

General Description

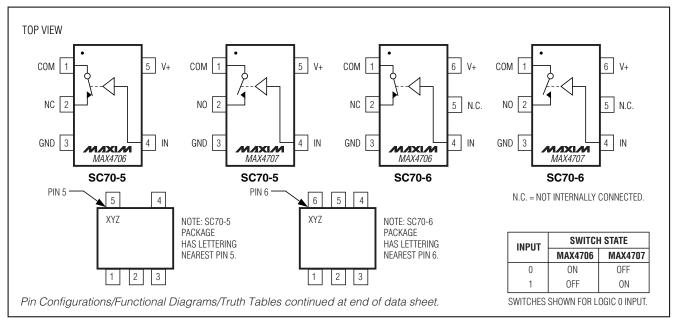
The MAX4706/MAX4707 single-pole/single-throw (SPST) switches operate from a single 1.8V to 5.5V supply. The MAX4706 is a normally closed (NC) switch and the MAX4707 is the normally open (NO) version. These switches provide 2Ω on-resistance (RoN) and 0.6Ω RON flatness with a +2.7V supply. These devices typically consume only 0.02µA of quiescent current, making them suitable for use in low-power, portable applications. The MAX4706/MAX4707 feature low-leakage currents over the entire temperature range. TTL/CMOS-compatible digital logic, and excellent AC characteristics.

The MAX4706/MAX4707 are offered in small 5-pin and 6-pin SC70 and 6-pin µDFN packages.

Applications

Battery-Operated Equipment **Audio Signal Routing** Low-Voltage Data-Acquisition Systems Sample-and-Hold Circuits Communications Circuits Relay Replacement

Features


- ♦ Guaranteed RON 2Ω max (+2.7V Supply)
- ♦ Guaranteed R_{ON} Flatness: 0.6Ω (+2.7V Supply)
- **♦ Excellent AC Characteristics** High Off-Isolation: -67dB at 1MHz -3dB Bandwidth: 190MHz
- ♦ 0.013% Total Harmonic Distortion
- **♦** Low Supply Current: 0.02µA ♦ Tiny SC70 and μDFN Packages
- ♦ 1.8V to 5.5V Single-Supply Operation

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK	
MAX4706EXK-T	-40°C to +85°C	5 SC70-5	AFO	
MAX4706EXT-T	-40°C to +85°C	6 SC70-6	ABS	
MAX4706ELT-T*	-40°C to +85°C	6 µDFN-6	_	
MAX4707EXK-T	-40°C to +85°C	5 SC70-5	AFP	
MAX4707EXT-T	-40°C to +85°C	6 SC70-6	ABT	
MAX4707ELT-T*	-40°C to +85°C	6 µDFN-6	_	

^{*}Future product—contact factory for availability.

Pin Configurations/Functional Diagrams/Truth Tables

NIXIN

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

(All voltages referenced to ground.)	
V+, IN	0.3V to +6V
COM, NO, NC (Note 1)	0.3V to $(V+ + 0.3V)$
Continuous Current (IN, V+, GND)	±30mA
Continuous Current COM, NO, NC	±160mA
Peak Current COM, NO, NC	
(pulsed at 1ms, 10% duty cycle)	±300mA

Continuous Power Dissipation (T _A = +70°C)
5-Pin SC70 (derate 3.1mW/\(\Pi \) above +70\(\Pi \))247mW
6-Pin SC70 (derate 3.1mW/\(\Pi \) above +70\(\Pi \))245mW
6-Pin µDFN (derate 2.1mW/
Operating Temperature Range40°C to +85°C
Storage Temperature Range65°C to +150°C
Lead Temperature (soldering, 10s)+300°C
Junction Temperature+150°C

Note 1: Signals on NO, NC, COM, or IN exceeding V+ or GND are clamped by internal diodes. Limit forward-diode current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(V+ = 2.7V to 3.6V, V_{IH} = 2.0V, V_{IL} = 0.4V, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.) (Note 2)

