Vishay Beyschlag # **Precision Thin Film Chip Resistors** Thin Film Flat Chip Resistors combine the proven reliability of the professional products with an advanced level of precision and stability. Therefore they are perfectly suited for applications in the fields of test and measuring equipment together with industrial and medical electronics. ## **FEATURES** • Superior overall stability: Class 0.1 and 0.25 - Lead (Pb)-free solder contacts - Compliant to RoHS directive 2002/95/EC ### **APPLICATIONS** - Automotive - Test and measuring equipment - Medical equipment - · Industrial equipment | METRIC SIZE | | | | | | | | | |-------------|----------|----------|----------|----------|--|--|--|--| | INCH: | 0402 | 0603 | 0805 | 1206 | | | | | | METRIC: | RR 1005M | RR 1608M | RR 2012M | RR 3216M | | | | | | TECHNICAL SPECIFICAT | TIONS | | | | | | | | | |--|-----------------|-----------------------|----------------|-----------------------|-------------------------------|---------------------|-----------------------------|-----------|--| | DESCRIPTION | MCS 0402 | | МС | MCT 0603 | | MCU 0805 | | MCA 1206 | | | Metric size | RR 1 | 005M | RR 1 | 608M | RR 2 | 012M | RR 3216M | | | | Resistance range | 100 Ω to | 221 kΩ | 39 Ω to | 511 kΩ | 39 Ω to | 1.5 MΩ | 39 Ω to | ο 2 ΜΩ | | | Resistance tolerance | | | | ± 0.25 % | %; ± 0.1 % | | | | | | Temperature coefficient | | | ± 25 | ppm/K; ± 15 | ppm/K; ± 10 | ppm/K | | | | | Operation mode | Precision | Standard | Precision | Standard | Precision | Standard | Precision | Standard | | | Climatic category (LCT/UCT/days) | 10/85/56 | 55/125/56 | 10/85/56 | 55/125/56 | 10/85/56 | 55/125/56 | 10/85/56 | 55/125/56 | | | Rated dissipation, P ₇₀ (1) | 0.016 W | 0.063 W | 0.032 W | 0.1 W | 0.050 W | 0.125 W | 0.1 W | 0.25 W | | | Operating voltage, U _{max.} AC/DC | 12.5 V | 50 V | 25 V | 75 V | 35 V | 150 V | 50 V | 200 V | | | Film temperature | 85 °C | 125 °C | | | Max. resistance change at P_{70} for resistance range, $ \Delta R/R $ max., after: | 100 Ω to 221 kΩ | | 39 Ω to 511 kΩ | | 39 Ω to 1.5 M Ω | | 39 Ω to 2 M Ω | | | | 1000 h | ≤ 0.1 % | ≤ 0.2 % | ≤ 0.1 % | ≤ 0.2 % | ≤ 0.1 % | ≤ 0.2 % | ≤ 0.05 % | ≤ 0.1 % | | | 8000 h | ≤ 0.2 % | ≤ 0.4 % | ≤ 0.2 % | ≤ 0.4 % | ≤ 0.2 % | ≤ 0.4 % | ≤ 0.1 % | ≤ 0.25 % | | | 225 000 h | ≤ 0.5 % | ≤ 1.0 % | ≤ 0.5 % | ≤ 1.0 % | ≤ 0.5 % | ≤ 1.0 % | ≤ 0.25 % | ≤ 0.5 % | | | Specified lifetime | 225 | 000 h | 225 | 000 h | 225 000 h | | 225 (| 000 h | | | Insulation voltage: | | | | | | | | | | | 1 min; U _{ins} | 75 | 5 V | 100 V | | 200 V | | 300 V | | | | Continuous | 75 | 5 V | 75 V | | 75 V | | 75 V | | | | Failure rate: FIT _{observed} | ≤ 0.1 × | (10 ⁻⁹ /h | ≤ 0.1 x | x 10 ⁻⁹ /h | ≤ 0.1 x | 10 ⁻⁹ /h | ≤ 0.1 x 10 ⁻⁹ /h | | | #### Note ⁽¹⁾ The power dissipation on the resistor generates a temperature rise against the local ambient, depending on the heat flow support of the printed-circuit board (thermal resistance). The rated dissipation applies only if the permitted film temperature is not exceeded. Precision Thin Film Chip Resistors Vishay Beyschlag #### Note ⁽¹⁾ Products can be ordered using either the PRODUCT DESCRIPTION or the PART NUMBER | TEMPERATURE COEFFICIENT AND RESISTANCE RANGE | | | | | | | | | | |--|-----------|--------------------------------|-------------------------------|-------------------------------|-------------------------------|--|--|--|--| | DES | CRIPTION | | RESISTANC | E VALUE (2) | | | | | | | TCR | TOLERANCE | MCS 0402 | MCT 0603 | MCU 0805 | MCA 1206 | | | | | | . 