
June 2017 DocID029331 Rev 2 1/93

93

PM0257
Programming manual

BlueNRG-1, BlueNRG-2 BLE stack programming guidelines

Introduction
The main purpose of this document is to provide a developer with some reference
programming guidelines about how to develop a Bluetooth low energy (BLE) application
using BlueNRG-1, BlueNRG-2 BLE stacks APIs and related event callbacks.

The document describes the BlueNRG-1, BlueNRG-2 Bluetooth low energy stack library
framework, API interfaces and event callbacks allowing the access to the Bluetooth low
energy functions provided by the BlueNRG-1, BlueNRG-2 system-on-chip.

This programming manual also provides some fundamental concepts about the Bluetooth
low energy (BLE) technology in order to associate the BlueNRG-1, BlueNRG-2 APIs,
parameters, and related event callbacks with the BLE protocol stack features. The user
must have a basic knowledge about the BLE technology and its main features.

For more information about the BlueNRG-1, BlueNRG-2 devices and the Bluetooth low
energy specifications, refer to Section 5: References at the end of this document.

The BlueNRG-1 and BlueNRG-2 are very low power Bluetooth low energy (BLE) single-
mode system-on-chips, compliant with Bluetooth low energy specifications and supporting
master or slave role; BlueNRG-2 also supports the extended packet length feature.

The manual is structured as follows:

• Fundamentals of Bluetooth low energy (BLE) technology

• BlueNRG-1, BlueNRG-2 BLE stack library APIs and the event callback overview

• How to design an application using the BlueNRG-1, BlueNRG-2 stack library APIs and
event callbacks

Note: The document content is valid for both BlueNRG-1 and BlueNRG-2 devices. Any reference
to BlueNRG-1 device is also valid for the BlueNRG-2 device. Any specific difference is
highlighted whenever it is needed.

www.st.com

http://www.st.com

Contents PM0257

2/93 DocID029331 Rev 2

Contents

1 Bluetooth low energy technology . 5

1.1 BLE stack architecture . 6

1.2 Physical layer . 7

1.3 Link layer (LL) . 9

1.3.1 BLE packets . 10

1.3.2 Advertising state . 12

1.3.3 Scanning state . 14

1.3.4 Connection state . 14

1.4 Host controller interface (HCI) . 15

1.5 Logical link control and adaptation layer protocol (L2CAP) 16

1.6 Attribute protocol (ATT) . 16

1.7 Security manager (SM) . 17

1.8 Privacy . 22

1.8.1 The device filtering . 23

1.9 Generic attribute profile (GATT) . 23

1.9.1 Characteristic attribute type . 24

1.9.2 Characteristic descriptor type . 25

1.9.3 Service attribute type . 26

1.9.4 GATT procedures . 26

1.10 Generic access profile (GAP) . 28

1.11 BLE profiles and applications . 32

1.11.1 Proximity profile example . 33

2 BlueNRG-1, BlueNRG-2 Bluetooth low energy stack 34

2.1 BLE stack library framework . 35

2.2 BLE stack event callbacks . 36

2.3 BLE stack init and tick APIs . 36

2.4 BlueNRG-1, BlueNRG-2 cold start configuration 39

2.5 BLE stack tick function . 42

3 Design an application using BlueNRG-1, BlueNRG-2 BLE stack 43

3.1 Initialization phase and main application loop . 44

DocID029331 Rev 2 3/93

PM0257 Contents

93

3.1.1 BLE addresses . 47

3.1.2 Set tx power level . 49

3.2 Services and characteristic configuration . 49

3.3 Create a connection: discoverable and connectable APIs 52

3.3.1 Set discoverable mode and use direct connection establishment
procedure 54

3.3.2 Set discoverable mode and use general discovery procedure (active scan)
56

3.4 BLE stack events and events callbacks . 59

3.5 Security (pairing and bonding) . 62

3.6 Service and characteristic discovery . 65

3.6.1 Characteristic discovery procedures and related GATT events 69

3.7 Characteristic notification/indications, write, read 71

3.8 Basic/typical error condition description . 73

3.9 BLE simultaneously master, slave scenario . 73

3.10 Privacy . 77

3.10.1 Controller-based privacy and the device filtering scenario 77

3.10.2 Resolving addresses . 78

4 BLE multiple connection timing strategy . 80

4.1 Basic concepts about Bluetooth low energy timing 80

4.1.1 Advertising timing . 80

4.1.2 Scanning timing . 80

4.1.3 Connection timing . 81

4.2 BLE stack timing and slot allocation concepts . 81

4.2.1 Setting the timing for the first master connection 82

4.2.2 Setting the timing for further master connections 83

4.2.3 Timing for advertising events . 84

4.2.4 Timing for scanning . 85

4.2.5 Slave timing . 85

4.3 Multiple master and slave connection guidelines 86

5 References . 87

Appendix A List of acronyms and abbreviations . 88

6 Revision history . 90

List of tables PM0257

4/93 DocID029331 Rev 2

List of tables

Table 1. BLE RF channel types and frequencies . 9
Table 2. Advertising data header content . 11
Table 3. Advertising packet types. 12
Table 4. Advertising event type and allowable responses . 12
Table 5. Data packet header content . 13
Table 6. Packet length field and valid values . 13
Table 7. Connection request timing intervals . 16
Table 8. Attribute example . 17
Table 9. Attribute protocol messages . 18
Table 10. Combination of input/output capabilities on a BLE device . 19
Table 11. Methods used to calculate the temporary key (TK) . 20
Table 12. Mapping of IO capabilities to possible key generation methods. 22
Table 13. Characteristic declaration . 26
Table 14. Characteristic value . 26
Table 15. Service declaration . 27
Table 16. Include declaration . 27
Table 17. Discovery procedures and related response events. 28
Table 18. Client-initiated procedures and related response events . 28
Table 19. Server-initiated procedures and related response events . 28
Table 20. GAP roles . 29
Table 21. GAP broadcaster mode . 29
Table 22. GAP discoverable modes . 30
Table 23. GAP connectable modes . 30
Table 24. GAP bondable modes. 31
Table 25. GAP observer procedures . 31
Table 26. GAP discovery procedures . 31
Table 27. GAP connection procedures. 32
Table 28. GAP bonding procedures . 32
Table 29. BLE stack library framework interface . 36
Table 30. BLE Stack Initialization parameters . 38
Table 31. Cold start configuration preprocessor options . 41
Table 32. Cold start test mode configurations . 42
Table 33. Cold start user mode configuration. 42
Table 34. User application defines the BLE device roles . 44
Table 35. GATT, GAP default services. 47
Table 36. GATT, GAP default characteristics. 47
Table 37. aci_gap_init() role parameter values . 48
Table 38. GAP mode APIs . 53
Table 39. GAP discovery procedure APIs . 54
Table 40. Connection procedure APIs . 54
Table 41. ADV_IND event type. 59
Table 42. ADV_IND advertising data . 59
Table 43. SCAN_RSP event type. 59
Table 44. Scan response data . 60
Table 45. BLE stack: main event callbacks . 60
Table 46. BLE sensor profile demo services and characteristic handles . 66
Table 47. Service discovery procedures APIs . 67
Table 48. First read by group type response event callback parameters . 68

DocID029331 Rev 2 5/93

PM0257 List of tables

93

Table 49. Second read by group type response event callback parameters 69
Table 50. Third read by group type response event callback parameters . 69
Table 51. Characteristics discovery procedures APIs . 70
Table 52. First read by type response event callback parameters . 71
Table 53. Second Read By Type Response event callback parameters . 71
Table 54. Characteristics update, read, write APIs. 72
Table 55. Timing parameters of the slotting algorithm . 83
Table 56. List of references . 88
Table 57. List of acronyms . 89
Table 58. Document revision history . 91

List of figures PM0257

6/93 DocID029331 Rev 2

List of figures

Figure 1. Bluetooth low energy technology enabled coin cell battery devices. 7
Figure 2. Bluetooth low energy stack architecture . 9
Figure 3. Link layer state machine . 11
Figure 4. Packet structure . 12
Figure 5. Advertising packet with AD type flags. 15
Figure 6. Example of characteristic definition . 26
Figure 7. Client and server profiles . 34
Figure 8. BLE stack reference application . 36
Figure 9. BLE MAC address storage . 50
Figure 10. BLE simultaneous master and slave scenario . 76
Figure 11. Advertising timings . 82
Figure 12. Example of allocation of three connection slots . 84
Figure 13. Example of timing allocation for three successive connections . 86

DocID029331 Rev 2 7/93

PM0257 Bluetooth low energy technology

93

1 Bluetooth low energy technology

The Bluetooth low energy (BLE) wireless technology has been developed by the Bluetooth
special interest group (SIG) in order to achieve a very low power standard operating with a
coin cell battery for several years.

Classic Bluetooth technology has been developed as a wireless standard allowing cables to
be replaced by connecting portable and/or fixed electronic devices, but it cannot achieve an
extreme level of battery life because of its fast hopping, connection-oriented behavior, and
relatively complex connection procedures.

The Bluetooth low energy devices only consume a fraction of the power of standard
Bluetooth products and enable the devices with coin cell batteries to be wirelessly
connected to standard Bluetooth enabled devices.

Figure 1. Bluetooth low energy technology enabled coin cell battery devices

The Bluetooth low energy technology is used on a broad range of sensor applications
transmitting small amounts of data.

• Automotive

• Sport and fitness

• Healthcare

• Entertainment

• Home automation

• Security and proximity

Bluetooth low energy technology PM0257

8/93 DocID029331 Rev 2

1.1 BLE stack architecture

Bluetooth low energy technology has been formally adopted by the Bluetooth core
specifications (version 4.0, Table 56: List of references). This version of the Bluetooth
standard supports two systems of wireless technology:
• Basic rate

• Bluetooth low energy

Bluetooth low energy technology operates in the unlicensed industrial, scientific and
medical (ISM) band at 2.4 to 2.485 GHz, which is available and unlicensed in most
countries. It uses a spread spectrum, frequency hopping, full-duplex signal. Key features of
Bluetooth low energy technology are:

• Robustness

• Performance

• Reliability

• Interoperability

• Low data rate

• Low power

In particular, Bluetooth low energy technology has been created for the purpose of
transmitting very small packets of data at a time, while consuming significantly less power
than basic rate/enhanced data rate/high speed (BR/EDR/HS) devices.

The Bluetooth low energy technology is designed to address two alternative
implementations:

• Smart devices

• Smart ready devices

The Smart devices support the BLE standard only. It is used for applications in which low
power consumption and coin cell battery are the key point (as sensors).

The Smart Ready devices support both BR/EDR/HS and BLE standards (typically a mobile
or a laptop device).

The Bluetooth low energy stack consists of two components:

• Controller

• Host

The controller includes the physical layer and the link layer.

The host includes the logical link control and adaptation protocol (L2CAP), the security
manager (SM), the attribute protocol (ATT), generic attribute profile (GATT) and the generic
access profile (GAP). The interface between the two components is called host controller
interface (HCI).

In addition, Bluetooth specifications v4.1, v4.2 and 5.0 have been released with new
supported features.

For more information about these new features refer to the related specification document.

DocID029331 Rev 2 9/93

PM0257 Bluetooth low energy technology

93

Figure 2. Bluetooth low energy stack architecture

1.2 Physical layer
The physical layer is a 1 Mbps adaptive frequency-hopping Gaussian frequency shift keying
(GFSK) radio. It operates in the license free 2.4 GHz ISM band at 2400-2483.5 MHz. Many
other standards use this band: IEEE 802.11, IEEE 802.15.

The BLE system uses 40 RF channels (0-39), with 2 MHz spacing. These RF channels
have frequencies centered at:

Equation 1:

where k = 0.39

There are two channel types:

1. Advertising channels that use three fixed RF channels (37, 38 and 39) for:

a) Advertising channel packets

b) Packets used for discoverability/connectability

c) Used for broadcasting/scanning

2. Data physical channel uses the other 37 RF channels for bidirectional communication
between the connected devices.

2042 k 2MHz⋅+

Bluetooth low energy technology PM0257

10/93 DocID029331 Rev 2

BLE is an adaptive frequency hopping (AFH) technology that can only use a subset of all the
available frequencies in order to avoid all frequencies used by other no-adaptive
technologies. This allows moving from a bad channel to a known good channel by using a
specific frequency hopping algorithm, which determines next good channel to be used.

Table 1. BLE RF channel types and frequencies

Channel index RF center frequency Channel type

37 2402 MHz Advertising channel

0 2404 MHz Data channel

1 2406 MHz Data channel

…. …. Data channel

10 2424 MHz Data channel

38 2426 MHz Advertising channel

11 2428 MHz Data channel

12 2430 MHz Data channel

…. …. Data channel

36 2478 MHz Data channel

39 2480 MHz Advertising channel

DocID029331 Rev 2 11/93

PM0257 Bluetooth low energy technology

93

1.3 Link layer (LL)
The link layer (LL) defines how two devices can use a radio to transmit information between
each other.

The link layer defines a state machine with five states:

Figure 3. Link layer state machine

• Standby: the device does not transmit or receive packets

• Advertising: the device broadcast advertisements in advertising channels (it is called
an advertiser device)

• Scanning: the device looks for the advertiser devices (it is called a scanner device).

• Initiating: the device initiates connection to the advertiser device

• Connection: the initiator device is in master role; it communicates with the device in the
slave role and it defines timings of transmissions

• Advertiser device is in a slave role: it communicates with a single device in master role

Bluetooth low energy technology PM0257

12/93 DocID029331 Rev 2

1.3.1 BLE packets

A packet is a labeled data that is transmitted by one device and received by one or more
other devices.

The BLE data packet structure is described below.

Figure 4. Packet structure

• Preamble: RF synchronization sequence

• Access address: 32 bits, advertising or data access addresses (it is used to identify the
communication packets on the physical layer channel)

• Header: its content depends on the packet type (advertising or data packet)

a) Advertiser packet header:

Table 2. Advertising data header content

Advertising packet
type

Reserved Tx address type Rx address type

(4 bits) (2 bits) (1 bit) (1 bit)

DocID029331 Rev 2 13/93

PM0257 Bluetooth low energy technology

93

b) Advertising packet type:

The advertising event type determines the allowable responses:

Table 3. Advertising packet types

Packet type Description Notes

ADV_IND
Connectable
undirected
advertising

Used by an advertiser when it wants another device to
connect to it. The device can be scanned by a
scanning device, or go into a connection as a slave
device on connection request reception.

ADV_DIRECT_IND
Connectable
directed
advertising

Used by an advertiser when it wants a particular
device to connect to it. The ADV_DIRECT_IND packet
contains only advertiser’s address and initiator
address.

ADV_NONCONN_IND
Non-connectable
undirected
advertising

Used by an advertiser when it wants to provide some
information to all the devices, but it does not want
other devices to ask it for more information or to
connect to it.

The device simply sends advertising packets on
related channels, but it does not want to be
connectable or scannable by any other device.

ADV_SCAN_IND
Scannable
undirected
advertising

Used by an advertiser which wants to allow a scanner
to require more information from it. The device cannot
connect, but it is discoverable for advertising data and
scan response data.

SCAN_REQ Scan request
Used by a device in scanning state to request addition
information to the advertiser.

SCAN_RSP Scan response
Used by an advertiser device to provide additional
information to a scan device.

CONNECT_REQ
Connection
request

Sent by an initiating device to a device in
connectable/discoverable mode.

Table 4. Advertising event type and allowable responses

Advertising event type
Allowable response

SCAN_REQ CONNECT_REQ

ADV_IND YES YES

ADV_DIRECT_IND NO YES

ADV_NONCONN_IND NO NO

ADV_SCAN_IND YES NO

Bluetooth low energy technology PM0257

14/93 DocID029331 Rev 2

Data packet header:

The next sequence number (NESN) bit is used to perform packet acknowledgments. It
informs the receiver device about next sequence number that the transmitting device
expects it to send. Packet is retransmitted until the NESN is different from the sequence
number (SN) value in the sent packet.

More data bits are used to signal to a device that the transmitting device has more data
ready to be sent during the current connection event.

For a detailed description of advertising and data header contents and types refer to the
Bluetooth specifications [Vol 2], in Section 5: References.

• Length: number of bytes on data field

• Data or payload: it is the actual transmitted data (advertising data, scan response data,
connection establishment data, or application data sent during the connection).

• CRC (24 bits): it is used to protect data against bit errors. It is calculated over the
header, length and data fields.

1.3.2 Advertising state

Advertising states allow link layer to transmit advertising packets and also to respond with
scan responses to scan requests coming from those devices which are actively scanning.

An advertiser device can be moved to a standby state by stopping the advertising.

Each time a device advertises, it sends the same packet on each of the three advertising
channels. This three packet sequence is called “advertising event”. The time between two
advertising events is referred to as the advertising interval, which can go from 20
milliseconds to every 10.28 seconds.

An example of advertising packet lists the service UUID that the device implements (general
discoverable flag, tx power = 4 dBm, service data = temperature service and 16 bit service
UUIDs).

Table 5. Data packet header content

Link layer identifier
Next sequence

number
Sequence number More data Reserved

(2 bits) (1 bit) (1 bit) (1 bit) (3 bits)

Table 6. Packet length field and valid values

Length field bits

Advertising packet 6 bits, with valid values from 0 to 37 bytes

Data packet 5 bits, with valid values from 0 to 31 bytes

DocID029331 Rev 2 15/93

PM0257 Bluetooth low energy technology

93

Figure 5. Advertising packet with AD type flags

The flags AD type byte contains the following flag bits:

• Limited discoverable mode (bit 0)

• General discoverable mode (bit 1)

• BR/EDR not supported (bit 2, It is 1 on BLE)

• Simultaneous LE and BR/EDR to the same device capable (controller) (bit 3)

• Simultaneous LE and BR/EDR to the same device capable (host) (bit 4)

The flag AD type is included in the advertising data if any of the bits are non-zero (it is not
included in scan response).

The following advertising parameters can be set before enabling advertising:

• Advertising interval

• Advertising address type

• Advertising device address

• Advertising channel map: which of the three advertising channels should be used

• Advertising filter policy:

– Process scan/connection requests from the devices in the white list

– Process all scan/connection requests (default advertiser filter policy)

– Process connection requests from all the devices but only scan requests in the
white list

– Process scan requests from all the devices but only connection requests in the
white list

A white list is a list of stored device addresses used by the device controller to filter the
devices. The white list content cannot be modified while it is being used. If the device is in
advertising state and uses a white list to filter the devices (scan requests or connection
requests), it has to disable the advertising mode to change its white list.

Bluetooth low energy technology PM0257

16/93 DocID029331 Rev 2

1.3.3 Scanning state

There are two types of scanning:

• Passive scanning: it allows the advertisement data to be received from an advertiser
device

• Active scanning: when an advertisement packet is received, the device can send back
a scan request packet, in order to get a scan response from the advertiser. This allows
the scanner device to get additional information from the advertiser device.

The following scan parameters can be set:

• Scanning type (passive or active)

• Scan interval: how often the controller should scan

• Scan window: for each scanning interval, it defines how long the device has been
scanning

• Scan filter policy: it can accept all the advertising packets (default policy) or only those
on the white list.

Once scan parameters are set, the device scanning can be enabled. The controller of the
scanner devices sends to upper layers any received advertising packets within an
advertising report event. This event includes the advertiser address, advertiser data, and
the received signal strength indication (RSSI) of this advertising packet. The RSSI can be
used with the transmit power level information included within the advertising packets to
determine the path-loss of the signal and identify how far the device is:

Path loss = Tx power – RSSI

1.3.4 Connection state

When data to be transmitted are more complex than those allowed by advertising data or a
bidirectional reliable communication between two devices is needed, the connection is
established.