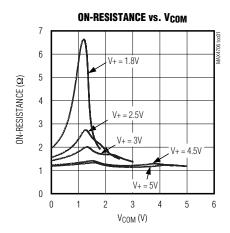
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS		
ANALOG SWITCH	•							
Analog Signal Range	V _{COM} , V _{NO} , V _{NC}			0		V+	V	
On-Resistance	D	V+ = 2.7V, I _{COM} = 10mA,	T _A = +25°C		2.0	3.0	Ω	
On-nesistance	Ron	V_{NO} or $V_{NC} = 0V$ to $V+$	$T_A = T_{MIN}$ to T_{MAX}			3.5		
On-Resistance Flatness	DELAT (ON)	$V+ = 2.7V$, $I_{COM} = 10mA$,	T _A = +25°C		0.6	0.85	Ω	
(Note 3)	RFLAT (ON)	V_{NO} or $V_{NC} = 0V$ to $V+$	$T_A = T_{MIN}$ to T_{MAX}			0.97		
NO, NC Off-Leakage	INO(OFF),	$V + = 3.3V, V_{COM} = 1V, 3V;$	$T_A = +25^{\circ}C$	-1	0.1	+1	nA nA	
Current	INC(OFF)	V_{NO} or $V_{NC} = 3V$, 1V	$T_A = T_{MIN}$ to T_{MAX}	-2		+2		
COM On-Leakage Current	1	$V + = 3.3V, V_{COM} = 1V \text{ or } 3V;$	$T_A = +25^{\circ}C$	-1	0.1	+1		
COM On-Leakage Current	ICOM(ON)	V_{NO} or $V_{NC} = 1V$, 3V, or floating	$T_A = T_{MIN}$ to T_{MAX}	-2		+2		
COM Off-Leakage Current	ICOM(OFF)	$V + = 3.3V, V_{COM} = 1V \text{ or } 3V;$	$T_A = +25^{\circ}C$	-1	0.1	+1	- Λ	
		V_{NO} or $V_{NC} = 3V$, 1V	$T_A = T_{MIN}$ to T_{MAX}	-2		+2	nA	
DIGITAL INPUTS								
Input Logic High	VIH			2.0			V	
Input Logic Low	VIL					0.4	V	
Input Current	I _{IN}	V _{IN} = 0V or V+		-1	0.05	+1	μΑ	
DYNAMIC								
Turn On Times (Note 4)	ton	$V_{COM} = 2V, R_L = 300\Omega,$	$T_A = +25^{\circ}C$		12	20	ns	
Turn-On Time (Note 4)		C _L = 35pF, Figure 2	$T_A = T_{MIN}$ to T_{MAX}			20		
T Off Time - (NI-th- 4)	toff	$V_{COM} = 2V, R_L = 300\Omega,$	T _A = +25°C		8	15	ns	
Turn-Off Time (Note 4)		C _L = 35pF, Figure 2	$T_A = T_{MIN}$ to T_{MAX}			15		
Charge Injection	Q	V _{GEN} = 0V, R _{GEN} = 0, C _L = 1.0nF, Figure 3			5		рС	
NO, NC Off-Capacitance	CNO(OFF), CNC(OFF)	V _{NO} , V _{NC} = GND, f = 1MHz, Figure 5			17		рF	
Switch On-Capacitance	Con	V _{COM} = V _{NO/NC} , f = 1MHz, Figure 5			35		рF	

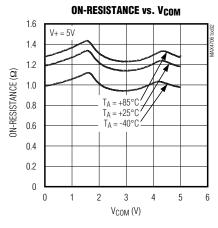
ELECTRICAL CHARACTERISTICS (continued)

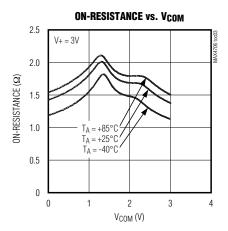
(V+ = 2.7V to 3.6V, V_{IH} = 2.0V, V_{IL} = 0.4V, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS			TYP	MAX	UNITS
Off location (Note 5)	\/\.o.o	V _{NO} = V _{NC} = 1V _{RMS} ,	f = 10MHz	-62		dB	
Off-Isolation (Note 5)	V _{ISO}	$R_L = 50\Omega$, $C_L = 5pF$, Figure 4	f = 1MHz	-82		ub	
On-Channel Bandwidth -3dB	BW	$R_L = 50\Omega$, $C_L = 5pF$, Figure 4			190		MHz
Total Harmonic Distortion	THD	$R_L = 600\Omega$, $2V_{P-P}$, $f = 20Hz$ to $20kHz$ $T_A = +25^{\circ}C$			0.013		%
SUPPLY							
Docitive Cumply Current	1.	V+ = 5.5V, V _{IN} = 0V or V+	Γ _A = +25°C		0.02		
Positive Supply Current	l+	$V + = 5.5V$, $VIN = 0V$ or $V + \frac{1}{2}$	$T_A = T_{MIN}$ to T_{MAX}			1	μA

Note 2: SC70 and μDFN packaged parts are 100% tested at +25°C. Limits across the full temperature range are guaranteed by design and correlation.

