

The following document contains information on Cypress products. Although the document is marked with the name "Spansion" and "Fujitsu", the company that originally developed the specification, Cypress will continue to offer these products to new and existing customers.

Continuity of Specifications

There is no change to this document as a result of offering the device as a Cypress product. Any changes that have been made are the result of normal document improvements and are noted in the document history page, where supported. Future revisions will occur when appropriate, and changes will be noted in a document history page.

Continuity of Ordering Part Numbers

Cypress continues to support existing part numbers. To order these products, please use only the Ordering Part Numbers listed in this document.

For More Information

Please contact your local sales office for additional information about Cypress products and solutions.

About Cypress

Cypress (NASDAQ: CY) delivers high-performance, high-quality solutions at the heart of today's most advanced embedded systems, from automotive, industrial and networking platforms to highly interactive consumer and mobile devices. With a broad, differentiated product portfolio that includes NOR flash memories, F-RAM™ and SRAM, Traveo™ microcontrollers, the industry's only PSoC® programmable system-on-chip solutions, analog and PMIC Power Management ICs, CapSense® capacitive touch-sensing controllers, and Wireless BLE Bluetooth® Low-Energy and USB connectivity solutions, Cypress is committed to providing its customers worldwide with consistent innovation, best-in-class support and exceptional system value.

Linear IC General purpose Converter cmos

D/A Converter for Digital Tuning

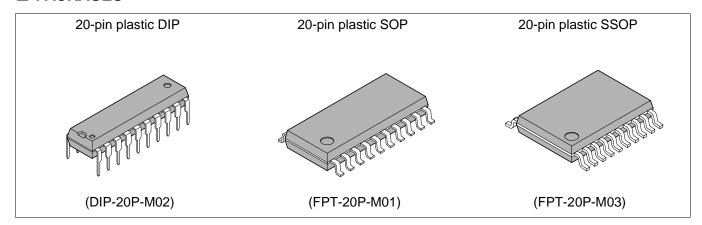
(12 channels. 8-bit, with OP amplifier)

MB88346B

■ DESCRIPTION

The MB88346B features 12 channels of 8-bit D/A converters with output amplifier for digital tuning. The output amplifier provides high current drive capability.

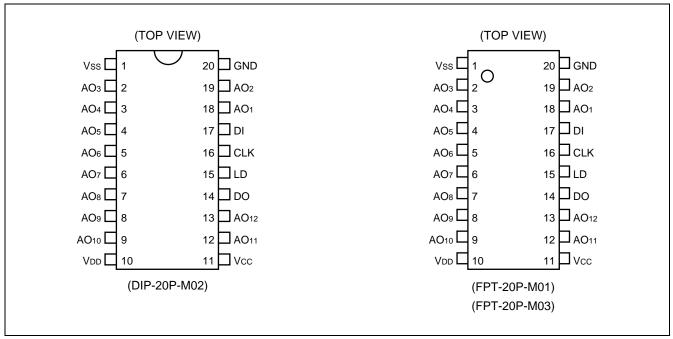
As the MB88346B inputs data in serial, it requires only three control lines and can also be cascade-connected with the MB88340 series.


The MB88346B is suitable for electronic volumes and replacement for potentiometers for adjustment, in addition to normal D/A converter applications.

■ FEATURES

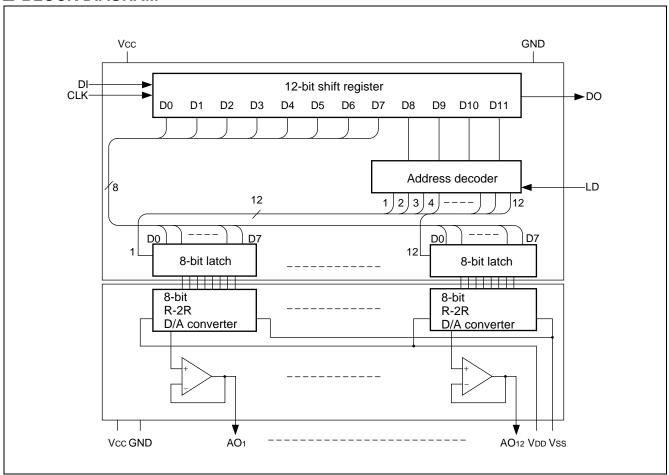
- · Low power consumption
- Small package
- Integrating 12 channels of R-2R type 8-bit D/A converter

