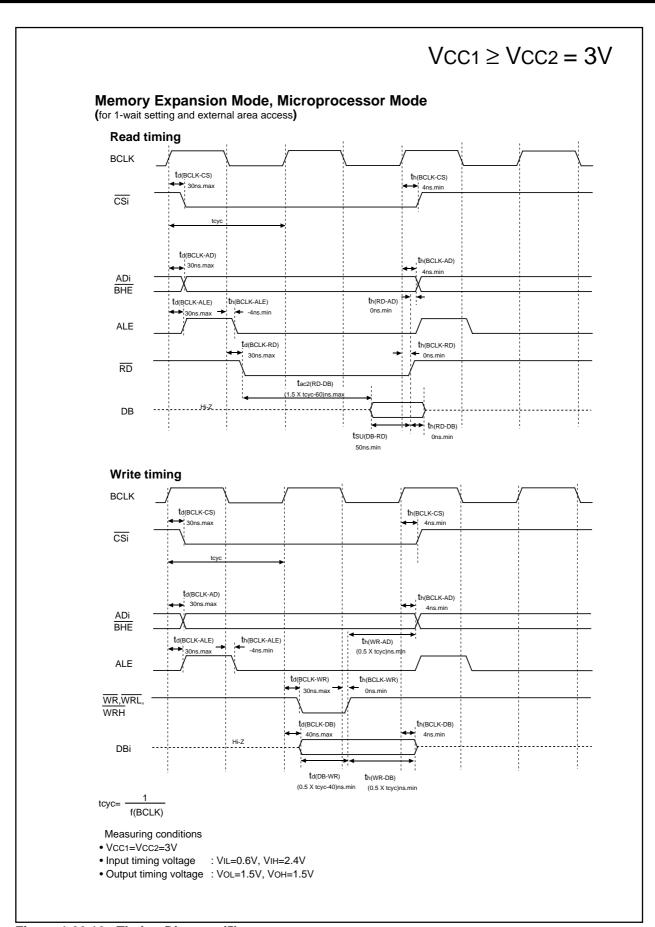


Figure 1.26.16. Timing Diagram (5)

Electrical Characteristics (Vcc1 ≥ Vcc2 = 3V)

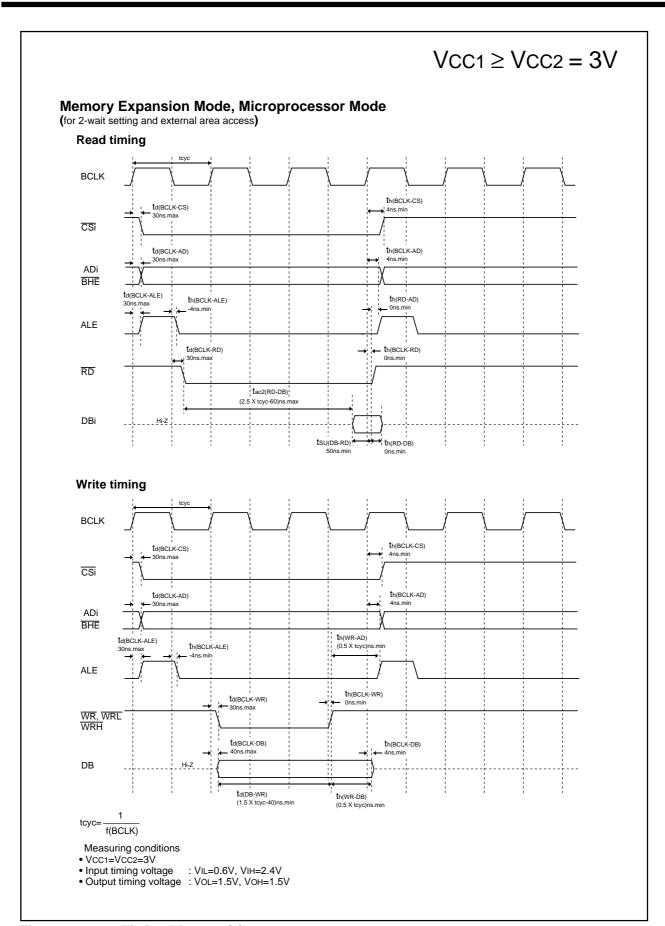


Figure 1.26.17. Timing Diagram (6)

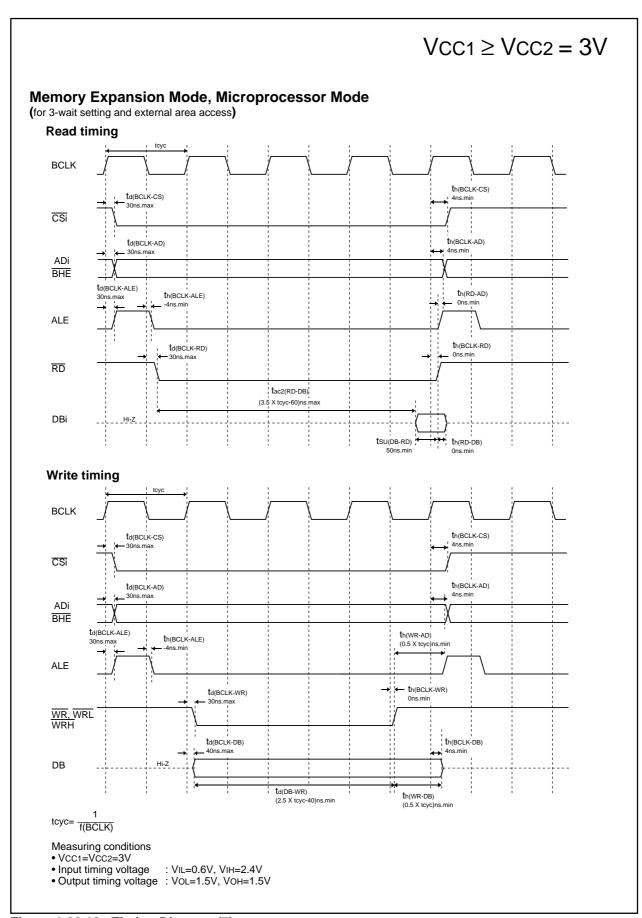


Figure 1.26.18. Timing Diagram (7)

Electrical Characteristics (Vcc1 ≥ Vcc2 = 3V)

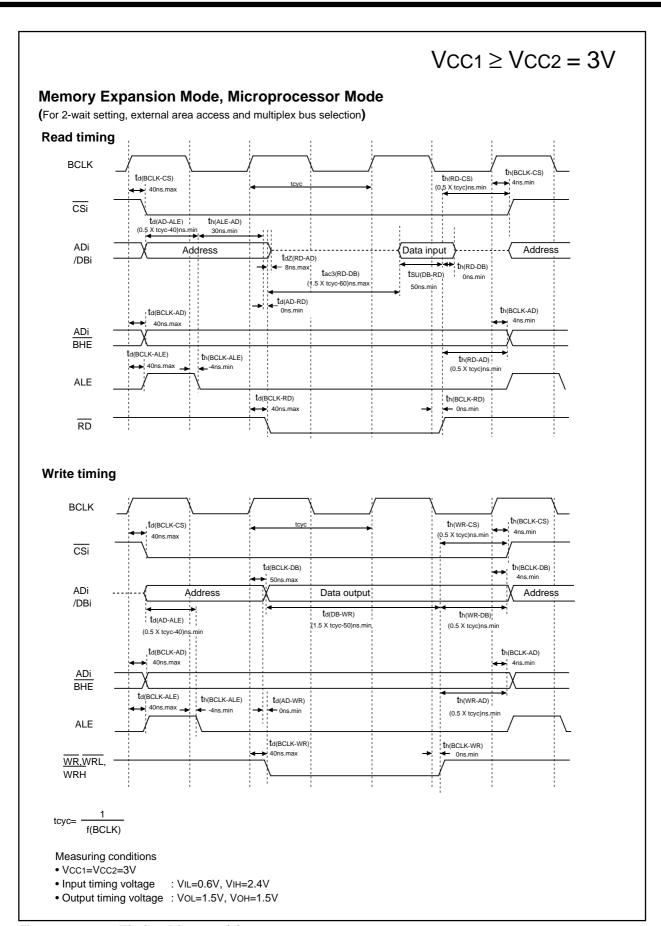


Figure 1.26.19. Timing Diagram (8)

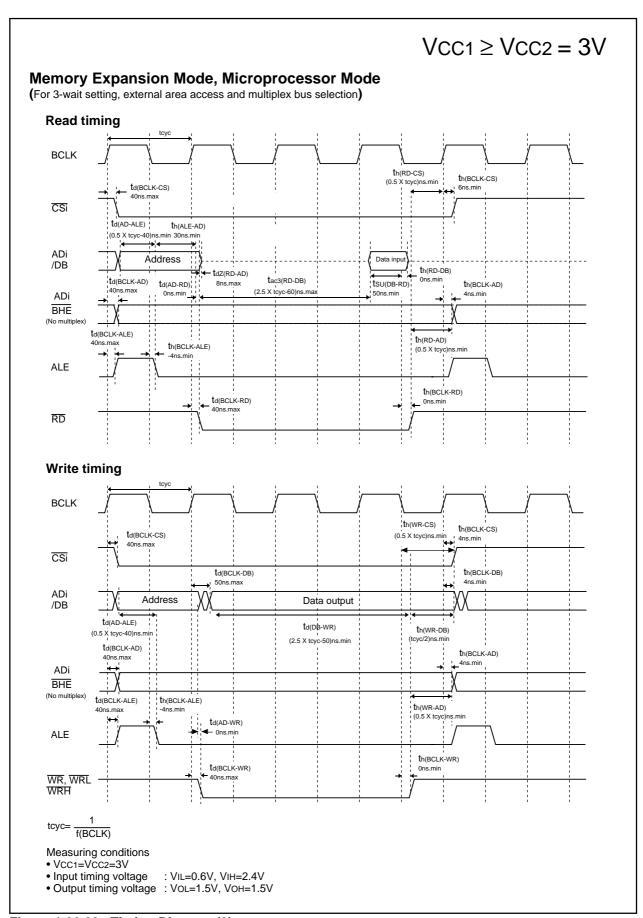


Figure 1.26.20. Timing Diagram (9)

Flash Memory Version

Flash Memory Performance

The flash memory version is functionally the same as the mask ROM version except that it internally contains flash memory.

The flash memory version has three modes—CPU rewrite, standard serial input/output, and parallel input/output modes—in which its internal flash memory can be operated on.

Table 1.27.1 shows the outline performance of flash memory version (see Table 1.1.1 for the items not listed in Table 1.27.1.).

Table 1.27.1. Flash Memory Version Specifications

Item		Specification		
Flash memory operating mode		3 modes (CPU rewrite, standard serial I/O, parallel I/O)		
Erase block		See Figure 1.27.1		
	Boot ROM area	1 block (4 Kbytes) (Note 1)		
Method for pro	ogram	In units of word, in units of byte (Note 2)		
Method for era	asure	Collective erase, block erase		
Program, eras	se control method	Program and erase controlled by software command		
Protect method		Protected for each block by lock bit		
Number of cor	mmands	8 commands		
Number of program and erasure		100 times		
Data Retention		10 years		
ROM code protection		Parallel I/O and standard serial I/O modes are supported.		

Note 1: The boot ROM area contains a standard serial I/O mode rewrite control program which is stored in it when shipped from the factory. This area can only be rewritten in parallel input/output mode.

Note 2: Can be programmed in byte units in only parallel input/output mode.

Table 1.27.2. Flash Memory Rewrite Modes Overview

Flash memory	CPU rewrite mode	Standard serial I/O mode	Parallel I/O mode
rewrite mode			
Function	The user ROM area is rewritten by executing software commands from the CPU. EW0 mode: Can be rewritten in any area other than the flash memory EW1 mode: Can be rewritten in the flash memory	The user ROM area is rewritten by using a dedicated serial programmer. Standard serial I/O mode 1: Clock sync serial I/O Standard serial I/O mode 2: UART	The boot ROM and user ROM areas are rewritten by using a dedicated parallel programmer.
Areas which	User ROM area	User ROM area	User ROM area
can be rewritten			Boot ROM area
Operation	Single chip mode	Boot mode	Parallel I/O mode
mode	Memory expansion mode		
	(EW0 mode)		
	Boot mode (EW0 mode)		
ROM	None	Serial programmer	Parallel programmer
programmer			

1. Memory Map

The ROM in the flash memory version is separated between a user ROM area and a boot ROM area. Figure 1.27.1 shows the block diagram of flash momoery. The user ROM area has a 4K-byte block A, in addition to the area that stores a program for microcomputer operation during singe-chip or memory expansion mode.

The user ROM area is divided into several blocks, each of which can individually be protected (locked) against programming or erasure. The user ROM area can be rewritten in all of CPU rewrite, standard serial input/output, and parallel input/output modes. Block A is enabled for use by setting the PM1 register's PM10 bit to "1" (block A enabled, CS2 area at addresses 1000016 to 26FFF16).

The boot ROM area is located at addresses that overlap the user ROM area, and can only be rewritten in parallel input/output mode. After a hardware reset that is performed by applying a high-level signal to the CNVss and P50 pins and a low-level signal to the P55 pin, the program in the boot ROM area is executed. After a hardware reset that is performed by applying a low-level signal to the CNVss pin, the program in the user ROM area is executed (but the boot ROM area cannot be read).

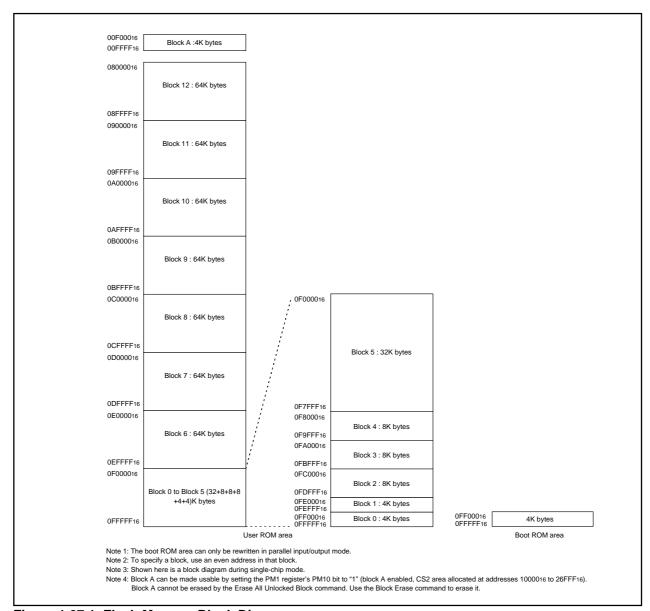


Figure 1.27.1. Flash Memory Block Diagram

Boot Mode

After a hardware reset which is performed by applying a low-level signal to the P55 pin and a high-level signal to the CNVss and P50 pins, the microcomputer is placed in boot mode, thereby executing the program in the boot ROM area.

