TOSHIBA PHOTOCOUPLER GaAlAs IRED & PHOTO-IC

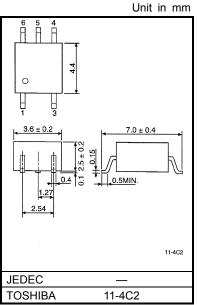
TLP105

Isolated bus drivers
High-speed line receivers
Microprocessor system interfaces

The Toshiba TLP105 consists of a GaAlAs light emitting diode optically coupled to a high-gain, high-speed photodetector.

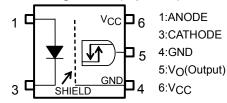
The TLP105 is housed in a 6-pin MFSOP.

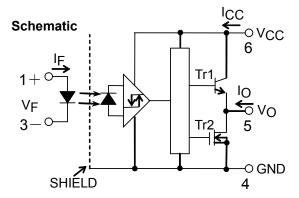
With a totem-pole output, the TLP105 is capable of both sinking and sourcing current.


The TLP105 has an internal Faraday shield, which provides a guaranteed common-mode transient immunity of ± 10 kV/ μs .

The TLP105 has a noninverting output. An inverting output version, the TLP108, is also available.

- Buffer logic type (totem-pole output)
- Guaranteed Performance Over Temperature: -40 to 100°C
- Power Supply Voltage: 4.5 to 20 V
- Input Threshold Current: IFLH =1.6 mA (max)
- Switching Time (t_{pLH}/t_{pHL}) : 250 ns (max)
- Common mode transient immunity: ±10 kV/μs
- Isolation Voltage: 3750 Vrms


Truth Table


Input	LED	Tr1	Tr2	Output
Н	ON	ON	OFF	Н
L	OFF	OFF	ON	L

Weight: 0.09 g

Pin Configuration (top View)

0.1 μF bypass capacitor must be connected between pin 6 and 4.

Recommended Operating Conditions

CHARACTERISTIC	SYMBOL	MIN	TYP.	MAX	UNIT
Input Current , ON	I _{F(ON)}	2	_	10	mA
Input Voltage , OFF	V _{F(OFF)}	0	_	0.8	V
Supply Voltage*	V _{CC}	4.5	_	20	V
Operating Temperature	T _{opr}	-40	_	100	°C
Fan-out (TTL Load)	N		_	4	_

^{*} This item denotes operating range, not meaning of recommended operating conditions.

Note: Recommended operating conditions are given as a design guideline to obtain expected performance of the device. Additionally, each item is an independent guideline respectively. In developing designs using this product, please confirm specified characteristics shown in this document.

Absolute Maximum Ratings (Ta = 25°C)

	CHARACTERISTIC	SYMBOL	RATING	UNIT
	Forward Current	lF	20	mA
LED	Peak Transient Forward Current (Note1)	IFPT	1	Α
	Reverse Voltage	VR	5	V
	Output Current 1 (Ta ≤ 25°C)	I _{O1}	25/-15	mA
OR	Output Current 2 (Ta ≤ 100°C)	I _{O2}	5/-5	mA
DETECTOR	Peak Output Current (Note2)	lop	50/-50	mA
DET	Output Voltage	VO	-0.5 to 20	V
	Supply Voltage	VCC	-0.5 to 20	V
Oper	ating Temperature Range	T _{opr}	-40 to 100	°C
Stora	ge Temperature Range	T _{stg}	-55 to 125	°C
Lead	Solder Temperature (10s)	T _{sol}	260	°C
	ion Voltage AC,1min.,R.H.≤ 60%,Ta=25°C) (Note3)	BV _S	3750	V _{rms}

Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Note 1: Pulse width $\leq 1\mu s$, 300pps.

Note 2: Pulse width $\leq 5 \mu s$, duty cycle ≤ 0.025

Note 3: Device considered a two terminal device: pins 1 and 3 shorted together and pins 4, 5 and 6 shorted together.

