

MASW-007107 V2

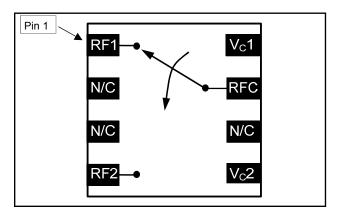
GaAs Broadband SPDT Switch DC - 8.0 GHz

Features

- 802.11a + b/g and MIMO Applications
- Test and Measurement and Low/Medium Power Telecommunication Applications up to 8.0 GHz
- Broadband Performance: DC 8.0 GHz
- Low Insertion Loss: 0.5 dB from 2.0 6.0 GHz
- High Isolation: 31 dB from 2.0 6.0 GHz
- Fast Settling for Low Gate Lag Requirements
- Lead-Free 2 mm 8-Lead PDFN Package
- 100% Matte Tin Plating over Copper
- Halogen-Free "Green" Mold Compound
- RoHS Compliant* and 260°C Reflow Compatible

Description

M/A-COM's MASW-007107 is a broadband GaAs PHEMT MMIC SPDT switch in a lead-free 2 mm 8-lead PDFN package. Typical applications are for WLAN IEEE 802.11a + b/g, and MIMO. Other applications include test equipment requiring ultra fast switching speeds. Designed for low insertion loss, this SPDT switch maintains low loss up to 8.0 GHz.


The MASW-007107 is fabricated using a 0.5 micron gate length GaAs PHEMT process. The process features full passivation for performance and reliability.

Ordering Information ¹

Part Number	Package
MASW-007107-TR3000	3000 piece reel
MASW-007107-000SMB	Sample Test Board (Includes 5 samples)
MASW-007107-000DIE ²	Separated die on grip ring

- 1. Reference Application Note M513 for reel size information.
- 2. Die quantity varies.

Functional Schematic

Pin Configuration³

Pin No.	Pin Name	Description
1	RF1	RF Output 1
2	N/C	No Connection
3	N/C	No Connection
4	RF2	RF Output 2
5	V _c 2	Voltage Control 2
6	N/C	No Connection
7	RFC	RF Common
8	V _c 1	Voltage Control 1
9	Paddle⁴	RF and DC Ground

- M/A-COM recommends connecting unused package pins to ground.
- The exposed pad centered on the package bottom must be connected to RF and DC ground.

Absolute Maximum Ratings 5,6

Parameter	Absolute Maximum
Input Power @ 3 V Control	+32 dBm
Input Power @ 5 V Control	+34 dBm
Operating Voltage	+8.5 volts
Operating Temperature	-40°C to +85°C
Storage Temperature	-65°C to +150°C

- Exceeding any one or combination of these limits may cause permanent damage to this device.
- M/A-COM does not recommend sustained operation near these survivability limits.

M/A-COM Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. M/A-COM makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does M/A-COM assume any liability whatsoever arising out of the use or application of any product(s) or information.

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- **Europe** Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

Visit www.macom.com for additional data sheets and product information.

^{*} Restrictions on Hazardous Substances, European Union Directive 2002/95/EC.

MASW-007107 V2

GaAs Broadband SPDT Switch DC - 8.0 GHz

Electrical Specifications: $T_A = 25$ °C, $Z_0 = 50 \Omega$, $V_C = 0 V / 3 V$, 8 pF Capacitor ^{7,8}

Doromotor	Toot Conditions	Linita	Min	Tv	Max
Parameter	Test Conditions	Units	Min.	Тур.	Max.
Insertion Loss 9	2.0 - 6.0 GHz 6.0 - 8.0 GHz	dB dB	_	0.50 0.75	0.8
Isolation	2.4 GHz 5.3 GHz 5.8 GHz 6.0 - 8.0 GHz	dB dB dB dB	24 28 25 —	29 33 30 20	_ _ _
Return Loss	DC - 8.0 GHz	dB	_	16	_
Input IP2	Two Tone, +5 dBm / Tone, 5 MHz Spacing 2.4 GHz 5.3 GHz 5.8 GHz	dBm dBm dBm		92 83 85	_ _ _
	Two Tone, +5 dBm / Tone, 10 MHz Spacing 2.4 GHz (3V) 5.8 GHz (3V)	dBm dBm	_ _	54 49	=
Innut ID2	2.4 GHz (5V) 5.8 GHz (5V)	dBm dBm	_	55 51	_
Input IP3 —	Two Tone, +15 dBm / Tone, 10 MHz Spacing 2.4 GHz (3V) 5.8 GHz (3V)	dBm dBm	_	57 54	_
	2.4 GHz (5V) 5.8 GHz (5V)	dBm dBm	_	59 58	_
Input P0.1dB	2.4 GHz 5.3 GHz 5.8 GHz	dBm dBm dBm	_ _ _	26 26 25	
Input P1dB	2.4 GHz 5.3 GHz 5.8 GHz	dBm dBm dBm		30.5 29.5 27	_ _ _
Linear Pout	2.4 GHz, OFDM, QAM-64,54Mbps, EVM=2.5% 3 V 5 V 8 V	dBm dBm dBm	_ _ _	21 27.5 30	_ _ _
2nd Harmonic	2.4 GHz, P_{IN} = +20 dBm 5.3 GHz, P_{IN} = +20 dBm 5.8 GHz, P_{IN} = +20 dBm	dBc dBc dBc		-80 -71 -71	_ _ _
3rd Harmonic	2.4 GHz, P _{IN} = +20 dBm 5.3 GHz, P _{IN} = +20 dBm 5.8 GHz, P _{IN} = +20 dBm	dBc dBc dBc		-83 -71 -72	_ _ _
T-rise, T-fall	10% to 90% RF and 90% to 10% RF	nS	_	13	
Ton, Toff	50% control to 90% RF and 50% control to 10% RF	nS	_	35	_
Transients		mV	_	14	_
Control Current	V _C = 3 V	μA	_	1	5
Ron	t > 90 mS after OFF to ON Switching (settled)	Ω	_	2.50	_
Gate Lag	ΔRon between 15 μS and 90 mS after OFF to ON Switching	Ω	_	0.15	_