When an initiator device receives an advertising packet from an advertising device to which
it wants to connect, it can send a connect request packet to the advertiser device. This
packet includes all the required information needed to establish and handle the connection
between the two devices:

• Access address used in the connection in order to identify communications on a
physical link

• CRC initialization value

• Transmit window size (timing window for first data packet)

• Transmit window offset (transmit window start)

• Connection interval (time between two connection events)

• Slave latency (number of time slave can ignore connection events before it is forced to
listen)

• Supervision timeout (max. time between two correctly received packets before link is
considered lost)

• Channel map: 37 bits (1= good; 0 = bad)

• Frequency-hop value (random number between 5 and 16)

• Sleep clock accuracy range (used to determine the uncertainty window of the slave
device at connection event)

DocID029331 Rev 2 17/93

PM0257 Bluetooth low energy technology

93

For a detailed description of the connection request packet refer to Bluetooth specifications
[Vol 6].
The allowed timing ranges are summarized in Table 7: Connection request timing intervals:

The transmit window starts after the end of the connection request packet plus the transmit
window offset plus a mandatory delay of 1.25 ms. When the transmit window starts, the
slave device enters in receiver mode and waits for a packet from the master device. If no
packet is received within this time, the slave leaves receiver mode, and it tries one
connection interval again later. When a connection is established, a master has to transmit a
packet to the slave on every connection event to allow slave to send packets to the master.
Optionally, a slave device can skip a given number of connection events (slave latency).

A connection event is the time between the start of the last connection event and the
beginning of the next connection event.

A BLE slave device can only be connected to one BLE master device, but a BLE master
device can be connected to several BLE slave devices. On the Bluetooth SIG, there is no
limit on the number of slaves a master can connect to (this is limited by the specific used
BLE technology or stack).

1.4 Host controller interface (HCI)
The host controller interface (HCI) layer provides a mean of communication between the
host and controller either through software API or by a hardware interface such as SPI,
UART or USB. It comes from standard Bluetooth specifications, with new additional
commands for low energy-specific functions.

Table 7. Connection request timing intervals

Parameter Min. Max. Note

Transmit window size 1.25 milliseconds 10 milliseconds

Transmit window offset 0 Connection interval Multiples of 1.25 milliseconds

Connection interval 7.5 milliseconds 4 seconds Multiples of 1.25 milliseconds

Supervision timeout 100 milliseconds 32 seconds Multiples of 10 milliseconds

Bluetooth low energy technology PM0257

18/93 DocID029331 Rev 2

1.5 Logical link control and adaptation layer protocol (L2CAP)
The logical link control and adaptation layer protocol (L2CAP) support higher level protocol
multiplexing, packet segmentation, reassembly operations, and the conveying of quality of
service information.

1.6 Attribute protocol (ATT)
The attribute protocol (ATT) allows a device to expose some data, known as attributes, to
another device. The device exposing attributes is referred to as the server and the peer
device using them is called the client.

An attribute is a data with the following components:

• Attribute handle: it is a 16-bit value, which identifies an attribute on a server, allowing
the client to reference the attribute in read or write requests

• Attribute type: it is defined by a universally unique identifier (UUID), which determines
what the value means. Standard 16-bit attribute UUIDs are defined by Bluetooth SIG

• Attribute value: a (0 ~ 512) octets in length

• Attribute permissions: they are defined by each upper layer that uses the attribute.
They specify the security level required for read and/or write access, as well as
notification and/or indication. The permissions are not discoverable using the attribute
protocol. There are different permission types:

– Access permissions: they determine which types of requests can be performed on
an attribute (readable, writable, readable and writable)

– Authentication permissions: they determine if attributes require authentication or
not. If an authentication error is raised, client can try to authenticate it by using the
security manager and send back the request

– Authorization permissions (no authorization, authorization): this is a property of a
server, which can authorize a client to access or not to a set of attributes (client
cannot resolve an authorization error)

• “Temperature UUID” is defined by “temperature characteristic” specification and it is a
signed 16-bit integer

A collection of attributes is called a database that is always contained in an attribute server.

Table 8. Attribute example

Attribute
handle

Attribute type Attribute value Attribute permissions

0x0008
“Temperature

UUID”
“Temperature

value”
“Read only, no authorization, no

authentication”

DocID029331 Rev 2 19/93

PM0257 Bluetooth low energy technology

93

Attribute protocol defines a set of method protocols to discover, read and write attributes on
a peer device. It implements the peer-to-peer client-server protocol between an attribute
server and an attribute client as follows:

• Server role

– Contains all attributes (attribute database)

– Receives requests, executes, responds commands

– Indicates, notifies an attribute value when data change

• Client role

– Talks with server

– Sends requests, waits for response (it can access (read), update (write) the data)

– Confirms indications

Attributes exposed by a server can be discovered, read, and written by the client, and they
can be indicated and notified by the server as described in Table 9: Attribute protocol
messages:

1.7 Security manager (SM)
The Bluetooth low energy link layer supports encryption and authentication by using the
counter mode with the CBC-MAC (cipher block chaining-message authentication code)
algorithm and a 128-bit AES block cipher (AES-CCM). When encryption and authentication
are used in a connection, a 4-byte message integrity check (MIC) is appended to the
payload of the data channel PDU.

Encryption is applied to both the PDU payload and MIC fields.

When two devices want to encrypt the communication during the connection, the security
manager uses the pairing procedure. This procedure allows two devices to be authenticated
by exchanging their identity information in order to create the security keys that can be used
as basis for a trusted relationship or a (single) secure connection.

There are some methods used to perform the pairing procedure. Some of these methods
provide protections against:

• Man-in-the-middle (MITM) attacks: a device is able to monitor and modify or add new
messages to the communication channel between two devices. A typical scenario is

Table 9. Attribute protocol messages

Protocol data
unit

(PDU message)

Sent
by

Description

Request Client Client asks server (it always causes a response)

Response Server Server sends response to a request from a client

Command Client Client commands something to server (no response)

Notification Server Server notifies client of new value (no confirmation)

Indication Server
Server indicates to client new value (it always causes a
confirmation)

Confirmation Client Confirmation to an indication

Bluetooth low energy technology PM0257

20/93 DocID029331 Rev 2

when a device is able to connect to each device and act as the other devices by
communicating with each of them.

• Passive eavesdropping attacks: listening through a sniffing device to the
communication of other devices.

The pairing on Bluetooth low energy specifications v4.0 or v4.1, also called LE legacy
pairing, supports the following methods based on the IO capability of the devices: Just
Works, Passkey Entry and Out of band (OOB).

On Bluetooth low energy specification v4.2, the LE secure connection pairing model has
been defined. The new security model main features are:

1. Key exchange process uses the elliptical curve Diffie-Hellman (ECDH) algorithm: this
allows keys to be exchanged over an unsecured channel and to protect against
passive eavesdropping attacks (secretly listening through a sniffing device to the
communication of other devices)

2. A new method called “numeric comparison” has been added to the 3 methods already
available with LE legacy pairing.

The paring procedures are selected depending on the device IO capabilities.

There are three input capabilities:

• No input

• Ability to select yes/no

• Ability to input a number by using the keyboard

There are two output capabilities:

• No output

• Numeric output: ability to display a six-digit number

The following table shows the possible IO capability combinations

LE legacy pairing

LE legacy pairing algorithm uses and generates 2 keys:

• Temporary key (TK): a 128-bit temporary key which is used to generate short-term key
(STK)

• Short-term key (STK): a 128-bit temporary key used to encrypt a connection following
pairing

Pairing procedure is a three-phase process.

Phase 1: pairing feature exchange

The two connected devices communicate their input/output capabilities by using the pairing
request message. This message also contains a bit stating if out-of-band data are available

Table 10. Combination of input/output capabilities on a BLE device

No output Display

No input No input, no output Display only

Yes/no No input, no output Display yes/no

Keyboard Keyboard only Keyboard display

DocID029331 Rev 2 21/93

PM0257 Bluetooth low energy technology

93

and the authentication requirements. The information exchanged in phase 1 is used to
select which pairing method is used for the STK generation in phase 2.

Phase 2: short-term key (STK) generation

The pairing devices first define a temporary key (TK), by using one of the following key
generation methods:

a) The out-of-band (OOB) method, which uses out of band communication (e.g.
NFC) for TK agreement. It provides authentication (MITM protection). This method
is selected only if the out-of-band bit is set on both devices, otherwise the IO
capabilities of the devices must be used to determine which other method could
be used (Passkey Entry or Just Works).

b) Passkey Entry method: user passes six numeric digits as the TK between the
devices. It provides authentication (MITM protection).

c) Just works: this method does not provide authentication and protection against
man-in-the-middle (MITM) attacks.

The selection between Passkey and Just Works method is done based on the IO capability
as defined on the following table.
:

Phase 3: transport specific key distribution methods used to calculate the temporary key
(TK)

Once the phase 2 is completed, up to three 128-bit keys can be distributed by messages
encrypted with the STK key:

a) Long-term key (LTK): a 128-bit key used by the link layer for encryption and
authentication

b) Connection signature resolving key (CSRK): a 128-bit key used for the data
signing and verification performed at the ATT layer

c) Identity resolving key (IRK): a 128-bit key used to generate and resolve random
addresses

Table 11. Methods used to calculate the temporary key (TK)

Display
only

Display
yes/no

Keyboard
only

No input No
output

Keyboard
display

Display only Just Works Just Works
Passkey

Entry
Just Works Passkey Entry

Display yes/no Just Works Just Works
Passkey

Entry
Just Works Passkey Entry

Keyboard only
Passkey

Entry
Passkey

Entry
Passkey

Entry
Just Works Passkey Entry

No input No
output

Just Works Just Works Just Works Just Works Just Works

Keyboard
display

Passkey
Entry

Passkey
Entry

Passkey
Entry

Just Works Passkey Entry

Bluetooth low energy technology PM0257

22/93 DocID029331 Rev 2

LE secure connections

LE secure connection pairing methods use and generate one key:

• Long-term key (LTK): a 128-bit key used to encrypt the connection following pairing
and subsequent connections.

Pairing procedure is a three-phase process:

Phase 1: pairing feature exchange

The two connected devices communicate their input/output capabilities by using the pairing
request message. This message also contains a bit stating if out-of-band data are available
and the authentication requirements. The information exchanged in phase 1 is used to
select which pairing method is used on phase 2.

Phase 2: long-term key (LTK) generation

Pairing procedure is started by the initiating device which sends its public key to the
receiving device. The receiving device replies with its public key. The public key exchange
phase is done for all the pairing methods (except the OOB one).

Each device generates its own elliptic curve Diffie-Hellman (ECDH) public-private key pair.
Each key pair contains a private (secret) key, and a public key. The key pair should be
generated only once on each device and may be computed before a pairing is performed.

The following pairing key generation methods are supported:

a) The out-of-band (OOB) method which uses out of band communication to set up
the public key. This method is selected if the out-of-band bit in the pairing
request/response is set at least by one device, otherwise the IO capabilities of the
devices must be used to determine which other method could be used (Passkey
entry, Just Works or numeric comparison).

b) Just Works: this method is not authenticated, and it does not provide any
protection against man-in-the-middle (MITM) attacks.

c) Passkey entry method: this method is authenticated. User passes six numeric
digits. This six-digit value is the base of the device authentication.

d) Numeric comparison: this method is authenticated. Both devices have IO
capabilities set to either display Yes/No or keyboard display. The two devices
compute a six-digit confirmation values that are displayed to the user on both
devices: user is requested to confirm if there is a match by entering yes or not. If
yes is selected on both devices, pairing is performed with success. This method
allows confirmation to user that his device is connected with the proper one, in a
context where there are several devices, which could not have different names.

The selection among the possible methods is based on the following table.

DocID029331 Rev 2 23/93

PM0257 Bluetooth low energy technology

93

Table 12. Mapping of IO capabilities to possible key generation methods

Note: If the possible key generation method does not provide a key that matches the security
properties (authenticated - MITM protection or unauthenticated - no MITM protection), then
the device sends the pairing failed command with the error code “Authentication
Requirements”.

Phase 3: transport specific key distribution

The following keys are exchanged between master and slave:

• Connection signature resolving key (CSRK) for authentication of unencrypted data

• Identity resolving key (IRK) for device identity and privacy

When the established encryption keys are stored in order to be used for future
authentication, the devices are bonded.

Data signing

It is also possible to transmit authenticated data over an unencrypted link layer connection
by using the CSRK key: a 12-byte signature is placed after the data payload at the ATT
layer. The signature algorithm also uses a counter which protects against replay attacks (an
external device which can simply capture some packets and send them later as they are,
without any understanding of packet content: the receiver device simply checks the packet
counter and discards it since its frame counter is less than the latest received good packet).

Initiator/
Responder

Display
only

Display Yes/No
Keyboard

only
No input No

Output
Keyboard display

Display only
Just

Works
Just Works

Passkey
entry

Just Works Passkey entry

Display
Yes/No

Just
Works

Just Works
(LE Legacy)

Numeric comparison
(LE secure

connections)

Passkey
entry

Just Works

Passkey entry (LE
legacy)

Numeric comparison
(LE secure

connections)

Keyboard
only

Passkey
entry

Passkey entry
Passkey

entry
Just Works Passkey entry

No input
No output

Just
Works

Just Works Just Works Just Works Just Works

Keyboard
display

Passkey
entry

Passkey entry
(LE Legacy)

Numeric comparison
(LE secure

connections)

Passkey
entry

Just Works

Passkey entry

(LE legacy)

Numeric comparison

(LE secure
connections)

Bluetooth low energy technology PM0257

24/93 DocID029331 Rev 2

1.8 Privacy
A device that always advertises with the same address (public or static random), can be
tracked by scanners. This can be avoided by enabling the privacy feature on the advertising
device. On a privacy enabled device, private addresses are used. There are two kinds of
private addresses:

• Non-resolvable private address

• Resolvable private address

Non-resolvable private addresses are completely random (except for the two most
significant bits) and cannot be resolved. Hence, a device using a non-resolvable private
address cannot be recognized by those devices which have not been previously paired. The
resolvable private address has a 24-bit random part and a hash part. The hash is derived
from the random number and from an IRK (identity resolving key). Hence, only a device that
knows this IRK can resolve the address and identify the device. The IRK is distributed
during the pairing process.

Both types of addresses are frequently changed, enhancing the device identity
confidentiality. The privacy feature is not used during the GAP discovery modes and
procedures but during GAP connection modes and procedures only.

On Bluetooth low energy stacks up to v4.1, the private addresses are resolved and
generated by the host. In Bluetooth v4.2, the privacy feature has been updated from version
1.1 to version 1.2. On Bluetooth low energy stack v4.2, private addresses can be resolved
and generated by the controller, using the device identity information provided by the host.

Peripheral

A privacy-enabled peripheral in non-connectable mode uses non-resolvable or resolvable
private addresses.

To connect to a central, the undirected connectable mode only should be used if host
privacy is used. If the controller privacy is used, the device can also use the directed
connectable mode. When in connectable mode, the device uses a resolvable private
address.

Whether non-resolvable or resolvable private addresses are used, they are automatically
regenerated after each interval of 15 minutes. The device does not send the device name to
the advertising data.

Central

A privacy-enabled central, performing active scanning, uses non-resolvable or resolvable
private addresses only. To connect to a peripheral, the general connection establishment
procedure should be used if host privacy is enabled. With controller-based privacy, any
connection procedure can be used. The central uses a resolvable private address as the
initiator’s device address. A new resolvable or non-resolvable private address is
regenerated after each interval of 15 minutes.

Broadcaster

A privacy-enabled broadcaster uses non-resolvable or resolvable private addresses. New
addresses are automatically generated after each interval of 15 minutes. A broadcaster
should not send the name or unique data to the advertising data.

DocID029331 Rev 2 25/93

PM0257 Bluetooth low energy technology

93

Observer

A privacy-enabled observer uses non-resolvable or resolvable private addresses. New
addresses are automatically generated after each interval of 15 minutes.

1.8.1 The device filtering

Bluetooth LE allows a way to reduce the number of responses from the devices in order to
reduce power consumption, since this implies less transmissions and less interactions
between controller and upper layers. The filtering is implemented by a white list. When the
white list is enabled, those devices, which are not in this list ,are ignored by the link layer.

Before Bluetooth 4.2, the device filtering could not be used, while privacy was used by the
remote device. Thanks to the introduction of link layer privacy, the remote device identity
address can be resolved before checking whether it is in the white list or not.

1.9 Generic attribute profile (GATT)
The generic attribute profile (GATT) defines a framework to use the ATT protocol, and it is
used for services, characteristics, descriptor discovery, characteristic reading, writing,
indications and notifications.

On GATT context, when two devices are connected, there are two device roles:

• GATT client: the device accesses data on the remote GATT server via read, write,
notify, or indicates operations

• GATT server: the device stores data locally and provides data access methods to a
remote GATT client

It is possible for a device to be a GATT server and a GATT client at the same time.

The GATT role of a device is logically separated from the master, slave role. The master,
slave roles define how the BLE radio connection is managed, and the GATT client/server
roles are determined by the data storage and flow of data.

As consequence, a slave (peripheral) device has not to be the GATT server and a master
(central) device has not to be the GATT client.

Attributes, as transported by the ATT, are encapsulated within the following fundamental
types:

1. Characteristics (with related descriptors)

2. Services (primary, secondary and include)

Bluetooth low energy technology PM0257

26/93 DocID029331 Rev 2

1.9.1 Characteristic attribute type

A characteristic is an attribute type which contains a single value and any number of
descriptors describing the characteristic value that may make it understandable by the user.

A characteristic exposes the type of data that the value represents, if the value can be read
or written, how to configure the value to be indicated or notified, and it says what a value
means.

A characteristic has the following components:

1. Characteristic declaration

2. Characteristic value

3. Characteristic descriptor(s)

Figure 6. Example of characteristic definition

DocID029331 Rev 2 27/93

PM0257 Bluetooth low energy technology

93

A characteristic declaration is an attribute defined as follows:

A characteristic declaration contains the value of the characteristic. This value is the first
attribute after the characteristic declaration:

1.9.2 Characteristic descriptor type

Characteristic descriptors are used to describe the characteristic value to add a specific
“meaning” to the characteristic and making it understandable by the user. The following
characteristic descriptors are available:

1. Characteristic extended properties: it allows extended properties to be added to the
characteristic

2. Characteristic user description: it enables the device to associate a text string to the
characteristic

3. Client characteristic configuration: it is mandatory if the characteristic can be notified or
indicated. Client application must write this characteristic descriptor to enable
characteristic notification or indication (provided that the characteristic property allows
notification or indication)

4. Server characteristic configuration: optional descriptor

5. Characteristic presentation format: it allows the characteristic value presentation format
to be defined through some fields as format, exponent, unit name space, description in
order to correctly display the related value (example temperature measurement value
in oC format)

6. Characteristic aggregation format: It allows several characteristic presentation formats
to be aggregated

For a detailed description of the characteristic descriptors, refer to the Bluetooth
specifications.

Table 13. Characteristic declaration

Attribute
handle

Attribute type Attribute value
Attribute

permissions

0xNNNN

0x2803
(UUID for
characteristic
attribute type)

Characteristic value properties (read,
broadcast, write, write without response,
notify, indicate, …). Determine how
characteristic value can be used or how
characteristic descriptor can be accessed

Read only,
no authentication,
no authorization

Characteristic value attribute handle

Characteristic value UUID (16 or 128 bits)

Table 14. Characteristic value

Attribute
handle

Attribute type Attribute value Attribute permissions

0xNNNN
0xuuuu – 16 bits or 128 bits for

characteristic UUID
Characteristic

value
Higher layer profile or

implementation specific

Bluetooth low energy technology PM0257

28/93 DocID029331 Rev 2

1.9.3 Service attribute type

A service is a collection of characteristics which operate together to provide a global service
to an applicative profile. For example, the health thermometer service includes
characteristics for a temperature measurement value, and a time interval among
measurements. A service or primary service can refer other services that are called
secondary services.

A service is defined as follows:

A service contains a service declaration and may contain definitions and characteristic
definitions. A service includes declaration, follows the service declaration and all other
attributes of the server.

“Include service attribute handle” is the attribute handle of the included secondary service
and “end group handle” is the handle of the last attribute within the included secondary
service.

1.9.4 GATT procedures

The generic attribute profile (GATT) defines a standard set of procedures allowing services,
characteristics, related descriptors to be discovered and how to use them.