Electrical Characteristics

(Unless otherwise specified, Ta = -40 to 100°C, VCC = 4.5 to 20 V)

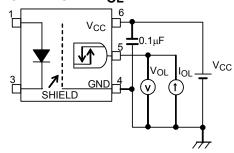
CHARACTERISTIC	SYMBOL	TEST CIRCUIT	CONDITION		MIN.	TYP.	MAX.	UNIT
Input Forward Voltage	V _F	_	I _F =10 mA , Ta=	:25°C	1.45	1.57	1.75	V
Temperature Coefficient of Forward Voltage	ΔV _F /ΔTa	ı	I _F =10 mA		_	-2.0	_	mV/°C
Input Reverse Current	I _R		V _R =5 V , Ta=2	5°C	_	_	10	μА
Input Capacitance	CT		V=0 , f=1 MHz	, Ta=25°C	_	100	-	pF
Logic Low Output Voltage	V _{OL}	1	I _{OL} =3.5 mA , \	/ _F =0.8 V	_	0.2	0.6	V
Lania History		0	I _{OH} =-2.6 mA,	V _{CC} =4.5 V	2.7	4.0	_	V
Logic High Output Voltage	VOH	2	I _F =5 mA	V _{CC} =20 V	17.4	19.0	_	
Logic Low Supply Current	ICCL	3	V _F =0 V	V _{CC} =20 V	_	_	3.0	A
				V _{CC} =5.5 V	_	_	3.0	mA
Logic High Cumply Cumput	1	4	IE Δ	V _{CC} =20 V	_	_	3.0	mA
Logic High Supply Current	ICCH	4	I _F =5 mA	V _{CC} =5.5 V	_	_	3.0	
Logic Low Short Circuit	loo	5	V _F =0 V	V _{CC} =VO=5.5 V	15	80	_	mA
Output Current (Note4)	losl	5	vF-0 v	V _{CC} =VO=20 V	20	90	_	IIIA
Logic High Short Circuit	loou	6	I _F =5 mA	V _{CC} =5.5 V	-5	-15	_	mA
Output Current (Note4)	losh	0	V _O =GND	V _{CC} =20 V	-10	-20	_	IIIA
Input Current Logic High Output	IFLH	_	I _O =-2.6 mA,V _O >2.4 V			0.4	1.6	mA
Input Voltage Logic Low Output	V _{FHL}		I _O =3.5 mA,V _O <0.4 V		0.8	_	_	٧
Input Current Hysteresis	IHYS	_	V _{CC} =5 V		_	0.05	_	mA

^{*}All typical values are at Ta=25°C

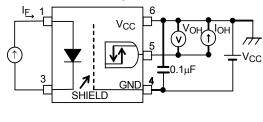
Note 4: Duration of output short circuit time should not exceed 10 ms.

Isolation Characteristics (Ta = 25°C)

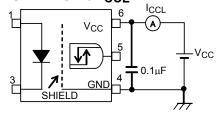
Characteristic	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Capacitance input to output	CS	V _S = 0,f = 1 MHz (Note 3)	_	0.8	_	pF
Isolation resistance	R _S	R.H. ≤ 60%,V _S = 500 V (Note 3)	1×10 ¹²	10 ¹⁴	-	Ω
		AC,1 minute	3750	_	-	V
Isolation voltage	BVS	AC,1 second,in oil	_	10000	_	V _{rms}
		DC,1 minute,in oil	_	10000	-	V_{dc}

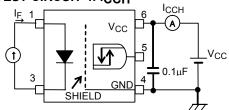

Note 5: A ceramic capacitor $(0.1~\mu\text{A})$ should be connected from pin 6 to pin 4 to stabilize the operation of the high gain linear amplifier. Failure to provide the bypassing may impair the switching property. The total lead length between capacitor and coupler should not exceed 1 cm.