During boot mode, the boot ROM and user ROM areas are switched over by the FMR05 bit in the FMR0 register.

The boot ROM area contains a standard serial input/output mode based rewrite control program which was stored in it when shipped from the factory.

The boot ROM area can be rewritten in parallel input/output mode. Prepare an EW0 mode based rewrite control program and write it in the boot ROM area, and the flash memory can be rewritten as suitable for the system.

Functions To Prevent Flash Memory from Rewriting

To prevent the flash memory from being read or rewritten easily, parallel input/output mode has a ROM code protect and standard serial input/output mode has an ID code check function.

ROM Code Protect Function

The ROM code protect function inhibits the flash memory from being read or rewritten during parallel input/output mode. Figure 1.27.2 shows the ROMCP register.

The ROMCP register is located in the user ROM area. The ROMCP1 bit consists of two bits. The ROM code protect function is enabled by clearing one or both of two ROMCP1 bits to "0" when the ROMCR bits are not '002,' with the flash memory thereby protected against reading or rewriting. Conversely, when the ROMCR bits are '002' (ROM code protect removed), the flash memory can be read or rewritten. Once the ROM code protect function is enabled, the ROMCR bits cannot be changed during parallel input/output mode. Therefore, use standard serial input/output or other modes to rewrite the flash memory.

ID Code Check Function

Use this function in standard serial input/output mode. Unless the flash memory is blank, the ID codes sent from the programmer and the ID codes written in the flash memory are compared to see if they match. If the ID codes do not match, the commands sent from the programmer are not accepted. The ID code consists of 8-bit data, the areas of which, beginning with the first byte, are 0FFFDF16, 0FFFE316, 0FFFE316, 0FFFF316, and 0FFFFB16. Prepare a program in which the ID codes are preset at these addresses and write it in the flash memory.

development

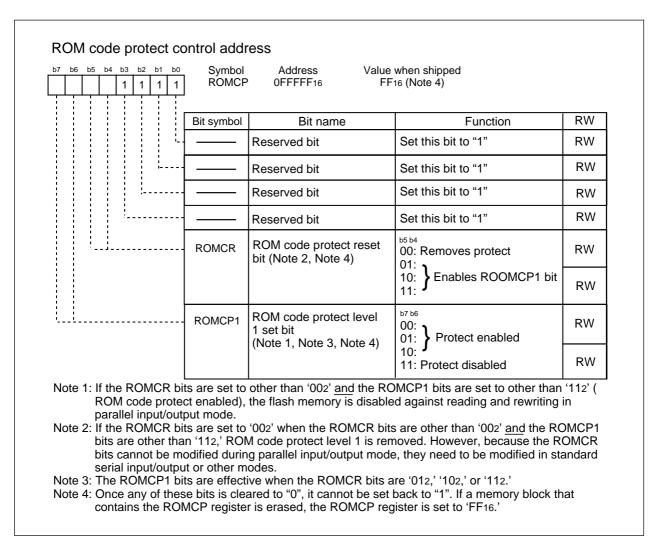


Figure 1.27.2. ROMCP Register

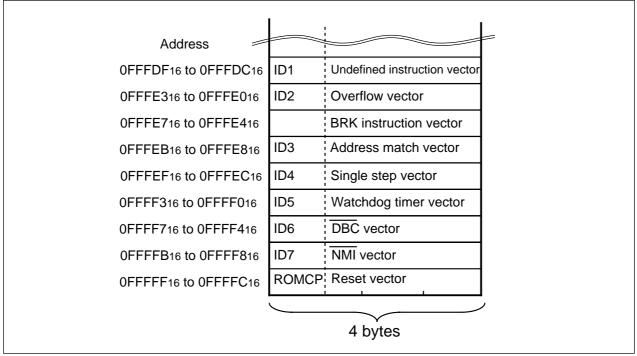


Figure 1.27.3. Address for ID Code Stored

CPU Rewrite Mode

In CPU rewrite mode, the user ROM area can be rewritten by executing software commands from the CPU. Therefore, the user ROM area can be rewritten directly while the microcomputer is mounted on-board without having to use a ROM programmer, etc.

In CPU rewrite mode, only the user ROM area shown in Figure 1.27.1 can be rewritten and the boot ROM area cannot be rewritten. Make sure the Program and the Block Erase commands are executed only on each block in the user ROM area.

During CPU rewrite mode, the user ROM area be operated on in either Erase Write 0 (EW0) mode or Erase Write 1 (EW1) mode. Table 1.27.3 lists the differences between Erase Write 0 (EW0) and Erase Write 1 (EW1) modes.

Table 1.27.3. EW0 Mode and EW1 Mode

Item	EW0 mode	EW1 mode	
Operation mode	Single chip mode	Single chip mode	
	Memory expansion mode		
	Boot mode		
Areas in which a	User ROM area	User ROM area	
rewrite control	Boot ROM area		
program can be located			
Areas in which a	Must be transferred to any area other	Can be executed directly in the user	
rewrite control	than the flash memory (e.g., RAM)	ROM area	
program can be executed			
Areas which can be	User ROM area	User ROM area	
rewritten		However, this does not include the area	
		in which a rewrite control program	
		exists	
Software command	None	Program, Block Erase command	
limitations		Cannot be executed on any block in	
		which a rewrite control program exists	
		Erase All Unlocked Block command	
		Cannot be executed when the lock bit	
		for any block in which a rewrite control	
		program exists is set to "1" (unlocked)	
		or the FMR0 register's FMR02 bit is set	
		to "1" (lock bit disabled)	
		Read Status Register command	
		Cannot be executed	
Modes after Program or	Read Status Register mode	Read Array mode	
Erase			
CPU status during Auto	Operating	Hold state (I/O ports retain the state in	
Write and Auto Erase		which they were before the command	
		was executed) ^(Note)	
Flash memory status	• Read the FMR0 register's FMR00,	Read the FMR0 register's FMR00,	
detection	FMR06, and FMR07 bits in a	FMR06, and FMR07 bits in a program	
	program		
	Execute the Read Status Register		
	command to read the status		
	register's SR7, SR5, and SR4 flags.		

Note: Make sure no interrupts (except \overline{NMI} and watchdog timer interrupts) and DMA transfers will occur.

Flash Memory

EW0 Mode

The microcomputer is placed in CPU rewrite mode by setting the FMR0 register's FMR01 bit to "1" (CPU rewrite mode enabled), ready to accept commands. In this case, because the FMR1 register's FMR11 bit = 0, EW0 mode is selected. The FMR01 bit can be set to "1" by writing "0" and then "1" in succession. Use software commands to control program and erase operations. Read the FMR0 register or status register to check the status of program or erase operation at completion.

• EW1 Mode

EW1 mode is selected by setting FMR11 bit to "1" (by writing "0" and then "1" in succession) after setting the FMR01 bit to "1" (by writing "0" and then "1" in succession).

Read the FMR0 register to check the status of program or erase operation at completion. The status register cannot be read during EW1 mode.

Figure 1.27.4 shows the FIDR, FMR0 and FMR1 registers.

FMR00 Bit

This bit indicates the operating status of the flash memory. The bit is "0" when the Program, Erase, or Lock Bit program is running; otherwise, the bit is "1".

FMR01 Bit

The microcomputer is made ready to accept commands by setting the FMR01 bit to "1" (CPU rewrite mode). During boot mode, make sure the FMR05 bit also is "1" (user ROM area access).

FMR02 Bit

The lock bit set for each block can be disabled by setting the FMR02 bit to "1" (lock bit disabled). (Refer to the description of the data protect function.) The lock bits set are enabled by setting the FMR02 bit to "0". The FMR02 bit only disables the lock bit function and does not modify the lock bit data (lock bit status flag). However, if the Erase command is executed while the FMR02 bit is set to "1", the lock bit data changes state from "0" (locked) to "1" (unlocked) after Erase is completed.

FMSTP Bit

This bit is provided for initializing the flash memory control circuits, as well as for reducing the amount of current consumed in the flash memory. The internal flash memory is disabled against access by setting the FMSTP bit to "1". Therefore, the FMSTP bit must be written to by a program in other than the flash memory.

In the following cases, set the FMSTP bit to "1":

- When flash memory access resulted in an error while erasing or programming in EW0 mode (FMR00 bit not reset to "1" (ready))
- When entering low power mode or ring low power mode

Figure 1.27.7 shows a flow chart to be followed before and after entering low power mode.

Note that when going to stop or wait mode, the FMR0 register does not need to be set because the power for the internal flash memory is automatically turned off and is turned back on again after returning from stop or wait mode.

FMR05 Bit

This bit switches between the boot ROM and user ROM areas during boot mode. Set this bit to "0" when accessing the boot ROM area (for read) or "1" (user ROM access) when accessing the user ROM area (for read, write, or erase).

FMR06 Bit

This is a read-only bit indicating the status of auto program operation. The bit is set to "1" when a program error occurs; otherwise, it is cleared to "0". For details, tefer to the description of the full status check.

FMR07 Bit

This is a read-only bit indicating the status of auto erase operation. The bit is set to "1" when an erase error occurs; otherwise, it is cleared to "0". For details, tefer to the description of the full status check.

Figure 1.27.5 and 1.27.6 show the setting and resetting of EW0 mode and EW1 mode, respectively.

FMR11 Bit

Setting this bit to "1" places the microcomputer in EW1 mode.

FMR16 Bit

This is a read-only bit indicating the execution result of the Read Lock Bit Status command.