The following procedures are available:

• Discovery procedures (Table 17: Discovery procedures and related response events)

• Client-initiated procedures (Table 18: Client-initiated procedures and related response
events)

• Server-initiated procedures (Table 19: Server-initiated procedures and related
response events)

Table 15. Service declaration

Attribute
handle

Attribute type Attribute value
Attribute

permissions

0xNNNN
0x2800 – UUID for “Primary Service”

or 0x2801 – UUID for “Secondary
Service”

0xuuuu – 16 bits or
128 bits for service

UUID

Read only,

no
authentication,

no authorization

Table 16. Include declaration

Attribute
handle

Attribute type Attribute value
Attribute

permissions

0xNNNN
0x2802 (UUID for
include attribute

type)

Include service
attribute
handle

End
group
handle

Service
UUID

Read only,

no authentication,
no authorization

DocID029331 Rev 2 29/93

PM0257 Bluetooth low energy technology

93

For a detailed description about the GATT procedures and related response events refer to
the Bluetooth specifications in Section 5: References.

Table 17. Discovery procedures and related response events

Procedure Response events

Discovery all primary services Read by group response

Discovery primary service by service UUID Find by type value response

Find included services Read by type response event

Discovery all characteristics of a service Read by type response

Discovery characteristics by UUID Read by type response

Discovery all characteristic descriptors Find information response

Table 18. Client-initiated procedures and related response events

Procedure Response events

Read characteristic value Read response event

Read characteristic value by UUID Read response event

Read long characteristic value Read blob response events

Read multiple characteristic values Read response event

Write characteristic value without response No event is generated

Signed write without response No event is generated

Write characteristic value Write response event

Write long characteristic value
Prepare write response

Execute write response

Reliable write
Prepare write response

Execute write response

Table 19. Server-initiated procedures and related response events

Procedure Response events

Notifications No event is generated

Indications Confirmation event

Bluetooth low energy technology PM0257

30/93 DocID029331 Rev 2

1.10 Generic access profile (GAP)
The Bluetooth system defines a base profile implemented by all Bluetooth devices called
generic access profile (GAP). This generic profile defines the basic requirements of a
Bluetooth device.

The four GAP profile roles are described in Table 20: GAP roles:

On GAP context, two fundamental concepts are defined:

• GAP mode: it configures a device to act in a specific way for a long time. There are four
GAP modes types: broadcast, discoverable, connectable and bondable type

• GAP procedure: it configures a device to perform a single action for a specific, limited
time. There are four GAP procedures types: observer, discovery, connection, bonding
procedures

Different types of discoverable and connectable modes can be used at the same time. The
following GAP modes are defined:

Table 20. GAP roles

Role(1)

1. M = Mandatory; O = Optional

Description Transmitter Receiver Typical example

Broadcaster Sends advertising events M O
Temperature sensor
sends temperature
values

Observer
Receives advertising
events

O M
Temperature display just
receives and displays
temperature values

Peripheral

Always a slave.

It is on connectable
advertising mode.

Supports all LL control
procedures; encryption is
optional.

M M Watch

Central

Always a master.

It never advertises.

It supports active or
passive scan. It supports
all LL control procedures;
encryption is optional

M M Mobile phone

Table 21. GAP broadcaster mode

Mode Description Notes GAP role

Broadcast
mode

Device only broadcasts data using the link
layer advertising channels and packets (it
does not set any bit on flag AD type).

Broadcasts data that can be
detected by a device using the
observation procedure

Broadcaster

DocID029331 Rev 2 31/93

PM0257 Bluetooth low energy technology

93

Table 22. GAP discoverable modes

Mode Description Notes GAP role

Non-discoverable mode
It cannot set the limited and
general discoverable bits on
flag AD type

It cannot be discovered by a
device performing a general or
limited discovery procedure

Peripheral

Limited discoverable mode
It sets the limited discoverable
bit on flag AD type

It is allowed for about 30 s. It
is used by those devices with
which user has recently
interacted. For example, when
a user presses a button on the
device

Peripheral

General discoverable mode
It sets the general
discoverable bit on flag AD
type

It is used when a device wants
to be discoverable. There is
no limit on the discoverability
time

Peripheral

Table 23. GAP connectable modes

Mode Description Notes GAP role

Non-connectable mode

It can only use
ADV_NONCONN_IND or
ADV_SCAN_IND advertising
packets

It cannot use a connectable
advertising packet when it
advertises

Peripheral

Direct connectable mode
It uses ADV_DIRECT
advertising packet

It is used from a peripheral
device that wants to connect
quickly to a central device. It
can be used only for 1.28
seconds, and it requires both
peripheral and central device
addresses

Peripheral

Undirected connectable mode
It uses the ADV_IND
advertising packet

It is used from a device that
wants to be connectable.
Since ADV_IND advertising
packet can include the flag AD
type, a device can be in
discoverable and undirected
connectable mode at the
same time.

Connectable mode is
terminated when the device
moves to connection mode or
when it moves to non-
connectable mode.

Peripheral

Bluetooth low energy technology PM0257

32/93 DocID029331 Rev 2

The following GAP procedures are defined in Table 25: GAP observer procedures:

Table 24. GAP bondable modes

Mode Description Notes GAP role

Non-bondable mode
It does not allow a bond to
be created with a peer
device

No key is stored from the
device

Peripheral

Bondable mode
Device accepts bonding
request from a central
device

Peripheral

Table 25. GAP observer procedures

Procedure Description Notes Role

Observation procedure
It allows a device to look
for broadcaster device
data

Observer

Table 26. GAP discovery procedures

Procedure Description Notes Role

Limited discoverable
procedure

It is used for discovery
peripheral devices in
limited discovery mode

Device filtering is applied
based on flag AD type
information

Central

General discoverable
procedure

It is used for discovery
peripheral devices in
general and limited
discovery mode

Device filtering is applied
based on flag AD type
information

Central

Name discovery
procedure

It is the procedure to
retrieve the “Bluetooth
device name” from
connectable devices

Central

DocID029331 Rev 2 33/93

PM0257 Bluetooth low energy technology

93

For a detailed description of the GAP procedures, refer to the Bluetooth specifications.

Table 27. GAP connection procedures

Procedure Description Notes Role

Auto connection
establishment procedure

Allows the connection
with one or more devices
in the directed
connectable mode or the
undirected connectable
mode

It uses white lists Central

General connection
establishment procedure

Allows a connection with
a set of known peer
devices in the directed
connectable mode or the
undirected connectable
mode

It supports private
addresses by using the
direct connection
establishment procedure
when it detects a device
with a private address
during the passive scan

Central

Selective connection
establishment procedure

Establish a connection
with the host selected
connection configuration
parameters with a set of
devices in the white list

It uses white lists and it
scans following this white
list

Central

Direct connection
establishment procedure

Establish a connection
with a specific device
using a set of connection
interval parameters

General and selective
procedures use it

Central

Connection parameter
update procedure

Updates the connection
parameters used during
the connection

Central

Terminate procedure
Terminates a GAP
procedure

Central

Table 28. GAP bonding procedures

Procedure Description Notes Role

Bonding procedure
Starts the pairing process
with the bonding bit set on
the pairing request

Central

Bluetooth low energy technology PM0257

34/93 DocID029331 Rev 2

1.11 BLE profiles and applications
A service collects a set of characteristics and exposes the behavior of these characteristics
(what the device does, but not how a device uses them). A service does not define
characteristic use cases. Use cases determine which services are required (how to use
services on a device). This is done through a profile which defines which services are
required for a specific use case:

• Profile clients implement use cases

• Profile servers implement services

Standard profiles or proprietary profiles can be used. When using a non-standard profile, a
128-bit UUID is required and must be generated randomly.

Currently, any standard Bluetooth SIG profile (services, and characteristics) uses 16-bit
UUIDs. Services, characteristic specifications and UUID assignations can be downloaded
from the following SIG web pages:

• https://developer.bluetooth.org/gatt/services/Pages/ServicesHome.aspx

• https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicsHome.aspx

Figure 7. Client and server profiles

DocID029331 Rev 2 35/93

PM0257 Bluetooth low energy technology

93

1.11.1 Proximity profile example

This section simply describes the proximity profile target, how it works and required
services:

Target

• When a device is close, very far, far away:

– causes an alert

How it works

• If a device disconnects, it causes an alert:

• Alert on link loss: «Link Loss» service

– if a device is too far away

– causes an alert on path loss: «Immediate Alert» and «Tx Power» service

• «Link Loss» service

– «Alert Level» characteristic

– behavior: on link loss, causes alert as enumerated

• «Immediate Alert» service

– «Alert Level» characteristic

– behavior: when written, causes alert as enumerated

• «Tx Power» service

– «Tx Power» characteristic

– behavior: when read, reports current Tx power for connection

BlueNRG-1, BlueNRG-2 Bluetooth low energy stack PM0257

36/93 DocID029331 Rev 2

2 BlueNRG-1, BlueNRG-2 Bluetooth low energy stack

The BlueNRG-1, BlueNRG-2 devices are system-on-chip with a Bluetooth low energy (BLE)
radio. A Bluetooth low energy (BLE) stack standard C library, in binary format, provides a
high level interface to control BlueNRG-1, BlueNRG-2 Bluetooth low energy functionalities.

The BLE binary library provides the following functionalities:

• Stack APIs for:

– BLE stack initialization

– BLE stack application command interface (HCI command prefixed with hci_, and
vendor specific command prefixed with aci_)

– Sleep timer access

– BLE stack state machine handling

• Stack event callbacks

– Inform user application about BLE stack events

– Sleep timer events

• Provides interrupt handler for radio IP

In order to get access to the BLE stack functionalities, user application is just requested to:

• Call the related stack APIs

• Handle the expected events through the provided stack callbacks

Linking the BLE stack binary library to the user application, as described Figure 8: BLE
stack reference application.

Figure 8. BLE stack reference application

DocID029331 Rev 2 37/93

PM0257 BlueNRG-1, BlueNRG-2 Bluetooth low energy stack

93

Note: 1. API is a C function defined by the BLE stack library and called by user application.

2. A callback is a C function called by the BLE stack library and defined by the user
application.

3. Driver sources are a set of drivers (header and source files) which handles all the
BlueNRG-1, BlueNRG-2 peripherals (ADC, I2C, SPI, timers, watchdog, UART).

2.1 BLE stack library framework
The BLE stack library framework allows commands to be sent to the BlueNRG-1, BlueNRG-
2 SoC BLE stack and it also provides definitions of BLE event callbacks.

The BLE stack APIs utilize and extend the standard HCI data format defined within the
Bluetooth specifications.

The provided set of APIs supports the following commands:

• Standard HCI commands for controller as defined by Bluetooth specifications

• Vendor specific (VS) HCI commands for controller

• Vendor specific (VS) ACI commands for host (L2CAP,ATT, SM, GATT, GAP)

The reference BLE API interface framework is provided within the BlueNRG-1_2 DK
software package targeting the BlueNRG-1, BlueNRG-2 DK platforms (refer to Section 5:
References).

The BLE stack library framework interface for both BlueNRG-1, BlueNRG-2 devices is
defined by the following header files.

Table 29. BLE stack library framework interface

File(1) Description Notes

ble_const.h
It includes the required BLE stack header
files

To be included on the user main
application

ble_status.h Header file for BLE stack error codes
It is included through
ble_const.h header file

bluenrg1_api.h Header file for BLE stack APIs
It is included through
bluenrg1_stack.h header file

bluenrg1_events.h Header file for BLE stack event callbacks
It is included through
bluenrg1_stack.h header file

bluenrg1_gap.h Header file for BLE GAP layer constants
It is included through
ble_const.h header file

bluenrg1_gatt_server.h Header file for GATT server constants
It is included through
ble_const.h header file

bluenrg1_hal.h
Header file with HAL for BlueNRG-1,
BlueNRG-2 devices

It is included through
ble_const.h header file

bluenrg1_stack.h
Header file for BLE stack initialization,
tick and sleep timer APIs

To be included on the user main
application

hci_const.h It contains constants for HCI layer
It is included through
ble_const.h header file

BlueNRG-1, BlueNRG-2 Bluetooth low energy stack PM0257

38/93 DocID029331 Rev 2

2.2 BLE stack event callbacks
The BLE stack library framework provides a set of events and related callbacks which are
used to notify the user application of specific events to be processed.

The BLE event callback prototypes are defined on header file bluenrg1_events.h. All
callbacks are defined by default through weak definitions (no check is done on event
callback name defined from the user, so user should carefully check that each defined
callbacks is in line with the expected function name).

The user application must define the used event callbacks with application code, in line with
specific application scenario.

2.3 BLE stack init and tick APIs
The BLE stack must be initialized in order to proper configure some parameters in line with
specific application scenario.

The following API must be called before using any other BLE stack functionality:
BlueNRG_Stack_Initialization(&BlueNRG_Stack_Init_params);
BlueNRG_Stack_Init_params is a variable which contains memory and low level
hardware configuration data for the device, and it is defined using this structure:
typedef struct {

uint8_t* bleStartFlashAddress;

uint32_t secDbSize ;

uint32_t serverDbSize ;

uint8_t* stored_device_id_data_p;

uint8_t* bleStartRamAddress;

uint32_t total_buffer_size;

uint16_t numAttrRecord;

uint16_t numAttrServ ;

uint16_t attrValueArrSize;

uint8_t numOfLinks;

uint8_t extended_packet_length_enable;

uint8_t prWriteListSize;

uint8_t mblockCount;

uint16_t attMtu;

link_layer.h Header file for BLE link layer constants
It is included through
ble_const.h header file

sm.h
Header file for BLE security manager
constants

It is included through
ble_const.h header file

1. File location: library\Bluetooth_LE\inc.

Table 29. BLE stack library framework interface (continued)

File(1) Description Notes

DocID029331 Rev 2 39/93

PM0257 BlueNRG-1, BlueNRG-2 Bluetooth low energy stack

93

hardware_config_table_t hardware_config;

} BlueNRG_Stack_Initialization_t;

The hardware_config_table_t structure is defined as follows:

typedef struct {

uint32_t *hot_ana_config_table;

uint32_t max_conn_event_length;

uint16_t slave_sca;

uint8_t master_sca;

uint8_t ls_source;

uint16_t hs_startup_time ;

} hardware_config_table_t;

Table 30. BLE Stack Initialization parameters

Name Description Value

bleStartFlashAddress

SDB base address: it is the start
address for the non-volatile memory
area allocated to the stack to store
information for bonded devices

Aligned to 2048 bytes flash sector
boundary(1)

secDbSize

Security DB size: it is the size of the
security database used to store
security information for bonded
devices

1 kB(1)

serverDbSize
Server DB size: it is the size of the
server database used to store service
change notification for bonded devices

1 kB

stored_device_id_data_p
Storage area for stack internal
parameters (security root keys, static
random address, public address)

56 bytes, 32-bit aligned flash area, all
elements must be initialized to 0xFF

bleStartRamAddress
Start address of the RAM buffer for
stack GATT database

32-bit aligned RAM area

total_buffer_size Total buffer size allocated for stack

TOTAL_BUFFER_SIZE(NUM_LINKS,NUM_
GATT_ATTRIBUTES,NUM_GATT_SERVICE
S,ATT_VALUE_ARRAY_SIZE,PCKT_COUN
T)

BlueNRG-1, BlueNRG-2 Bluetooth low energy stack PM0257

40/93 DocID029331 Rev 2

numAttrRecord

Maximum number of attributes records
related to all the required
characteristics (excluding the services)
that can be stored in the GATT
database, for the specific user BLE
application

For each characteristic, the number of
attributes goes from 2 to 5 depending on the
characteristic properties:
- minimum of 2 (one for declaration and one
for the value)
- add one more record for each additional
property: notify or indicate, broadcast,
extended property.

Total calculated value must be increased of 9,
due to the records related to the standard
attribute profile and GAP services
characteristics, automatically added when
initializing GATT and GAP layers.

numAttrServ
Maximum number of services that can
be stored in the GATT database, for
the specific user BLE application

Total calculated value must be increased of 2
due to the standard attribute profile and GAP
services, automatically added when
initializing GATT and GAP layers.

attrValueArrSize
Size of the storage area for attribute
values

Each characteristic contributes to the
attrValueArrSize value as follows:
- characteristic value length

- characteristic UUID is 16 bits: adding 5
bytes

- characteristic UUID is 128 bits: adding 19
bytes

- characteristic has server configuration
descriptor: adding 2 bytes

- characteristic has client configuration
descriptor: adding 2 bytes for each
simultaneous connection
- characteristic has extended properties:
adding 2 bytes

numOfLinks
Maximum number of simultaneous
connections that the device can
support.

Valid values are from 1 to 8

extended_packet_length_
enable

Unsupported feature (reserved for
future use)

0

prWriteListSize(2)
Number of prepare write requests
needed for a long write procedure for a
characteristic with len > 20 bytes

The minimum required value is calculated
using a specific macro provided on
bluenrg1_stack.h file:
PREP_WRITE_X_ATT().

mblockCount(2) Number of allocated memory blocks
for the BLE stack

The minimum required value is calculated
using a specific macro provided on
bluenrg1_stack.h file:
PCKT_MBLOCKS_C().

Table 30. BLE Stack Initialization parameters (continued)

Name Description Value

DocID029331 Rev 2 41/93

PM0257 BlueNRG-1, BlueNRG-2 Bluetooth low energy stack

93

2.4 BlueNRG-1, BlueNRG-2 cold start configuration
During the device initialization phase, after BlueNRG-1, BlueNRG-2 device powers on,
some specific parameters must be defined on BLE device controller registers, in order to
define the following configurations:

• Application mode: user or test mode

• High speed crystal configuration: 32 or 16 MHz

• Low speed crystal source: external 32 kHz oscillator or internal RO

• SMPS: on or off (if on: 4.7 µH or 10 µH SMPS inductor)

The BlueNRG-1, BlueNRG-2 controller registers values are defined on file
system_bluenrg1.c through the cold start configuration table:

/* Cold Start Configuration Table */

#define COLD_START_CONFIGURATION

{

 NUMBER_CONFIG_BYTE, ATB0_ANA_ENG_REG, 0x00,

 NUMBER_CONFIG_BYTE, ATB1_ANA_ENG_REG, 0x30,

 NUMBER_CONFIG_BYTE, RM1_DIG_ENG_REG, SMPS_10uH_RM1,

 NUMBER_CONFIG_BYTE, CLOCK_LOW_ENG_REG, SMPS_ON,

 NUMBER_CONFIG_BYTE, CLOCK_HIGH_ENG_REG, HIGH_FREQ_16M,

 NUMBER_CONFIG_BYTE, PMU_ANA_ENG_REG, SMPS_10uH_PMU,

 NUMBER_CONFIG_BYTE, CLOCK_ANA_USER_REG, LOW_FREQ_XO,

attMtu(2) Maximum supported ATT_MTU size Supported values ranges is 23-158 bytes

hot_ana_config_table
Low level configuration parameters
table for the radio subsystem.

To be set to NULL

max_conn_event_length
Maximum duration of the connection
event when the device is in Slave
mode in units of 625/256 μs (~2.44 μs)

<= 4000 (ms)

slave_sca Sleep clock accuracy in Slave mode ppm value

master_sca Sleep clock accuracy in Master mode
0 to 7 corresponding to 500, 250, 150, 100,
75, 50, 30, 20 ppm

ls_source(3) Source for the 32 kHz slow speed
clock

1: internal RO
0: external crystal

hs_startup_time(3)
Start up time of the high speed (16 or
32 MHz) crystal oscillator in units of
625/256 μs (~2.44 us)

Positive integer(4)

1. These values cannot be changed. To be potentially optimized for making the BLE stack configuration more flexible.

2. New Radio initialization parameter supported on BLE stack v2.x.

3. High Speed and Low Speed crystal sources can be defined through these define values:
HS_SPEED_XTAL=HS_SPEED_XTAL_16MHZ (or HS_SPEED_XTAL_32MHZ)
LS_SOURCE=LS_SOURCE_EXTERNAL_32KHZ (or LS_SOURCE_INTERNAL_RO).

4. For information about how to define the proper hs_startup_time value refer to the Bringing up the BlueNRG-1, BlueNRG-2
devices application note (AN4818) on Section 5: References at the end of this document.