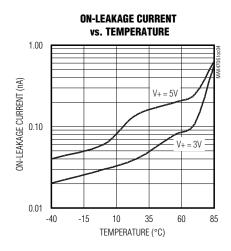

Note 3: R_{ON} flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges.

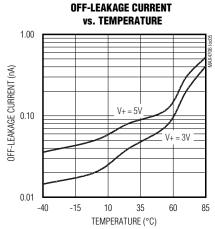

Note 4: Guaranteed by design.

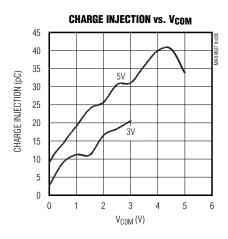

Note 5: Off-isolation = 20log10 (VO / VI), where VO is V_{COM} and VI is either V_{NC} or V_{NO} from the network analyzer.

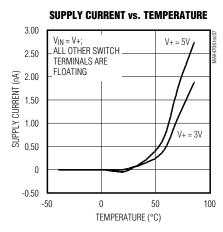
_Typical Operating Characteristics

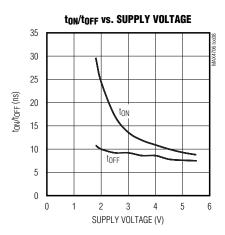
 $(T_A = +25$ °C, unless otherwise noted.)

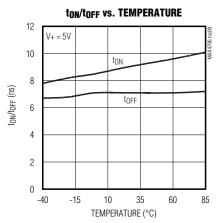


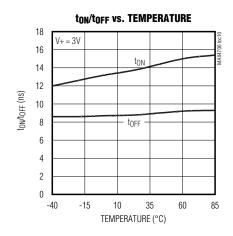


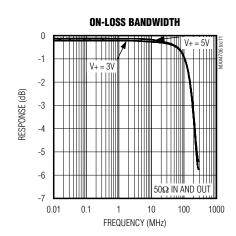


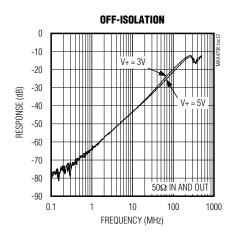

Typical Operating Characteristics (continued)

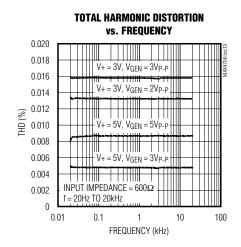

 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$











Typical Operating Characteristics (continued)

 $(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

Pin Description

	PIN						
	MAX4706			MAX4707		NAME	FUNCTION
SC70-5	SC70-6	μDFN-6	SC70-5	SC70-6	μDFN-6		
1	1	6	1	1	6	COM	Analog Switch Common Terminal
2	2	2	_	_	_	NC	Analog Switch Normally Closed Terminal
3	3	1	3	3	1	GND	Ground
4	4	3	4	4	3	IN	Logic Input Control
5	6	4	5	6	4	V+	Positive Supply Voltage
_	_	_	2	2	2	NO	Analog Switch Normally Open Terminal
_	5	5	_	5	5	N.C.	No Connection. Not internally connected.