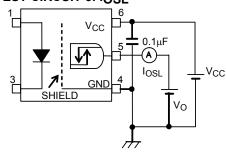
Switching Characteristics (Unless otherwise specified, Ta = -40 to 100°C,VCC = 4.5 to 20 V)

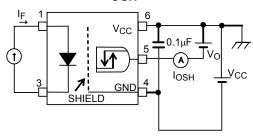

111000 0 11101 11100 0 p 0 0 1110 1 1 1 1								
CHARACTERISTIC	SYMBOL	TEST CIRCUIT	CONDITION	MIN.	TYP.	MAX.	UNIT	
Propagation Delay Time to Logic High output	t _{pLH}		I _F =0→3 mA	30	150	250	ns	
Propagation Delay Time to Logic Low output	^t pHL		I _F =3→0 mA	30	150	250	ns	
Switching Time Dispersion between ON and OFF	l ^t pHL- t _{pLH} l	7, 8	_	_	_	220	ns	
Rise Time (10 – 90 %)	t _r		I _F =0→3 mA , V _{CC} =5 V	_	30	75	ns	
Fall Time (90 – 10 %)	t _f		I _F =3→0 mA , V _{CC} =5 V	_	30	75	ns	
Common Mode transient Immunity at High Level Output	СМН		V _{CM} =1000V _{p-p} ,I _F =5 mA, V _{CC} =20 V,Ta=25°C	-10000	_	_	V/μs	
Common Mode transient Immunity at Low Level Output	CML	9	V _{CM} =1000V _{p-p} ,I _F =0 mA, V _{CC} =20 V,Ta=25°C	10000	_	_	V/μs	

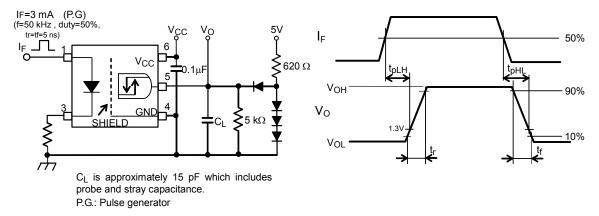
^{*}All typical values are at Ta=25°C

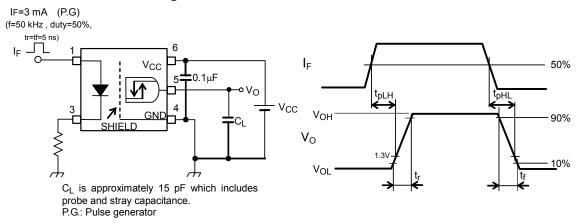


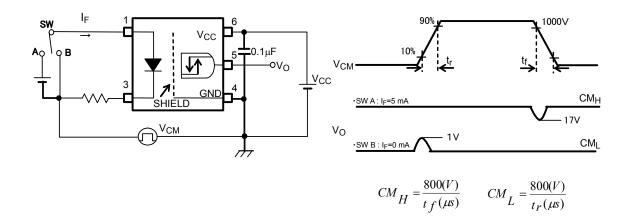

TEST CIRCUIT 2: VOH




TEST CIRCUIT 4: ICCH


TEST CIRCUIT 5: IOSL


TEST CIRCUIT 6: IOSH


TEST CIRCUIT 7: Switching Time Test Circuit

TEST CIRCUIT 8: Switching Time Test Circuit

TEST CIRCUIT 9: Common Mode Transient Immunity Test Circuit

5 2008-08-27

RESTRICTIONS ON PRODUCT USE

20070701-EN GENERAL

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- GaAs(Gallium Arsenide) is used in this product. The dust or vapor is harmful to the human body. Do not break, cut, crush or dissolve chemically.
- Please contact your sales representative for product-by-product details in this document regarding RoHS
 compatibility. Please use these products in this document in compliance with all applicable laws and regulations
 that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses
 occurring as a result of noncompliance with applicable laws and regulations.

3 2008-08-27