Under

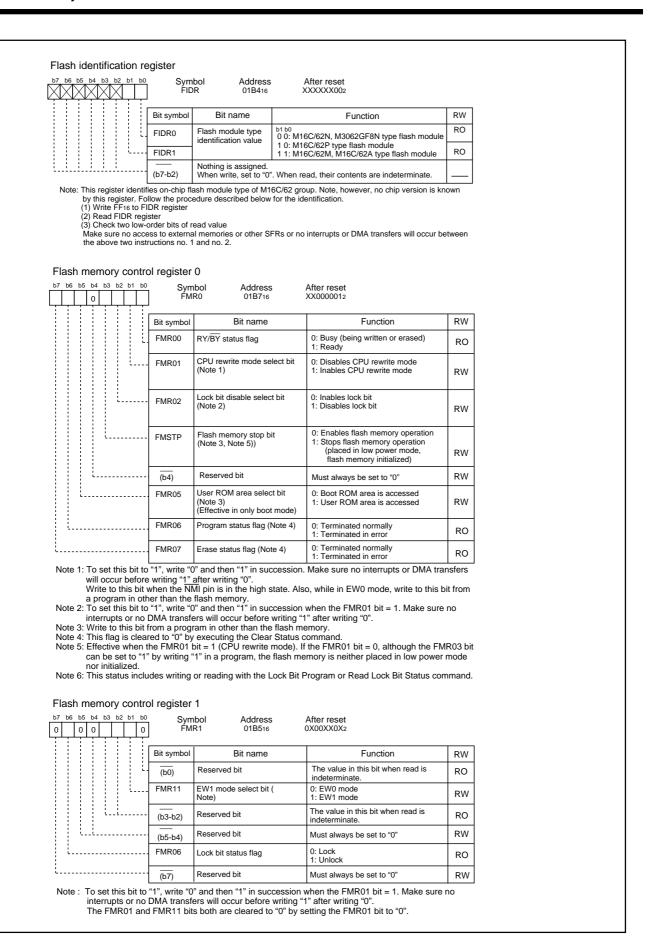


Figure 1.27.4. FIDR Register and FMR0 and FMR1 Registers

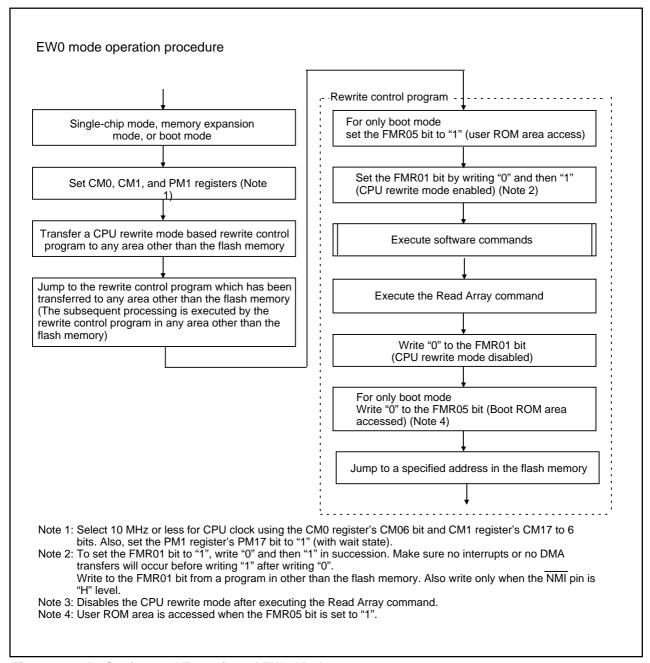


Figure 1.27.5. Setting and Tesetting of EW0 Mode

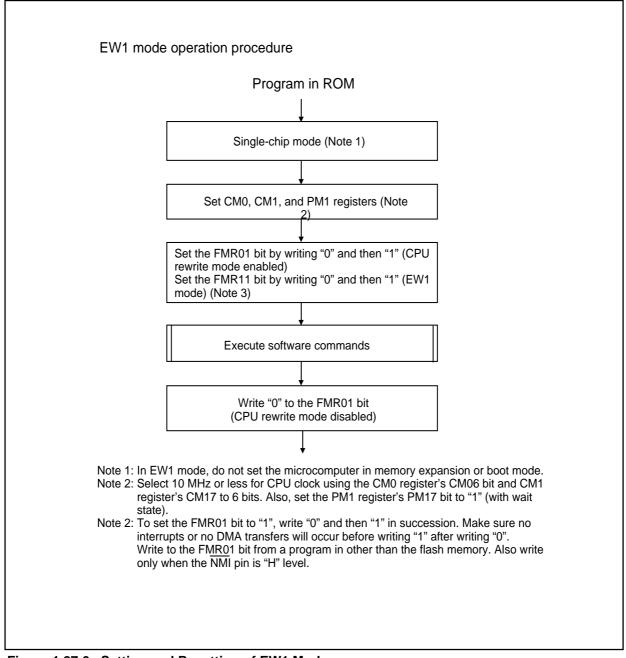


Figure 1.27.6. Setting and Resetting of EW1 Mode

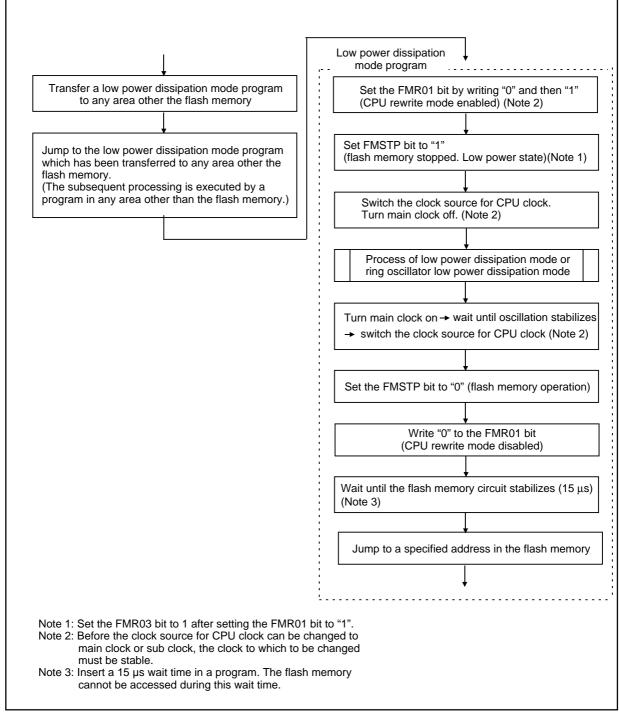


Figure 1.27.7. Processing Before and After Low Power Sissipation Mode

Precautions on CPU Rewrite Mode

Described below are the precautions to be observed when rewriting the flash memory in CPU rewrite mode.

(1) Operation Speed

Before entering CPU rewrite mode (EW0 or EW1 mode), select 10 MHz or less for BCLK using the CM06 bit in the CM0 register and the CM17 to CM16 bits in the CM1 register. Also, set the PM17 bit in the PM1 register to "1" (with wait state).

(2) Instructions to Prevent from Using

The following instructions cannot be used in EW0 mode because the flash memory's internal data is referenced: UND instruction, INTO instruction, JMPS instruction, JSRS instruction, and BRK instruction

(3) Interrupts

EW0 Mode

- Any interrupt which has a vector in the variable vector table can be used providing that its vector is transferred into the RAM area.
- The NMI and watchdog timer interrupts can be used because the FMR0 register and FMR1 register are initialized when one of those interrupts occurs. The jump addresses for those interrupt service routines should be set in the fixed vector table.
- Because the rewrite operation is halted when a NMI or watchdog timer interrupt occurs, the rewrite program must be executed again after exiting the interrupt service routine.
- The address match interrupt cannot be used because the flash memory's internal data is referenced.

EW1 Mode

- Make sure that any interrupt which has a vector in the variable vector table or address match interrupt will not be accepted during the auto program or auto erase period.
- Avoid using watchdog timer interrupts.
- The NMI interrupt can be used because the FMR0 register and FMR1 register are initialized when this interrupt occurs. The jump address for the interrupt service routine should be set in the fixed vector table.

Because the rewrite operation is halted when a $\overline{\text{NMI}}$ interrupt occurs, the rewrite program must be executed again after exiting the interrupt service routine.

(4) How to Access

To set the FMR01, FMR02, or FMR11 bit to "1", write "0" and then "1" in succession. This is necessary to ensure that no interrupts or DMA transfers will occur before writing "1" after writing "0". Also only when $\overline{\text{NMI}}$ pin is "H" level.

(5) Writing in the User ROM Space

EW0 Mode

• If the power supply voltage drops while rewriting any block in which the rewrite control program is stored, a problem may occur that the rewrite control program is not correctly rewritten and, consequently, the flash memory becomes unable to be rewritten thereafter. In this case, standard serial I/O or parallel I/O mode should be used.

EW1 Mode

Avoid rewriting any block in which the rewrite control program is stored.

(6) DMA Transfer

In EW1 mode, make sure that no DMA transfers will occur while the FMR0 register's FMR00 bit = 0 (during the auto program or auto erase period).

(7) Writing Command and Data

Write the command code and data at even addresses.

(8) Wait Mode

When shifting to wait mode, set the FMR01 bit to "0" (CPU rewrite mode disabled) before executing the WAIT instruction.

(9) Stop Mode

When shifting to stop mode, the following settings are required:

- Set the FMR01 bit to "0" (CPU rewrite mode disabled) and disable DMA transfers before setting the CM10 bit to "1" (stop mode).
- Execute the JMP.B instruction subsequent to the instruction which sets the CM10 bit to "1" (stop mode)

Example program BSET 0, CM1 ; Stop mode JMP.B L1 L1:

Program after returning from stop mode

(10) Low Power Dissipation Mode and Ring Oscillator Low Power Dissipation Mode

If the CM05 bit is set to "1" (main clock stop), the following commands must not be executed.

- Program
- Block erase
- Erase all unlocked blocks
- Lock bit program

Software Commands

Software commands are described below. The command code and data must be read and written in 16-bit units, to and from even addresses in the user ROM area. When writing command code, the 8 high-order bits (D1t–D8) are ignored.

Table 1.27.4. Software Commands

		First bus cycle	Э	Second bus cycle		
Command	Mode	Address	Data (Do to D7)	Mode	Address	Data (D ₀ to D ₇)
Read array	Write	X	xxFF16			
Read status register	Write	Х	xx7016	Read	X	SRD
Clear status register	Write	Х	xx5016			
Program	Write	WA	xx4016	Write	WA	WD
Block erase	Write	Х	xx2016	Write	ВА	xxD016
Erase all unlocked block ^(Note)	Write	Х	xxA716	Write	Х	XXD016
Lock bit program	Write	ВА	xx7716	Write	ВА	XXD016
Read lock bit status	Write	Х	xx7116	Write	ВА	xxD016

Note: It is only blocks 0 to 12 that can be erased by the Erase All Unlocked Block command.

Block A cannot be erased. Use the Block Erase command to erase block A.

SRD: Status register data (D7 to D0)

WA: Write address (Make sure the address value specified in the the first bus cycle is the same even address as the write address specified in the second bus cycle.)

WD: Write data (16 bits)

BA: Uppermost block address (even address, however)

X: Any even address in the user ROM area

x: High-order 8 bits of command code (ignored)

Read Array Command (FF16)

This command reads the flash memory.

Writing 'xxFF16' in the first bus cycle places the microcomputer in read array mode. Enter the read address in the next or subsequent bus cycles, and the content of the specified address can be read in 16-bit units.

Because the microcomputer remains in read array mode until another command is written, the contents of multiple addresses can be read in succession.

Read Status Register Command (7016)

This command reads the status register.

Write 'xx7016' in the first bus cycle, and the status register can be read in the second bus cycle. (Refer to "Status Register.") When reading the status register too, specify an even address in the user ROM area.

Do not execute this command in EW1 mode.

^{de_Aelobweu}t

Clear Status Register Command (5016)

This command clears the status register to "0".

Write 'xx5016' in the first bus cycle, and the FMR06 to FMR07 bits in the FMR0 register and SR4 to SR5 in the status register will be cleared to "0".

Program Command (4016)

This command writes data to the flash memory in 1 word (2 byte) units.

Write 'xx4016' in the first bus cycle and write data to the write address in the second bus cycle, and an auto program operation (data program and verify) will start. Make sure the address value specified in the first bus cycle is the same even address as the write address specified in the second bus cycle. Check the FMR00 bit in the FMR0 register to see if auto programming has finished. The FMR00 bit is "0" during auto programming and set to "1" when auto programming is completed.

Check the FMR06 bit in the FMR0 register after auto programming has finished, and the result of auto programming can be known. (Refer to "Full Status Check.")

Each block can be protected against programming by a lock bit. (Refer to "Data Protect Function.") Writing over already programmed addresses is inhibited.

In EW1 mode, do not execute this command on any address at which the rewrite control program is located.

In EW0 mode, the microcomputer goes to read status register mode at the same time auto programming starts, making it possible to read the status register. The status register bit 7 (SR7) is cleared to "0" at the same time auto programming starts, and set back to "1" when auto programming finishes. In this case, the microcomputer remains in read status register mode until a read command is written next. The result of auto programming can be known by reading the status register after auto programming has finished.

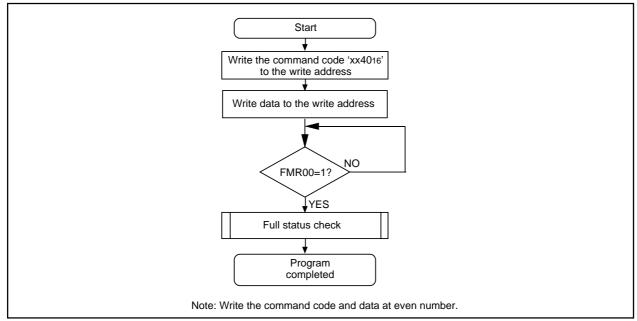


Figure 1.27.8. Program Command

Block Erase

Write 'xx2016' in the first bus cycle and write 'xxD016' to the uppermost address of a block (even address, however) in the second bus cycle, and an auto erase operation (erase and verify) will start. Check the FMR0 register's FMR00 bit to see if auto erasing has finished.

The FMR00 bit is "0" during auto erasing and set to "1" when auto erasiing is completed.

Check the FMR0 register's FMR07 bit after auto erasing has finished, and the result of auto erasing can be known. (Refer to "Full Status Check.")

Figure 1.27.9 shows an example of a block erase flowchart.

Each block can be protected against erasing by a lock bit. (Refer to "Data Protect Function.")

Writing over already programmed addresses is inhibited.

In EW1 mode, do not execute this command on any address at which the rewrite control program is located.

In EW0 mode, the microcomputer goes to read status register mode at the same time auto erasing starts, making it possible to read the status register. The status register bit 7 (SR7) is cleared to "0" at the same time auto erasing starts, and set back to "1" when auto erasing finishes. In this case, the microcomputer remains in read status register mode until the Read Array or Read Lock Bit Status command is written next.

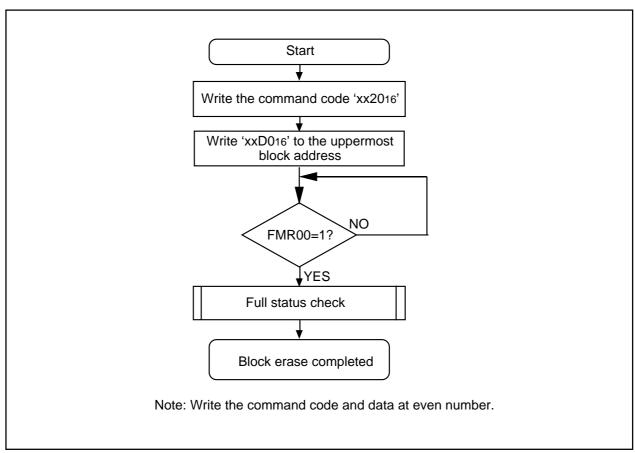


Figure 1.27.9. Block Erase Command

Erase All Unlocked Block

Write 'xxA716' in the first bus cycle and write 'xxD016' in the second bus cycle, and all blocks except block A will be erased successively, one block at a time.

Check the FMR0 register's FMR00 bit to see if auto erasing has finished. The result of the auto erase operation can be known by inspecting the FMR0 register's FMR07 bit.

Each block can be protected against erasing by a lock bit. (Refer to "Data Protect Function.")

In EW1 mode, do not execute this command when the lock bit for any block = 1 (unlocked) in which the rewrite control program is stored, or when the FMR0 register's FMR02 bit = 1 (lock bit disabled).

In EW0 mode, the microcomputer goes to read status register mode at the same time auto erasing starts, making it possible to read the status register. The status register bit 7 (SR7) is cleared to "0" at the same time auto erasing starts, and set back to "1" when auto erasing finishes. In this case, the microcomputer remains in read status register mode until the Read Array or Read Lock Bit Status command is written next.

Note that only blocks 0 to 12 can be erased by the Erase All Unlocked Block command. Block A cannot be erased. Use the Block Erase command to erase block A.

Lock Bit Program Command (7716/D016)

This command sets the lock bit for a specified block to "0" (locked).

Write 'xx7716' in the first bus cycle and write 'xxD016' to the uppermost address of a block (even address, however) in the second bus cycle, and the lock bit for the specified block is cleared to "0". Make sure the address value specified in the first bus cycle is the same uppermost block address that is specified in the second bus cycle.

Figure 1.27.10 shows an example of a lock bit program flowchart. The lock bit status (lock bit data) can be read using the Read Lock Bit Status command.

Check the FMR0 register's FMR00 bit to see if writing has finished.

For details about the lock bit function, and on how to set the lock bit to "1", refer to "Data Protect Function."



Figure 1.27.10. Lock Bit Program Command

Read Lock Bit Status Command (7116)

This command reads the lock bit status of a specified block.

Write 'xx7116' in the first bus cycle and write 'xxD016' to the uppermost address of a block (even address, however) in the second bus cycle, and the lock bit status of the specified block is stored in the FMR1 register's FMR16 bit. Read the FMR16 bit after the FMR0 register's FMR00 bit is set to "1" (ready).

Figure 1.27.11 shows an example of a read lock bit status flowchart.