05// | ± 0.25 % | 100 Ω to 221 k Ω | 39 Ω to 511 k Ω | 39 Ω to 1.5 M Ω | 39 Ω to 2 M Ω | | | | | | ± 25 ppm/K | ± 0.1 % | 150 Ω to 221 k Ω | 47 Ω to 511 k Ω | 47 Ω to 1.5 M Ω | 47 Ω to 2 M Ω | | | | | | . 15 nnm// | ± 0.25 % | 100 Ω to 150 kΩ | 39 Ω to 332 k Ω | 39 Ω to 1 M Ω | 39 Ω to 1.5 M Ω | | | | | | ± 15 ppm/K | ± 0.1 % | 150 Ω to 150 k Ω | 47 Ω to 332 k Ω | 47 Ω to 1 M Ω | 47 Ω to 1.5 M Ω | | | | | | ± 10 ppm/K ⁽³⁾ | ± 0.25 % | 100 Ω to 130 k Ω | 39 Ω to 221 k Ω | 39 Ω to 511 k Ω | 39 Ω to 1 M Ω | | | | | | | ± 0.1 % | 150 Ω to 130 k Ω | 47 Ω to 221 k Ω | 47 Ω to 511 k Ω | 47 Ω to 1 M Ω | | | | | ## Notes - (2) Resistance values to be selected from E96 and E192 series, other values are available on request - (3) TCR 10 is specified over the temperature range from 10 °C to 85 °C Resistance ranges printed in bold are preferred TCR/tolerance combinations with optimized availability. | PACKAGING | | | |-----------|-------------------------------|------| | | REEL | | | MODEL | PIECES/
PAPER TAPE ON REEL | CODE | | MCS 0402 | 1000 | E1 | | WICS 0402 | 10 000 | E0 | | | 1000 | P1 | | MCT 0603 | 5000 | P5 | | | 20 000 | PW | | | 1000 | P1 | | MCU 0805 | 5000 | P5 | | | 20 000 | PW | | MCA 1006 | 1000 | P1 | | MCA 1206 | 5000 | P5 | Vishay Beyschlag Precision Thin Film Chip Resistors ## **DIMENSIONS** | DIMENSI | DIMENSIONS AND MASS | | | | | | | | | | | |----------|---------------------|-----------------|-------------|------------------------|------------------------|------------------------|--------------|--|--|--|--| | TYPE | H
(mm) | L
(mm) | W
(mm) | W _T
(mm) | T ₁
(mm) | T ₂
(mm) | MASS
(mg) | | | | | | MCS 0402 | 0.32 ± 0.05 | 1.0 ± 0.05 | 0.5 ± 0.05 | > 75 % of W | 0.2 + 0.1/- 0.15 | 0.2 ± 0.1 | 0.6 | | | | | | MCT 0603 | 0.45 + 0.1/- 0.05 | 1.55 ± 0.05 | 0.85 ± 0.1 | > 75 % of W | 0.3 + 0.15/- 0.2 | 0.3 + 0.15/- 0.2 | 1.9 | | | | | | MCU 0805 | 0.45 + 0.1/- 0.05 | 2.0 ± 0.1 | 1.25 ± 0.15 | > 75 % of W | 0.4 + 0.1/- 0.2 | 0.4 + 0.1/- 0.2 | 4.6 | | | | | | MCA 1206 | 0.55 ± 0.1 | 3.2 + 0.1/- 0.2 | 1.6 ± 0.15 | > 75 % of W | 0.5 ± 0.25 | 0.5 ± 0.25 | 9.2 | | | | | ## **SOLDER PAD DIMENSIONS** | RECOMME | RECOMMENDED SOLDER PAD DIMENSIONS | | | | | | | | | | |----------|-----------------------------------|-----------|-----------|-----------|------------------|-----------|-----------|-----------|--|--| | | WAVE SOLDERING | | | | REFLOW SOLDERING | | | | | | | TYPE | G
(mm) | Y
(mm) | X
(mm) | Z
(mm) | G
(mm) | Y
(mm) | X
(mm) | Z
(mm) | | | | MCS 0402 | - | - | - | - | 0.35 | 0.55 | 0.55 | 1.45 | | | | MCT 0603 | 0.55 | 1.10 | 1.10 | 2.75 | 0.65 | 0.70 | 0.95 | 2.05 | | | | MCU 0805 | 0.80 | 1.25 | 1.50 | 3.30 | 0.90 | 0.90 | 1.40 | 2.70 | | | | MCA 1206 | 1.40 | 1.50 | 1.90 | 4.40 | 1.50 | 1.15 | 1.75 | 3.80 | | | #### Note Still, the given solder pad dimensions will be found adequate for most general applications, e.g. those referring to "standard operation mode". [•] The given solder pad dimensions reflect the considerations for