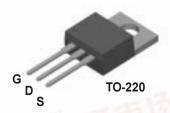


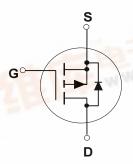
May 1999 DISTRIBUTION GROUP*

MTP2955V

P-Channel Enhancement Mode Field Effect Transistor

General Description


This P-Channel MOSFET has been designed specifically for low voltage, high speed switching applications i.e. power supplies and power motor controls.


These MOSFETs feature faster switching and lower gate charge than other MOSFETs with comparable $\rm R_{\rm DS(ON)}$ specifications.

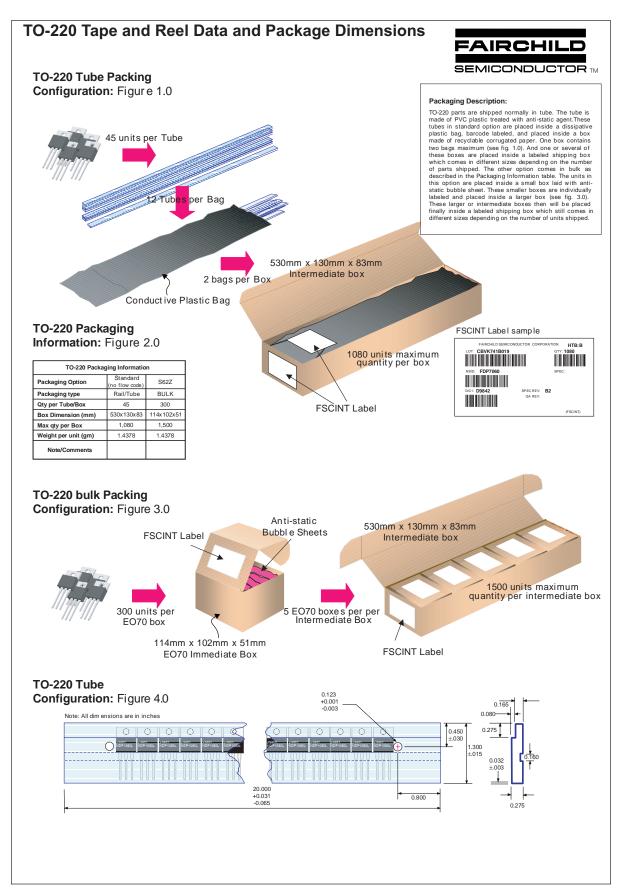
The result is a MOSFET that is easy and safer to drive (even at very high frequencies).

Features

- -12 A, -60 V. $R_{DS(ON)} = 0.230 \Omega @ V_{GS} = -10 V$
- Critical DC electrical parameters specified at elevated temperature.
- Rugged internal source-drain diode can eliminate the need for an external Zener diode transient suppressor.
- 175°C maximum junction temperature rating.

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Parameter	Ratings	Units
V _{DSS}	Drain-Source Voltage	-60	V
V _{GSS}	Gate-Source Voltage	<u>+</u> 20	V
I _D	Drain Current - Continuous	-12	Α
	- Pulsed	-42	
P _D	Total Power Dissipation @ T _C = 25∘C	60	W
	Derate above 25∘C	0.40	W/∘C
T _J , T _{STG}	Operating and Storage Junction Temperature Range	-65 to +175	∘C
Therma	I Characteristics		
R ₀ JC	Thermal Resistance, Junction-to- Case	2.5	∘C/W
R _{ÐJA}	Thermal Resistance, Junction-to- Ambient (Note 1)	62.5	∘C/W

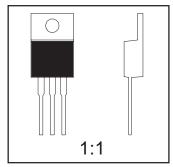

Package Outlines and Ordering Information

Device Marking	Device	Device Package Information	
MTP2955V	MTP2955V	Rails/Tubes	45 units

Die and manufacturing source subject to change without prior notification.