Figure 1.27.11. Read Lock Bit Status Command

Data Protect Function

Each block in the flash memory has a nonvolatile lock bit. The lock bit is effective when the FMR02 bit = 0 (lock bit enabled). The lock bit allows each block to be individually protected (locked) against programming and erasure. This helps to prevent data from inadvertently written to or erased from the flash memory. The following shows the relationship between the lock bit and the block status.

- When the lock bit = 0, the block is locked (protected against programming and erasure).
- When the lock bit = 1, the block is not locked (can be programmed or erased.

The lock bit is cleared to "0" (locked) by executing the Lock Bit Program command, and is set to "1" (unlocked) by erasing the block. The lock bit cannot be set to "1" by a command.

The lock bit status can be read using the Read Lock Bit Status command

The lock bit function is disabled by setting the FMR02 bit to "1", with all blocks placed in an unlocked state. (The lock bit data itself does not change state.) Setting the FMR02 bit to "0" enables the lock bit function (lock bit data retained).

If the Block Erase or Erase All Unlocked Block command is executed while the FMR02 bit = 1, the target block or all blocks are erased irrespective of how the lock bit is set. The lock bit for each block is set to "1" after completion of erasure.

For details about the commands, refer to "Software Commands."

Status Register

The status register indicates the operating status of the flash memory and whether an erase or programming operation terminated normally or in error. The status of the status register can be known by reading the FMR0 register's FMR00, FMR06, and FMR07 bits.

Table 1.27.5 shows the status register.

In EW0 mode, the status register can be read in the following cases:

- (1) When a given even address in the user ROM area is read after writing the Read Status Register command
- (2) When a given even address in the user ROM area is read after executing the Program, Block Erase, Erase All Unlocked Block, or Lock Bit Program command but before executing the Read Array command.

Sequencer Status (SR7 and FMR00 Bits)

The sequence status indicates the operating status of the flash memory. SR7 = 0 (busy) during auto programming, auto erase, and lock bit write, and is set to "1" (ready) at the same time the operation finishes.

Erase Status (SR5 and FMR07 Bits)

Refer to "Full Status Check."

Program Status (SR4 and FMR06 Bits)

Refer to "Full Status Check."

Table 1.27.5. Status Register

Status	FMR0	Status name	Con	tents	Value after
register bit	register bit	Status flame	"0"	"1"	reset
SR7 (D7)	FMR00	Sequencer status	Busy	Ready	1
SR6 (D6)		Reserved	-	-	
SR5 (D5)	FMR07	Erase status	Terminated normally	Terminated in error	0
SR4 (D4)	FMR06	Program status	Terminated normally	Terminated in error	0
SR3 (D3)		Reserved	-	-	
SR2 (D2)		Reserved	-	-	
SR1 (D1)		Reserved	-	-	
SR0 (D0)		Reserved	-	-	

- Do to D7: Indicates the data bus which is read out when the Read Status Register command is executed.
- The FMR07 bit (SR5) and FMR06 bit (SR4) are cleared to "0" by executing the Clear Status Register command.
- When the FMR07 bit (SR5) or FMR06 bit (SR4) = 1, the Program, Block Erase, Erase All Unlocked Block, and Lock Bit Program commands are not accepted.

Full Status Check

When an error occurs, the FMR0 register's FMR06 to FMR07 bits are set to "1", indicating occurrence of each specific error. Therefore, execution results can be verified by checking these status bits (full status check). Table 1.27.6 lists errors and FMR0 register status. Figure 1.27.12 shows a full status check flowchart and the action to be taken when each error occurs.

Table 1.27.6. Errors and FMR0 Register Status

FRM00	register		
(status register)			
status		Error	Error occurance condition
FMR07	FMR06		
(SR5)	(SR4)		
1	1	Command	When any command is not written correctly
		sequence error	When invalid data was written other than those that can be writ-
			ten in the second bus cycle of the Lock Bit Program, Block Erase,
			or Erase All Unlocked Block command (i.e., other than 'xxD016' or
			'xxFF16') (Note 1)
1	0	Erase error	When the Block Erase command was executed on locked blocks
			(Note 2)
			When the Block Erase or Erase All Unlocked Block command
			was executed on unlocked blocks but the blocks were not auto-
			matically erased correctly
0	1	Program error	When the Block Erase command was executed on locked blocks
			(Note 2)
			When the Program command was executed on unlocked blocks
			but the blocks were not automatically programmed correctly.
			When the Lock Bit Program command was executed but not pro-
			grammed correctly

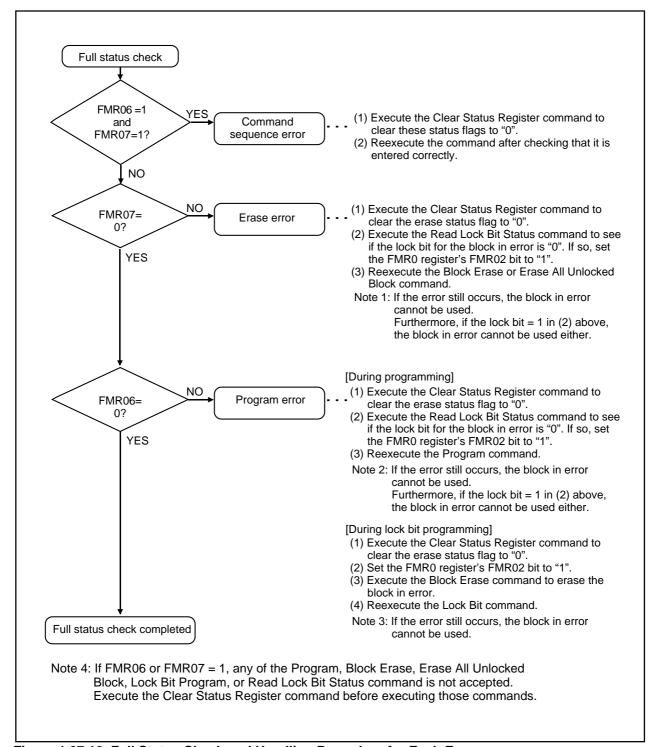


Figure 1.27.12. Full Status Check and Handling Procedure for Each Error

development

Standard Serial I/O Mode

In standard serial input/output mode, the user ROM area can be rewritten while the microcomputer is mounted on-board by using a serial programmer suitable for the M16C/62P group. For more information about serial programmers, contact the manufacturer of your serial programmer. For details on how to use, refer to the user's manual included with your serial programmer.

Table 1.27.7 lists pin functions (flash memory standard serial input/output mode). Figures 1.27.13 to 1.27.15 show pin connections for serial input/output mode.

ID Code Check Function

This function determines whether the ID codes sent from the serial programmer and those written in the flash memory match. (Refer to the desctiption of the functions to inhibit rewriting flash memory version.)

Flash Memory

Table 1.27.7. Pin Functions (Flash Memory Standard Serial I/O Mode)

Pin	Name	I/O	Description
Vcc,Vss	Power input		Apply the voltage guaranteed for Program and Erase to Vcc pin and 0 V to Vss pin.
CNVss	CNVss	ı	Connect to Vcc pin.
RESET	Reset input	I	Reset input pin. While RESET pin is "L" level, input a 20 cycle or longer clock to XIN pin.
XIN	Clock input	ı	Connect a ceramic resonator or crystal oscillator between XIN and
Хоит	Clock output	0	XOUT pins. To input an externally generated clock, input it to XIN pin and open XOUT pin.
BYTE	BYTE	ı	Connect this pin to Vcc or Vss.
AVcc, AVss	Analog power supply input		Connect AVss to Vss and AVcc to Vcc, respectively.
VREF	Reference voltage input	I	Enter the reference voltage for AD from this pin.
P00 to P07	Input port P0	ı	Input "H" or "L" level signal or open.
P10 to P17	Input port P1	ı	Input "H" or "L" level signal or open.
P20 to P27	Input port P2	ı	Input "H" or "L" level signal or open.
P30 to P37	Input port P3	ı	Input "H" or "L" level signal or open.
P40 to P47	Input port P4	ı	Input "H" or "L" level signal or open.
P51 to P54, P56, P57	Input port P5	I	Input "H" or "L" level signal or open.
P50	CE input	I	Input "H" level signal.
P55	EPM input	I	Input "L" level signal.
P60 to P63	Input port P6	I	Input "H" or "L" level signal or open.
P64	BUSY output	0	Standard serial I/O mode 1: BUSY signal output pin Standard serial I/O mode 2: Monitors the boot program operation check signal output pin.
P65	SCLK input	l	Standard serial I/O mode 1: Serial clock input pin Standard serial I/O mode 2: Input "L".
P66	RxD input	I	Serial data input pin
P67	TxD output	0	Serial data output pin (Note 1)
P70 to P77	Input port P7	I	Input "H" or "L" level signal or open.
P80 to P84, P86, P87	Input port P8	I	Input "H" or "L" level signal or open.
P85	NMI input	I	Connect this pin to Vcc.
P90 to P97	Input port P9	ı	Input "H" or "L" level signal or open. (Note 2)
P100 to P107	Input port P10	ı	Input "H" or "L" level signal or open. (Note 2)
P110 to P117	Input port P11	I	Input "H" or "L" level signal or open. (Note 2)
P120 to P127	Input port P12	ı	Input "H" or "L" level signal or open. (Note 2)
P130 to P137	Input port P13	I	Input "H" or "L" level signal or open. (Note 2)
P140 to P147	Input port P14	ı	Input "H" or "L" level signal or open. (Note 2)
	i e e e e e e e e e e e e e e e e e e e		

Note 1: When using standard serial input/output mode 1, the TxD pin must be held high while the RESET pin is pulled low. Therefore, connect this pin to Vcc via a resistor. Because this pin is directed for data output after reset, adjust the pull-up resistance value in the system so that data transfers will not be affected.

Note 2: Available in only the 128-pin version.

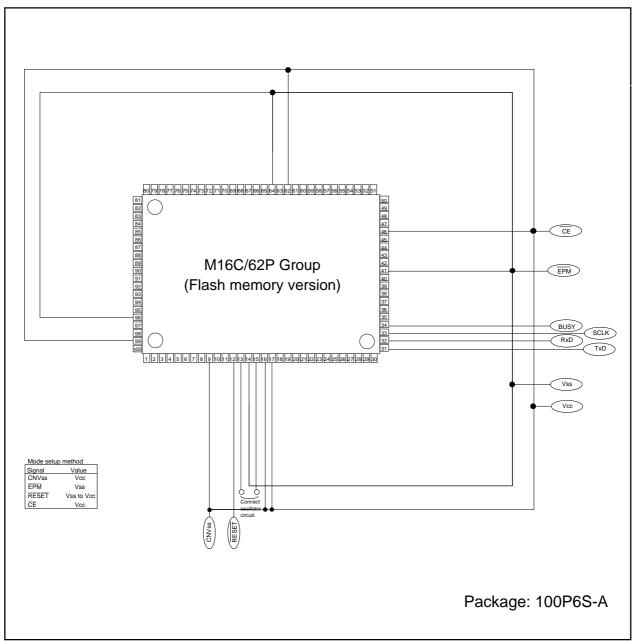


Figure 1.27.13. Pin Connections for Serial I/O Mode (1)

Under

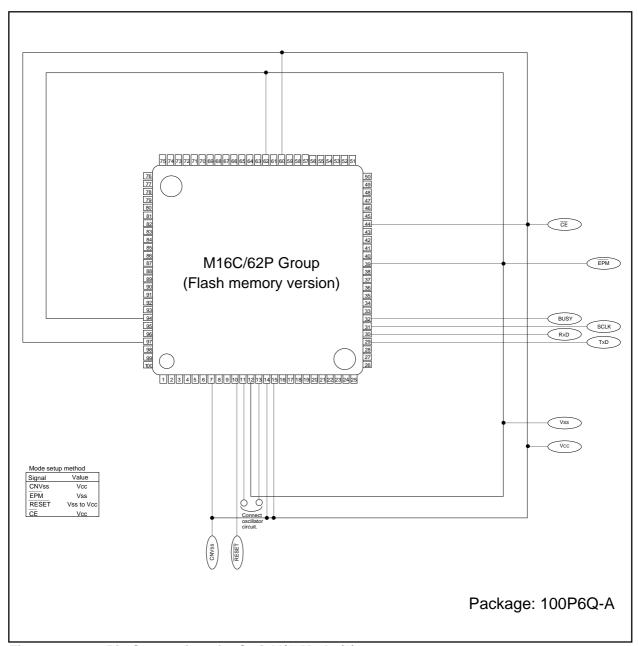


Figure 1.27.14. Pin Connections for Serial I/O Mode (2)

Under development

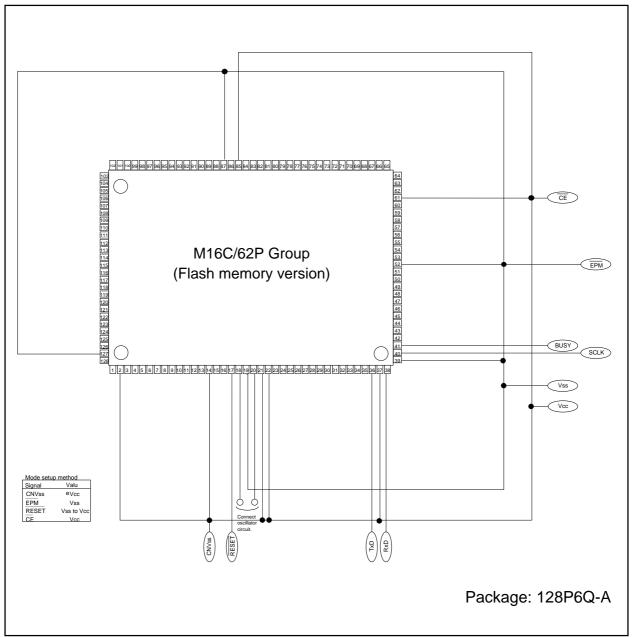


Figure 1.27.15. Pin Connections for Serial I/O Mode (3)

Example of Circuit Application in the Standard Serial I/O Mode

Figure 1.27.16 and 1.27.17 show example of circuit application in standard serial I/O mode 1 and mode 2, respectively. Refer to the user's manual for serial writer to handle pins controlled by a serial writer.