board design and assembly as outlined e.g. in standards IEC 61188-5-x, or in publication IPC-7351. They do not guarantee any supposed thermal properties, particularly as these are also strongly influenced by many other parameters. Precision Thin Film Chip Resistors Vishay Beyschlag ### **DESCRIPTION** Production is strictly controlled and follows an extensive set of instructions established for reproducibility. A homogeneous film of metal alloy is deposited on a high grade Al_2O_3 ceramic substrate and conditioned to achieve the desired temperature coefficient. Specially designed inner contacts are deposited on both sides. A special laser is used to achieve the target value by smoothly fine trimming the resistive layer without damaging the ceramics. A further conditioning is applied in order to stabilize the trimming result. The resistor elements are covered by a blue protective coating designed for electrical, mechanical and climatic protection. The terminations receive a final pure tin on nickel plating. The result of the determined production is verified by an extensive testing procedure and optical inspection performed on 100 % of the individual chip resistors. Only accepted products are laid directly into the paper tape in accordance with **IEC 60286-3** ⁽³⁾. #### **ASSEMBLY** The resistors are suitable for processing on automatic SMD assembly systems and for automatic soldering using wave, reflow or vapour phase. The encapsulation is resistant to all cleaning solvents commonly used in the electronics industry, including alcohols, esters and aqueous solutions. The suitability of conformal coatings, if applied, shall be qualified by appropriate means to ensure the long-term stability of the whole system. The resistors are RoHS compliant, the pure tin plating provides compatibility with lead (Pb)-free and lead-containing soldering processes. Solderability is specified for 2 years after production or requalification. The permitted storage time is 20 years. The immunity of the plating against tin whisker growth has been proven under extensive testing. All products comply with the **GADSL** ⁽¹⁾ and the **CEFIC-EECA-EICTA** ⁽²⁾ list of legal restrictions on hazardous substances. This includes full compliance with the following directives: - 2000/53/EC End of Vehicle life Directive (ELV) an Annex II (ELV II) - 2002/95/EC Restriction of the use of Hazardous Substances Directive (RoHS) - 2002/96/EC Waste Electrical and Electronic Equipment Directive (WEEE) #### **APPOVALS** The resistors are approved within the IECQ-CECC Quality Assessment System for Electronic Components to the detail specification EN 140401-801 which refers to EN 60115-1, EN 140400 and the variety of environmental test procedures of the IEC 60068 ⁽³⁾ series. Conformity is attested by the use of the CECC Logo () as the Mark of Conformity on the package label. Vishay BEYSCHLAG has achieved "Approval of Manufacturer" in accordance with IEC QC 001002-3, clause 2. The release certificate for "Technology Approval Schedule" in accordance with CECC 240001 based on IEC QC 001002-3, clause 6 is granted for the Vishay BEYSCHLAG manufacturing process. #### **RELATED PRODUCTS** On request, resistors are available with **established reliability** in