Table 30. BLE Stack Initialization parameters (continued)

Name Description Value

BlueNRG-1, BlueNRG-2 Bluetooth low energy stack PM0257

42/93 DocID029331 Rev 2

 END_CONFIG

}

This table defines the default configuration as follows:

• User mode: ATB0_ANA_ENG_REG = 0x00, USER_MODE_ATB1 = 0x30

• SMPS ON, 10 µH inductor: CLOCK_LOW_ENG_REG = SMPS_ON,
RM1_DIG_ENG_REG = SMPS_10uH_RM1

• 16 MHz high speed crystal: CLOCK_HIGH_ENG_REG = HIGH_FREQ_16M

• External 32 kHz oscillator: CLOCK_ANA_USER_REG = LOW_FREQ_XO

• BOR (brown-out threshold): disabled by default

When the device powers on, the function SystemInit() (system_bluenrg1.c file) sets the
default cold start parameters defined on the COLD_START_CONFIGURATION table within
the cold_start_config[] array. User application can define its specific cold start
settings, based on its application scenario, by setting some preprocessor options which act
on specific fields of the cold_start_config[] array, as described in the following table:

Table 31. Cold start configuration preprocessor options

Preprocessor
option

Preprocessor option values cold_start_config field Description

HS_SPEED_XTAL
HS_SPEED_XTAL_32MHZ cold_start_config[14]=

HIGH_FREQ_32M;
High speed crystal: 32
MHz

HS_SPEED_XTAL HS_SPEED_XTAL_16MHZ
cold_start_config[14]=
HIGH_FREQ_16M;

High speed crystal
configuration: 16 MHz
(default configuration)

LS_SOURCE
LS_SOURCE_EXTERNAL_32kHZ cold_start_config[20]=

LOW_FREQ_XO;

Low speed crystal
source: external 32
kHz oscillator (default
configuration)

LS_SOURCE
LS_SOURCE_INTERNAL_RO

cold_start_config[20]=
LOW_FREQ_RO;

Low speed crystal
source: internal RO

SMPS_INDUCTOR
SMPS_INDUCTOR_10uH

cold_start_config[11] =
SMPS_ON;
cold_start_config[8]=
SMPS_10uH_RM1;
cold_start_config[17]=
SMPS_10uH_PMU;

Enable SMPS with 10
µH (default
configuration)

SMPS_INDUCTOR
SMPS_INDUCTOR_4_7uH

cold_start_config[11] =
SMPS_ON;
cold_start_config[8]=
SMPS_4.7uH_RM1;
cold_start_config[17]=
SMPS_4.7uH_PMU;

Enable SMPS with 4.7
µH inductor

SMPS_INDUCTOR SMPS_INDUCTOR_NONE
cold_start_config[11] =
SMPS_OFF;

Disable SMPS

DocID029331 Rev 2 43/93

PM0257 BlueNRG-1, BlueNRG-2 Bluetooth low energy stack

93

Regarding the ATB0_ANA_ENG_REG, ATB1_ANA_ENG_REG registers settings, some
test modes are also available in order to address some test scenarios.

User should sets such registers as follows:

Please notice that the default user mode register setting must be restored for typical user
application scenarios:

The selected cold start configuration is defined within the BLE device controller through the
following instructions executed on DeviceConfiguration() function called by
SystemInit() API (system_bluenrg1.c file) at device initialization (power on):

/* Cold start configuration device */

BLUE_CTRL->RADIO_CONFIG = 0x10000U | (uint16_t)((uint32_t)cold_start_config
 & 0x0000FFFFU);

while ((BLUE_CTRL->RADIO_CONFIG & 0x10000) != 0);

BOR_CONFIG BOR_ON
cold_start_config[11] &=
~(1<<2);

Enable BlueNRG-1,
BlueNRG-2 BOR
(brown-out threshold)

BOR_CONFIG BOR_OFF

If BOR_OFF is selected no
register set is required,
since BOR is disabled by
default

Disable BlueNRG-1,
BlueNRG-2 BOR
(brown-out threshold):
default configuration

Table 32. Cold start test mode configurations

Test modes cold_start_config field Notes

Low speed
crystal oscillator
test mode

cold_start_config[2] = 0x37
cold_start_config[5] = 0x34

Refer to bringing up the BlueNRG-1, BlueNRG-
2 devices AN4818 for more details about this
specific test scenario

High speed
start-up time test
mode

cold_start_config[2] = 0x04
cold_start_config[5] = 0x34

Refer to bringing up the BlueNRG-1, BlueNRG-
2 devices AN4818 for more details about this
specific test scenario

TX/RX event
alert enabling

cold_start_config[2] = 0x38
cold_start_config[5] = 0x34

Refer to BlueNRG-1, BlueNRG-2 datasheets
for more details about the TX/RX event alert
enabling

Table 33. Cold start user mode configuration

User mode cold_start_config field Notes

cold_start_config[2] = 0x00
cold_start_config[5] = 0x30

User mode register settings for cold start
configuration

Table 31. Cold start configuration preprocessor options

Preprocessor
option

Preprocessor option values cold_start_config field Description

BlueNRG-1, BlueNRG-2 Bluetooth low energy stack PM0257

44/93 DocID029331 Rev 2

2.5 BLE stack tick function
BlueNRG-1, BlueNRG-2 BLE stack provides a special API BTLE_StackTick() which must be
called in order to process the internal BLE stack state machines and when there are BLE
stack activities ongoing (normally within the main application while loop).

The BTLE_StackTick() function executes the processing of all host stack layers and it has to
be executed regularly to process incoming link layer packets and to process host layers
procedures. All stack callbacks are called by this function.

If low speed ring oscillator is used instead of the LS crystal oscillator, this function also
performs the LS RO calibration and hence must be called at least once at every system
wake-up in order to keep the 500 ppm accuracy (at least 500 ppm accuracy is mandatory if
acting as a master).

Note: No BLE stack function must be called while the BTLE_StackTick() is running. For example,
if a BLE stack function may be called inside an interrupt routine, that interrupt must be
disabled during the execution of BTLE_StackTick().

Example: if a stack function may be called inside UART ISR the following code should be
used:

NVIC_DisableIRQ(UART_IRQn);

BTLE_StackTick();

NVIC_EnableIRQ(UART_IRQn);

DocID029331 Rev 2 45/93

PM0257 Design an application using BlueNRG-1, BlueNRG-2 BLE stack

93

3 Design an application using BlueNRG-1, BlueNRG-2
BLE stack

This section provides information and code examples about how to design and implement a
Bluetooth low energy application on a BlueNRG-1, BlueNRG-2 device.

User implementing a BLE application on a BlueNRG-1, BlueNRG-2 device has to go
through some basic and common steps:

1. Initialization phase and main application loop

2. BLE stack events callbacks setup

3. Services and characteristic configuration (on GATT server)

4. Create a connection: discoverable, connectable modes and procedures

5. Security (pairing and bonding)

6. Service and characteristic discovery

7. Characteristic notification/indications, write, read

8. Basic/typical error conditions description

Note: In the following sections, some user applications “defines” are used to simply identify the
device Bluetooth low energy role (central, peripheral, client and server).

Table 34. User application defines the BLE device roles

Define Description

GATT_CLIENT GATT client role

GATT_SERVER GATT server role

Design an application using BlueNRG-1, BlueNRG-2 BLE stack PM0257

46/93 DocID029331 Rev 2

3.1 Initialization phase and main application loop
The following main steps are required to properly configure the BlueNRG-1, BlueNRG-2
devices.

1. Initialize the BLE device vector table, interrupt priorities, clock: SystemInit() API

2. Configure selected BLE platform: SdkEvalIdentification() API

3. Initialize the serial communication channel used for I/O communication as debug and
utility information: SdkEvalComUartInit(UART_BAUDRATE) API

4. Initialize the BLE stack:
BlueNRG_Stack_Initialization(&BlueNRG_Stack_Init_params) API

5. Configure BLE device public address (if public address is used):
aci_hal_write_config_data() API

6. Init BLE GATT layer: aci_gatt_init() API

7. Init BLE GAP layer depending on the selected device role: aci_gap_init(“role”)
API

8. Set the proper security I/O capability and authentication requirement (if BLE security is
used): aci_gap_set_io_capability() and
aci_gap_set_authentication_requirement() APIs

9. Define the required Services & Characteristics & Characteristics Descriptors if the
device is a GATT server: aci_gatt_add_service(), aci_gatt_add_char(),
aci_gatt_add_char_desc() APIs

10. Add a while(1) loop calling the BLE stack tick API BTLE_StackTick() and a specific
user tick handler where user actions/events are processed. Further, a call to the
BlueNRG_Sleep() API is added in order to enable BLE device sleep mode and
preserve the BLE radio operating modes.

The following pseudocode example illustrates the required initialization steps:

int main(void)
{
 uint8_t ret;

 /* System Init */
 SystemInit();

 /* Identify BLE platform */
 SdkEvalIdentification();

 /* Configure I/O communication channel */
 SdkEvalComUartInit(UART_BAUDRATE);

 /* BLE stack init */
 ret = BlueNRG_Stack_Initialization(&BlueNRG_Stack_Init_params);

 if (ret != BLE_STATUS_SUCCESS) {
 printf("Error in BlueNRG_Stack_Initialization() 0x%02x\r\n", ret);
 while(1);
 }

 /* Device Initialization: BLE stack GATT and GAP Init APIs.
 It could add BLE services and characteristics (if it is a GATT
 server) and initialize its state machine and other specific drivers
 (i.e. leds, buttons, sensors, …) */
 ret = DeviceInit();

DocID029331 Rev 2 47/93

PM0257 Design an application using BlueNRG-1, BlueNRG-2 BLE stack

93

 if (ret != BLE_STATUS_SUCCESS) {
 while(1);
 }

 while(1)
 {
 /* BLE Stack Tick */
 BTLE_StackTick();

 /* Application Tick: user application where application state machine
 is handled */
 APP_Tick();

 /* Power Save management: enable sleep mode with wakeup on radio
 operating timings (adverting, connections intervals) */
 BlueNRG_Sleep(SLEEPMODE_WAKETIMER, 0, 0);

 }/* while (1) */ }

 } /* end main() */

1. BlueNRG_Stack_Init_params variable defines the BLE stack initialization parameters
as described on Section 2.2: BLE stack event callbacks.

2. BTLE_StackTick() must be called in order to process BLE stack events.

3. APP_Tick() is just an application dependent function which handles the user application
state machine, according to the application working scenario.

4. BlueNRG_Sleep(SLEEPMODE_WAKETIMER, 0, 0) enables the BLE device HW Sleep
low power mode: CPU is stopped and all the peripherals are disabled (only the low speed
oscillator and the external wakeup source blocks are running). It’s worth to notice that this
API with the specified parameters (SLEEPMODE_WAKETIMER, 0, 0) must be called, on
application main while loop, in order to allow the BlueNRG-1, BlueNRG-2 devices to enter
sleep mode with wake-up source on BLE stack advertising and connection intervals. If not
called, the BLE device always stays in running power save mode (BLE stack is not
autonomously entering in sleep mode unless this specific API is called). User application
can use the BlueNRG_Sleep() API for selecting one of the supported BLE device HW
low power modes (CPU halt, sleep, standby) and set the related wakeup sources and sleep
timeout, when applicable. The BlueNRG_Sleep() API combines the low power requests
coming from the application with the radio operating mode, choosing the best low power
mode applicable in the current scenario. The negotiation between the radio module and the
application requests is done to avoid losing of data exchanged over the air.

5. For more information about the BlueNRG_Sleep() API and BLE device low power
modes refer to the related application note on Section 5: References at the end of this
document.

6. When performing the aci_gatt_init() & aci_gap_init() APIs, BLE stack always
adds two standard services: attribute profile service (0x1801) with service changed
characteristic and GAP service (0x1800) with device name and appearance characteristics.

7. The last attribute handles reserved for the standard GAP service is 0x000B when no
privacy or host-based privacy is enabled on aci_gap_init() API, 0x000D when controller-
based privacy is enabled on aci_gap_init() API.

Design an application using BlueNRG-1, BlueNRG-2 BLE stack PM0257

48/93 DocID029331 Rev 2

The aci_gap_init() role parameter values are as follows:

Table 35. GATT, GAP default services

Default services Start handle End handle Service UUID

Attribute profile service 0x0001 0x0004 0x1801

Generic access profile (GAP) service 0x0005 0x000B 0x1800

Table 36. GATT, GAP default characteristics

Default
services

Characteristic
Attribute
handle

Char property
Char
value

handle

 Char
UUID

Char value
length
(bytes)

Attribute
profile
service

Service changed 0x0002 Indicate 0x0003 0x2A05 4

Generic
access
profile
(GAP)

service

Device name 0x0006

Read|write without
response| write|
authenticated
signed writes

0x0007 0x2A00 8

Appearance 0x0008

Read|write without
response| write|
authenticated
signed writes

0x0009 0x2A01 2

Peripheral
preferred
connection
parameters

0x000A Read| write 0x000B 0x2A04 8

Central address
resolution(1)

1. It is added only when controller-based privacy (0x02) is enabled on aci_gap_init() API.

0x000C

Readable without

authentication or
authorization.

Not writable

0x000D 0x2AA6 1

DocID029331 Rev 2 49/93

PM0257 Design an application using BlueNRG-1, BlueNRG-2 BLE stack

93

For a complete description of this API and related parameters refer to the Bluetooth LE
stack APIs and events documentation, on Section 5: References.

3.1.1 BLE addresses

The following device addresses are supported from BlueNRG-1, BlueNRG-2 devices:

• Public address

• Random address

• Private address

Public MAC addresses (6 bytes- 48-bit address) uniquely identifies a BLE device, and they
are defined by Institute of Electrical and Electronics Engineers (IEEE).

The first 3 bytes of the public address identify the company that issued the identifier and are
known as the Organizationally Unique Identifier (OUI). An Organizationally Unique Identifier
(OUI) is a 24-bit number that is purchased from the IEEE. This identifier uniquely identifies a
company and it allows a block of possible public addresses to be reserved (up to 2^24
coming from the remaining 3 bytes of the public address) for the exclusive use of a company
with a specific OUI.

An organization/company can request a new set of 6 bytes addresses when at least the
95% of previously allocated block of addresses have been used (up to 2^24 possible
addresses are available with a specific OUI).

If user wants to program his custom MAC address, he has to store it on a specific device
Flash location used only for storing the MAC address. Then, at device power up, it has to
program this address on the radio by calling a specific stack API.

The BLE API command to set the MAC address is aci_hal_write_config_data().

The command aci_hal_write_config_data() should be sent to BlueNRG-1,
BlueNRG-2 devices before starting any BLE operations (after BLE stack initialization API
BlueNRG_Stack_Initialization()).

Table 37. aci_gap_init() role parameter values

Parameter
Role parameter

values
Notes

Role

0x01: peripheral
0x02: broadcaster

0x04: central
0x08: observer

The role parameter can be a bitwise OR of any of the
supported values (multiple roles simultaneously
support)

enable_Privacy

0x00 for disabling
privacy

0x01 for enabling
host-based privacy

0x02 for enabling
controller-based
privacy

Controller-based privacy is supported on BLE stack
v2.x

device_name_char_len
It allows the length of the device name characteristic
to be indicated

Design an application using BlueNRG-1, BlueNRG-2 BLE stack PM0257

50/93 DocID029331 Rev 2

The following pseudocode example illustrates how to set a public address:

uint8_t bdaddr[] = {0x12, 0x34, 0x00, 0xE1, 0x80, 0x02};
ret=aci_hal_write_config_data(CONFIG_DATA_PUBADDR_OFFSET,CONFIG_DATA_PUBAD
DR_LEN, bdaddr);
if(ret)PRINTF("Setting address failed.\n")}

MAC address needs to be stored in the specific Flash location associated to the MAC
address during product manufacturing.

A user can write its application assuming that the MAC address is placed at a known
specific MAC Flash location of the BLE device. During manufacturing, the microcontroller
can be programmed with the customer Flash image via JTAG.

A second step could involve generating the unique MAC address (i.e. reading it from a
database) and storing of the MAC address in the known MAC Flash location.

Figure 9. BLE MAC address storage

The BlueNRG-1, BlueNRG-2 devices do not have a valid preassigned MAC address, but a

DocID029331 Rev 2 51/93

PM0257 Design an application using BlueNRG-1, BlueNRG-2 BLE stack

93

unique serial number (read only for user).The unique serial number is a six bytes value
stored at address 0x100007F4: it is stored as two words (8 bytes) at address 0x100007F4
and 0x100007F8 with unique serial number padded with 0xAA55.
The static random address is generated and programmed at very 1st boot of device on the
dedicated Flash area. The value on Flash is the actual value the device uses: each time the
user resets the device the stack checks if valid data are on the dedicated Flash area and it
uses it (a special valid marker on FLASH is used to identify if valid data are present). If the
user performs mass erase, the stored values (including marker) are removed so the stack
generates a new random address and store it on the dedicated flash.
Private addresses are used when privacy is enabled and according to the Bluetooth low
energy specification. For more information about private addresses, refer to Section 1.7:
Security manager (SM).

3.1.2 Set tx power level

During the initialization phase user can also select the transmitting power level using the
following API: aci_hal_set_tx_power_level(high or standard, power level)

Follow a pseudocode example for setting the radio transmit power in high power and -2
dBm output power: ret= aci_hal_set_tx_power_level (1,4);

For a complete description of this API and related parameters refer to the Bluetooth LE
stack APIs and events documentation, on Section 5: References

3.2 Services and characteristic configuration
In order to add a service and related characteristics, a user application has to define the
specific profile to be addressed:

1. Standard profile defined by the Bluetooth SIG organization. The user must follow the
profile specification and services, characteristic specification documents in order to
implement them by using the related defined Profile, Services and Characteristics 16-
bit UUID (refer to Bluetooth SIG web page: www.bluetooth.org/en-
%20us/specification/adopted-specifications).

2. Proprietary, non-standard profile. The user must define its own services and
characteristics. In this case, 128-bit UIDS are required and must be generated by
profile implementers (refer to UUID generator web page:
www.famkruithof.net/uuid/uuidgen).

A service can be added using the following command:

aci_gatt_add_service(uint8_t Service_UUID_Type,
 Service_UUID_t *Service_UUID,
 uint8_t Service_Type,
 uint8_t Max_Attribute_Records,
 uint16_t *Service_Handle);

This command returns the pointer to the service handle (Service_Handle), which is used
to identify the service within the user application. A characteristic can be added to this
service using the following command:

aci_gatt_add_char(uint16_t Service_Handle,
 uint8_t Char_UUID_Type,

Design an application using BlueNRG-1, BlueNRG-2 BLE stack PM0257

52/93 DocID029331 Rev 2

 Char_UUID_t *Char_UUID,
 uint8_t Char_Value_Length,
 uint8_t Char_Properties,
 uint8_t Security_Permissions,
 uint8_t GATT_Evt_Mask,
 uint8_t Enc_Key_Size,
 uint8_t Is_Variable,
 uint16_t *Char_Handle);

This command returns the pointer to the characteristic handle (Char_Handle), which is
used to identify the characteristic within the user application.

For a detailed description of the aci_gatt_add_service() and
aci_gatt_add_char() functions parameters refer to the header file
Library\Bluetooth_LE\inc\bluenrg1_events.h.