(Continued)


■ PACKAGES

- Built-in analog output amplifier (Max +1.0 mA sink/source current)
- Analog output range : 0 to Vcc
- The range of D/A conversion can be independently set by separated the power supply for MCU interface and OP amplifier and the power supply for D/A converter.
- Capable of being controlled directly by a 3-V MCU (input voltage: "H" = 0.5 Vcc, "L" = 0.2 Vcc)
- Serial data input, 2.5 MHz operation
- CMOS process
- Package lineup : DIP 20-pin, SOP 20-pin, SSOP 20-pin

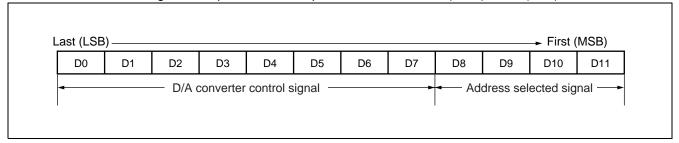
■ PIN ASSIGNMENTS



■ PIN DESCRIPTION

Pin No.	Symbol	I/O	Pin name	Function		
17	DI*	I	Data input pin	This pin inputs 12-bit serial data.		
14	DO	0	Data output pin	This pin outputs MSB bit data of 12-bit shift register.		
16	CLK*	I	Shift clock input pin	Input signal from DI pin is inputted to 12-bit shift register at rising of shift clock.		
15	LD*	I	Load signal input pin	If input "H" level to LD pin, the data of 12-bit shift register is loaded to the decoder and the register for D/A output.		
18,	AO ₁ ,					
19,	AO ₂ ,					
2,	ΑО3,					
3,	AO ₄ ,		D/A output pin			
4,	AO ₅ ,					
5,	AO ₆ ,	0		These pins output analog data of 8-bit D/A converter with OP amplifier.		
6,	AO ₇ ,					
7,	AO ₈ ,					
8,	AO ₉ ,					
9,	AO ₁₀ ,					
12,	AO ₁₁ ,					
13	AO ₁₂					
11	Vcc		Power supply pin	Power supply pin of MCU interface and OP amplifier		
20	GND		Ground pin	Ground pin of MCU interface and OP amplifier		
10	V _{DD}		Power supply pin	Power supply pin of D/A converter		
1	Vss		Ground pin	Ground pin of D/A converter		

^{*:} When three pins, DI, CLK, and LD pins are connected to 3-V MCU, they are fixed to "L" level at non transfer.