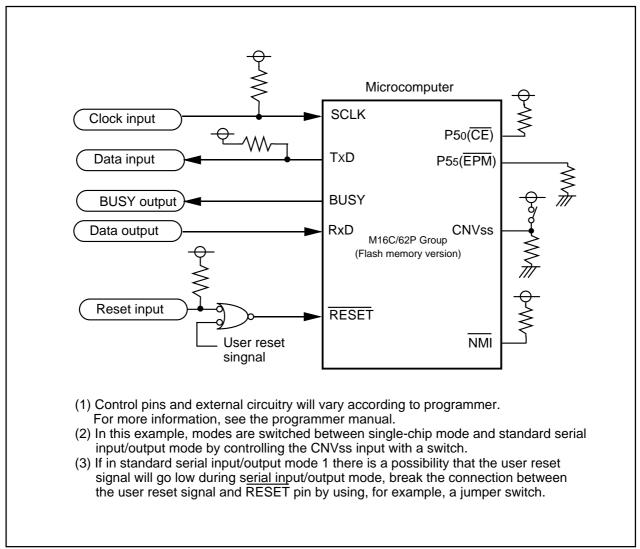


Figure 1.27.16. Circuit Application in Standard Serial I/O Mode 1

Under

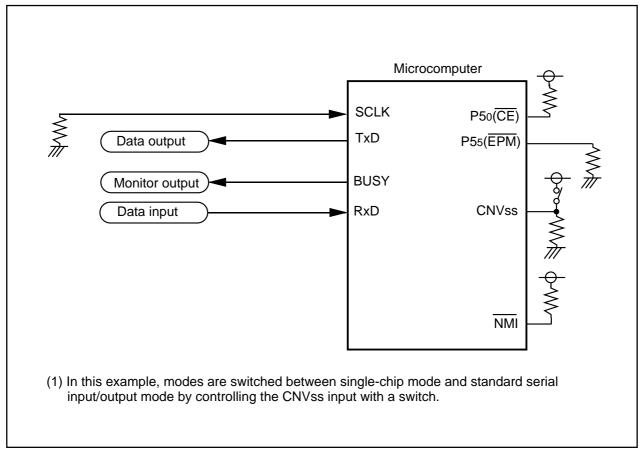


Figure 1.27.17. Circuit Application in Standard Serial I/o Mode 2

development

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

Parallel I/O Mode

In parallel input/output mode, the user ROM and boot ROM areas can be rewritten by using a parallel programmer suitable for the M16C/62P group. For more information about parallel programmers, contact the manufacturer of your parallel programmer. For details on how to use, refer to the user's manual included with your parallel programmer.

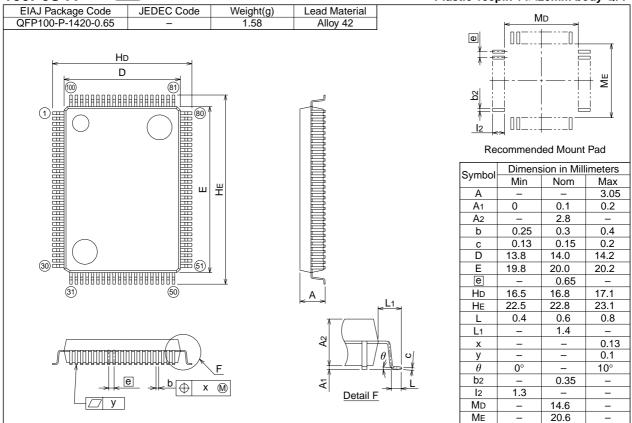
User ROM and Boot ROM Areas

In the boot ROM area, an erase block operation is applied to only one 4 Kbyte block. The boot ROM area contains a standard serial input/output mode based rewrite control program which was written in it when shipped from the factory. Therefore, when using a serial programmer, be careful not to rewrite the boot ROM area.

When in parallel output mode, the boot ROM area is located at addresses 0FF00016 to 0FFFF16. When rewriting the boot ROM area, make sure that only this address range is rewritten. (Do not access other than the addresses 0FF00016 to 0FFFFF16.)

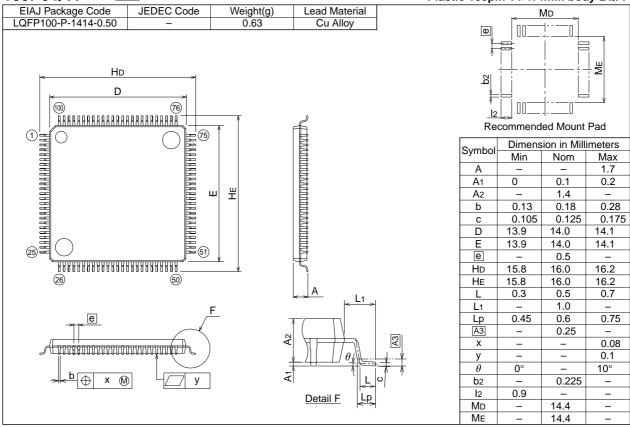
ROM Code Protect Function

The ROM code protect function inhibits the flash memory from being read or rewritten. (Refer to the description of the functions to inhibit rewriting flash memory version.)

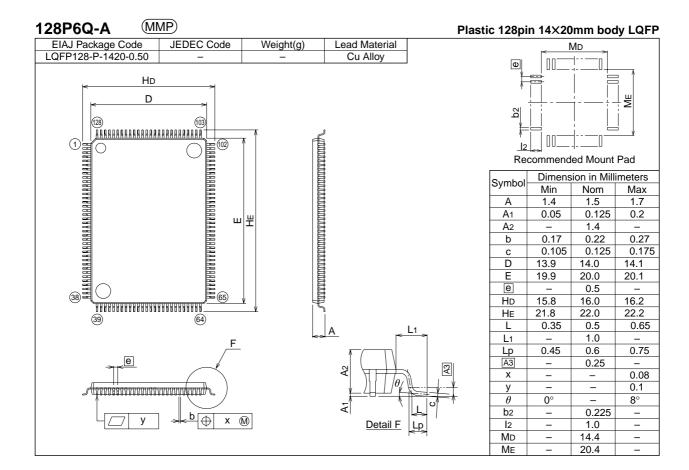


development

Package Outline



Plastic 100pin 14×20mm body QFP



100P6Q-A MMP

Plastic 100pin 14X14mm body LQFP

Under

Differences Between M16C/62P and M16C/62A

Differences in Mask ROM Version and Flash Memory Version (1) (Note)

Item	M16C/62P	M16C/62A
Shortest instruction execution time	41.7ns (f(BCLK)=24MH z, VCC1=3.0 to 5.5V) 100ns (f(BCLK)=10MH z, VCC1=2.7 to 5.5V)	62.5ns (f(XIN)=16MHz, VCC=4.2V to 5.5V) 100ns (f(XIN)=10MHz, VCC=2.7V to 5.5V with software one-wait)
Supply voltage	VCC1=3.0 to 5.5V, VCC2=3.0V to VCC1 (f(BCLK)=24MHz) VCC1=VCC2=2.7 to 5.5V (f(BCLK)=10MHz)	4.2V to 5.5V (f(XIN)=16MHz, without software wait) 2.7V to 5.5V (f(XIN)=10MHz, with software one-wait)
I/O power supply	Double (VCC1, VCC2)	Single (Vcc)
Package	100-pin, 128-pin plastic mold QFP	80-pin, 100-pin plastic mold QFP
Voltage detection circuit	Built-in Vdet2, Vdet3, Vdet4 detect Power supply voltage down detect interrupt Hardware reset 2	None
Clock Generating Circuit	PLL, XIN, XCIN, ring oscillator Main clock division rate when main clock is stopped: Divide-by-8 frequency XIN drive capacity when main clock is stopped: HIGH	XIN, XCIN Main clock division rate when main clock is stopped: No change XIN drive capacity when main clock is stopped: No change
System clock protective function	Built-in	None (protected by protect register)
Oscillation stop, re-oscillation detection function	Built-in	None
Low power consumption	18mA (VCC1=VCC2=5V, f(BCLK)=24MHz) 8mA (VCC1=VCC2=3V, f(BCLK)=10MHz) 1.8μA (VCC1=VCC2=3V, f(XCIN)=32kHz, when wait mode)	32.5mA (Vcc=5V, f(XIN)=16MHz) 8.5mA (Vcc=3V, f(XCIN)=10MHz with software one-wait) 0.9μA (Vcc=3V, f(XCIN)=32kHz, when wait mode)
Memory area	Memory area expandable (4 Mbytes)	1 Mbytes fixed
External device connect area	0400016-07FFF16(PM13=0) 0800016-0FFFF16(PM10=0) 1000016-26FFF16 2800016-7FFFF16 8000016-CFFFF16(PM13=0) D000016-FFFFF16(Microprocessor mode)	0400016-05FFF16(PM13=0) 0600016-CFFFF16 D000016-FFFFF16(Microprocessor mode)
Upper address in memory expansion mode and microprocessor mode	P40 to P43 (A16 to A19), P34 to P37 (A12 to A15) : Switchable between address bus and port	P40 to P43 (A16 to A19) : Switchable between address bus and port
Access to SFR	Variable (1 to 2 waits)	1 wait fixed
Software wait to external area	Variable (0 to 3 waits)	Variable (0 to 1 wait)
Protect	Can be set for PM0, PM1, PM2, CM0, CM1, CM2, PLC0, INVC0, INVC1, PD9, S3 C, S4C, TB2SC, PCLKR, VCR2, D4INT registers	Can be set for PM0, PM1, CM0, CM1, PD9, S3C, S4C registers
Watchdog timer	Watchdog timer interrupt or watchdog timer reset is selected Count source protective mode is available	Watchdog timer interrupt No count source protective mode
Address match interrupt	4	2

Note: About the details and the electric characteristics, refer to data sheet.

Differences in Mask ROM version and Flash memory version (2) (Note)

Item	M16C/62P	M16C/62A
Timers A, B count source	Selectable: f1, f2, f8, f32, fC32	Selectable: f1, f8, f32, fC32
Timer A two-phase pulse signal processing	Z-phase (counter reset) input is available	No Z-phase (counter reset input
Timer functions for three-phase motor control	Function protect by protect register Count source is selectable: f1, f2, f8, f32, fC32 Dead time timer count source is selectable: f1, f1 divided by 2, f2, f2 divided by 2 Output polarity is selectable Carrier wave phase detectable Three-phase output port NMI control	No function protect by protect register Count source is selectable: f1, f8, f32, fC32 Dead time timer count source is fixed at f1/2
Serial I/O (UART0 to UART2)	(UART, clock synchronous, I ² C bus, IE bus) x 3	(UART, clock synchronous,) x 2 (UART, clock synchronous, IIC bus, IE bus) x 1
UART0 to UART2, SI/O3, SI/O4 count source	Selectable: f1SIO, f2SIO, f8SIO, f32SIO	Selectable: f1, f8, f32
Serial I/O RTS timing	Assert low when receive buffer is read	Assert low when reception is completed
CTS/RTS separate function	Have	None
UART2 data transmit timing	After data was written, transfer starts at the 2nd BRG overflow timing (same as UART0 and UART1)	After data was written, transfer starts at the 1st BRG overflow timing (Output starts one cycle of BRG overflow earlier than UART0 and UART1)
Serial I/O sleep function	None	Have
Serial I/O I ² C mode	Start condition, stop condition: Auto-generationable	Start condition, stop condition: Not auto-generationable
Serial I/O I ² C mode SDA delay	Only digital delay is selected as SDA delay SDA digital delay count source: BRG	Analog or digital delay is selected as SDA delay SDA digital delay count source: 1/ f(XIN)
SI/O3, SI/O4 clock polarity selection	Selectable	Not selectable
A-D converter	10 bits X 8 channels Expandable up to 26 channels	10 bits X 8 channels Expandable up to 10 channels
A-D converter operation clock	Selectable: fAD, fAD divided by 2, 3, 4, 6, 12	Selectable: fAD, fAD/2, fAD/4
A-D converter input pin	Selectable: ports P0, P2, P10	Fixed at port P10

Note: About the details and the electric characteristics, refer to data sheet.

Differences in Flash memory version(Note)

Item	M16C/62P	M16C/62A	
User ROM blocks	14 blocks: 4 Kbytes x 3, 8 Kbytes x 3, 32 Kbytes x1, 64 Kbytes x 7 (Flash memory: max. 512 Kbytes)	7 blocks: 8 Kbytes x 2, 16 Kbytes x1, 32 Kbytes x 1, 64 Kbytes x 3 (Flash memory: max. 256 Kbytes)	
Program manner	Word	Page	
Program command (software command)	Page program command: none Program command: have (program method: in units of word, in units of byte)	Page program command: have Program command: none (program method: in units of page)	
Block status after program function	Have	None	
CPU rewrite mode	EW1 mode is available	No EW1 mode	

Note: About the details and the electric characteristics, refer to data sheet.