The following pseudocode example illustrates the steps to be followed for adding a service
and two associated characteristic on a proprietary, non-standard profile.
/* Service and characteristic UUIDs variables. Refer to the header
file Library\Bluetooth_LE\inc\bluenrg1_api.h for a detailed description
 */
Service_UUID_t service_uuid;
Char_UUID_t char_uuid;

tBleStatus Add_Server_Services_Characteristics(void)
{
 tBleStatus ret = BLE_STATUS_SUCCESS;
 /*
 The following 128bits UUIDs have been generated from the random UUID
 generator:
 D973F2E0-B19E-11E2-9E96-0800200C9A66: Service 128bits UUID
 D973F2E1-B19E-11E2-9E96-0800200C9A66: Characteristic_1 128bits UUID
 D973F2E2-B19E-11E2-9E96-0800200C9A66: Characteristic_2 128bits UUID
 */
 /*Service 128bits UUID */
 const uint8_t uuid[16] =

{0x66,0x9a,0x0c,0x20,0x00,0x08,0x96,0x9e,0xe2,0x11,0x9e,0xb1,0xe0,0xf2,0x7
3,0xd9};
 /*Characteristic_1 128bits UUID */
 const uint8_t charUuid_1[16] =

{0x66,0x9a,0x0c,0x20,0x00,0x08,0x96,0x9e,0xe2,0x11,0x9e,0xb1,0xe1,0xf2,0x7
3,0xd9};
 /*Characteristic_2 128bits UUID */
 const uint8_t charUuid_2[16] =

{0x66,0x9a,0x0c,0x20,0x00,0x08,0x96,0x9e,0xe2,0x11,0x9e,0xb1,0xe2,0xf2,0x7
3,0xd9};
 Osal_MemCpy(&service_uuid.Service_UUID_128, uuid, 16);
 /* Add the service with service_uuid 128bits UUID to the GATT server
 database. The service handle Service_Handle is returned.
 */
 ret = aci_gatt_add_service(UUID_TYPE_128, &service_uuid,
PRIMARY_SERVICE,
 6, &Service_Handle);

DocID029331 Rev 2 53/93

PM0257 Design an application using BlueNRG-1, BlueNRG-2 BLE stack

93

 if(ret != BLE_STATUS_SUCCESS) return(ret);
 Osal_MemCpy(&char_uuid.Char_UUID_128, charUuid_1, 16);

 /* Add the characteristic with charUuid_1128bitsUUID to the service
 Service_Handle. This characteristic has 20 as Maximum length of the
 characteristic value, Notify properties(CHAR_PROP_NOTIFY), no
security
 permissions(ATTR_PERMISSION_NONE), no GATT event mask (0), 16 as key
 encryption size, and variable-length characteristic (1).
 The characteristic handle (CharHandle_1) is returned.
 */
 ret = aci_gatt_add_char(Service_Handle, UUID_TYPE_128, &char_uuid, 20,
 CHAR_PROP_NOTIFY, ATTR_PERMISSION_NONE, 0,16, 1,
 &CharHandle_1);
 if (ret != BLE_STATUS_SUCCESS) return(ret);
 Osal_MemCpy(&char_uuid.Char_UUID_128, charUuid_2, 16);

 /* Add the characteristic with charUuid_2 128bits UUID to the service
 Service_Handle. This characteristic has 20 as Maximum length of the
 characteristic value, Read, Write and Write Without Response
properties,no security permissions(ATTR_PERMISSION_NONE), notify
application when attribute is written (GATT_NOTIFY_ATTRIBUTE_WRITE) as GATT
event mask,16 as key encryption size, and variable-length characteristic
(1). The characteristic handle (CharHandle_2) is returned.
 */
 ret = aci_gatt_add_char(Service_Handle, UUID_TYPE_128, &char_uuid, 20,
 CHAR_PROP_WRITE|CHAR_PROP_WRITE_WITHOUT_RESP,
 ATTR_PERMISSION_NONE, GATT_NOTIFY_ATTRIBUTE_WRITE,
 16, 1, &&CharHandle_2);
 if (ret != BLE_STATUS_SUCCESS)return(ret) ;
}/*end Add_Server_Services_Characteristics() */

Design an application using BlueNRG-1, BlueNRG-2 BLE stack PM0257

54/93 DocID029331 Rev 2

3.3 Create a connection: discoverable and connectable APIs
In order to establish a connection between a BLE GAP central (master) device and a BLE
GAP peripheral (slave) device, the GAP discoverable/connectable modes and procedures
can be used as described in Table 38: GAP mode APIs, Table 39: GAP discovery procedure
APIs and Table 40: Connection procedure APIs and by using the related BLE stack APIs
provided in header file: Library\Bluetooth_LE\inc\bluenrg1_api.h.

GAP peripheral discoverable and connectable modes APIs

Different types of discoverable and connectable modes can be used as described by the
following APIs:

Table 38. GAP mode APIs

API
Supported

advertising event
types

Description

aci_gap_set_discoverable()

0x00:
connectable
undirected advertising
(default)

Sets the device in general discoverable
mode.
The device is discoverable until the
device issues the
aci_gap_set_non_discoverable()
API.

0x02:
scannable undirected
advertising

0x03:
non-connectable
undirected advertising

aci_gap_set_limited_discoverable() 0x00:
connectable
undirected advertising
(default);

Sets the device in limited discoverable
mode. The device is discoverable for a
maximum period of TGAP
(lim_adv_timeout) = 180 seconds. The
advertising can be disabled at any time
by calling
aci_gap_set_non_discoverable()
API

0x02:
scannable undirected
advertising;

0x03: non-connectable
undirected advertising.

aci_gap_set_non_discoverable()

NA

Sets the device in non- discoverable
mode. This command disables the LL
advertising and sets the device in
standby state.

aci_gap_set_direct_connectable()

NA

Sets the device in direct connectable
mode. The device is directed
connectable mode only for 1.28 seconds.
If no connection is established within this
duration, the device enters non-
discoverable mode and advertising has
to be enabled again explicitly.

DocID029331 Rev 2 55/93

PM0257 Design an application using BlueNRG-1, BlueNRG-2 BLE stack

93

aci_gap_set_non_connectable() 0x02: scannable
undirected advertising Puts the device into non- connectable

mode.0x03: non-connectable
undirected advertising

aci_gap_set_undirect_connectable
()

NA
Puts the device into undirected
connectable mode.

Table 38. GAP mode APIs (continued)

API
Supported

advertising event
types

Description

Table 39. GAP discovery procedure APIs

API Description

aci_gap_start_limited_discovery_proc() Starts the limited discovery procedure. The controller is
commanded to start active scanning. When this procedure
is started, only the devices in limited discoverable mode
are returned to the upper layers.

aci_gap_start_general_discovery_proc() Starts the general discovery procedure. The controller is
commanded to start active scanning.

Table 40. Connection procedure APIs

API Description

aci_gap_start_auto_connection_establish
_proc()

Starts the auto connection establishment procedure. The
devices specified are added to the white list of the controller
and a create connection call is made to the controller by
GAP with the initiator filter policy set to “use whitelist to
determine which advertiser to connect to”.

aci_gap_create_connection() Starts the direct connection establishment procedure. A
create connection call is made to the controller by GAP with
the initiator filter policy set to “ignore whitelist and process
connectable advertising packets only for the specified
device”.

aci_gap_start_general_connection_establ
ish_proc()

Starts a general connection establishment procedure. The
device enables scanning in the controller with the scanner
filter policy set to “accept all advertising packets” and from
the scanning results, all the devices are sent to the upper
layer using the event callback
hci_le_advertising_report_event().

aci_gap_start_selective_connection_esta
blish_proc()

It starts a selective connection establishment procedure.
The GAP adds the specified device addresses into white list
and enables scanning in the controller with the scanner filter
policy set to “accept packets only from devices in white list”.
All the devices found are sent to the upper layer by the
event callback
hci_le_advertising_report_event().

aci_gap_terminate_gap_proc() Terminate the specified GAP procedure.

Design an application using BlueNRG-1, BlueNRG-2 BLE stack PM0257

56/93 DocID029331 Rev 2

3.3.1 Set discoverable mode and use direct connection establishment
procedure

The following pseudocode example illustrates only the specific steps to be followed for
putting a GAP Peripheral device in general discoverable mode, and for a GAP central
device to direct connect to it through a direct connection establishment procedure.
/*GAP Peripheral: general discoverable mode (and no scan response is sent)
*/

Note: It is assumed that the device public address has been set during the initialization phase as
follows:

uint8_t bdaddr[] = {0x12, 0x34, 0x00, 0xE1, 0x80, 0x02};
ret=aci_hal_write_config_data(CONFIG_DATA_PUBADDR_OFFSET,CONFIG_DATA_PUBAD
DR_LEN, bdaddr);
if(ret != BLE_STATUS_SUCCESS)PRINTF("Failure.\n");

void GAP_Peripheral_Make_Discoverable(void)
{
 tBleStatus ret;

 const charlocal_name[]=
 {AD_TYPE_COMPLETE_LOCAL_NAME,'B','l','u','e','N','R','G','1','T','e','s','
t'};

 /* disable scan response: passive scan */
 hci_le_set_scan_response_data (0,NULL);

 /* Put the GAP peripheral in general discoverable mode:
 Advertising_Type: ADV_IND(undirected scannable and connectable);
 Advertising_Interval_Min: 100;
 Advertising_Interval_Max: 100;
 Own_Address_Type: PUBLIC_ADDR (public address: 0x00);
 Adv_Filter_Policy: NO_WHITE_LIST_USE (no whit list is used);
Local_Name_Length:
 13
 Local_Name: BlueNRG1Test;
 Service_Uuid_Length: 0 (no service to be advertised); Service_Uuid_List:
NULL;
 Slave_Conn_Interval_Min: 0 (Slave connection internal minimum value);
 Slave_Conn_Interval_Max: 0 (Slave connection internal maximum value).
 */

 ret = aci_gap_set_discoverable(ADV_IND, 100, 100, PUBLIC_ADDR,
 NO_WHITE_LIST_USE,
 sizeof(local_name),
 local_name,
 0, NULL, 0, 0);
 if (ret != BLE_STATUS_SUCCESS)PRINTF("Failure.\n");
} /* end GAP_Peripheral_Make_Discoverable() */

/*GAP Central: direct connection establishment procedure to connect to the
GAP Peripheral in discoverable mode
*/

DocID029331 Rev 2 57/93

PM0257 Design an application using BlueNRG-1, BlueNRG-2 BLE stack

93

void GAP_Central_Make_Connection(void)

{
 /*Start the direct connection establishment procedure to the GAP
 peripheral device in general discoverable mode using the
 following connection parameters:
 LE_Scan_Interval: 0x4000;
 LE_Scan_Window: 0x4000;
 Peer_Address_Type: PUBLIC_ADDR (GAP peripheral address type: public
 address);
 Peer_Address: {0xaa, 0x00, 0x00, 0xE1, 0x80, 0x02};
 Own_Address_Type:
 PUBLIC_ADDR (device address type);
 Conn_Interval_Min: 40 (Minimum value for the connection event
 interval);
 Conn_Interval_Max: 40 (Maximum value for the connection event
 interval);
 Conn_Latency: 0 (Slave latency for the connection in a number of
 connection events);
 Supervision_Timeout: 60 (Supervision timeout for the LE Link);
 Minimum_CE_Length: 2000 (Minimum length of connection needed for the
 LE connection);
 Maximum_CE_Length: 2000 (Maximum length of connection needed for the LE
connection).

 */

 tBDAddr GAP_Peripheral_address = {0xaa, 0x00, 0x00, 0xE1, 0x80, 0x02};
 ret= aci_gap_create_connection(0x4000, 0x4000, PUBLIC_ADDR,
 GAP_Peripheral_address,PUBLIC_ADDR, 40,
 40,
 0, 60, 2000 , 2000);
 if(ret != BLE_STATUS_SUCCESS)PRINTF("Failure.\n");

}/* GAP_Central_Make_Connection(void)*/

Note: 1. If ret = BLE_STATUS_SUCCESS is returned, on termination of the GAP procedure, the
event callback hci_le_connection_complete_event() is called, to indicate that a
connection has been established with the GAP_Peripheral_address (same event is returned
on the GAP peripheral device).

2. The connection procedure can be explicitly terminated by issuing the API
aci_gap_terminate_gap_proc().

The last two parameters Minimum_CE_Length and Maximum_CE_Length of the
aci_gap_create_connection() are the length of the connection event needed for the
BLE connection. These parameters allows user to specify the amount of time the master
has to allocate for a single slave so they must be wisely chosen. In particular, when a
master connects to more slaves, the connection interval for each slave must be equal or a
multiple of the other connection intervals and user must not overdo the connection event
length for each slave. Refer to Section 4: BLE multiple connection timing strategy
connections timing strategy for detailed information about the timing allocation policy.

Design an application using BlueNRG-1, BlueNRG-2 BLE stack PM0257

58/93 DocID029331 Rev 2

3.3.2 Set discoverable mode and use general discovery procedure (active
scan)

The following pseudocode example illustrates only the specific steps to be followed for
putting a GAP Peripheral device in general discoverable mode, and for a GAP central
device to start a general discovery procedure in order to discover devices within its radio
range.

Note: It is assumed that the device public address has been set during the initialization phase as
follows:

uint8_t bdaddr[] = {0x12, 0x34, 0x00, 0xE1, 0x80, 0x02};
ret = aci_hal_write_config_data(CONFIG_DATA_PUBADDR_OFFSET,
 CONFIG_DATA_PUBADDR_LEN,
 bdaddr);
 if (ret != BLE_STATUS_SUCCESS)PRINTF("Failure.\n");

/* GAP Peripheral:general discoverable mode (scan responses are sent):
*/
void GAP_Peripheral_Make_Discoverable(void)
{
 tBleStatus ret;
 const char local_name[] =
{AD_TYPE_COMPLETE_LOCAL_NAME,'B','l','u','e','N','R','G' };
 /* As scan response data, a proprietary 128bits Service UUID is used.
 This 128bits data cannot be inserted within the advertising packet
 (ADV_IND) due its length constraints (31 bytes).
 AD Type description:
 0x11: length
 0x06: 128 bits Service UUID type
 0x8a,0x97,0xf7,0xc0,0x85,0x06,0x11,0xe3,0xba,0xa7,0x08,0x00,0x20,0x0c,
 0x9a,0x66: 128 bits Service UUID
 */
 uint8_t ServiceUUID_Scan[18]=
{0x11,0x06,0x8a,0x97,0xf7,0xc0,0x85,0x06,0x11,0xe3,0xba,0xa7,0x08,0x00,0x2
,0x0c,0x9a,0x66};
/* Enable scan response to be sent when GAP peripheral receives scan
 requests from GAP Central performing general
 discovery procedure(active scan) */

 hci_le_set_scan_response_data(18,ServiceUUID_Scan);
 /* Put the GAP peripheral in general discoverable mode:
 Advertising_Type: ADV_IND (undirected scannable and connectable);

 Advertising_Interval_Min: 100;
 Advertising_Interval_Max: 100;
 Own_Address_Type: PUBLIC_ADDR (public address: 0x00);

 Advertising_Filter_Policy: NO_WHITE_LIST_USE (no whit list is used);
 Local_Name_Length: 8
 Local_Name: BlueNRG;
 Service_Uuid_Length: 0 (no service to be advertised);

Service_Uuid_List: NULL;

Slave_Conn_Interval_Min: 0 (Slave connection internal minimum value);

 Slave_Conn_Interval_Max: 0 (Slave connection internal maximum value).
 */
 ret = aci_gap_set_discoverable(ADV_IND, 100, 100, PUBLIC_ADDR,
 NO_WHITE_LIST_USE,sizeof(local_name),

DocID029331 Rev 2 59/93

PM0257 Design an application using BlueNRG-1, BlueNRG-2 BLE stack

93

 local_name, 0, NULL, 0, 0);
 if (ret != BLE_STATUS_SUCCESS) PRINTF("Failure.\n");

} /* end GAP_Peripheral_Make_Discoverable() */
/*GAP Central: start general discovery procedure to discover the GAP
peripheral device in discoverable mode */
void GAP_Central_General_Discovery_Procedure(void)
{
tBleStatus ret;

/* Start the general discovery procedure(active scan) using the following
 parameters:
 LE_Scan_Interval: 0x4000;
 LE_Scan_Window: 0x4000;
 Own_address_type: 0x00 (public device address);
 Filter_Duplicates: 0x00 (duplicate filtering disabled);
*/
ret =aci_gap_start_general_discovery_proc(0x4000,0x4000,0x00,0x00);
if (ret != BLE_STATUS_SUCCESS)PRINTF("Failure.\n");
}

The responses of the procedure are given through the event callback
hci_le_advertising_report_event().The end of the procedure is indicated by
aci_gap_proc_complete_event() event callback with Procedure_Code parameter
equal to GAP_GENERAL_DISCOVERY_PROC (0x2).
 /* This callback is called when an advertising report is received */
 void hci_le_advertising_report_event(uint8_t Num_Reports,
 Advertising_Report_t
 Advertising_Report[])
{
 /* Advertising_Report contains all the expected parameters.
 User application should add code for decoding the received
 Advertising_Report event databased on the specific evt_type
 (ADV_IND, SCAN_RSP, ..)
 */

 /* Example: store the received Advertising_Report fields */
 uint8_t bdaddr[6];

 /* type of the peer address (PUBLIC_ADDR,RANDOM_ADDR) */
 uint8_t bdaddr_type = Advertising_Report[0].Address_Type;

 /* event type (advertising packets types) */
 uint8_t evt_type = Advertising_Report[0].Event_Type ;

 /* RSSI value */
 uint8_t RSSI = Advertising_Report[0].RSSI;

 /* address of the peer device found during discovery procedure */
 Osal_MemCpy(bdaddr, Advertising_Report[0].Address,6);

 /* length of advertising or scan response data */
 uint8_t data_length = Advertising_Report[0].Length_Data;

 /* data_length octets of advertising or scan response data formatted are

Design an application using BlueNRG-1, BlueNRG-2 BLE stack PM0257

60/93 DocID029331 Rev 2

 on Advertising_Report[0].Data field: to be stored/filtered based on
 specific user application scenario*/

} /* hci_le_advertising_report_event() */

In particular, in this specific context, the following events are raised on the GAP Central
hci_le_advertising_report_event(), as a consequence of the GAP peripheral
device in discoverable mode with scan response enabled:

1. Advertising Report event with advertising packet type (evt_type =ADV_IND)

2. Advertising Report event with scan response packet type
(evt_type=SCAN_RSP)

The advertising data can be interpreted as follows (refer to Bluetooth specifications in
Section 5: References)

The scan response data can interpreted as follows (refer to Bluetooth specifications):

Table 41. ADV_IND event type

Event type Address type Address Advertising data RSSI

0x00 (ADV_IND) 0x00 (public address)
0x0280E1003
412

0x02,0x01,0x06,0x08
,0x09,0x42,0x6
C,0x75,0x65,0x4E,0x
52,0x47,0x02,0x
0A,0xFE

0xCE

Table 42. ADV_IND advertising data

Flags AD type field Local name field Tx power level

0x02: length of the field 0x01: AD
type flags
0x06: 0x110 (Bit 2: BR/EDR

Not supported; Bit 1: general
discoverable mode)

0x08: length of the field
0x09: complete local name type

0x42,0x6C,0x75,0x65,0x4E0x
52,0x47: BlueNRG

0x02: length of the field 0x0A: Tx
power type

0x08: power value

Table 43. SCAN_RSP event type

Event type Address type Address Scan response data RSSI

0x04 (SCAN_RS P)
0x01 (random
address)

0x0280E1003

412

0x12,0x66,0x9A,0x0
C,0x20,0x00,0x0
8,0xA7,0xBA,0xE3,0
x11,0x06,0x85,0
xC0,0xF7,0x97,0x8A,
0x06,0x11

0xDA

DocID029331 Rev 2 61/93

PM0257 Design an application using BlueNRG-1, BlueNRG-2 BLE stack

93

3.4 BLE stack events and events callbacks
Whenever there is a BLE stack event to be processed, the BLE stack library notifies this
event to the user application through a specific event callback. A event callback is a function
defined by the user application and called by the BLE stack, while an API is a function
defined by the stack and called by the user application. The BlueNRG-1, BlueNRG-2 BLE
stack events callbacks prototypes are defined on file bluenrg1_events.h. Weak definitions
are available for all the event callbacks in order to have a definition for each event callback.
As consequence, based on its own application scenario, user has to identify the required
device events callbacks to be called and the related application specific actions to be done.

When implementing a BLE application, the most common and widely used BLE stack
events are the ones related to the discovery, connection and terminate procedures,
services, characteristics, characteristics descriptors discovery procedures and attribute
notification/ indication events on a GATT client, attribute modified events on a GATT server.

Table 44. Scan response data

Scan response data

0x12: data length
0x11: length of service UUID advertising data; 0x06: 128 bits service UUID type;

0x66,0x9A,0x0C,0x20,0x00,0x08,0xA7,0xBA,0xE3,0x11,0x06,0x85,0xC0,0xF7,0x97,0x8A:
128 bits service UUID

Table 45. BLE stack: main event callbacks

Event callback Description Where

hci_disconnection_complete_event()

A connection is terminated
GAP
central/
peripheral

hci_le_connection_complete_event() Indicates to both of the devices forming the
connection that a new connection has been
established

GAP
central/
peripheral

aci_gatt_attribute_modified_event() Generated by the GATT server when a client
modifies any attribute on the server, if event is
enabled.