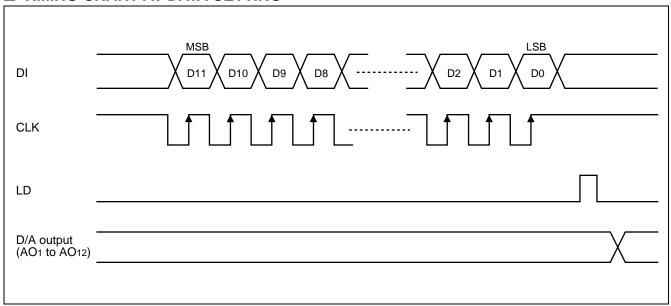

■ BLOCK DIAGRAM

■ DATA FOR CHIP CONTROL

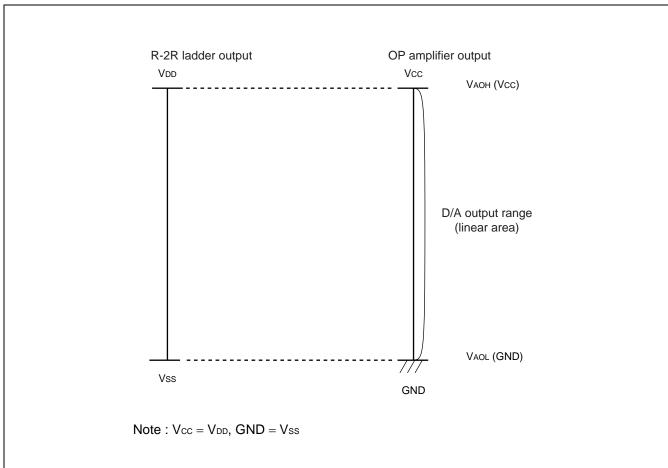
1. Data for Shift Register

- The chip is controlled by 12 bits of data input to the shift register.
- The shift register inputs a total of 12 bits of data consisting of a four-bit address selection signal and an eight-bit D/A converter control signal.
- A data to the shift register is inputted to the DI pin in the order of D11 (MSB) to D0 (LSB) .

2. D/A Converter Control Signal


			Input da	D/A convertor output voltage				
D0	D1	D2	D3	D4	D5	D6	D7	D/A converter output voltage
0	0	0	0	0	0	0	0	≅ Vss
1	0	0	0	0	0	0	0	≅ V _{REF} / 255 × 1 + V _{SS}
0	1	0	0	0	0	0	0	$\cong V_{REF} / 255 \times 2 + V_{SS}$
1	1	0	0	0	0	0	0	$\cong V_{REF} / 255 \times 3 + V_{SS}$
(5	5	5	5	5	5	5	\$
0	1	1	1	1	1	1	1	≅ V _{REF} / 255 × 254 + V _{SS}
1	1	1	1	1	1	1	1	≅ V _{DD}

VREF = VDD - VSS


3. Address Selected Signal

	Input da	ta signal		Address salested sequence			
D8	D9	D10	D11	Address selected sequence			
0	0	0	0	Don't Care			
0	0	0	1	AO ₁ selected			
0	0	1	0	AO ₂ selected			
0	0	1	1	AO₃ selected			
0	1	0	0	AO ₄ selected			
0	1	0	1	AO₅ selected			
0	1	1	0	AO ₆ selected			
0	1	1	1	AO ₇ selected			
1	0	0	0	AO ₈ selected			
1	0	0	1	AO ₉ selected			
1	0	1	0	AO ₁₀ selected			
1	0	1	1	AO ₁₁ selected			
1	1	0	0	AO ₁₂ selected			
1	1	0	1	Don't Care			
1	1	1	0	Don't Care			
1	1	1	1	Don't Care			

■ TIMING CHART AT DATA SETTING

■ ANALOG OUTPUT VOLTAGE RANGE

■ ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Condition	Rating			Remarks
rarameter	Syllibol	Condition	Min	Max	Unit	Remarks
Power supply voltage	Vcc		- 0.3	+ 7.0	V	
Power supply voltage	V_{DD}	The case that GND is referred.	- 0.3	+ 7.0	V	$V_{CC} \geq V_{DD}$
Input voltage	Vin	Ta = +25 °C	- 0.3	Vcc + 0.3	V	
Output voltage	Vоит		- 0.3	Vcc + 0.3	V	
Power consumption	PD	_	_	250	mW	
Operating temperature	Та	_	- 40	+ 85	°C	
Storage temperature	Tstg	_	- 55	+ 150	°C	

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

■ RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Val	Unit	
raiametei	Symbol	Min	Max	Oilit
Power supply Voltage	Vcc	4.5	5.5	V
Power supply voltage	GND	_	0	V
Analog output source current	source	_	1.0	mA
Analog output sink current	İsink	_	1.0	mA
Oscillation limited output capacitance	Соь	_	1.0	μF
Operating temperature	Та	- 40	+ 85	°C

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

■ ELECTRICAL CHARACTERISTICS

1. DC Characteristics

(1) Digital block

(Vdd, Vcc = + 5 V \pm 10% (Vcc \geq Vdd) , GND, Vss = 0 V, Ta = - 40 °C to + 85 °C)