Detailed Description

The MAX4706/MAX4707 SPST switches operate from a single supply ranging from 1.8V to 5.5V. The MAX4706 is a normally closed (NC) switch and the MAX4707 is the normally open (NO) version. These switches provide 3.5Ω on-resistance (RoN) and 0.9Ω RoN flatness with a +2.7V supply. These devices typically consume only $0.02\mu A$ of quiescent current, making them suitable for use in low-power, portable applications. The MAX4706/MAX4707 feature low-leakage currents over

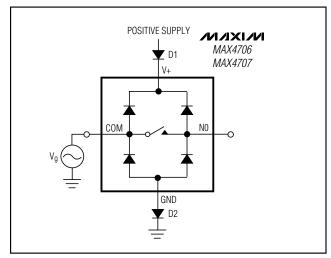


Figure 1. Overvoltage Protection Using Two External Blocking Diodes

the entire temperature range, TTL/CMOS-compatible digital logic, and excellent AC characteristics.

The MAX4706/MAX4707 are offered in small 5-pin and 6-pin SC70 and 6-pin µDFN packages.

Applications Information

The MAX4706/MAX4707 operate from a single +1.8V to +5.5V supply. The MAX4706/MAX4707 accept bipolar input signals when V+ and GND are biased from bipolar supplies. For example, the switch accepts a 1V_{P-P} input when V+ = 2V and GND = -2V. ESD-protection diodes are internally connected between each analog switch terminal and both V+ and GND. One of these diodes conducts if any analog signal is greater than V+ or less than GND (Figure 1). Virtually all analog leakage current is attributed to the ESD diodes. Each diode is biased by the analog signal and either V+ or GND. The ESD diodes' leakage currents vary as the signal changes.

Power-Supply Sequencing and Overvoltage Protection

Caution: Do not exceed the absolute maximum ratings because stresses beyond the listed ratings may cause permanent damage to the device.

Proper power-supply sequencing is recommended for all CMOS devices. Always apply V+ before applying analog signals, especially if the analog signal is not current-limited.