Under

Register Index

Α AD0 to AD7 192 **ADCON0 191** ADCON1 191 **ADCON2** 192 AIER 92 AIER2 92 C CM0 53 CM1 54 CM2 55 CPSRF 111, 124 CRCD 208 CRCIN 208 **CSE 40 CSR 34** D **D4INT 25** DA0 **207** DA1 207 DACON 207 DAR0 101 DAR1 101 DBR 44 **DM0CON 100 DM1CON 100** DM1SL 100 **DTT 133** F FIDR **268** FMR0 268 I ICTB2 134 IDB0 **133** IDB1 133

INVC0 131 INVC1 **132** 0 **ONSF 111** P P0 to P13 217 PC14 218 PCLKR 56 PCR 220 PD0 to PD13 216 PLC0 57 PM0 **30** PM1 **31** PM2 56 PRCR 74 PUR0 to PUR2 219 PUR3 218 R RMAD0 to RMAD3 92 ROMCP 264 S S3BRG 185 S3C 185 S3TRR 185 S4BRG 185 S4C 185 S4TRR 185 SAR0 101 SAR1 101 Т TA0 to TA4 110 TAOMR to TA4MR 109 TA1 134 TA11 134 TA1MR 136 TA2 134

TA21 134

IFSR 89

IFSR2A 89

TA2MR 136

TA4 **134**

TA41 **134**

TA4MR 136

TABSR 110, 124, 135

TB0 to TB5 124

TB0MR to TB5MR 123

TB2 135

TB2MR 136

TB2SC 134

TBSR 124

TCR0 101

TCR1 101

TRGSR 111, 135

U

U0BRG to U2BRG 142

U0C0 to U2C0 143

U0C1 to U2C1 144

U0MR to U2MR 143

U0RB to U2RB 142

U0SMR to U2SMR 145

U0SMR2 to U2SMR2 146

U0SMR3 to U2SMR3 146

U0SMR4 to U2SMR4 147

U0TB to U2TB 142

UCON 145

UDF 110

٧

VCR1 25

VCR2 25

W

WDC 24, 96

WDTS 96

REVISION HISTORY

M16C/62P GROUP DATA SHEET

Rev.	Date	Description	
		Page	Summary
1.0	Jan/31/Y03 (Continued)	1 2 5 5 11 20 21 22 24 25 26 27 30 31 39 41 43 44 55 57 60 61 62 63 63 64 64 65 88 99 100 105 105 107 107 107 107 107 107 107 107 107 107	Applications are partly revised. Table 1.1.1 is partly revised. Table 1.1.2 is partly revised. Figure 1.1.2 is partly revised. Explanation of "Memory" is partly revised. Explanation of "Hardware Reset 1" is partly revised. Figure 1.5.1 is partly revised. Figure 1.5.1 is partly revised. Figure 1.5.4 is partly revised. Figure 1.5.4 is partly revised. VCR2 Register in Figure 1.5.6 is partly revised. Figure 1.5.6 is partly revised. Explanation of "Power Supply Down Detection Interrupt" is partly revised. Figure 1.6.1 is partly revised. Figure 1.6.2 is partly revised. Table 1.7.5 is partly revised. Table 1.7.5 is partly revised. Figure 1.7.8 is partly revised. Figure 1.7.8 is partly revised. Figure 1.7.8 is partly revised. Notes 12 and 13 in Figure 1.9.2 is partly revised. Notes 12 and 13 in Figure 1.9.3 is partly revised. Notes 2 and 5 in Figure 1.9.3 is partly revised. Note 3 and 5 in Figure 1.9.3 is partly revised. Explanation of "PLU Clock" is partly revised. Explanation of "PLU Clock" is partly revised. Explanation of "CPU Clock and BCLK" is partly revised. Explanation of "CPU Clock and BCLK" is partly revised. Explanation of "CPU Clock and BCLK" is partly revised. Explanation of "Cow Power Dissipation Mode" is partly revised. Explanation of "Sing Oscillator Low Power Dissipation Mode" is partly revised. Explanation of "Sing Oscillator Low Power Dissipation Mode" is partly revised. Table 1.9.3 is partly revised. Table 1.9.1 is partly revised. Figure 1.9.1 is partly revised. Figure 1.9.1 is partly revised. Figure 1.9.1 is partly revised. Figure 1.9.1 is partly revised. Figure 1.1.3 is partly revised. Figure 1.1.3 is partly revised. Figure 1.1.3 is partly revised. Figure 1.1.3 is partly revised. Figure 1.1.3 is partly revised. Figure 1.1.4 is partly revised. Figure 1.1.4 is partly revised. Figure 1.1.4 is partly revised. Figure 1.1.4 is partly revised. Figure 1.1.4 is partly revised. Figure 1.1.4 is partly revised. Figure 1.1.5 is partly revised. Figure 1.1.5 is partly revised. Figure 1.1.5 is partly revised. Fig

REVISION HISTORY

M16C/62P GROUP DATA SHEET

1.0 Jan/31/Y03 (Continued)	Page 124 128 128 130 132 134 137 146 163 164, 165 169 169	Figure 1.15.3 is partly revised. Figure 1.15.7 is partly revised. Figure 1.15.8 is partly revised. Figure 1.16.1 is partly revised. Figure 1.16.3 is partly revised. Figure 1.16.8 is partly revised. Note 7 is added to TAi, TAi1 Register in Figure 1.16.5. Figure 1.16.8 is partly revised. UiSMR2 Register in Figure 1.17.7 is partly revised. Figure 1.20.1 is partly revised. Table 1.20.2 and Table 1.20.3 are partly revised.
1.0 Jan/31/Y03 (Continued)	124 128 128 130 132 134 137 146 163 164, 165 169	Figure 1.15.3 is partly revised. Figure 1.15.7 is partly revised. Figure 1.15.8 is partly revised. Figure 1.16.1 is partly revised. Figure 1.16.3 is partly revised. Note 7 is added to TAi, TAi1 Register in Figure 1.16.5. Figure 1.16.8 is partly revised. UiSMR2 Register in Figure 1.17.7 is partly revised. Figure 1.20.1 is partly revised.
	170 171 179 179 184 187 203 205 205 206 207 218 223 224 225 225 225 225 225 227 228 229 230 230 231 232 233 234 235 242 242 242 242 243 244 245 246 246 247 247	Figure 1.20.4 is partly revised. Explanation of "Arbitration" is partly revised. Explanation of "Transfer Clock" is partly revised. Explanation of "ACK and NACK" is partly revised. Explanation of "Special Mode 4 (SIM Mode)" is partly revised. Explanation of "Special Mode 4 (SIM Mode)" is partly revised. Figure 1.21.1 is partly revised. Figure 1.21.1 is partly revised. Explanation of "External Operation Amp Connection Mode" is partly revised. Explanation of "Caution of Using A-D Converter" is partly revised. Figure 1.22.11 is partly revised. Figure 1.23.1 is partly revised. Figure 1.23.3 is partly revised. Figure 1.25.9 is partly revised. Figure 1.25.9 is partly revised. Table 1.26.1 is partly revised. Note 1 of Table 1.26.3 is partly revised. Note 1 of Table 1.26.4 is partly revised. Note 1 of Table 1.26.4 is partly revised. Note 1 of Table 1.26.9 is partly revised. Note 1 of Table 1.26.10 is partly revised. Note 1 of Table 1.26.11 is partly revised. Measurement conditions of timing requirements are partly revised. Measurement conditions of timing requirements are partly revised. Measurement conditions of switching characteristics are partly revised. Measurement conditions of switching characteristics are partly revised. Measurement conditions of switching characteristics are partly revised. Measurement conditions of switching characteristics are partly revised. Measurement conditions of switching characteristics are partly revised. Measurement conditions of switching characteristics are partly revised. Measurement conditions of switching characteristics are partly revised. Measurement conditions of switching characteristics are partly revised. Measurement conditions of switching characteristics are partly revised. Measurement conditions of switching characteristics are partly revised. Note of Table 1.26.28 is partly revised. Measurement conditions of timing requirements are partly revised. Measurement conditions of timing requirements are partly revised.

REVISION HISTORY

M16C/62P GROUP DATA SHEET

Rev.	Date	Description	
		Page	Summary
1.0	Jan/31/Y03 (Continued)	251 252 255 256 257 258 259 260 262 263 264 268 271 272 272 274 274 278 287 293	Measurement conditions of switching characteristics are partly revised. Figure 1.26.12 is partly revised. Figure 1.26.15 is partly revised. Figure 1.26.16 is partly revised. Figure 1.26.17 is partly revised. Figure 1.26.18 is partly revised. Figure 1.26.20 is partly revised. Figure 1.26.20 is partly revised. Explanation of "Memory Map" is partly revised. Explanation of "Boot Mode" is partly revised. Figure 1.27.3 is partly revised. Note of FIDR Register in Figure 1.27.4 is partly revised. Figure 1.27.7 is partly revised. Explanation of "Interrupts" is partly revised. Explanation of "Writing in the User ROM Space" is partly revised. Table 1.27.4 is partly revised. Explanation of "Read Array Command" is partly revised. Explanation of "Program Command" is partly revised. Figure 1.27.15 is partly revised. Partly revised.

Renesas Technology Corp.

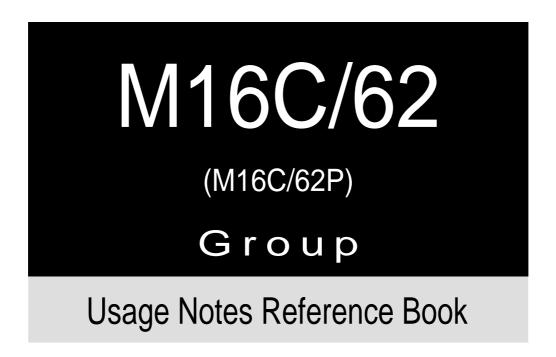
Nippon Bldg.,6-2,Otemachi 2-chome,Chiyoda-ku,Tokyo,100-0004 Japan

-Keep safety first in your circuit designs!

• Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
- Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents
 information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation
 without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric
 Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a
 product listed herein.


The information described here may contain technical inaccuracies or typographical errors. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Mitsubishi Electric Corporation by various means, including the Mitsubishi Semiconductor home page (http://www.mitsubishichips.com).

- When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under
 circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi
 Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as
 apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.
- If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
- Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
- Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.

MITSUBISHI 16-BIT SINGLE-CHIP MICROCOMPUTER M16C FAMILY / M16C/60 SERIES

http://www.infomicom.maec.co.jp/indexe.htm

Before using this material, please visit the above website to confirm that this is the most current document available.

Revision date: February 14, 2003

-Keep safety first in your circuit designs!-

Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
- Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein.
 - The information described here may contain technical inaccuracies or typographical errors. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
 - Please also pay attention to information published by Mitsubishi Electric Corporation by various means, including the Mitsubishi Semiconductor home page (http://www.mitsubishichips.com).
- When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use
 in a device or system that is used under circumstances in which human life is potentially at
 stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any
 specific purposes, such as apparatus or systems for transportation, vehicular, medical,
 aerospace, nuclear, or undersea repeater use.
- The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.
- If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
 - Any diversion or reexport contrary to the export control laws and regulations of Japan and/ or the country of destination is prohibited.
- Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.

Preface

This book describes the M16C/62 (M16C/62P) group's precautions for use, which contains paragraphs describing precautions of the user's manual and technical news relevant to these paragraphs. Please refer to this book when developing your systems. However, all of precautions are not contained in this book, please perform sufficient evaluation under systems development.

1. Usage Precaution

1.1 Precautions for Interrupts

1.1.1 Reading address 0000016

Do not read the address 0000016 in a program. When a maskable interrupt request is accepted, the CPU reads interrupt information (interrupt number and interrupt request priority level) from the address 0000016 during the interrupt sequence. At this time, the IR bit for the accepted interrupt is cleared to "0". If the address 0000016 is read in a program, the IR bit for the interrupt which has the highest priority among the enabled interrupts is cleared to "0". This causes a problem that the interrupt is canceled, or an unexpected interrupt is generated.

1.1.2 Setting the SP

Set any value in the SP before accepting an interrupt. The SP is cleared to '000016' after reset. Therefore, if an interrupt is accepted before setting any value in the SP, the program may go out of control. Especially when using $\overline{\text{NMI}}$ interrupt, set a value in the SP at the beginning of the program. For the first and only the first instruction after reset, all interrupts including $\overline{\text{NMI}}$ interrupt are disabled.

1.1.3 The NMI Interrupt

- 1. The NMI interrupt cannot be disabled. If this interrupt is unused, connect the NMI pin to Vcc via a resistor (pull-up).
- 2. The input level of the $\overline{\text{NMI}}$ pin can be read by accessing the P8 register's P8_5 bit. Note that the P8_5 bit can only be read when determining the pin level after an $\overline{\text{NMI}}$ interrupt is generated.
- 3. Stop mode cannot be entered into while input on the $\overline{\text{NMI}}$ pin is low. This is because while input on the $\overline{\text{NMI}}$ pin is low the CM1 register's CM10 bit is fixed to "0".
- 4. Do not go to wait mode while input on the $\overline{\text{NMI}}$ pin is low. This is because when input on the $\overline{\text{NMI}}$ pin goes low, the CPU stops but CPU clock remains active; therefore, the current consumption in the chip does not drop. In this case, normal condition is restored by an interrupt generated thereafter.
- 5. The low and high level durations of the input signal to the NMI pin must each be 2 CPU clock cycles + 300 ns or more.

1.1.4 INT Interrupt

- 1. Either an "L" level or an "H" level of at least 250 ns width is necessary for the signal input to pins INTo through INT5 regardless of the CPU operation clock.
- 2. When the polarity of the INTo to INTo pins is changed or the interrupt request cause of the software interrupt numbers 8 to 9 is changed, the IR bit is sometimes set to "1" (interrupt request). After these changes were made, set the interrupt request bit to "0" (no interrupt request). Figure 1.1.1 shows the procedure for changing the INT interrupt generate factor.

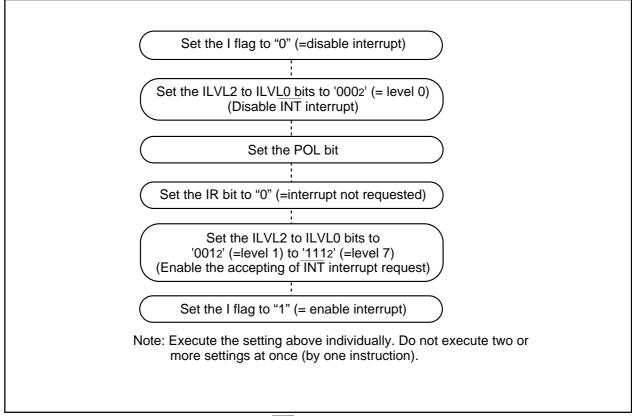


Figure 1.1.1. Procedure for Changing the INT Interrupt Generate Factor

1.1.5 Watchdog Timer Interrupt

Initialize the watchdog timer after the watchdog timer interrupt occurs.

1.1.6 Rewrite the Interrupt Control Register

Each interrupt control register can only be modified while no interrupt requests corresponding to that register are generated. If interrupt requests managed by any interrupt control register are likely to occur, disable the interrupts before modifying the register. A sample program is shown below.

Example 1:

INT_SWITCH1:

FCLR I ; Disable interrupts.

AND.B #00h, 0055h; Set the TA0IC register to "0016".

NOP ; Four NOP instructions are required when using HOLD function.

NOP ; Enable interrupts.