Parameter	Symbol	Pin name	Conditions		Value		Unit
raiametei	Syllibol	riiiiaiiie	Traine Conditions		Тур	Max	Oilit
Power supply voltage	Vcc		_	4.5	5.0	5.5	V
Power supply current	Icc	Vcc	At CLK = 1 MHz operating (at no load)		2.5	4.5	mA
Input leakage current	lilk	CLK	V _{IN} = 0 to V _{CC}	- 10	_	10	μΑ
"L" level input voltage	VıL	DI	_			0.2 Vcc	V
"H" level input voltage	ViH	LD	_	0.5 Vcc			V
"L" level output voltage	Vol	DO	loL = 2.5 mA			0.4	V
"H" level output voltage	Vон	50	Іон = - 400 μА	Vcc - 0.4			V

Note: IoL and IoH are output load current.

(2) Analog block

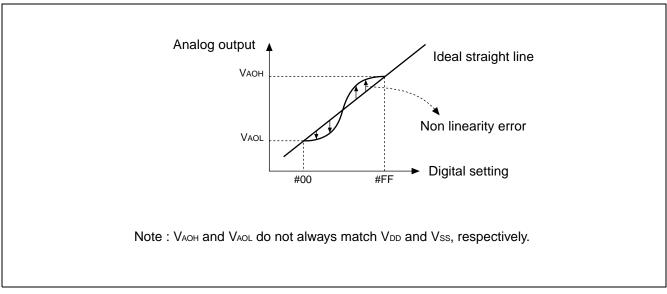
(Vdd, Vcc = + 5 V \pm 10% (Vcc \geq Vdd) , GND, Vss = 0 V, Ta = - 40 °C to + 85 °C)

Daramatar	Cymbal	Din nome	Conditions		Value		Unit	
Parameter	Symbol	Pin name	Conditions	Min	Тур	Max	Oilit	
Consumption current	IDD	V _{DD}	No load		0.2	0.5	mA	
Analog power	V _{DD}	V _{DD}	V _{DD} – V _{SS} ≥ 2.0 V	2.0		Vcc	V	
supply voltage	Vss	Vss	VDD - VSS ≥ 2.0 V	GND	_	Vcc - 2.0	V	
Resolution	Res		Monotonic increase		8	_	bit	
Non linearity error	LE	AO ₁ to	No load $V_{DD} \le V_{CC} - 0.1 \text{ V}$ $V_{SS} \ge 0.1 \text{ V}$	- 1.5	0	1.5	LSB	
Differential linearity error	DLE	71012	No load $V_{DD} \le V_{CC} - 0.1 \text{ V}$ $V_{SS} \ge 0.1 \text{ V}$	- 1.0		1.0	LSB	
Output minimum voltage 1	V _{AOL1}		No load, Vss = 0 V When digital setting is #00.	Vss		Vss + 0.1	V	
Output minimum voltage 2	V _{AOL2}		$I_{\text{source}} = 500 \; \mu\text{A}$ When digital setting is #00.	Vss - 2.0	Vss	Vss + 0.2	V	
Output minimum voltage 3	V _{AOL3}	AO 1	$\label{eq:Isink} \begin{split} I_{\text{sink}} = 500 \; \mu A \\ \text{When digital setting is \#00.} \end{split}$	Vss		Vss + 0.2	V	
Output minimum voltage 4	VAOL4	to AO 12	$\begin{aligned} &V_{DD} = V_{CC} = 5.0 \text{ V} \\ &V_{SS} = GND = 0.0 \text{ V} \\ &I_{source} = 1.0 \text{ mA} \\ &When \text{ digital setting is } \#00. \end{aligned}$	Vss - 0.3	Vss	V ss + 0.3	V	
Output minimum voltage 5	V _{AOL5}		$\begin{split} V_{DD} &= V_{CC} = 5.0 \text{ V} \\ V_{SS} &= GND = 0.0 \text{ V} \\ I_{sink} &= 1.0 \text{ mA} \\ When digital setting is \#00. \end{split}$	Vss	_	V ss + 0.3	V	