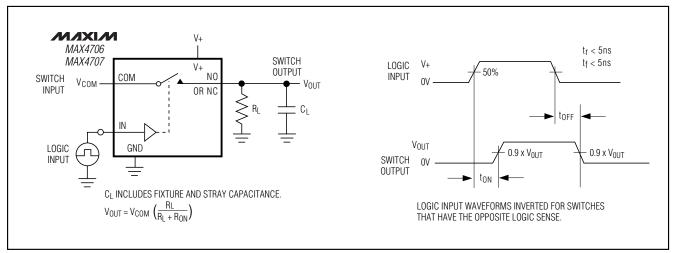


Figure 2. Switching Time

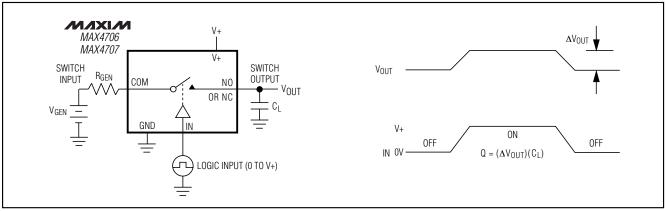


Figure 3. Charge Injection

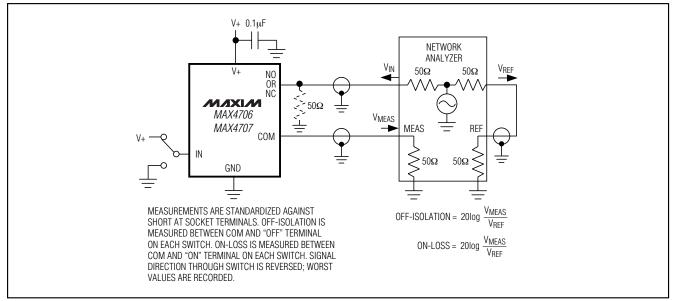


Figure 4. Off-Isolation and On-Loss Bandwidth

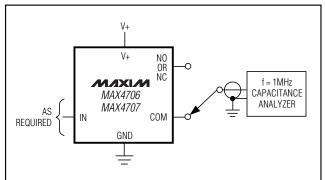
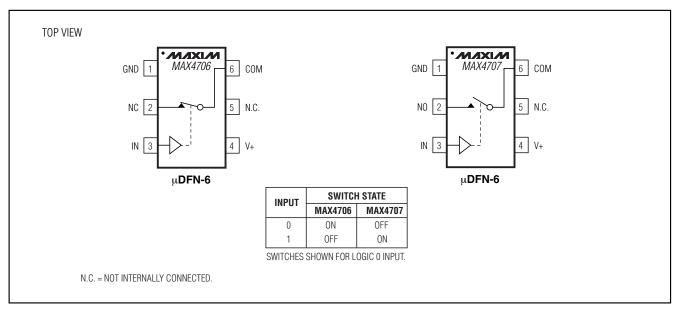
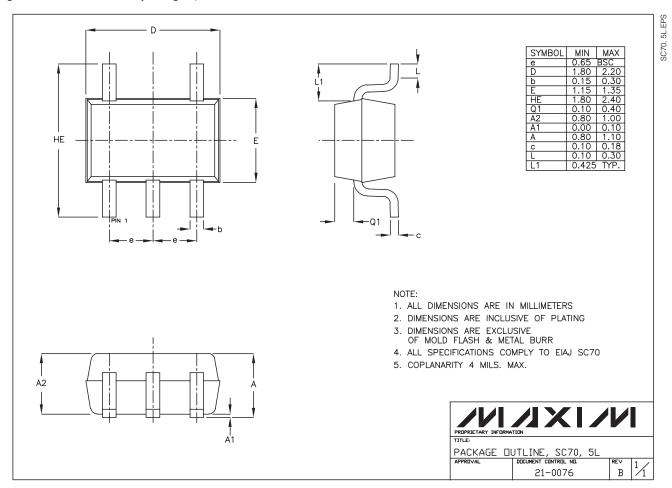



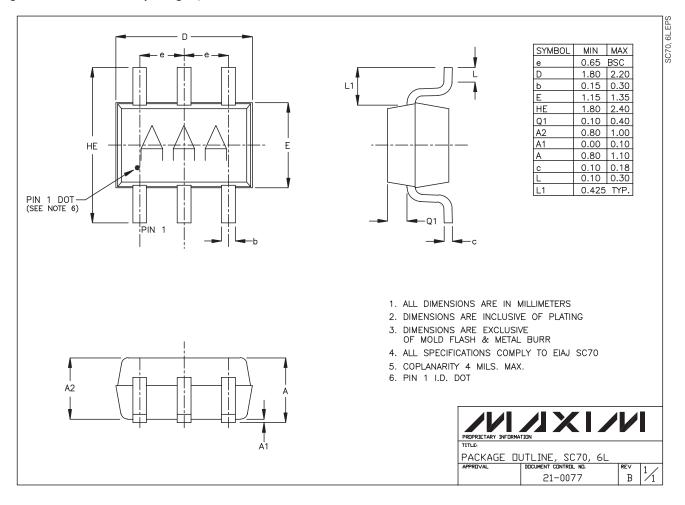
Figure 5. Channel Off/On-Capacitance

Chip Information

TRANSISTOR COUNT: 190
PROCESS: CMOS

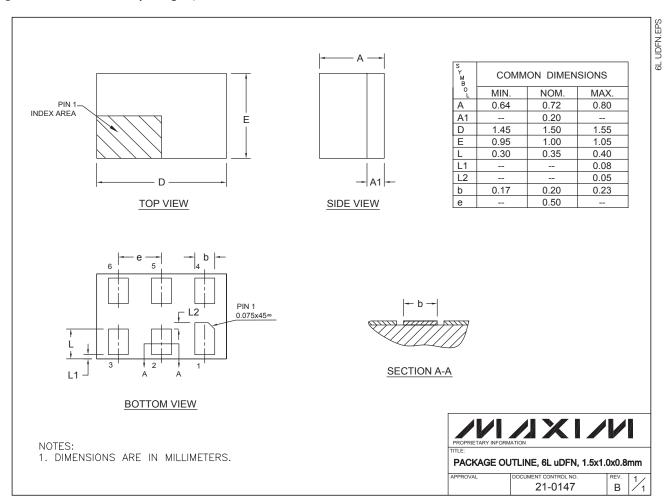

Pin Configurations/Functional Diagrams/Truth Tables (continued)

8 ______ **N/IXI/N**


Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Package Information (continued)


(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

10 ______ **//**_/**X**|*/*//

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Maxim Integrated:

 $\underline{\mathsf{MAX4706EXK+T}} \ \ \underline{\mathsf{MAX4707EXK+T}} \ \ \underline{\mathsf{MAX4707EXT+T}} \ \ \underline{\mathsf{MAX4706EXK+}}$