accordance with **EN 140401-801** version E. Please refer to the special datasheet document no. **28744** for information on failure rate level, available resistance ranges and order codes. For more information about products with higher rated power and higher operation temperature please refer to the **Professional Thin Film Chip Resistor** datasheet document no. **28705**. Precision **chip resistor arrays** may be used in voltage divider applications or precision amplifiers where close matching between multiple resistors is necessary. Please refer to the ACAS 0612 - Precision datasheet document no. **28751**. ## Notes (1) Global Automotive Declarable Substance List, see www.gadsl.org (3) The quoted IEC standards are also released as EN standards with the same number and identical contents ⁽²⁾ CEFIC (European Chemical Industry Council), EECA (European Electronic Component Manufacturers Association), EICTA (European trade organisation representing the information and communications technology and consumer electronics), see www.eicta.org/index.php?id=995 → issues → environment policy → chemicals → chemicals for electronics Vishay Beyschlag Precision Thin Film Chip Resistors ## **FUNCTIONAL PERFORMANCE** **Derating - Standard Operation** **Derating - Precision Operation** Current Noise A₁ In accordance with IEC 60195 Precision Thin Film Chip Resistors Vishay Beyschlag ### **TEST AND REQUIREMENTS** All tests are carried out in accordance with the following specifications: EN 60115-1, generic specification (includes tests) EN 140400, sectional specification (includes schedule for qualification approval) EN 140401-801, detail specification (includes schedule for conformance inspection) The components are approved in accordance with the European CECC-system, where applicable. The following table contains only the most important tests. For the full test schedule refer to the documents listed above. The testing also covers most of the requirements specified by EIA/IS-703 and JIS-C-5202. The tests are carried out in accordance with IEC 60068 and under standard atmospheric conditions in accordance with IEC 60068-1, 5.3. Climatic category LCT/UCT/56 (rated temperature range: Lower Category Temperature, Upper Category Temperature; damp heat, long term, 56 days) is valid. Unless otherwise specified the following values apply: Temperature: 15 °C to 35 °C Relative humidity: 45 % to 75 % Air pressure: 86 kPa to 106 kPa (860 mbar to 1060 mbar). The components are mounted for testing on boards in accordance with EN 60115-1, 4.31 unless otherwise specified. The parameters stated in the Test Procedures and Requirements table are based on the required tests and permitted limits of EN 140401-801. However, some additional tests and a number of improvements against those minimum requirements have been included. | TEST P | ROCEDUR | RES AND RE | QUIREMENTS | | | | |---------------|----------------|---|--|--|--|--| | EN
60115-1 | IEC
60068-2 | TEST | PROCEDURE | REQUIREMENTS PERMISSIBLE CHANGE (ΔR) | | | | CLAUSE | TEST
METHOD | | | STABILITY CLASS 0.1 | STABILITY CLASS 0.25 | | | | | | Stability for product types: | | | | | | | | MCS 0402 | 470 Ω to 10 k Ω | > 10 k Ω to 52.3 k Ω | | | | | | MCT 0603 | 100 Ω to 10 k Ω | 39 Ω to < 100 Ω ;