GATT
server

aci_gatt_notification_event() Generated by the GATT client when a server
notifies any attribute on the client

GATT

client

aci_gatt_indication_event() Generated by the GATT client when a server
indicates any attribute on the client

GATT

client

aci_gap_pass_key_req_event() Generated by the Security manager to the
application when a passkey is required for
pairing.
When this event is received, the application
has to respond with the
aci_gap_pass_key_resp() API

GAP
central/
peripheral

Design an application using BlueNRG-1, BlueNRG-2 BLE stack PM0257

62/93 DocID029331 Rev 2

For a detailed description about the BLE events, and related formats refer to the BlueNRG-
1, BlueNRG-2 Bluetooth LE stack APIs and events documentation, on Section 5:
References.

The following pseudocode provides an example of event callbacks handling some of the
described BLE stack events (disconnection complete event, connection complete event,
gatt attribute modified event, gatt notification event):

/* This event callback indicates the disconnection from a peer device.
*/
void hci_disconnection_complete_event(uint8_t Status,
 uint16_t Connection_Handle,
 uint8_t Reason)
{
 /* Add user code for handling BLE disconnection complete event based on
 application scenario.
 */
}/* end hci_disconnection_complete_event() */

/* This event callback indicates the end of a connection procedure.
*/
void hci_le_connection_complete_event(uint8_t Status,
 uint16_t Connection_Handle,

aci_gap_pairing_complete_event() Generated when the pairing process has
completed successfully or a pairing procedure
timeout has occurred or the pairing has failed

GAP
central/
peripheral

aci_gap_bond_lost_event() Event generated when a pairing request is
issued, in response to a slave security request
from a master which has previously bonded
with the slave. When this event is received, the
upper layer has to issue the command
aci_gap_allow_rebond() to allow the
slave to continue the pairing process with the
master

GAP

peripheral

aci_att_read_by_group_type_resp_even
t()

The Read-by-group type response is sent in
reply to a received Read-by-group type
request and contains the handles and values
of the attributes that have been read

GATT

client

aci_att_read_by_type_resp_event() The Read-by-type response is sent in reply to
a received Read-by-type

Request and contains the handles and values
of the attributes that have been read.

GATT

client

aci_gatt_proc_complete_event()
A GATT procedure has been completed

GATT
client

hci_le_advertising_report_event() Event given by the GAP layer to the upper
layers when a device is discovered during
scanning as a consequence of one of the GAP
procedures started by the upper layers.

GAP

central

Table 45. BLE stack: main event callbacks

Event callback Description Where

DocID029331 Rev 2 63/93

PM0257 Design an application using BlueNRG-1, BlueNRG-2 BLE stack

93

 uint8_t Role,
 uint8_t Peer_Address_Type,
 uint8_t Peer_Address[6],
 uint16_t Conn_Interval,
 uint16_t Conn_Latency,
 uint16_t Supervision_Timeout,
 uint8_t Master_Clock_Accuracy)

{
 /* Add user code for handling BLE connection complete event based on
 application scenario.
 NOTE: Refer to header file Library\Bluetooth_LE\inc\bluenrg1_events.h
 for a complete description of the event callback parameters.
 */

/* Store connection handle */
 connection_handle = Connection_Handle;
 …
}/* end hci_le_connection_complete_event() */

#if GATT_SERVER

/* This event callback indicates that an attribute has been modified from a
 peer device.
*/
void aci_gatt_attribute_modified_event(uint16_t Connection_Handle,
 uint16_t Attr_Handle,
 uint16_t Offset,
 uint8_t Attr_Data_Length,
 uint8_t Attr_Data[])
{
 /* Add user code for handling attribute modification event based on
 application scenario.
 NOTE: Refer to header file Library\Bluetooth_LE\inc\bluenrg1_events.h
 for a complete description of the event callback parameters.
 */
 ...
} /* end aci_gatt_attribute_modified_event() */

#endif /* GATT_SERVER */

#if GATT_CLIENT
/* This event callback indicates that an attribute notification has been
 received from a peer device.
*/
void aci_gatt_notification_event(uint16_t Connection_Handle,
 uint16_t Attribute_Handle,
 uint8_t Attribute_Value_Length,
 uint8_t Attribute_Value[])
{
 /* Add user code for handling attribute modification event based on
 application scenario.
 NOTE: Refer to header file Library\Bluetooth_LE\inc\bluenrg1_events.h
 for a complete description of the event callback parameters.
*/

Design an application using BlueNRG-1, BlueNRG-2 BLE stack PM0257

64/93 DocID029331 Rev 2

…
} /* end aci_gatt_notification_event() */
#endif /* GATT_CLIENT */

3.5 Security (pairing and bonding)
This section describes the main functions to be used in order to establish a pairing between
two devices (authenticate the devices identity, encrypt the link and distribute the keys to be
used on next reconnections).

To successfully pair with a device, IO capabilities have to be correctly configured, depending
on the IO capabilily available on the selected device.

aci_gap_set_io_capability(io_capability) should be used with one of the
following io_capability values:
0x00: 'IO_CAP_DISPLAY_ONLY'
0x01:'IO_CAP_DISPLAY_YES_NO',
0x02: 'KEYBOARD_ONLY'
0x03: 'IO_CAP_NO_INPUT_NO_OUTPUT'
0x04: 'IO_CAP_KEYBOARD_DISPLAY’

Passkey entry example with 2 BlueNRG devices: Device_1, Device_2

The following pseudocode example illustrates only the specific steps to be followed for
pairing two devices by using the Passkey entry method.

As described in Table 11: Methods used to calculate the temporary key (TK), Device_1,
Device_2 have to set the IO capability in order to select PassKey entry as a security
method.

On this particular example, "Display Only" on Device_1 and "Keyboard Only" on Device_2
are selected, as follows:

/*Device_1:
*/ tBleStatus ret;\
ret= aci_gap_set_io_capability(IO_CAP_DISPLAY_ONLY);
if (ret != BLE_STATUS_SUCCESS)PRINTF("Failure.\n");

/*Device_2:
*/ tBleStatus ret;
ret= aci_gap_set_io_capability(IO_CAP_KEYBOARD_ONLY);
if (ret != BLE_STATUS_SUCCESS)PRINTF("Failure.\n");

Once the IO capability are defined, the
aci_gap_set_authentication_requirement()should be used for setting all the
security authentication requirements the device needs (MITM mode (authenticated link or
not), OOB data present or not, use fixed pin or not, enabling bonding or not).

The following pseudocode example illustrates only the specific steps to be followed for
setting the authentication requirements for a device with: “MITM protection, No OOB data,
don’t use fixed pin”: this configuration is used to authenticate the link and to use a not fixed
pin during the pairing process with PassKey Method.

ret=aci_gap_set_authentication_requirement(BONDING,/*bonding is

 enabled */
 MITM_PROTECTION_REQUIRED,

DocID029331 Rev 2 65/93

PM0257 Design an application using BlueNRG-1, BlueNRG-2 BLE stack

93

 SC_IS_SUPPORTED,/*Secure connection
supported

 but optional */

 KEYPRESS_IS_NOT_SUPPORTED,

 7, /* Min encryption

key size */

 16, /* Max encryption

key size */

0x01, /* fixed pin is not used*/

0x123456, /* fixed pin */

0x00 /* Public Identity address type */);

if (ret != BLE_STATUS_SUCCESS)PRINTF("Failure.\n");

Once the security IO capability and authentication requirements are defined, an application
can initiate a pairing procedure as follows:

• By using aci_gap_slave_security_req() on a GAP Peripheral (slave) device (it
sends a slave security request to the master):
tBleStatus ret;
ret= aci_gap_slave_security_req(conn_handle;
if (ret != BLE_STATUS_SUCCESS)PRINTF("Failure.\n");

or

• By using the aci_gap_send_pairing_req() on a GAP central (master) device.

Since the no fixed pin has been set, once the paring procedure is initiated by one of the two
devices, BLE device calls the aci_gap_pass_key_req_event() event callback (with
related connection handle) for asking to the user application to provide the password to be
used for establishing the encryption key. BLE application has to provide the correct
password by using the aci_gap_pass_key_resp(conn_handle,passkey) API.

When the aci_gap_pass_key_req_event() callback is called on Device_1, it should
generate a random pin and set it through the aci_gap_pass_key_resp() API, as
follows:
void aci_gap_pass_key_req_event(uint16_t Connection_Handle)
{
 tBleStatus ret;
 uint32_t pin;
 /*Generate a random pin with an user specific function */
 pin = generate_random_pin();
 ret= aci_gap_pass_key_resp(Connection_Handle,pin);
 if (ret != BLE_STATUS_SUCCESS) PRINTF("Failure.\n");
}

Since the Device_1, I/O capability is set as “Display Only”, it should display the generated
pin in the device display. Since Device_2, I/O capability is set as “Keyboard Only”, the user
can provide the pin displayed on Device_1 to the Device_2 through the same
aci_gap_pass_key_resp() API, by a keyboard.

Design an application using BlueNRG-1, BlueNRG-2 BLE stack PM0257

66/93 DocID029331 Rev 2

Alternatively, if the user wants to set the authentication requirements with a fixed pin
0x123456 (no pass key event is required), the following pseudocode can be used:

tBleStatus ret;
ret = aci_gap_set_authentication_requirement(BONDING, /* bonding is

enabled */

 MITM_PROTECTION_REQUIRED,

SC_IS_SUPPORTED, /* Secure
connection supported

but optional */

 KEYPRESS_IS_NOT_SUPPORTED,

 7, /* Min encryption

key size */

 16, /* Max encryption

key size */

 0x00, /* fixed pin is used*/

 0x123456, /* fixed pin */

 0x00 /* Public Identity address
type */);

 if (ret != BLE_STATUS_SUCCESS)PRINTF("Failure.\n");

Note: 1. When the pairing procedure is started by calling the described APIs
(aci_gap_slave_security_req() or aci_gap_send_pairing_req()) and the
value ret= BLE_STATUS_SUCCESS is returned, on termination of the procedure, a
aci_gap_pairing_complete_event() event callback is called to indicate the pairing
status on the callback Status parameter:
- 0x00: pairing success
- 0x01: pairing timeout
- 0x02: pairing failed

The reason parameter provides the pairing failed reason code in case of failure (0 if status
parameter returns success or timeout)

2. When two devices get paired, the link is automatically encrypted during the first
connection. If bonding is also enabled (keys are stored for a future time), when the 2
devices get connected again, the link can be simply encrypted (without no need to perform
again the pairing procedure). User applications can simply use the same APIs which will not
perform the paring process but will just encrypt the link:
- aci_gap_slave_security_req) on the GAP peripheral (slave) device or
- aci_gap_send_pairing_req() on the GAP central (master) device.

3. If a slave has already bonded with a master, it can send a slave security request to the
master to encrypt the link. When receiving the slave security request, the master may
encrypt the link, initiate the pairing procedure, or reject the request. Typically, the master
only encrypts the link, without performing the pairing procedure. Instead, if the master starts
the pairing procedure, it means that for some reasons, the master lost its bond information,
so it has to start the pairing procedure again. As a consequence, the slave device calls the
aci_gap_bond_lost_event()event callback to inform the user application that it is not
bonded anymore with the master it was previously bonded. Then, the slave application can
decide to allow the security manager to complete the pairing procedure and re-bond with the
master by calling the command aci_gap_allow_rebond(), or just close the connection
and inform the user about the security issue.

DocID029331 Rev 2 67/93

PM0257 Design an application using BlueNRG-1, BlueNRG-2 BLE stack

93

3.6 Service and characteristic discovery
This section describes the main functions allowing a BlueNRG-1, BlueNRG-2 GAP central
device to discover the GAP peripheral services and characteristics, once the two devices
are connected.

The sensor profile demo services & characteristics with related handles are used as
reference services and characteristics on the following pseudocode examples. Further, it is
assumed that a GAP central device is connected to a GAP peripheral device running the
sensor demo profile application. The GAP central device use the service and discovery
procedures to find the GAP peripheral sensor profile demo service and characteristics.

For detailed information about the sensor profile demo, refer to the BlueNRG-1_2 DK User
Manual and the sensor demo source code available within the BlueNRG-1_2 DK software
package, see Section 5: References.

Service discovery procedures and related GATT events

A list of the service discovery APIs with related description as follows:

Table 46. BLE sensor profile demo services and characteristic handles

Service Characteristic
Service

/characteristic
handle

Characteristic
value handle

Characteristic
client descriptor

configuration
handle

Characteristic
format handle

Acceleration
service

NA 0x000C NA NA NA

Free Fall
characteristic

0x000D 0x000E 0x000F NA

Acceleration
characteristic

0x0010 0x0011 0x0012 NA

Environmental
service

NA 0x0013 NA NA NA

Temperature
characteristic

0x0014 0xx0015 NA 0x0016

Pressure
characteristic

0x0017 0xx0018 NA 0x0019

Design an application using BlueNRG-1, BlueNRG-2 BLE stack PM0257

68/93 DocID029331 Rev 2

The following pseudocode example illustrates the
aci_gatt_disc_all_primary_services() API:

/*GAP Central starts a discovery all services procedure:
 conn_handle is the connection handle returned on
 hci_le_advertising_report_event() event callback
*/
if (aci_gatt_disc_all_primary_services(conn_handle) !=BLE_STATUS_SUCCESS)
{
 PRINTF("Failure.\n");

}

The responses of the procedure are given through the
aci_att_read_by_group_type_resp_event() event callback. The end of the
procedure is indicated by aci_gatt_proc_complete_event() event callback() call.

/* This event is generated in response to a Read By Group Type
Request: refer to aci_gatt_disc_all_primary_services() */
void aci_att_read_by_group_type_resp_event(uint16_t Conn_Handle,
 uint8_t Attr_Data_Length,
 uint8_t Data_Length,
 uint8_t Att_Data_List[]);
{
 /*
 Conn_Handle: connection handle related to the response;
 Attr_Data_Length: the size of each attribute data;
 Data_Length: length of Attribute_Data_List in octets;
 Att_Data_List: Attribute Data List as defined in Bluetooth Core

specifications. A sequence of attribute handle, end group handle,
 attribute value tuples: [2 octets for Attribute Handle, 2
 octets End Group Handle, (Attribute_Data_Length - 4 octets) for
 Attribute Value].
 */
 /* Add user code for decoding the Att_Data_List field and getting

Table 47. Service discovery procedures APIs

Discovery Service API Description

aci_gatt_disc_all_primary_services()

This API starts the GATT client procedure to discover
all primary services on the GATT server. It is used
when a GATT client connects to a device and it wants
to find all the primary services provided on the device
to determine what it can do.

aci_gatt_disc_primary_service_by_uuid()

This API starts the GATT client procedure to discover a
primary service on the GATT server by using its UUID.
It is used when a GATT client connects to a device and
it wants to find a specific service without the need to
get any other services.

aci_gatt_find_included_services()

This API starts the procedure to find all included
services. It is used when a GATT client wants to
discover secondary services once the primary services
have been discovered.

DocID029331 Rev 2 69/93

PM0257 Design an application using BlueNRG-1, BlueNRG-2 BLE stack

93

 the services attribute handle, end group handle and service uuid
 */

 }/* aci_att_read_by_group_type_resp_event() */

In the context of the sensor profile demo, the GAP central application should get three read
by group type response events (through related
aci_att_read_by_group_type_resp_event() event callback), with the following
callback parameters values.

First read by group type response event callback parameters:
Connection_Handle: 0x0801 (connection handle);
Attr_Data_Length: 0x06 (length of each discovered service data: service
handle, end group handle,service uuid);
Data_Length: 0x0C (length of Attribute_Data_List in octets
Att_Data_List: 0x0C bytes as follows:

Table 48. First read by group type response event callback parameters

Attribute handle End group handle Service UUID Note

0x0001 0x0004 0x1801
Attribute profile service (GATT_Init() adds
it).

Standard 16-bit service UUID.

0x0005 0x000B 0x1800
GAP profile service (GAP_Init() adds it).

Standard 16-bit service UUID.

Design an application using BlueNRG-1, BlueNRG-2 BLE stack PM0257

70/93 DocID029331 Rev 2

Second read by group type response event callback parameters:

Conn_Handle: 0x0801 (connection handle);
Attr_Data_Length: 0x14 (length of each discovered service data:
service handle, end group handle,service uuid);
Data_Length: 0x14 (length of Attribute_Data_List in octets);
Att_Data_List: 0x14 bytes as follows:

Third read by group type response event callback parameters:
Connection_Handle: 0x0801 (connection handle);
Attr_Data_Length: 0x14 (length of each discovered service data:
service handle, end group handle, service uuid);
Data_Length: 0x14 (length of Attribute_Data_List in octets);
Att_Data_List: 0x14 bytes as follows:

In the context of the sensor profile demo, when the discovery all primary service procedure
completes, the aci_gatt_proc_complete_event() event callback is called on GAP
central application, with the following parameters:

Conn_Handle: 0x0801 (connection handle;
Error_Code: 0x00

Table 49. Second read by group type response event callback parameters

Attribute
handle

End group
handle

Service UUID Note

 0x000C 0x0012 0x02366E80CF3A11E19AB40002A5D5C51B
Acceleration service 128-
bit service proprietary
UUID

Table 50. Third read by group type response event callback parameters

Attribute
handle

End group
handle

Service UUID Note

 0x0013 0x0019 0x42821A40E47711E282D00002A5D5C51B
Environmental service
128-bit service proprietary
UUID

DocID029331 Rev 2 71/93

PM0257 Design an application using BlueNRG-1, BlueNRG-2 BLE stack

93

3.6.1 Characteristic discovery procedures and related GATT events

A list of the characteristic discovery APIs with associated description as follows:

In the context of the BLE sensor profile demo, follow a simple pseudocode illustrating how a
GAP Central application can discover all the characteristics of the acceleration service (refer
to Table 47: Service discovery procedures APIs

second read by group type response event callback parameters):
uint16_t service_handle= 0x000C;
uint16_t end_group_handle = 0x0012;

/*GAP Central starts a discovery all the characteristics of a service
procedure: conn_handle is the connection handle returned on
hci_le_advertising_report_event()eventcallback */
if(aci_gatt_disc_all_char_of_service(conn_handle,
 service_handle,/* Servicehandle */
 end_group_handle/* End group handle
 */
);) != BLE_STATUS_SUCCESS)
{
 PRINTF("Failure.\n");
}

The responses of the procedure are given through the
aci_att_read_by_type_resp_event() event callback. The end of the procedure is
indicated by aci_gatt_proc_complete_event() event callback call.

/* This event is generated in response to aci_att_read_by_type_req(). Refer
to aci_gatt_disc_all_char() API */

void aci_att_read_by_type_resp_event(uint16_t Connection_Handle ,
 uint8_t Handle_Value_Pair_Length,
 uint8_t Data_Length,
 uint8_t Handle_Value_Pair_Data[])
{

/*
 Connection_Handle: connection handle related to the response;
 Handle_Value_Pair_Length: size of each attribute handle-value
 Pair;
 Data_Length: length of Handle_Value_Pair_Data in octets.
 Handle_Value_Pair_Data: Attribute Data List as defined in

Table 51. Characteristics discovery procedures APIs

Discovery service API Description

aci_gatt_disc_all_char_of_service()
This API starts the GATT procedure to discover all the
characteristics of a given service

aci_gatt_disc_char_by_uuid()
This API starts the GATT the procedure to discover all the
characteristics specified by a UUID

aci_gatt_disc_all_char_desc()
This API starts the procedure to discover all characteristic
descriptors on the GATT server

Design an application using BlueNRG-1, BlueNRG-2 BLE stack PM0257

72/93 DocID029331 Rev 2

 Bluetooth Core specifications. A sequence of handle-value pairs: [2
 octets for Attribute Handle, (Handle_Value_Pair_Length - 2 octets)
 for Attribute Value].
*/
/* Add user code for decoding the Handle_Value_Pair_Data field and
 get the characteristic handle, properties,characteristic value handle,
 characteristic UUID
 */

}/* aci_att_read_by_type_resp_event() */

In the context of the BLE sensor profile demo, the GAP central application should get two
read by type response events (through related aci_att_read_by_type_resp_event()
event callback), with the following callback parameters values.