(Continued)

(V_{DD}, V_{CC} = + 5 V \pm 10% (V_{CC} \geq V_{DD}), GND, V_{SS} = 0 V, Ta = - 40 °C to + 85 °C)

Doromotor Symb		Din name Conditions		Value			I Imia
Parameter	Symbol	Pin name	Conditions	Min	Тур	Max	Unit
Output maximum voltage 1	V _{АОН1}		No load, $V_{DD} = V_{CC}$ When digital setting is #FF.	V _{DD} - 0.1		V DD	V
Output maximum voltage 2	V _{AOH2}		$\begin{array}{l} I_{\text{source}} = 500 \; \mu A \\ When \; \text{digital setting is \#FF.} \end{array}$	V _{DD} - 0.2	_	V DD	V
Output maximum voltage 3	Vаонз	AO 1	$\begin{aligned} I_{\text{sink}} &= 500 \; \mu A \\ \text{When digital setting is \#FF.} \end{aligned}$	V _{DD} - 0.2	V dd	V DD + 0.2	V
Output maximum voltage 4	Vаон4	to AO 12	$\begin{split} &V_{DD} = V_{CC} = 5.0 \text{ V} \\ &V_{SS} = GND = 0.0 \text{ V} \\ &I_{source} = 1.0 \text{ mA} \\ &When \text{ digital setting is \#FF.} \end{split}$	V _{DD} - 0.3	_	V dd	V
Output maximum voltage 5	V _A OH5		$\begin{split} V_{\text{DD}} &= V_{\text{CC}} = 5.0 \text{ V} \\ V_{\text{SS}} &= GND = 0.0 \text{ V} \\ I_{\text{sink}} &= 1.0 \text{ mA} \\ \text{When digital setting is \#FF.} \end{split}$	V _{DD} - 0.3	V dd	V DD + 0.3	V

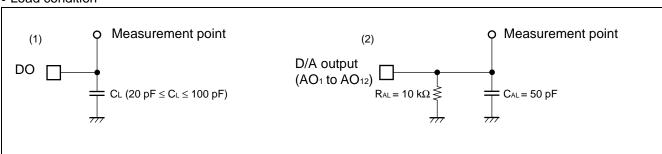

Non linearity error

: The error of the I/O curve from the ideal straight line between output voltages at "00"

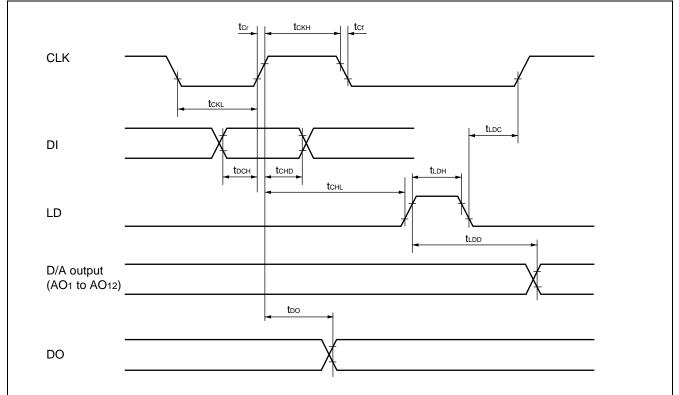
and "FF".

Differential linearity error: The error from the ideal increment given when the digital value is incremented by one

bit.