> 10 k Ω to 511 k Ω | | | | | | MCU 0805 | 100 Ω to 47.5 k Ω | 39 Ω to < 100 Ω ; > 47.5 k Ω to 1.5 M Ω | | | | | | MCA 1206 | 47 Ω to 332 k Ω | 39 Ω to < 47 Ω ; > 332 k Ω to 2 M Ω | | | 4.5 | - | Resistance | | ± 0.1 % <i>R</i> ; ± 0.25 % <i>R</i> | | | | 4.8.4.2 | - | Temperature coefficient | At (20/- 10/20) °C and (20/85/20) °C | ± 25 ppm/K; ± 15 p | ppm/K; ± 10 ppm/K | | | | _ | Endurance at 70 °C: | $U = \sqrt{P_{70} \times R}$ or $U = U_{\text{max.}}$;
whichever is the less severe;
1.5 h on; 0.5 h off; | | | | | | | Precision operation mode | 70 °C; 1000 h | ± (0.1 % R - | + 0.02 Ω) ⁽¹⁾ | | | 4.05.4 | | operation mode | 70 °C; 8000 h | ± (0.2 % R - | + 0.02 Ω) ⁽¹⁾ | | | 4.25.1 | - | Endurance at 70 °C: | $U = \sqrt{P_{70} \times R}$ or $U = U_{\text{max.}}$;
whichever is the less severe;
1.5 h on; 0.5 h off; | | | | | | | Standard operation mode | 70 °C; 1000 h | ± (0.2 % R - | + 0.02 Ω) ⁽¹⁾ | | | | | | 70 °C; 8000 h | \pm (0.4 % R + 0.05 Ω) ⁽¹⁾ | | | | 4.25.3 | - | Endurance at upper category temperature | 85 °C; 1000 h
125 °C; 1000 h | \pm (0.1 % R + 0.02 Ω)
\pm (0.2 % R + 0.02 Ω) | \pm (0.2 % R + 0.02 Ω)
\pm (0.25 % R + 0.05 Ω) | | | 4.24 | 78 (Cab) | Damp heat,
steady state | (40 ± 2) °C; 56 days;
(93 ± 3) % RH | ± (0.1 % R + 0.02 Ω) | ± (0.25 % R + 0.05 Ω) | | Document Number: 28700 Revision: 18-Dec-09 For technical questions, contact: thinfilmchip@vishay.com Vishay Beyschlag Precision Thin Film Chip Resistors | TEST P | ROCEDUF | RES AND RE | QUIREMENTS | | | | |---------------|------------------------|---|--|---|---|--| | EN
60115-1 | IEC
60068-2
TEST | TEST | PROCEDURE | REQUIRI
PERMISSIBLE | | | | CLAUSE | METHOD | | | STABILITY CLASS 0.1 | STABILITY CLASS 0.25 | | | | | | Stability for product types: | | | | | | | | MCS 0402 | 470 Ω to 10 $k\Omega$ | > 10 k Ω to 52.3 k Ω | | | | | | MCT 0603 | 100 Ω to 10 $k\Omega$ | 39 Ω to < 100 Ω ; > 10 k Ω to 511 k Ω | | | | | | MCU 0805 | 100 Ω to 47.5 k Ω | 39 Ω to < 100 Ω ; > 47.5 k Ω to 1.5 M Ω | | | | | | MCA 1206 | 47 Ω to 332 k Ω | 39Ω to < 47 Ω; > $332 \text{ k}\Omega$ to 2 MΩ | | | 4.23 | | Climatic sequence: | | | | | | 4.23.2 | 2 (Ba) | dry heat | UCT; 16 h | | | | | 4.23.3 | 30 (Db) | damp heat,
cyclic | 55 °C; 24 h; > 90 % RH; 1
cycle | | | | | 4.23.4 | 1 (Aa) | cold | LCT; 2 h | $\pm (0.1 \% R + 0.02 \Omega)$ | $\pm (0.25 \% R + 0.05 \Omega)$ | | | 4.23.5 | 13 (M) | low air
pressure | 8.5 kPa; 2 h; (25 ± 10) °C | | | | | 4.23.6 | 30 (Db) | damp heat,
cyclic | 55 °C; 5 days;
> 95 % to 100 % RH; 5 cycles
LCT = - 55 °C; UCT = 125 °C | | | | | - | 1 (Aa) | Cold | - 55 °C; 2 h | ± (0.05 % R + 0.01 Ω) | | | | 4.19 | 14 (Na) | Rapid change of temperature | 30 min at LCT and 30 min at UCT; LCT = - 10 °C UCT = 85 °C; 5 cycles | \pm (0.05 % R + 0.01 Ω) no visible damage | | | | | | | LCT = -55 °C; UCT = 125 °C;
1000 cycles | \pm (0.25 % R + 0.05 Ω)
no visible damage | | | | 4.13 | - | Short time
overload;
precision
operation mode | $U = 2.5 \times \sqrt{P_{70} \times R}$ or $U = 2 \times U_{\text{max}}$; | ± (0.05 % R + 0.01 Ω) | | | | | | Short time
overload;
standard
operation mode | whichever is the less severe;
5 s | ± (0.05 % R + 0.01 Ω) | | | | 4.27 | - | Single pulse
high voltage
overload;
standard
operation mode | Severity no. 4:
$U = 10 \times \sqrt{P_{70} \times R}$ or
$U = 2 \times U_{\text{max}}$;
whichever is the less severe;
10 pulses 10 µs/700 µs | \pm (0.5 % R + 0.05 Ω) ⁽²⁾ no visible damage | | | | 4.37 | - | Periodic electric
overload;
standard
operation mode | $U = \sqrt{15 \times P_{70} \times R}$ or $U = 2 \times U_{\text{max.}}$; whichever is the less severe; 0.1 s on; 2.5 s off; 1000 cycles | ± (0.5 % <i>R</i> -
no visible | | | | 4.22 | 6 (Fc) | Vibration | Endurance by sweeping;
10 Hz to 2000 Hz;
no resonance;
amplitude ≤ 1.5 mm or
≤ 200 m/s²; 6 h | ± (0.05 % F
no visible | * | | Precision Thin Film Chip Resistors Vishay Beyschlag | TEST PI | ROCEDUR | ES AND RE | QUIREMENTS | | | | |---------------|-----------------------|------------------------------|--|---|--|--| | EN
60115-1 | IEC
60068-2 | TEST | PROCEDURE | | EMENTS
CHANGE (△ <i>R</i>) | | | CLAUSE | TEST
METHOD | | | STABILITY CLASS 0.1 | STABILITY CLASS 0.25 | | | | | | Stability for product types: | | | | | | | | MCS 0402 | 470 Ω to 10 k Ω | > 10 kΩ to 52.3 kΩ | | | | | | MCT 0603 | 100 Ω to 10 k Ω | 39 Ω to < 100 Ω ;
> 10 k Ω to 511 k Ω | | | | | | MCU 0805 | 100 Ω to 47.5 k Ω | 39 Ω to < 100 Ω ;
> 47.5 k Ω to 1.5 M Ω | | | | | | MCA 1206 | 47 Ω to 332 k Ω | 39 Ω to < 47 Ω ;
> 332 k Ω to 2 M Ω | | | | | | Solder bath method;
SnPb40; non-activated flux
(215 ± 3) °C; (3 ± 0.3) s | Over different conference (conference) | 05 0/ a second) | | | 4.17.2 | 58 (Td) | Solderability | Solder bath method;
SnAg3Cu0.5 or SnAg3.5;
non-activated flux
(235 ± 3) °C; (2 ± 0.2) s | Good tinning (≥ 95 % covered);
no visible damage | | | | 4.18.2 | 58 (Td) | Resistance to soldering heat | Solder bath method;
(260 ± 5) °C; (10 ± 1) s | ± (0.05 % R + 0.01 Ω) | | | | 4.29 | 45 (XA) | Component solvent resistance | Isopropyl alcohol + 50 °C;
method 2 | No visible damage | | | | 4.00 | 04 (11) | Shear | RR 1005M and RR 1608M;
9 N | | | | | 4.32 | 21 (Ue ₃) | (adhesion) | RR 2012M and RR 3216M;
45 N | No visible | e damage | | | 4.33 | 21 (Ue ₁) | Substrate bending | Depth 2 mm, 3 times | , | $R + 0.01 \Omega$) pen circuit in bent position | | | 4.7 | - | Voltage proof | $U_{\rm RMS} = U_{\rm ins}; (60 \pm 5) {\rm s}$ | No flashover | or breakdown | | | 4.35 | - | Flammability | IEC 60695-2-2,
needle flame test; 10 s | No burning | g after 30 s | | | Special requ | uirements for t | ype MCA 1206 | | | | | | | | Endurance at 70 °C: | $U = \sqrt{P_{70} \times R}$ or $U = U_{\text{max}}$;
whichever is the less severe; | | | | | | - | Precision | 70 °C; 1000 h | ± (0.05 % / | $R + 0.02 \Omega$) | | | 4.25.1 | | operation mode | 70 °C; 8000 h | ± (0.1 % F | R + 0.02 Ω) | | | 4.20.1 | | Endurance at 70 °C: | $U = \sqrt{P_{70} \times R}$ or $U = U_{\text{max}}$; whichever is the less severe; | | | | | | - | Standard | 70 °C; 1000 h | ± (0.1 % F | $R + 0.02 \Omega$ | | | | | operation mode | 70 °C; 8000 h | ± (0.25 % / | R + 0.05 Ω) | | #### Notes ⁽¹⁾ See 4.25.1 (above): special requirements for type MCA 1206 ⁽²⁾ The pulse load stability of professional MFC resistors applies for precision resistors also. However, severe pulse loads are likely to jeopardise precision stability requirements. Vishay Beyschlag Precision Thin Film Chip Resistors Document Number: 28700 Revision: 