^{7.} For positive voltage control, external DC blocking capacitors are required on all RF ports.

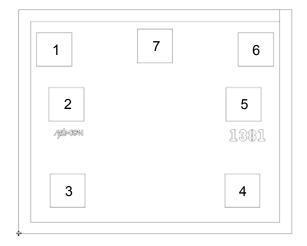
information.

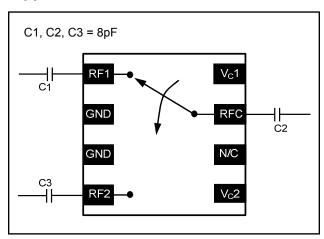
^{8.} Electrical minimum and maximum specifications are guaranteed in final package assembly only.

^{9.} Insertion loss can be optimized by varying the DC blocking capacitor value.

[•] **Europe** Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298




MASW-007107 V2

GaAs Broadband SPDT Switch DC - 8.0 GHz

Die Bond Pad Layout

Application Schematic

Truth Table 10

Control V _c 1	Control V _C 2	RFC-RF1	RFC—RF2
1	0	On	Off
0	1	Off	On

10. 1 = +2.9 V to +5 V, 0 = 0 V + 0.2 V.

Die Bond Pad Configuration

Pad No.	Name	Description
1	V _c 1	Voltage Control 1
2	RF1	RF Output 1
3	GND	Ground
4	GND	Ground
5	RF2	RF Output 2
6	V _c 2	Voltage Control 2
7	RFC	RF Common

Qualification

Qualified to M/A-COM specification REL-201, Process Flow –2.

Handling Procedures

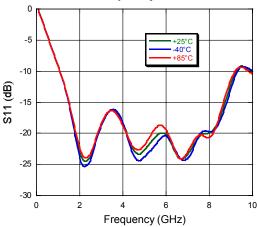
Please observe the following precautions to avoid damage:

Static Sensitivity

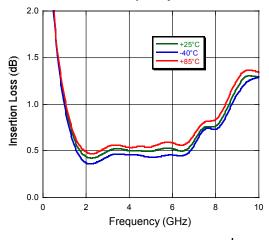
Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

[•] **Europe** Tel: 44.1908.574.200 / Fax: 44.1908.574.300

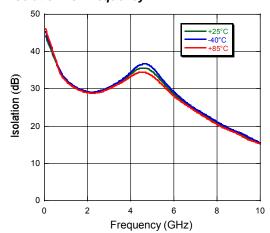
Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

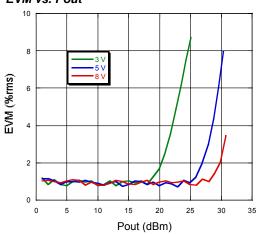


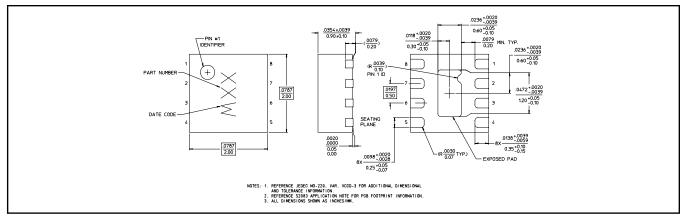
MASW-007107 V2


GaAs Broadband SPDT Switch DC - 8.0 GHz

Typical Performance Curves


Return Loss vs. Frequency


Insertion Loss vs. Frequency


Isolation vs. Frequency

EVM vs. Pout

Lead Free 2 mm 8-lead PDFN †

[†] Reference Application Note M538 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 1 requirements.

M/A-COM Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. M/A-COM makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does M/A-COM assume any liability whatsoever arising out of the use or application of any product(s) or information

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

Visit www.macom.com for additional data sheets and product information.