First read by type response event callback parameters:

 conn_handle : 0x0801 (connection handle);
 Handle_Value_Pair_Length: 0x15 length of each discovered
 characteristic data: characteristic handle, properties,
 characteristic value handle, characteristic UUID;
 Data_Length: 0x16(length of the event data);
 Handle_Value_Pair_Data: 0x15 bytes as follows:

Second read by type response event callback parameters:

 conn_handle : 0x0801 (connection handle);
 Handle_Value_Pair_Length: 0x15 length of each discovered
 characteristic data: characteristic handle, properties,
 characteristic value handle, characteristic UUID;
 Data_Length: 0x16(length of the event data);
 Handle_Value_Pair_Data: 0x15 bytes as follows:

Table 52. First read by type response event callback parameters

Characteristic
handle

Characteristic
properties

Characteristic
value handle

Characteristic UUID Note

0x000D 0x10 (notify) 0x000E
0xE23E78A0CF4A11E18FFC0002A5D5

C51B

Free fall
characteristic

128-bit
characteristic

proprietary
UUID

Table 53. Second Read By Type Response event callback parameters

Characteristic
handle

Characteristic
properties

Characteristic
value handle

Characteristic
UUID

Note

 0x0010
0x12 (notify and
read)

 0x0011
0x340A1B80CF4B
11E1AC360002A5
D5C51B

Acceleration characteristic 128-
bit characteristic proprietary
UUID

DocID029331 Rev 2 73/93

PM0257 Design an application using BlueNRG-1, BlueNRG-2 BLE stack

93

In the context of the sensor profile demo, when the discovery all primary service procedure
completes, the aci_gatt_proc_complete_event() event callback is called on GAP
central application, with the following parameters:

Connection_Handle: 0x0801 (connection handle);
Error_Code: 0x00.

Similar steps can be followed in order to discover all the characteristics of the environment
service (Table 46: BLE sensor profile demo services and characteristic handles).

3.7 Characteristic notification/indications, write, read
This section describes the main functions for getting access to BLE device characteristics.

In the context of the sensor profile demo, follows a simple pseudo code the GAP central
application should use in order to configure the free fall and the acceleration characteristics
client descriptor configuration for notification:

tBleStatus ret;
uint16_t handle_value = 0x000F;
/*Enable the free fall characteristic client descriptor configuration for
ret = aci_gatt_write_charac_desc(conn_handle,
 handle_value /* handle for free fall
 client descriptor
 configuration */
 0x02, /* attribute value length */
 0x0001, /* attribute value: 1 for
 notification */
);
if (ret != BLE_STATUS_SUCCESS)PRINTF("Failure.\n");

handle_value = 0x0012;

Table 54. Characteristics update, read, write APIs

Discovery service API Description Where

aci_gatt_update_char_value()
If notifications (or indications) are enabled on
the characteristic, this API sends a notification
(or indication) to the client.

GATT server

aci_gatt_read_char_value()
It starts the procedure to read the attribute
value.

GATT client

aci_gatt_write_char_value()

It starts the procedure to write the attribute
value (when the procedure is completed, a
GATT procedure complete event is
generated).

GATT client

aci_gatt_write_without_resp()
It starts the procedure to write a characteristic
value without waiting for any response from
the server.

GATT client

aci_gatt_write_char_desc()
It start the procedure to write a characteristic
descriptor.

GATT client

aci_gatt_confirm_indication()
It confirms an indication. This command has
to be sent when the application receives a
characteristic indication.

GATT client

Design an application using BlueNRG-1, BlueNRG-2 BLE stack PM0257

74/93 DocID029331 Rev 2

/*Enable the acceleration characteristic client descriptor configuration
 for notification */
ret= aci_gatt_write_char_desc(conn_handle,
 handle_value /* handle for acceleration
 client descriptor
 configuration *
 0x02, /*attribute value
 length */
 0x0001, /* attribute value:
 1 for notification */
);
if (ret != BLE_STATUS_SUCCESS) PRINTF("Failure.\n");

Once the characteristics notification have been enabled from the GAP Central, the GAP
peripheral can notify a new value for the free fall and acceleration characteristics as follows:

tBleStatus ret;
uint8_t val = 0x01;
uint16_t service_handle = 0x000C;
uint16_t charac_handle = 0x000D;

/*GAP peripheral notifies free fall characteristic to GAP central*/
ret= aci_gatt_update_char_value(service_handle , /* acceleration
 service handle */
 charac_handle, /* free fall
 characteristic handle
 0, /* characteristic value offset */
 0x01, /* characteristic value length */
 &val /* characteristic value */
);
if(ret != BLE_STATUS_SUCCESS)PRINTF("Failure.\n");

tBleStatus ret;
uint8_t buff[6];
uint16_t charac_handle = 0x0010;

/*Set the mems acceleration values on three axis x,y,z on buff array */
....
/*GAP peripheral notifies acceleration characteristic to GAP central*/
ret = aci_gatt_update_char_value(service_handle, /* acceleration
 service handle */
 charac_handle, /* acceleration
 characteristic handle */
 0 ,/* characteristic
 value offset */
 0x06, /* characteristic
 value length */
 buff, /* characteristic
 value */
);
if(ret != BLE_STATUS_SUCCESS) PRINTF("Failure.\n");

On GAP central, the aci_gatt_notification_event() event callback is called is
raised on reception of the characteristic notification (acceleration or free fall) from the GAP
peripheral device. Follow a pseudo code of the aci_gatt_notification_event()
callback:

DocID029331 Rev 2 75/93

PM0257 Design an application using BlueNRG-1, BlueNRG-2 BLE stack

93

void aci_gatt_notification_event(uint16_t Connection_Handle,
 uint16_t Attribute_Handle,
 uint8_t Attribute_Value_Length,
 uint8_t Attribute_Value[])
{
/* aci_gatt_notification_event() event callback parameters:
 Connection_Handle: connection handle related to the response;
 Attribute_Handle: the handle of the notified characteristic;
 Attribute_Value_Length: length of Attribute_Value in octets;
 Attribute_Value: the current value of the notified characteristic.
*/
/* Add user code for handling the received notification based on the
 application scenario.
*/

}/* aci_gatt_notification_event() */

3.8 Basic/typical error condition description
On BlueNRG-1, BlueNRG-2 BLE stack APIs framework, the tBleStatus type is defined in
order to return the BlueNRG-1, BlueNRG-2 stack error conditions. The error codes are
defined within the header file “ble_status.h”.

When a stack API is called, it is recommended to get the API return status and to monitor it
in order to track potential error conditions.

BLE_STATUS_SUCCESS (0x00) is returned when the API is successfully executed. For a
list of error conditions associated to each ACI API refer to the BlueNRG-1, BlueNRG-2
Bluetooth LE stack APIs and event documentation, on Section 5: References

3.9 BLE simultaneously master, slave scenario
BlueNRG-1, BlueNRG-2 BLE stack supports multiple roles simultaneously. This allows the
same device to act as master on one or more connections (up to eight connections are
supported), and to act as a slave on another connection.

The following pseudo code describes how a BLE stack device can be initialized for
supporting central and peripheral roles simultaneously:

uint8_t role= GAP_PERIPHERAL_ROLE | GAP_CENTRAL_ROLE;
ret= aci_gap_init(role, 0, 0x07, &service_handle,
&dev_name_char_handle, &appearance_char_handle);

Design an application using BlueNRG-1, BlueNRG-2 BLE stack PM0257

76/93 DocID029331 Rev 2

A simultaneous master and slave test scenario can be targeted as follows:

Figure 10. BLE simultaneous master and slave scenario

Note: Same scenario is also valid when using BlueNRG-2 devices.

1. One BLE device (called master and slave) is configured as central and peripheral by
setting role as GAP_PERIPHERAL_ROLE |GAP_CENTRAL_ROLE on
aci_gap_init() API. Let’s also assume that this device also defines a service with a
characteristic.

2. Two BLE devices (called Slave_A, Slave_B) are configured as Peripheral by setting
role as GAP_PERIPHERAL_ROLE on aci_gap_init() API. Both Slave_A and
Slave_B define the same service and characteristic as Master&Slave device.

3. One BLE device (called Master) is configured as central by setting role as
GAP_CENTRAL_ROLE on aci_gap_init()API.

4. Both Slave_A and Slave_B devices enter in discovery mode as follows:

ret =aci_gap_set_discoverable(Advertising_Type=0x00,
 Advertising_Interval_Min=0x20,
 Advertising_Interval_Max=0x100,
 Own_Address_Type= 0x0;
 Advertising_Filter_Policy= 0x00;
 Local_Name_Length=0x05,

 Local_Name=[0x08,0x74,0x65,0x73,0x74],
 Service_Uuid_length = 0;
 Service_Uuid_length = NULL;
 Slave_Conn_Interval_Min = 0x0006,
 Slave_Conn_Interval_Max = 0x0008);

5. Master and slave device performs a discovery procedure in order to discover the
peripheral devices Slave_A and Slave_B:
ret = aci_gap_start_gen_disc_proc (LE_Scan_Interval=0x10,
 LE_Scan_Window=0x10,

DocID029331 Rev 2 77/93

PM0257 Design an application using BlueNRG-1, BlueNRG-2 BLE stack

93

 Own_Address_Type = 0x0,
 Filter_Duplicates = 0x0);

The two devices are discovered through the advertising report events notified with the
hci_le_advertising_report_event() event callback.

6. Once the two devices are discovered, Master&Slave device starts two connections
procedures (as Central) for connecting, respectively, to Slave_A and Slave_B devices:

/* Connect to Slave_A:Slave_A address type and address have been found

 during the discovery procedure through the Advertising Report events.

*/

ret= aci_gap_create_connection(LE_Scan_Interval=0x0010,

 LE_Scan_Window=0x0010

 Peer_Address_Type= ”Slave_A address type”

 Peer_Address= ”Slave_A address,

 Own_Address_Type = 0x0;

 Conn_Interval_Min=0x6c,

 Conn_Interval_Max=0x6c,

 Conn_Latency=0x00,

 Supervision_Timeout=0xc80,

 Minimum_CE_Length=0x000c,

 Maximum_CE_Length=0x000c);

/* Connect to Slave_B:Slave_B address type and address have been found

 during the discovery procedure through the Advertising Report events.

*/

ret= aci_gap_create_connection(LE_Scan_Interval=0x0010,

 LE_Scan_Window=0x0010,

 Peer_Address_Type= ”Slave_B address type”,

 Peer_Address= ”Slave_B address”,

 Own_Address_Type = 0x0;

 Conn_Interval_Min=0x6c,

 Conn_Interval_Max=0x6c,

 Conn_Latency=0x00,

 Supervision_Timeout=0xc80,

 Minimum_CE_Length=0x000c,

 Maximum_CE_Length=0x000c);

7. Once connected, Master&Slave device enables the characteristics notification, on both
of them, using the aci_gatt_write_char_desc() API. Slave_A and Slave_B
devices start the characteristic notification by using the aci_gatt_upd_char_val()
API.

8. At this stage, Master&Slave device enters in discovery mode (acting as Peripheral):
/*Put Master&Slave device in Discoverable Mode with Name = 'Test' =
[0x08,0x74,0x65,0x73,0x74*/

ret =aci_gap_set_discoverable(Advertising_Type=0x00,

 Advertising_Interval_Min=0x20,

 Advertising_Interval_Max=0x100,

Design an application using BlueNRG-1, BlueNRG-2 BLE stack PM0257

78/93 DocID029331 Rev 2

 Own_Address_Type= 0x0;

 Advertising_Filter_Policy= 0x00;

 Local_Name_Length=0x05,

 Local_Name=[0x08,0x74,0x65,0x73,0x74],

 Service_Uuid_length = 0;

 Service_Uuid_List = NULL;

 Slave_Conn_Interval_Min = 0x0006,

 Slave_Conn_Interval_Max = 0x0008);

Since Master&Slave device is also acting as a Central device, it receives the notification
event related to the characteristics values notified from, respectively, Slave_A and Slave_B
devices.

9. Once Master&Slave device enters in discovery mode, it also waits for connection
request coming from the other BLE device (called Master) configured as GAP central.
Master device starts discovery procedure for discovering the Master&Slave device:

 ret = aci_gap_start_gen_disc_proc(LE_Scan_Interval=0x10,

 LE_Scan_Window=0x10,

 Own_Address_Type = 0x0,

 Filter_Duplicates = 0x0);

10. Once the Master&Slave device is discovered, Master device starts a connection
procedure for connecting to it:

/* Master device connects to Master&Slave device: Master&Slave

address type and address have been found during the discovery

procedure through the Advertising Report events */

ret= aci_gap_create_connection(LE_Scan_Interval=0x0010,

LE_Scan_Window=0x0010,

Peer_Address_Type= ”Master&Slave

address type,

Peer_Address= “Master&Slave address,

Own_Address_Type = 0x0;

Conn_Interval_Min=0x6c,

Conn_Interval_Max=0x6c,

Conn_Latency=0x00,

Supervision_Timeout=0xc80,

Minimum_CE_Length=0x000c,

Maximum_CE_Length=0x000c);

Master&Slave device is discovered through the advertising report events notified with the
hci_le_advertising_report_event() event callback.

11. Once connected, Master device enables the characteristic notification on
Master&Slave device using the aci_gatt_write_char_desc() API.

12. At this stage, Master&Slave device receives the characteristics notifications from both
Slave_A, Slave_B devices , since it is a GAP Central and, as GAP Peripheral, it is also
able to notify these characteristics values to the Master device.

DocID029331 Rev 2 79/93

PM0257 Design an application using BlueNRG-1, BlueNRG-2 BLE stack

93

Note: A set of test scripts allowing the described BLE to be executed simultaneously Master,
Slave scenario are provided within the BlueNRG GUI SW package (see Section 5:
References). These scripts can be run using the BlueNRG GUI and they can be taken as
reference for implementing a firmware application using the BlueNRG-1, BlueNRG-2
simultaneously master and slave feature.

3.10 Privacy
BLE stack v2.x supports the Bluetooth low energy v4.2 privacy 1.2.

Privacy feature reduces the ability to track a specific BLE by modifying the related BLE
address frequently. The frequently modified address is called the private address and the
trusted devices are able to resolve it.

In order to use this feature, the devices involved in the communication need to be previously
paired: the private address is created using the devices IRK exchanged during the previous
pairing/bonding procedure.

There are two variants of the privacy feature:

1. Host-based privacy private addresses are resolved and generated by the host.

2. Controller-based privacy private addresses are resolved and generated by the
Controller without involving the host after the Host provides the controller device
identity information.

When controller privacy is supported, device filtering is possible since address resolution is
performed in the controller (the peer's device identity address can be resolved prior to
checking whether it is in the white list).

3.10.1 Controller-based privacy and the device filtering scenario

On BLE stack v2.x, the aci_gap_init() API supports the following options for the
privacy_enabled parameter:

• 0x00: privacy disabled

• 0x01: host privacy enabled

• 0x02: controller privacy enabled

When a slave device wants to resolve a resolvable private address and be able to filter on
private addresses for reconnection with bonded and trusted devices, it must perform the
following steps:

Design an application using BlueNRG-1, BlueNRG-2 BLE stack PM0257

80/93 DocID029331 Rev 2

1. Enable privacy controller on aci_gap_init(): use 0x02 as privacy_enabled
parameter.

2. Connect, pair and bond with the candidate trusted device using one of the allowed
security methods: the private address is created using the devices IRK.

3. Call the aci_gap_configure_whitelist() API for adding the address of bonded
device into the BLE device controller's whitelist.

4. Get the bonded device identity address and type using the
aci_gap_get_bonded_devices() API.

5. Add the bonded device identity address and type to the list of address translations
used to resolve Resolvable Private Addresses in the Controller, by using the
aci_gap_add_devices_to_resolving_list() API.

6. Device enters in undirected connectable mode by calling the
aci_gap_set_undirected_connectable() API with Own_Address_Type =
0x02 (Resolvable Private Address) and Adv_Filter_Policy = 0x03 (allow scan
request from white list only, allow connect request from white list only).

7. When a bonded master device performs a connection procedure for reconnection to
the slave device, the slave device is able to resolve and filter the master address and
connect with it.

Note: A set of test scripts allowing the described privacy controller and device filtering scenario to
be executed, which are provided within the BlueNRG GUI SW package (see Section 5).
These scripts can be run using the BlueNRG GUI and they can be taken as reference for
implementing a firmware application using the privacy controller and device filtering feature.

3.10.2 Resolving addresses

After a reconnection with a bonded device, it is not strictly necessary to resolve the address
of the peer device to encrypt the link. In fact, BlueNRG-1, BlueNRG-2 stack automatically
finds the correct LTK to encrypt the link.

However, there are some cases where the peer's address must be resolved. When a
resolvable privacy address is received by the device, it can be resolved by the host or by the
controller (i.e. link layer).

Host-based privacy

If controller privacy is not enabled, a resolvable private address can be resolved by using
aci_gap_resolve_private_addr(). The address is resolved if the corresponding IRK
can be found among the stored IRKs of the bonded devices. A resolvable private address
may be received when BlueNRG-1 and BlueNRG-2 are in scanning, through
hci_le_advertising_report_event(), or when a connection is established, through
hci_le_connection_complete_event().

Controller-based privacy

If the resolution of addresses is enabled at link layer, a resolving list is used when a
resolvable private address is received. To add a bonded device to the resolving list, the
aci_gap_add_devices_to_resolving_list() has to be called. This function
searches for the corresponding IRK and adds it to the resolving list.

When privacy is enabled, if a device has been added to the resolving list, its address is
automatically resolved by the link layer and reported to the application without the need to
explicitly call any other function. After a connection with a device, the

DocID029331 Rev 2 81/93

PM0257 Design an application using BlueNRG-1, BlueNRG-2 BLE stack

93

hci_le_enhanced_connection_complete_event() is returned. This event reports
the identity address of the device, if it has been successfully resolved (if the
hci_le_enhanced_connection_complete_event() is masked, only the
hci_le_connection_complete_event() is returned).

When scanning, the hci_le_advertising_report_event() contains the identity
address of the device in advertising if that device uses a resolvable private address and its
address is correctly resolved. In that case, the reported address type is 0x02 or 0x03. If no
IRK can be found that can resolve the address, the resolvable private address is reported. If
the advertiser uses directed advertisement, the resolved private address is reported through
the hci_le_advertising_report_event() or through the
hci_le_direct_advertising_report_event() if it has been unmasked and the
scanner filer policy is set to 0x02 or 0x03.

BLE multiple connection timing strategy PM0257

82/93 DocID029331 Rev 2

4 BLE multiple connection timing strategy

This section provides an overview of the connection timing management strategy of
BlueNRG-1, BlueNRG-2 BLE stack when multiple master and slave connections are active.

4.1 Basic concepts about Bluetooth low energy timing
This section describes the basic concepts related to the Bluetooth low energy timing
management related to the advertising, scanning and connection operations.

4.1.1 Advertising timing

The timing of the advertising state is characterized by 3 timing parameters, linked by this
formula:

T_advEvent = advInterval + advDelay

where:

• T_advEvent: time between the start of two consecutive advertising events; if the
advertising event type is either a scannable undirected event type or a non-
connectable undirected type, the advInterval is not less than 100 ms; if the advertising
event type is a connectable undirected event type or connectable directed event type
used in a low duty cycle mode, the advInterval can be 20 ms or greater.

• advDelay: pseudo-random value with a range of 0 ms to 10 ms generated by the link
layer for each advertising event.

Figure 11. Advertising timings

4.1.2 Scanning timing

The timing of the scanning state is characterized by 2 timing parameters:

• scanInterval: defined as the interval between the start of two consecutive scan
windows

• scanWindow: time during which link layer listens to an advertising channel index

The scanWindow and scanInterval parameters are less than or equal to 10.24 s.

The scanWindow is less than or equal to the scanInterval.

DocID029331 Rev 2 83/93

PM0257 BLE multiple connection timing strategy

93

4.1.3 Connection timing

The timing of connection events is determined by 2 parameters:

• Connection event interval (connInterval): time interval between the start of two
consecutive connection events, which never overlap; the point in time where a
connection event starts is named an anchor point

At the anchor point, a master starts transmitting a data channel PDU to the slave, which in
turn listens to the packet sent by its master at the anchor point.