18-Dec-09 ## 12NC INFORMATION FOR HISTORICAL CODING REFERENCE ONLY - The resistors have a 12-digit numeric code starting with 2312. - The subsequent 4 digits indicate the resistor type, specification and packaging; see the 12NC table. - The remaining 4 digits indicate the resistance value: - The first 3 digits indicate the resistance value. - The last digit indicates the resistance decade in accordance with the 12NC Indicating Resistance Decade table. ## **Last Digit of 12NC Indicating Resistance Decade** | RESISTANCE DECADE | LAST DIGIT | |-------------------|------------| | 10 Ω to 99.9 Ω | 9 | | 100 Ω to 999 Ω | 1 | | 1 kΩ to 9.99 kΩ | 2 | | 10 kΩ to 99.9 kΩ | 3 | | 100 kΩ to 999 kΩ | 4 | | 1 MΩ to 9.99 MΩ | 5 | ## 12NC Example The 12NC of a MCT 0603 resistor, value 47 k Ω and TCR 25 with \pm 0.1 % tolerance, supplied in cardboard tape of 5000 units per reel is: 2312 216 74703. | DECODIDEION | | | CODE 2312 | | | | | | |-------------|--------------|----------|------------------|------------------|--------------------|------------------|--------------------|--| | | DESCRIPTION | | | CARI | DBOARD TAPE ON | REEL | | | | ТҮРЕ | TCR | TOL. | P1
1000 UNITS | P5
5000 UNITS | PW
20 000 UNITS | E1
1000 UNITS | E0
10 000 UNITS | | | | ± 25 ppm/K | ± 0.25 % | - | - | - | 261 6 | 276 6 | | | | ± 25 ppii/K | ± 0.1 % | - | - | - | 261 7 | 276 7 | | | MCS 0402 | . 15 nnm// | ± 0.25 % | - | - | - | 262 6 | 277 6 | | | MCS 0402 | ± 15 ppm/K | ± 0.1 % | - | - | - | 262 7 | 277 7 | | | | . 10 ppm/// | ± 0.25 % | - | - | - | 263 6 | 278 6 | | | | ± 10 ppm/K | ± 0.1 % | - | - | - | 263 7 | 278 7 | | | | ± 25 ppm/K | ± 0.25 % | 201 6 | 216 6 | 206 6 | - | - | | | | | ± 0.1 % | 201 7 | 216 7 | 206 7 | - | - | | | MCT 0603 | ± 15 ppm/K | ± 0.25 % | 202 6 | 217 6 | 207 6 | - | - | | | IVICT U6U3 | | ± 0.1 % | 202 7 | 217 7 | 207 7 | - | - | | | | ± 10 ppm/K | ± 0.25 % | 203 6 | 218 6 | 208 6 | - | - | | | | | ± 0.1 % | 203 7 | 218 7 | 208 7 | - | - | | | | ± 25 ppm/K | ± 0.25 % | 241 6 | 256 6 | 246 6 | - | - | | | | | ± 0.1 % | 241 7 | 256 7 | 246 7 | - | - | | | MCU 0805 | . 15 ppm// | ± 0.25 % | 242 6 | 257 6 | 247 6 | - | - | | | MCO 0805 | ± 15 ppm/K | ± 0.1 % | 242 7 | 257 7 | 247 7 | - | - | | | | ± 10 ppm/K | ± 0.25 % | 243 6 | 258 6 | 248 6 | - | - | | | | ± 10 pp11/K | ± 0.1 % | 243 7 | 258 7 | 248 7 | - | - | | | | ± 25 ppm/K | ± 0.25 % | 381 6 | 396 6 | 386 6 | - | - | | | | ± 25 ppiii/K | ± 0.1 % | 381 7 | 396 7 | 386 7 | - | - | | | MOA 4600 | ± 15 ppm/K | ± 0.25 % | 382 6 | 397 6 | 387 6 | - | - | | | MCA 1206 | ± 15 ppm/K | ± 0.1 % | 382 7 | 397 7 | 387 7 | - | - | | | | + 10 nnm/V | ± 0.25 % | 383 6 | 398 6 | 388 6 | - | - | | | | ± 10 ppm/K | ± 0.1 % | 383 7 | 398 7 | 388 7 | - | _ | | For technical questions, contact: thinfilmchip@vishay.com # **Legal Disclaimer Notice** Vishay ## **Disclaimer** ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability. Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein. Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners. # **Material Category Policy** Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant. Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU. Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards. Revision: 02-Oct-12 Document Number: 91000