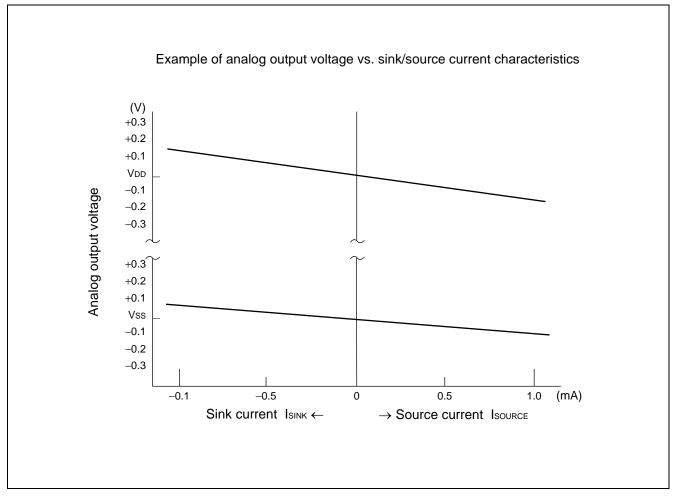


2. AC Characteristics


(Vdd, Vcc = + 5 V \pm 10% (Vcc \geq Vdd) , GND, Vss = 0 V, Ta = - 40 °C to + 85 °C)

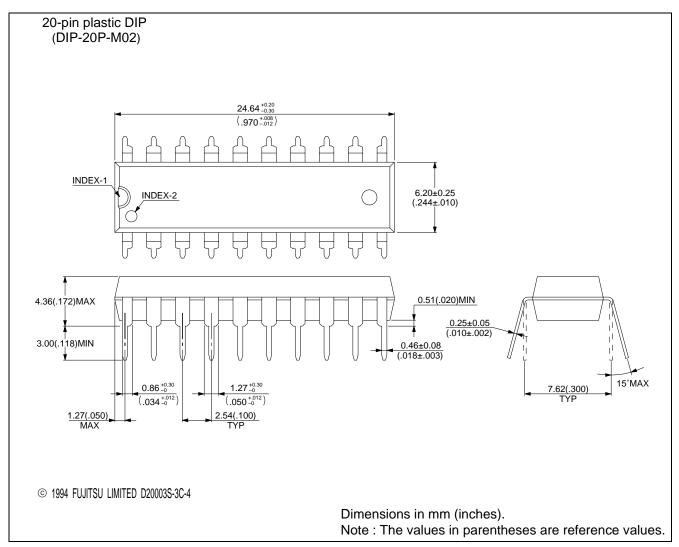
Parameter	Symbol	Conditions	Va	lue	Unit
Parameter	Symbol	Symbol Conditions		Max	Unit
"L" level clock pulse width	t ckl	_	200	_	
"H" level clock pulse width	t ckH	_	200		
Clock rising time Clock falling time	tor tor	_		200	
Data setup time	t DCH	_	30	_	
Data hold time	t chd	_	60	_	ns
Load setup time	t chL	_	200	_	
Load hold time	tLDC	_	100	_	
"H" level load pulse width	t LDH	_	100	_	
Data output delay time	tDO	Refer to "Load condition (1)".	70	350	
D/A output settling time	t ldd	Refer to "Load condition (2)".	_	20	μS