Example 2:

INT_SWITCH2:

FCLR I ; Disable interrupts.

AND.B #00h, 0055h; Set the TAOIC register to "0016".

MOV.W MEM, R0 ; Dummy read. FSET I ; Enable interrupts.

Example 3:

INT_SWITCH3:

PUSHC FLG ; Push Flag register onto stack

FCLR I ; Disable interrupts.

AND.B #00h, 0055h; Set the TA0IC register to "0016".

POPC FLG ; Enable interrupts.

Why the FSET I instruction is preceded by two NOP instructions (four when using HOLD function) in Example 1 and why the FSET I instruction is preceded by a dummy read in Example 2

This is to prevent the I flag from being set to "1" before writing to the interrupt control register for reasons of the instruction queue buffer.

To modify any interrupt control register after disabling interrupts, be careful with the instructions used.

(1) Modifying Other Than the IR Bit

If an interrupt request corresponding to that register is generated while executing the instruction, the IR bit may not be set to "1" (= interrupt requested), with the result that the interrupt request is ignored. If this presents a problem, use the following instructions to modify the register.

Instructions to use: AND, OR, BCLR, BSET

(2) Modifying the IR Bit

Even when the IR bit is cleared to "0" (= interrupt not requested), it may not actually be cleared to "0" depending on the instruction used. Therefore, use the MOV instruction to clear the IR bit.

1.2 Precautions for Protect

1.2 Precautions for Protect

Set the PRC2 bit to "1" (write enabled) and then write to any address, and the PRC2 bit will be cleared to "0" (write protected). The registers protected by the PRC2 bit should be changed in the next instruction after setting the PRC2 bit to "1". Make sure no interrupts or DMA transfers will occur between the instruction in which the PRC2 bit is set to "1" and the next instruction.

1.3 Precautions for DMAC

1.3.1 Write to DMAE Bit in DMiCON Register

When both of the conditions below are met, follow the steps below.

Conditions

- The DMAE bit is set to "1" again while it remains set (DMAi is in an active state).
- A DMA request may occur simultaneously when the DMAE bit is being written.

Step 1: Write "1" to the DMAE bit and DMAS bit in DMiCON register simultaneously(*1).

Step 2: Make sure that the DMAi is in an initial state^(*2) in a program.

If the DMAi is not in an initial state, the above steps should be repeated.

Notes:

- *1. The DMAS bit remains unchanged even if "1" is written. However, if "0" is written to this bit, it is set to "0" (DMA not requested). In order to prevent the DMAS bit from being modified to "0", "1" should be written to the DMAS bit when "1" is written to the DMAE bit. In this way the state of the DMAS bit immediately before being written can be maintained.
 - Similarly, when writing to the DMAE bit with a read-modify-write instruction, "1" should be written to the DMAS bit in order to maintain a DMA request which is generated during execution.
- *2. Read the TCRi register to verify whether the DMAi is in an initial state. If the read value is equal to a value which was written to the TCRi register before DMA transfer start, the DMAi is in an initial state. (If a DMA request occurs after writing to the DMAE bit, the value written to the TCRi register is "1".) If the read value is a value in the middle of transfer, the DMAi is not in an initial state.

1.4 Precautions for Timers

1.4.1 Timers A and B

This section describes precautions for timers A and B. Precautions for each mode should be referred as well.

- 1. After reset, timers stop. After setting mode, count source or counter value, the TAiS bit (i=0 to 4) or TBjS bit (j=0 to 5) in the TABSR or TBSR register should be set to "1" (starts counting). Make sure that the TAiS bit or TBjS bit is set to "0" (stops counting) before changing the registers and bits listed below.
 - TAiMR register and TBjMR register
 - TAi register and TBj register
 - UDF register
 - TAZIE, TA0TGL and TA0TGH bits in ONSF register
 - TRGSR register

1.4.2 Timer A

1.4.2.1 Timer A (Timer Mode)

- 1. After reset, the TABSR register TAiS bit (i = 0 to 4) is cleared to "0" (stops counting). Select operation mode and set a value in the TAi register before setting the TAiS bit to "1" (starts counting).
- 2. While counting is in progress, the counter value can be read out at any time by reading the TAi register. However, if the counter is read at the same time it is reloaded, the value "FFFF16" is read. Also, if the counter is read before it starts counting after a value is set in the TAi register while not counting, the set value is read.
- 3. If a low-level signal is applied to the $\overline{\text{NMI}}$ pin when the TB2SC register IVPCR1 bit = "1" (three-phase output forcible cutoff by input on $\overline{\text{NMI}}$ pin enabled), the TA1OUT, TA2OUT and TA4OUT pins go to a high-impedance state.

Under

1.4.2.2 Timer A (Event Counter Mode)

- 1. After reset, the TABSR register TAiS bit (i = 0 to 4) is cleared to "0" (stopped counting). Select operation mode and set a value in the TAi register before setting the TAiS bit to "1" (start counting).
- 2. While counting is in progress, the counter value can be read out at any time by reading the TAi register. However, "FFFF16" can be read in underflow, while reloading, and "000016" in overflow. When setting TAi register to a value during a counter stop, the setting value can be read before a counter starts counting. Also, if the counter is read before it starts counting after a value is set in the TAi register while not counting, the set value is read.
- 3. If a low-level signal is applied to the NMI pin when the TB2SC register IVPCR1 bit = "1" (three-phase output forcible cutoff by input on NMI pin enabled), the TA1OUT, TA2OUT and TA4OUT pins go to a high-impedance state.

1.4.2.3 Timer A (One-shot Timer Mode)

- 1. After reset, the TABSR register TAiS bit (i = 0 to 4) is cleared to "0" (stopped counting). Select operation mode and set a value in the TAi register before setting the TAiS bit to "1" (start counting).
- 2. When setting TABSR register to "0" (count stop), the followings occur:
 - A counter stops counting and a content of reload register is reloaded.
 - TAiout pin outputs "L".
 - After one cycle of the CPU clock, the IR bit of TAilC register is set to "1" (interrupt request).
- 3. Output in one-shot timer mode synchronizes with a count source internally generated. When an external trigger has been selected, one-cycle delay of a count source as maximum occurs between a trigger input to TAiin pin and output in one-shot timer mode.
- 4. The IR bit is set to "1" when timer operation mode is set with any of the following procedures:
 - Select one-shot timer mode after reset.
 - Change an operation mode from timer mode to one-shot timer mode.
 - Change an operation mode from event counter mode to one-shot timer mode.
 To use the timer Ai interrupt (the IR bit), set the IR bit to "0" after the changes listed above have been made.
- 5. When a trigger occurs, while counting, a counter reloads the reload register to continue counting after generating a re-trigger and counting down once. To generate a trigger while counting, generate a second trigger between occurring the previous trigger and operating longer than one cycle of a timer count source.
- 6. If a low-level signal is applied to the \overline{NMI} pin when the TB2SC register IVPCR1 bit = "1" (three-phase output forcible cutoff by input on \overline{NMI} pin enabled), the TA1OUT, TA2OUT and TA4OUT pins go to a high-impedance state.

1.4.2.4 Timer A (Pulse Width Modulation Mode)

- 1. After reset, the TABSR register TAiS bit (i = 0 to 4) is cleared to "0" (stopped counting). Select operation mode and set a value in the TAi register before setting the TAiS bit to "1" (start counting).
- 2. The IR bit is set to "1" when setting a timer operation mode with any of the following procedures:
 - Select the PWM mode after reset.
 - Change an operation mode from timer mode to PWM mode.
 - Change an operation mode from event counter mode to PWM mode.

To use the timer Ai interrupt (interrupt request bit), set the IR bit to "0" by program after the above listed changes have been made.

- 3. When setting TAiS register to "0" (count stop) during PWM pulse output, the following action occurs:
 - · Stop counting.
 - When TAiout pin is output "H", output level is set to "L" and the IR bit is set to "1".
 - When TAiout pin is output "L", both output level and the IR bit remains unchanged.
- 4. If a low-level signal is applied to the \overline{NMI} pin when the TB2SC register IVPCR1 bit = "1" (three-phase output forcible cutoff by input on \overline{NMI} pin enabled), the TA1OUT, TA2OUT and TA4OUT pins go to a high-impedance state.

1.4.3 Timer B

1.4.3.1 Timer B (Timer Mode and Event Counter Mode)

1. After reset, the TBiS bit (i = 0 to 5) is cleared to "0" (stopped counting). Select operation mode and set a value in the TBi register before setting the TBiS bit to "1" (start counting).

The TB0S to TB2S bits are the bits 5 to 7 of TABSR register, the TB3S to TB5S bits are the bits 5 to 7 of TBSR register.

2. A value of a counter, while counting, can be read in TBi register at any time. "FFFF16" is read while reloading. Setting value is read between setting values in TBi register at count stop and starting a counter.

1.4.3.2 Timer B (Pulse Period/pulse Width Measurement Mode)

- 1. The IR bit of TBiIC register (i=0 to 5) goes to "1" (overflow), when an effective edge of a measurement pulse is input or timer Bi is overflowed. The factor of interrupt request can be determined by use of the MR3 bit of TBiMR register within the interrupt routine.
- 2. If the source of interrupt cannot be identified by the MR3 bit such as when the measurement pulse input and a timer overflow occur at the same time, use another timer to count the number of times timer B has overflowed.
- 3. To set the MR3 bit to "0" (no overflow), set TBiMR register with setting the TBiS bit to "1" and counting the next count source after setting the MR3 bit to "1" (overflow).
- 4. Use the IR bit of TBiIC register to detect only overflows. Use the MR3 bit only to determine the interrupt factor within the interrupt routine.
- 5. When a count is started and the first effective edge is input, an indeterminate value is transferred to the reload register. At this time, timer Bi interrupt request is not generated.
- 6. A value of the counter is indeterminate at the beginning of a count. MR3 may be set to "1" and timer Bi interrupt request may be generated between a count start and an effective edge input.
- 7. When changing the MR1 to MR0 bits of TBiMR after a count is started, the IR bit of TBilC register may be set to "1" (interrupt request). Note that the IR bit does not change if the same value as before is written to the MR1 to MR0 bits.
- 8. For pulse width measurement, pulse widths are successively measured. Use program to check whether the measurement result is an "H" level width or an "L" level width.

1.5 Precautions for Serial I/O (Clock-synchronous Serial I/O)

1.5 Precautions for Serial I/O (Clock-synchronous Serial I/O)

1.5.1 Transmission/reception

- 1. With an external clock selected, and choosing the RTS function, the output level of the RTSi pin goes to "L" when the data-receivable status becomes ready, which informs the transmission side that the reception has become ready. The output level of the RTSi pin goes to "H" when reception starts. So if the RTSi pin is connected to the CTSi pin on the transmission side, the circuit can transmission and reception data with consistent timing. With the internal clock, the RTS function has no effect.
- 2. If a low-level signal is applied to the $\overline{\text{NMI}}$ pin when the TB2SC register IVPCR1 bit = "1" (three-phase output forcible cutoff by input on $\overline{\text{NMI}}$ pin enabled), the $\overline{\text{RTS2}}$ and CLK2 pins go to a high-impedance state.

1.5 Precautions for Serial I/O (Clock-synchronous Serial I/O)

1.5.2 Transmission

development

When an external clock is selected, the conditions must be met while if the UiC0 register's CKPOL bit = "0" (transmit data output at the falling edge and the receive data taken in at the rising edge of the transfer clock), the external clock is in the high state; if the UiC0 register's CKPOL bit = "1" (transmit data output at the rising edge and the receive data taken in at the falling edge of the transfer clock), the external clock is in the low state.

- The TE bit of UiC1 register= "1" (transmission enabled)
- The TI bit of UiC1 register = "0" (data present in UiTB register)
- If CTS function is selected, input on the CTSi pin = "L"

1.5 Precautions for Serial I/O (Clock-synchronous Serial I/O)

1.5.3 Reception

- 1. In operating the clock-synchronous serial I/O, operating a transmitter generates a shift clock. Fix settings for transmission even when using the device only for reception. Dummy data is output to the outside from the TxDi pin when receiving data.
- 2. When an internal clock is selected, set the UiC1 register (i = 0 to 2)'s TE bit to 1 (transmission enabled) and write dummy data to the UiTB register, and the shift clock will thereby be generated. When an external clock is selected, set the UiC1 register (i = 0 to 2)'s TE bit to 1 and write dummy data to the UiTB register, and the shift clock will be generated when the external clock is fed to the CLKi input pin.
- 3. When successively receiving data, if all bits of the next receive data are prepared in the UARTi receive register while the UiC1 register (i = 0 to 2)'s RE bit = "1" (data present in the UiRB register), an overrun error occurs and the UiRB register OER bit is set to "1" (overrun error occurred). In this case, because the content of the UiRB register is indeterminate, a corrective measure must be taken by programs on the transmit and receive sides so that the valid data before the overrun error occurred will be retransmitted. Note that when an overrun error occurred, the SiRIC register IR bit does not change state.
- 4. To receive data in succession, set dummy data in the lower-order byte of the UiTB register every time reception is made.
- 5. When an external clock is selected, the conditions must be met while if the CKPOL bit = "0", the external clock is in the high state; if the CKPOL bit = "1", the external clock is in the low state.
 - The RE bit of UiC1 register= "1" (reception enabled)
 - The TE bit of UiC1 register= "1" (transmission enabled)
 - The TI bit of UiC1 register= "0" (data present in the UiTB register)

1.6 Precautions for Serial I/O (UART Mode, Special Mode 2)

1.6 Precautions for Serial I/O (UART Mode, Special Mode 2)

1. If a low-level signal is applied to the $\overline{\text{NMI}}$ pin when the TB2SC register IVPCR1 bit = "1" (three-phase output forcible cutoff by input on $\overline{\text{NMI}}$ pin enabled), the $\overline{\text{RTS2}}$ and CLK2 pins go to a high-impedance state.