The master ensures that a connection event closes at least T_IFS=150 µs (Inter frame
spacing time, i.e. time interval between consecutive packets on same channel index) before
the anchor point of next connection event.

The connInterval is a multiple of 1.25 ms in the range of 7.5 ms to 4.0 s.

• slave latency (connSlaveLatency): allows a slave to use a reduced number of
connection events. This parameter defines the number of consecutive connection
events that the slave device is not required to listen to the master.

When the host wants to create a connection, it provides the controller with the maximum
and minimum values of the connection interval (Conn_Interval_Min,
Conn_Interval_Max) and connection length (Minimum_CE_Length,
Maximum_CE_Length) thus giving the controller some flexibility to choose the actual
parameters in order to fulfill additional timing constraints e.g. in the case of multiple
connections.

4.2 BLE stack timing and slot allocation concepts
The BlueNRG-1, BlueNRG-2 BLE stack adopts a time slotting mechanism in order to
allocate simultaneous master and slave connections. The basic parameters, controlling the
slotting mechanism, are indicated in the below table:

BLE multiple connection timing strategy PM0257

84/93 DocID029331 Rev 2

Timing allocation concept allows a clean time to handle multiple connections but at the
same time imposes some constraints to the actual connection parameters that the controller
can accept. An example of the time base parameters and connection slot allocation is
shown in Figure 12: Example of allocation of three connection slots.

Figure 12. Example of allocation of three connection slots

Slot #1 has offset 0 with respect to the anchor period, Slot #2 has slot latency = 2, all slots
are spaced by 1.25 ms guard time.

4.2.1 Setting the timing for the first master connection

The time base mechanism above described, is actually started when the first master
connection is created. The parameters of such first connection determine the initial value for
the anchor period and influence the timing settings that can be accepted for any further
master connection simultaneous with the first one.

Table 55. Timing parameters of the slotting algorithm

Parameter Description

Anchor
period

Recurring time interval inside which up to 8 connection slots can be allocated.

Among these 8 slots, only 1 at a time may be a scanning or advertising slot (they are
mutually exclusive)

Slot
duration

Time interval inside which a full event (i.e. advertising or scanning, and connection)
takes place; the slot duration is the time duration assigned to the connection slot and
is linked to the maximum duration of a connection event

Slot offset
Time value corresponding to the delay between the beginning of an anchor period
and the beginning of the connection slot

Slot latency

Number representing the actual utilization rate of a certain connection slot in
successive anchor periods

(For instance, a slot latency equal to ‘1’ means that a certain connection slot is
actually used in each anchor period; a slot latency equal to n means that a certain
connection slot is actually used only once every n anchor periods)

DocID029331 Rev 2 85/93

PM0257 BLE multiple connection timing strategy

93

In particular:

• The initial anchor period is chosen equal to the mean value between the maximum and
minimum connection period requested by the host

• The first connection slot is placed at the beginning of the anchor period

• The duration of the first connection slot is set equal to the maximum of the requested
connection length

Clearly, the relative duration of such first connection slot compared to the anchor period
limits the possibility to allocate further connection slots for further master connections.

4.2.2 Setting the timing for further master connections

Once that the time base has been configured and started as described above, then the slot
allocation algorithm tries, within certain limits, to dynamically reconfigure the time base to
allocate further host requests.

In particular, the following three cases are considered:

1. The current anchor period falls within the Conn_Interval_Min and
Conn_Interval_Max range specified for the new connection. In this case no change
is applied to the time base and the connection interval for the new connection is set
equal to the current anchor period.

2. The current anchor period in smaller than the Conn_Interval_Min required for the
new connection. In this case the algorithm searches for an integer number m such that:
Conn_Interval_Min ≤ Anchor_Period × m ≤ Conn_Interval_Max
If such value is found then the current anchor period is maintained and the connection
interval for the new connection is set equal to Anchor_Period·m with slot latency
equal to m.

3. The current anchor period in larger than the Conn_Interval_Max required for the
new connection. In this case the algorithm searches for an integer number k such that:

If such value is found then the current anchor period is reduced to:

The connection interval for the new connection is set equal to:

and the slot latency for the existing connections is multiplied by a factor k. Note that in this
case the following conditions must also be satisfied:

– Anchor_Period/k must be a multiple of 1.25 ms

– Anchor_Period/k must be large enough to contain all the connection slots already
allocated to the previous connections

Conn_Interval_Min Anchor_Period
k

--- Conn_Interval_Max≤ ≤

Anchor_Period
k

Anchor_Period
k

BLE multiple connection timing strategy PM0257

86/93 DocID029331 Rev 2

Once that a suitable anchor period has been found according to the criteria listed above,
then a time interval for the actual connection slot is allocated therein. In general, if enough
space can be found in the anchor period, the algorithm allocates the maximum requested
connection event length otherwise reduces it to the actual free space.

When several successive connections are created, the relative connection slots are
normally placed in sequence with a small guard interval between (1.5 ms); when a
connection is closed this generally results in an unused gap between two connection slots. If
a new connection is created afterwards, then the algorithm first tries to fit the new
connection slot inside one of the existing gaps; if no gap is wide enough, then the
connection slot is placed after the last one. Figure 13: Example of timing allocation for three
successive connections shows an example of how the time base parameters are managed
when successive connections are created.

Figure 13. Example of timing allocation for three successive connections

4.2.3 Timing for advertising events

The periodicity of the advertising events, controlled by advInterval, is computed based on
the following parameters specified by the slave through the host in the
HCI_LE_Set_Advertising_parameters command:

• Advertising_Interval_Min, Advertising_Interval_Max;

• Advertising_Type;

if Advertising_Type is set to high duty cycle directed advertising, then advertising
Interval is set to 3.75 ms regardless of the values of Advertising_Interval_Min and

B) Second connection
ConnIntMin = 250 ms Anchor Period = 200 ms, Connection Interval = 400 ms
ConnIntMax = 500 ms Slot #2 offset = 21.5 ms
CE_len_min = 10 ms Slot #2 len = 50 ms
CE_len_max = 50 ms Slot #2 latency = 2

S
2

S
1

S
2

Anchor Period

t

S
1

S
1

S
1

Anchor Period

t

S
1

S
1

S
1

S
2

Anchor Period

S
3

t

S
1

S
3

S
1

S
2

S
3

A) First connection
ConnIntMin = 100 ms Anchor Period = 200 ms, Connection Interval #1 = 200 ms
ConnIntMax = 300 ms Slot #1 offset = 0 ms
CE_len_min = 10 ms Slot #1 len = 20 ms
CE_len_max = 20 ms Slot #1 latency = 1

C) Third connection
ConnIntMin = 50 ms Anchor Period = 100 ms, Connection Interval = 100 ms
ConnIntMax = 150 ms Slot #3 offset = 73 ms
CE_len_min = 10 ms Slot #3 len = 25.5 ms
CE_len_max = 100 ms Slot #1 latency = 2, Slot #2 latency = 4, Slot #3 latency = 1

S
3

S
3

S
3

DocID029331 Rev 2 87/93

PM0257 BLE multiple connection timing strategy

93

Advertising_Interval_Max; in this case, a timeout is also set to 1.28 s, that is the
maximum duration of the advertising event for this case.

In all other cases the advertising interval is chosen equal to the mean value between
(Advertising_Interval_Min + 5 ms) and (Advertising_Interval_Max + 5 ms).
The advertising has not a maximum duration as in the previous case, but it is stopped only if
a connection is established, or upon explicit request by host.

The length of each advertising event is set by default by the SW to be equal to 14.6 ms (i.e.
the maximum allowed advertising event length) and it cannot be reduced.

Advertising slots are allocated within the same time base of the master slots (i.e. scanning
and connection slots). For this reason, the advertising enable command has to be accepted
by the SW when at least one master slot is active, the advertising interval has to be an
integer multiple of the actual anchor period.

4.2.4 Timing for scanning

Scanning timing is requested by the master through the following parameters specified by
the host in the HCI_LE_Set_Scan_parameters command:

• LE_Scan_Interval: used to compute the periodicity of the scan slots

• LE_Scan_Window: used to compute the length of the scan slots to be allocated into
the master time base

Scanning slots are allocated within the same time base of the other active master slots (i.e.
connection slots) and of the advertising slot (if there is one active).

If there is already an active slot, the scan interval is always adapted to the anchor period.

Every time the LE_Scan_Interval is greater than the actual anchor period, the SW
automatically tries to subsample the LE_Scan_Interval and to reduce the allocated scan
slot length (up to ¼ of the LE_Scan_Window) in order to keep the same duty cycle required
by the host, given that scanning parameters are just recommendations as stated by BT
official specifications (v.4.1, Vol.2, Part E, §7.8.10).

4.2.5 Slave timing

The slave timing is defined by the master when the connection is created so the connection
slots for slave links are managed asynchronously with respect to the time base mechanism
described above. The slave assumes that the master may use a connection event length as
long as the connection interval.

The scheduling algorithm adopts a round-robin arbitration strategy any time a collision
condition is predicted between a slave and a master slot. In addition to this, the scheduler
may also impose a dynamic limit to the slave connection slot duration to preserve both
master and slave connections.

In particular:

• If the end of a master connection slot overlaps the beginning of a slave connection slot
then master and slave connections are alternatively preserved/canceled.

• if the end of a slave connection slot overlaps the beginning of a master connection slot
then the slave connection slot length is hard limited to avoid such overlap. If the
resulting time interval is too small to allow at least two packets to be exchanged then
round robin arbitration is used.

BLE multiple connection timing strategy PM0257

88/93 DocID029331 Rev 2

4.3 Multiple master and slave connection guidelines
The following guidelines should be followed to properly handle multiple master and slave
connections using BlueNRG-1, BlueNRG-2 devices:

1. Avoid over-allocating connection event length: choose Minimum_CE_Length and
Maximum_CE_Length as small as possible to strictly satisfy the application needs. In
this manner the allocation algorithm allocates several connections within the anchor
period and reduces the anchor period, if needed, to allocate connections with a small
connection interval.

2. For the first master connection:

a) If possible, create the connection with the shortest connection interval as the first
one so to allocate further connections with connection interval multiple of the initial
anchor period.

b) If possible, choose Conn_Interval_Min = Conn_Interval_Max as multiple
of 10 ms to allocate further connections with connection interval sub multiple by a
factor 2, 4 and 8 (or more) of the initial anchor period being still a multiple of 1.25
ms.

3. For additional master connections:

a) Choose ScanInterval equal to the connection interval of one of the existing
Master connections

b) Choose ScanWin such that the sum of the allocated master slots (including
Advertising, if active) is lower than the shortest allocated connection interval

c) Choose Conn_Interval_Min and Conn_Interval_Max such that the interval
contains either:

– a multiple of the shortest allocated connection interval

– a sub multiple of the shortest allocated connection interval being also a multiple of
1,25 ms

d) Choose Maximum_CE_Length=Minimum_CE_Length such that the sum of the
allocated master slots (including advertising, if active) plus Minimum_CE_Length
is lower than the shortest allocated connection interval

4. Every time you start advertising:

a) If direct advertising, choose Advertising_Interval_Min = Advertising_Interval_Max
= integer multiple of the shortest allocated connection interval

b) If not Direct Advertising, choose Advertising_Interval_Min =
Advertising_Interval_Max such that (Advertising_Interval_Min + 5ms) is an integer
multiple of the shortest allocated connection interval

5. Every time you start scanning:

a) Every time you start scanning: a) choose ScanInterval equal to the connection
interval of one of the existing master connections

b) Choose ScanWin such that the sum of the allocated master slots (including
Advertising, if active) is lower than the shortest allocated connection interval

6. Keep in mind that the process of creating multiple connections, then closing some of
them and creating new ones again, over time, tends to decrease the overall efficiency
of the slot allocation algorithm. In case of difficulties in allocating new connections, the
time base can be reset to the original state closing all existing connections.

DocID029331 Rev 2 89/93

PM0257 References

93

5 References

Table 56. List of references

Name Title/description

AN4818 Bringing up the BlueNRG-1, BlueNRG-2 device application note

AN4820 BlueNRG-1, BlueNRG-2 device power mode application note

BlueNRG-1 datasheet BlueNRG-1 SoC datasheet

BlueNRG-2 datasheet
BlueNRG-2 SoC datasheet

Bluetooth specifications Specification of the Bluetooth system (v4.0, v4.1, v4.2, v5.0)

–
BlueNRG-1, BlueNRG-2, Bluetooth LE stack APIs and event oxygen
documentation

STSW-BLUENRG1-DK BlueNRG-1 SW package for BlueNRG-1, BlueNRG-2 devices

STSW-BNRGUI BlueNRG GUI SW package

UM2071 BlueNRG-1, BlueNRG-2 DK user manual

List of acronyms and abbreviations PM0257

90/93 DocID029331 Rev 2

Appendix A List of acronyms and abbreviations

This section lists the standard acronyms and abbreviations used throughout the document.

Table 57. List of acronyms

Term Meaning

ACI Application command interface

ATT Attribute protocol

BLE Bluetooth low energy

BR Basic rate

CRC Cyclic redundancy check

CSRK Connection signature resolving key

EDR Enhanced data rate

DK Development kits

EXTI External interrupt

GAP Generic access profile

GATT Generic attribute profile

GFSK Gaussian frequency shift keying

HCI Host controller interface

IFR Information register

IRK Identity resolving key

ISM Industrial, scientific and medical

LE Low energy

L2CAP Logical link control adaptation layer protocol

LTK Long-term key

MCU Microcontroller unit

MITM Man-in-the-middle

NA Not applicable

NESN Next sequence number

OOB Out-of-band

PDU Protocol data unit

RF Radio frequency

RSSI Received signal strength indicator

SIG Special interest group

SM Security manager

SN Sequence number

USB Universal serial bus

DocID029331 Rev 2 91/93

PM0257 List of acronyms and abbreviations

93

UUID Universally unique identifier

WPAN Wireless personal area networks

Table 57. List of acronyms (continued)

Term Meaning

Revision history PM0257

92/93 DocID029331 Rev 2

6 Revision history

Table 58. Document revision history

Date Revision Changes

28-Nov-2016 1 Initial release.

29-Jun-2017 2

Added reference to BlueNRG-2 device throughout the
document.

Updated Introduction, Section 1.7: Security manager
(SM); Section 2: BlueNRG-1, BlueNRG-2 Bluetooth low
energy stack, Section 3.1: Initialization phase and main
application loop, Section 3.5: Security (pairing and
bonding), Section 3.10: Privacy and Table 56: List of
references.
Added Section 1.8: Privacy, Section 2.4: BlueNRG-1,
BlueNRG-2 cold start configuration, Section 2.5: BLE
stack tick function

DocID029331 Rev 2 93/93

PM0257

93

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics – All rights reserved

	1 Bluetooth low energy technology
	Figure 1. Bluetooth low energy technology enabled coin cell battery devices
	1.1 BLE stack architecture
	Figure 2. Bluetooth low energy stack architecture

	1.2 Physical layer
	Table 1. BLE RF channel types and frequencies

	1.3 Link layer (LL)
	Figure 3. Link layer state machine
	1.3.1 BLE packets
	Figure 4. Packet structure
	Table 2. Advertising data header content
	Table 3. Advertising packet types
	Table 4. Advertising event type and allowable responses
	Table 5. Data packet header content
	Table 6. Packet length field and valid values

	1.3.2 Advertising state
	Figure 5. Advertising packet with AD type flags

	1.3.3 Scanning state
	1.3.4 Connection state
	Table 7. Connection request timing intervals

	1.4 Host controller interface (HCI)
	1.5 Logical link control and adaptation layer protocol (L2CAP)
	1.6 Attribute protocol (ATT)
	Table 8. Attribute example
	Table 9. Attribute protocol messages

	1.7 Security manager (SM)
	Table 10. Combination of input/output capabilities on a BLE device
	Table 11. Methods used to calculate the temporary key (TK)
	Table 12. Mapping of IO capabilities to possible key generation methods

	1.8 Privacy
	1.8.1 The device filtering

	1.9 Generic attribute profile (GATT)
	1.9.1 Characteristic attribute type
	Figure 6. Example of characteristic definition
	Table 13. Characteristic declaration
	Table 14. Characteristic value

	1.9.2 Characteristic descriptor type
	1.9.3 Service attribute type
	Table 15. Service declaration
	Table 16. Include declaration

	1.9.4 GATT procedures
	Table 17. Discovery procedures and related response events
	Table 18. Client-initiated procedures and related response events
	Table 19. Server-initiated procedures and related response events

	1.10 Generic access profile (GAP)
	Table 20. GAP roles
	Table 21. GAP broadcaster mode
	Table 22. GAP discoverable modes
	Table 23. GAP connectable modes
	Table 24. GAP bondable modes
	Table 25. GAP observer procedures
	Table 26. GAP discovery procedures
	Table 27. GAP connection procedures
	Table 28. GAP bonding procedures

	1.11 BLE profiles and applications
	Figure 7. Client and server profiles
	1.11.1 Proximity profile example

	2 BlueNRG-1, BlueNRG-2 Bluetooth low energy stack
	Figure 8. BLE stack reference application
	2.1 BLE stack library framework
	Table 29. BLE stack library framework interface

	2.2 BLE stack event callbacks
	2.3 BLE stack init and tick APIs
	Table 30. BLE Stack Initialization parameters

	2.4 BlueNRG-1, BlueNRG-2 cold start configuration
	Table 31. Cold start configuration preprocessor options
	Table 32. Cold start test mode configurations
	Table 33. Cold start user mode configuration

	2.5 BLE stack tick function

	3 Design an application using BlueNRG-1, BlueNRG-2 BLE stack
	Table 34. User application defines the BLE device roles
	3.1 Initialization phase and main application loop
	Table 35. GATT, GAP default services
	Table 36. GATT, GAP default characteristics
	Table 37. aci_gap_init() role parameter values
	3.1.1 BLE addresses
	Figure 9. BLE MAC address storage

	3.1.2 Set tx power level

	3.2 Services and characteristic configuration
	3.3 Create a connection: discoverable and connectable APIs
	Table 38. GAP mode APIs
	Table 39. GAP discovery procedure APIs
	Table 40. Connection procedure APIs
	3.3.1 Set discoverable mode and use direct connection establishment procedure
	3.3.2 Set discoverable mode and use general discovery procedure (active scan)
	Table 41. ADV_IND event type
	Table 42. ADV_IND advertising data
	Table 43. SCAN_RSP event type
	Table 44. Scan response data

	3.4 BLE stack events and events callbacks
	Table 45. BLE stack: main event callbacks

	3.5 Security (pairing and bonding)
	3.6 Service and characteristic discovery
	Table 46. BLE sensor profile demo services and characteristic handles
	Table 47. Service discovery procedures APIs
	Table 48. First read by group type response event callback parameters
	Table 49. Second read by group type response event callback parameters
	Table 50. Third read by group type response event callback parameters
	3.6.1 Characteristic discovery procedures and related GATT events
	Table 51. Characteristics discovery procedures APIs
	Table 52. First read by type response event callback parameters
	Table 53. Second Read By Type Response event callback parameters

	3.7 Characteristic notification/indications, write, read
	Table 54. Characteristics update, read, write APIs

	3.8 Basic/typical error condition description
	3.9 BLE simultaneously master, slave scenario
	Figure 10. BLE simultaneous master and slave scenario

	3.10 Privacy
	3.10.1 Controller-based privacy and the device filtering scenario
	3.10.2 Resolving addresses

	4 BLE multiple connection timing strategy
	4.1 Basic concepts about Bluetooth low energy timing
	4.1.1 Advertising timing
	Figure 11. Advertising timings

	4.1.2 Scanning timing
	4.1.3 Connection timing

	4.2 BLE stack timing and slot allocation concepts
	Table 55. Timing parameters of the slotting algorithm
	Figure 12. Example of allocation of three connection slots
	4.2.1 Setting the timing for the first master connection
	4.2.2 Setting the timing for further master connections
	Figure 13. Example of timing allocation for three successive connections

	4.2.3 Timing for advertising events
	4.2.4 Timing for scanning
	4.2.5 Slave timing

	4.3 Multiple master and slave connection guidelines

	5 References
	Table 56. List of references

	Appendix A List of acronyms and abbreviations
	Table 57. List of acronyms

	6 Revision history
	Table 58. Document revision history