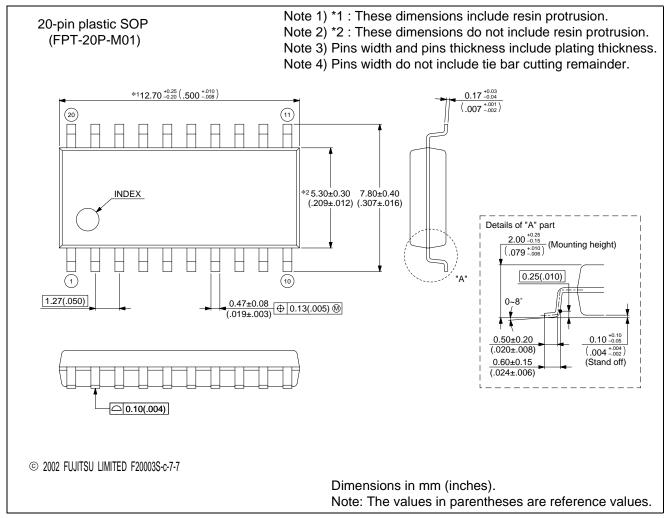
• Load condition

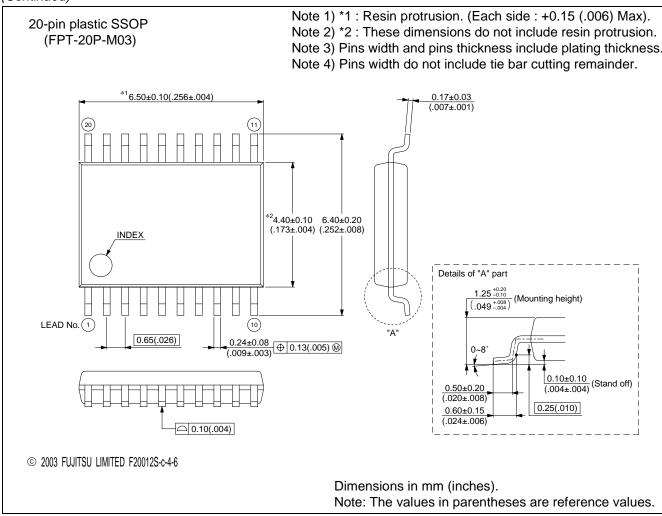


• Input/output timing

Note : The D/A output evaluation level is 90% and 10% of Vcc. The other evaluation level is 80% and 20% of Vcc.


■ EXAMPLE CHARACTERISTICS




■ ORDERING INFORMATION

Part No.	Package	Remarks
MB88346BP	20-pin plastic DIP (DIP-20P-M02)	
MB88346BPF	20-pin plastic SOP (FPT-20P-M01)	
MB88346BPFV	20-pin plastic SSOP (FPT-20P-M03)	

■ PACKAGE DIMENSIONS

MEMO		

MEMO		
		,

FUJITSU MICROELECTRONICS LIMITED

Shinjuku Dai-Ichi Seimei Bldg. 7-1, Nishishinjuku 2-chome, Shinjuku-ku, Tokyo 163-0722, Japan Tel: +81-3-5322-3347 Fax: +81-3-5322-3387 http://jp.fujitsu.com/fml/en/

For further information please contact:

North and South America

FUJITSU MICROELECTRONICS AMERICA, INC. 1250 E. Arques Avenue, M/S 333
Sunnyvale, CA 94085-5401, U.S.A.
Tel: +1-408-737-5600 Fax: +1-408-737-5999
http://www.fma.fujitsu.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH Pittlerstrasse 47, 63225 Langen, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122

Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://emea.fujitsu.com/microelectronics/

Korea

FUJITSU MICROELECTRONICS KOREA LTD. 206 KOSMO TOWER, 1002 Daechi-Dong, Kangnam-Gu,Seoul 135-280 Korea

Tel: +82-2-3484-7100 Fax: +82-2-3484-7111

http://www.fmk.fujitsu.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE LTD.

151 Lorong Chuan, #05-08 New Tech Park,
Singapore 556741

Tel: +65-6281-0770 Fax: +65-6281-0220

http://www.fujitsu.com/sg/services/micro/semiconductor/

FUJITSU MICROELECTRONICS SHANGHAI CO., LTD. Rm.3102, Bund Center, No.222 Yan An Road(E), Shanghai 200002, China Tel: +86-21-6335-1560 Fax: +86-21-6335-1605 http://cn.fujitsu.com/fmc/

FUJITSU MICROELECTRONICS PACIFIC ASIA LTD.

10/F., World Commerce Centre, 11 Canton Road
Tsimshatsui, Kowloon
Hong Kong
Tel: +852-2377-0226 Fax: +852-2376-3269
http://cn.fujitsu.com/fmc/tw

All Rights Reserved.

The contents of this document are subject to change without notice.

Customers are advised to consult with sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of FUJITSU MICROELECTRONICS device; FUJITSU MICROELECTRONICS does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information.

FUJITSU MICROELECTRONICS assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU MICROELECTRONICS or any third party or does FUJITSU MICROELECTRONICS warrant non-infringement of any third-party's intellectual property right or other right by using such information. FUJITSU MICROELECTRONICS assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that FUJITSU MICROELECTRONICS will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.

The company names and brand names herein are the trademarks or registered trademarks of their respective owners.