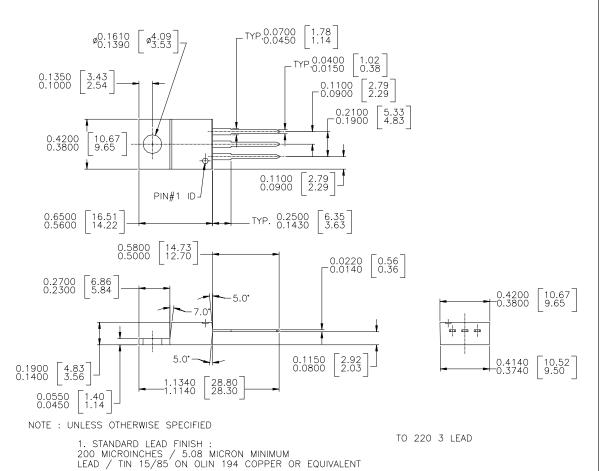

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
DRAIN-S	OURCE AVALANCHE RAT	NGS (Note 2)				
W _{DSS}	Single Pulse Drain-Source Avalanche Energy	$V_{DD} = -25 \text{ V}, I_{D} = -12 \text{ A}$			216	mЈ
AR	Maximum Drain-Source Avalanche	Current			-12	Α
Off Char	a atamiatia a				·	
BV _{DSS}	acteristics Drain-Source Breakdown Voltage	$V_{GS} = 0 \ V_{r} \mid_{D} = -250 \ \mu A$	-60			V
ΔBVDSS ΛTJ	Breakdown Voltage Temperature Coefficient	I _D = -250 μA, Referenced to 25°C		-63		mV/∘C
DSS	Zero Gate Voltage Drain Current	V _{DS} = -60 V, V _{GS} = 0 V			-10	μА
DSS	Zero Gate Voltage Drain Current	V _{DS} = -60 V, V _{GS} = 0 V, T _J = 150°C			-100	μA
GSSF	Gate-Body Leakage Current, Forward	V _{GS} = 20 V, V _{DS} = 0 V			100	nA
GSSR	Gate-Body Leakage Current, Reverse	V _{GS} = -20 V, V _{DS} = 0 V			-100	nA
On Chara	acteristics (Note 2)					
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}, \mid_{D} = -250 \mu A$	-2	-3	-4	V
∆VGS(th)	Gate Threshold Voltage Temperature Coefficient	I _D = -250 μA, Referenced to 25°C		5		mV/∘C
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = -10 V,I _D = -6 A,			0.230	Ω
V _{DS(on)}	Drain Source On-Voltage	I _D = -12 A, V _{GS} = -10 V			-2.9	V
g _{FS}	Forward Transconductance	$V_{DS} = -10 \text{ V}, I_{D} = -6 \text{ A}$	3.0			S
Dynamic	Characteristics					
C _{iss}	Input Capacitance	V _{DS} = -25 V, V _{GS} = 0 V,			700	pF
Coss	Output Capacitance	f = 1.0 MHz			280	pF
C _{rss}	Reverse Transfer Capacitance				100	pF
	g Characteristics (Note 2)	V _{DD} = -30 V, I _D = -12 A,		1	30	no.
t _{d(on)}	Turn-On Delay Time	$V_{\text{GS}} = -10 \text{ V}, R_{\text{GEN}} = 9.1 \Omega$				ns
<u>t</u> ,	Turn-On Rise Time	Y SEIN STAN			100	ns
t _{d(off)}	Turn-Off Delay Time				50	ns
t _f	Turn-Off Fall Time	\ \ - 40.\\			80	ns
Q _g	Total Gate Charge	$V_{DS} = -48 \text{ V},$ $I_{D} = -12 \text{ A}, V_{GS} = -10 \text{ V}$		_	30	nC
Q _{gs}	Gate-Source Charge	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		3		nC
Q _{gd}	Gate-Drain Charge			5		nC
<u>Drain-So</u>	urce Diode Characteristics		1	1		T .
S	Maximum Continuous Drain-Source				-12	Α .
SM	Maximum Pulsed Drain-Source Di	, , ,			-42	A
V_{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 \ V_1 _{S} = -12 \ A$ (Note 2)			-3.0	V

^{1.} R_{BJA} is the sum of the juntion-to-case and case-to-ambient thermal resistance. 2. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%



TO-220 Tape and Reel Data and Package Dimensions, continued

TO-220 (FS PKG Code 37)



2. DIMENSION BASED ON JEDEC STANDARD TO-220 VARIATION AB, ISSUE J, DATED 3/24/87

Scale 1:1 on letter size paper
Dimensions shown below are in:
inches [millimeters]

Part Weight per unit (gram): 1.4378

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

 E^2CMOS^{TM} PowerTrench® FACT TM QFET TM QS TM

 $\begin{array}{lll} {\sf FAST}^{\circledast} & {\sf Quiet\ Series^{\sf TM}} \\ {\sf FASTr^{\sf TM}} & {\sf SuperSOT^{\sf TM}-3} \\ {\sf GTO^{\sf TM}} & {\sf SuperSOT^{\sf TM}-6} \\ {\sf HiSeC^{\sf TM}} & {\sf SuperSOT^{\sf TM}-8} \\ \end{array}$

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS. NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.