1.7 Precautions for A-D Converter

- 1. Set ADCON0 (except bit 6), ADCON1 and ADCON2 registers when A-D conversion is stopped (before a trigger occurs).
- 2. When the VCUT bit of ADCON1 register is changed from "0" (Vref not connected) to "1" (Vref connected), start A-D conversion after passing 1 μs or longer.
- 3. To prevent noise-induced device malfunction or latchup, as well as to reduce conversion errors, insert capacitors between the AVCC, VREF, and analog input pins (ANi) each and the AVSS pin. Similarly, insert a capacitor between the VCC pin and the VSS pin. Figure 1.7.1 is an example connection of each pin.
- 4. Make sure the port direction bits for those pins that are used as analog inputs are set to "0" (input mode). Also, if the ADCON0 register's TGR bit = 1 (external trigger), make sure the port direction bit for the ADTRG pin is set to "0" (input mode).
- **5.** When using key input interrupts, do not use any of the four AN4 to AN7 pins as analog inputs. (A key input interrupt request is generated when the A-D input voltage goes low.)
- 6. The ϕ AD frequency must be 10 MHz or less. Without sample-and-hold function, limit the ϕ AD frequency to 250kHz or more. With the sample and hold function, limit the ϕ AD frequency to 1MHz or more.
- 7. When changing an A-D operation mode, select analog input pin again in the CH2 to CH0 bits of ADCON0 register and the SCAN1 to SCAN0 bits of ADCON1 register.

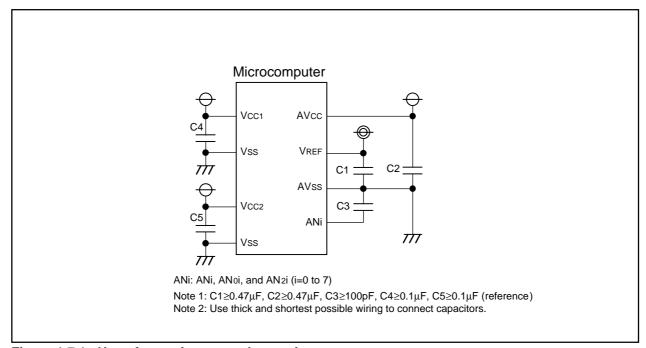


Figure 1.7.1. Use of capacitors to reduce noise

1.7 Precautions for A-D Converter

- 8. If the CPU reads the ADi register (i = 0 to 7) at the same time the conversion result is stored in the ADi register after completion of A-D conversion, an incorrect value may be stored in the ADi register. This problem occurs when a divide-by-n clock derived from the main clock or a subclock is selected for CPU clock.
 - When operating in one-shot or single-sweep mode
 Check to see that A-D conversion is completed before reading the target ADi register. (Check the ADilC register's IR bit to see if A-D conversion is completed.)
 - When operating in repeat mode or repeat sweep mode 0 or 1
 Use the main clock for CPU clock directly without dividing it.
- 9. If A-D conversion is forcibly terminated while in progress by setting the ADCON0 register's ADST bit to "0" (A-D conversion halted), the conversion result of the A-D converter is indeterminate. The contents of ADi registers irrelevant to A-D conversion may also become indeterminate. If while A-D conversion is underway the ADST bit is cleared to "0" in a program, ignore the values of all ADi registers.
- 10. If VCC2 < VCC1, do not use AN00 to AN07 and AN20 to AN27 as analog input pins.

1.8 Precautions for Power Control

- 1. When exiting stop mode by hardware reset, set RESET pin to "L" until a main clock oscillation is stabilized.
- 2. Insert more than four NOP instructions after an WAIT instruction or a instruction to set the CM10 bit of CM1 register to "1". When shifting to wait mode or stop mode, an instruction queue reads ahead to the next instruction to halt a program by an WAIT instruction and an instruction to set the CM10 bit to "1" (all clocks stopped). The next instruction may be executed before entering wait mode or stop mode, depending on a combination of instruction and an execution timing.
- 3. Wait until the tsu(M-L) elapses or main clock oscillation stabilization time, whichever is longer, before switching the clock source for CPU clock to the main clock.
 - Similarly, wait until the sub clock oscillates stably before switching the clock source for CPU clock to the sub clock.
- 4. Suggestions to reduce power consumption

(a) Ports

The processor retains the state of each I/O port even when it goes to wait mode or to stop mode. A current flows in active I/O ports. A pass current flows in input ports that high-impedance state. When entering wait mode or stop mode, set non-used ports to input and stabilize the potential.

(b) A-D converter

When A-D conversion is not performed, set the VCUT bit of ADiCON1 register to "0" (no VREF connection). When A-D conversion is performed, start the A-D conversion at least 1 μ s or longer after setting the VCUT bit to "1" (VREF connection).

(c) D-A converter

When not performing D-A conversion, set the DAi bit (i=0, 1) of DACON register to "0" (input inhibited) and DAi register to "0016".

(d) Stopping peripheral functions

Use the CM0 register CM02 bit to stop the unnecessary peripheral functions during wait mode. However, because the peripheral function clock (fc32) generated from the sub-clock does not stop, this measure is not conducive to reducing the power consumption of the chip. During low speed mode and low power dissipation mode, do not set the CM02 bit to "1" (peripheral function clock stopped when in wait mode) before entering wait mode.

(e) Switching the oscillation-driving capacity

Set the driving capacity to "LOW" when oscillation is stable.

(f) External clock

When using an external clock input for the CPU clock, set the CM0 register CM05 bit to "1" (stop). Setting the CM05 bit to "1" disables the Xout pin from functioning, which helps to reduce the amount of current drawn in the chip. (When using an external clock input, note that the clock remains fed into the chip regardless of how the CM05 bit is set.)

1.9 Precautions for External Bus

1.9 Precautions for External Bus

- 1. The external ROM version can operate only in the microprocessor mode, connect the CNVss pin to Vcc.
- 2. When resetting CNVss pin with "H" input, contents of internal ROM cannot be read out.

1.10 Electric Characteristic Differences Between Mask ROM and Flash Memory Version Microcomputers

1.10 Electric Characteristic Differences Between Mask ROM and Flash Memory Version Microcomputers

Flash memory version and mask ROM version may have different characteristics, operating margin, noise tolerated dose, noise width dose in electrical characteristics due to internal ROM, different layout pattern, etc. When switching to the mask ROM version, conduct equivalent tests as system evaluation tests conducted in the flush memory version.

1.11.1 Precautions for Functions to Inhibit Rewriting Flash Memory Rewrite

ID codes are stored in addresses 0FFFDF16, 0FFFE316, 0FFFEB16, 0FFFEF16, 0FFFF316, 0FFFF716, and 0FFFFB16. If wrong data are written to theses addresses, the flash memory cannot be read or written in standard serial I/O mode.

The ROMCP register is mapped in address 0FFFF16. If wrong data is written to this address, the flash memory cannot be read or written in parallel I/O mode.

In the flash memory version of microcomputer, these addresses are allocated to the vector addresses (H) of fixed vectors.

1.11.2 Precautions for Program Command

Write 'xx4016' in the first bus cycle and write data to the write address in the second bus cycle, and an auto program operation (data program and verify) will start. Make sure the address value specified in the first bus cycle is the same even address as the write address specified in the second bus cycle.

1.11.3 Precautions for Lock Bit Program Command

Write 'xx7716' in the first bus cycle and write 'xxD016' to the uppermost address of a block (even address, however) in the second bus cycle, and the lock bit for the specified block is cleared to "0". Make sure the address value specified in the first bus cycle is the same uppermost block address that is specified in the second bus cycle.

1.11.4 Precautions for Stop mode

When shifting to stop mode, the following settings are required:

- Set the FMR01 bit to "0" (CPU rewrite mode disabled) and disable DMA transfers before setting the CM10 bit to "1" (stop mode).
- Execute the JMP.B instruction subsequent to the instruction which sets the CM10 bit to "1" (stop mode)

Example program BSET 0, CM1; Stop mode

JMP.B L1

L1:

Program after returning from stop mode

1.11.5 Precautions for Wait mode

When shifting to wait mode, set the FMR01 bit to "0" (CPU rewrite mode diabled) before executing the WAIT instruction.

1.11.6 Precautions for CPU Rewrite Mode

Described below are the precautions to be observed when rewriting the flash memory in CPU rewrite mode.

1.11.6.1 Operation speed

Before entering CPU rewrite mode (EW0 or EW1 mode), select 10 MHz or less for BCLK using the CM0 register's CM06 bit and CM1 register's CM17–6 bits. Also, set the PM1 register's PM17 bit to 1 (with wait state).

1.11.6.2 Instructions inhibited against use

The following instructions cannot be used in EW0 mode because the flash memory's internal data is referenced: UND instruction, INTO instruction, JMPS instruction, JSRS instruction, and BRK instruction

1.11.6.3 Interrupts

EW0 Mode

- Any interrupt which has a vector in the variable vector table can be used providing that its vector is transferred into the RAM area.
- The NMI and watchdog timer interrupts can be used because the FMR0 register and FMR1 register are initialized when one of those interrupts occurs. The jump addresses for those interrupt service routines should be set in the fixed vector table.
- Because the rewrite operation is halted when a NMI or watchdog timer interrupt occurs, the rewrite program must be executed again after exiting the interrupt service routine.
- The address match interrupt cannot be used because the flash memory's internal data is referenced.

EW1 Mode

- Make sure that any interrupt which has a vector in the variable vector table or address match interrupt will not be accepted during the auto program or auto erase period.
- Avoid using watchdog timer interrupts.
- The NMI interrupt can be used because the FMR0 register and FMR1 register are initialized when this interrupt occurs. The jump address for the interrupt service routine should be set in the fixed vector table.

Because the rewrite operation is halted when a $\overline{\text{NMI}}$ interrupt occurs, the rewrite program must be executed again after exiting the interrupt service routine.

1.11.6.4 How to access

To set the FMR01, FMR02, or FMR11 bit to "1", write "0" and then "1" in succession. This is necessary to ensure that no interrupts or DMA transfers will occur before writing "1" after writing "0". Also only when $\overline{\text{NMI}}$ pin is "H" level.

1.11.6.5 Writing in the user ROM area

EW0 Mode

• If the power supply voltage drops while rewriting any block in which the rewrite control program is stored, a problem may occur that the rewrite control program is not correctly rewritten and, consequently, the flash memory becomes unable to be rewritten thereafter. In this case, standard serial I/O or parallel I/O mode should be used.

EW1 Mode

• Avoid rewriting any block in which the rewrite control program is stored.

1.11.6.6 DMA transfer

Under

In EW1 mode, make sure that no DMA transfers will occur while the FMR0 register's FMR00 bit = 0 (during the auto program or auto erase period).

1.11.6.7 Writing command and data

Write the command code and data at even addresses.

1.11.7 Precautions for Low power dissipation mode, ring oscillator low power dissipation mode

If the CM05 bit is set to "1" (main clock stop), the following commands must not be executed.

- Program
- Block erase
- Erase all unlocked blocks
- Lock bit program

1.12 Precautions for PLL Frequency Synthesizer

Under

1.12 Precautions for PLL Frequency Synthesizer

Make the supply voltage stable to use the PLL frequency synthesizer.

For ripple with the supply voltage 5V, keep below 10kHz as frequency, below 0.5V (peak to peak) as voltage fluctuation band and below 1V/mS as voltage fluctuation rate.

For ripple with the supply voltage 3V, keep below 10kHz as frequency, below 0.3V (peak to peak) as voltage fluctuation band and below 0.6V/mS as voltage fluctuation rate.

1.13 Precautions for Programmable I/O Ports

1.13 Precautions for Programmable I/O Ports

1. If a low-level signal is applied to the $\overline{\text{NMI}}$ pin when the TB2SC register IVPCR1 bit = "1" (three-phase output forcible cutoff by input on $\overline{\text{NMI}}$ pin enabled), the P72 to P75, P80 and P81 pins go to a high-impedance state.

2. Differences Made Depending on Manufactured Time

2.1 Vdet2 Detection

The present version of the products may not detect the Vdet2 voltage in the voltage detection circuit properly. Therefore, the followings should be noted.

- (1) When the VC25 bit in the VCR2 register is set to "1" (enabling the RAM retention limit detection circuit), the present version may not be reset even if the voltage at the Vcc1 input pin drops below Vdet2.
- (2) The WD5 bit in the WDC register may not change properly.

Supplementary Explanation

Normally, during the stop mode, the Vdet3 voltage is not detected, and thus no reset is generated even when the input voltage at the Vcc1 pin drops to Vdet3 or less. Therefore, if the microcomputer is not reset when the Vcc1 voltage drops below Vdet2 due to the reason described in the above No.1, the microcomputer cannot get out of the stop mode with Hardware Reset 2.

2.2 RESET Input

Under

2.2 RESET Input

Ensure that pin RESET must hold valid-low state during powering-up.

When using a reset IC, use a CMOS type IC. When using an open-drain type reset IC, insert a capacitor between the reset input and Vss and a resistor between the input and Vcc respectively. The R-C time constant of the capacitor and resistor must provide a low state at least 10 times longer than the Vcc rise time.

REVISION HISTORY

M16C/62P GROUP USAGE NOTES

Rev.	Date		Description
		Page	Summary
1.0	Jan/31/Y03	1 8 9 15 18 19 22 25 26 38	Figure 1.1.1 is partly revised. The section "1.3 Precautions for DMAC" is added. The section "1.4.1 Timers A and B" is added. The section "1.4.3.2 Timer B (Pulse Period/Pulse Width Measurement Mode" is partly revised. The section "1.5.3 Reception" is partly revised. The section "1.6 Precautions for Serial I/O (UART Mode, Special Mode 2)" is partly revised. The section "1.8 Precautions for Power Control" is partly revised. The section "1.11.1 Precautions for Functions to Inhibit Rewriting Flash Memory Rewrite" is partly revised. The section "1.11.2 Precautions for Program Command" is partly revised. The section "1.11.2 Precautions for PLL Frequency Synthesizer" is partly revised.

MITSUBISHI SEMICONDUCTORS USAGE NOTES REFERENCE BOOK M16C/62 (M16C/62P) Group

February First Edition 2003

Editioned by

Committee of editing of Mitsubishi Semiconductor Usage Notes Reference Book

Published by

Mitsubishi Electric Corp., Semiconductor Marketing Division

This book, or parts thereof, may not be reproduced in any form without permission of Mitsubishi Electric Corporation.

©2003 MITSUBISHI ELECTRIC CORPORATION

Usage Notes Reference Book M16C/62 (M16C/62P) Group

