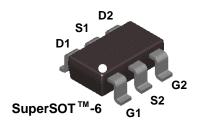
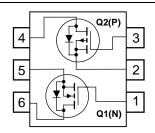


NDC7001C

Dual N & P-Channel Enhancement Mode Field Effect Transistor

General Description


These dual N & P-Channel Enhancement Mode Field Effect Transistors are produced using Fairchild's proprietary, high cell density, DMOS technology. This very high density process has been designed to minimize on-state resistance, provide rugged and reliable performance and fast switching. These device is particularly suited for low voltage, low current, switching, and power supply applications.


Features

• Q1 0.51 A, 60V. $R_{DS(ON)} = \ 2 \ \Omega \ @ \ V_{GS} = 10 \ V$ $R_{DS(ON)} = \ 4 \ \Omega \ @ \ V_{GS} = 4.5 \ V$

• **Q2** -0.34 A, 60V. $R_{DS(ON)} = 5 \ \Omega \ @ \ V_{GS} = -10 \ V$ $R_{DS(ON)} = 7.5 \Omega \ @ \ V_{GS} = -4.5 \ V$

- · High saturation current
- High density cell design for low RDS(ON)
- Proprietary SuperSOTTM –6 package: design using copper lead frame for superior thermal and electrical capabilities

Absolute Maximum Ratings T_A=25°C unless otherwise noted

Symbol	Parameter		Q1	Q2	Units
V _{DSS}	Drain-Source Voltage		60	-60	V
V _{GSS}	Gate-Source Voltage		±20	±20	
I _D	Drain Current - Continuous	(Note 1a)	0.51	-0.34	Α
	- Pulsed		1.5	-1	
P _D	Power Dissipation for Single Operation (Note 1a)		0.	0.96	
		(Note 1b)	0	.9	W
		(Note 1c)	0	.7	
T _J , T _{STG}	Operating and Storage Junction Tempera	–55 to	+150	°C	

Thermal Characteristics

R _{θJA}	Thermal Resistance, Junction-to-Ambient	(Note 1a)	130	°C/W
R _{θJC}	Thermal Resistance, Junction-to-Case	(Note 1)	60	

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity
.01C	NDC7001C	7"	8mm	3000

Symbol	Parameter	Test Conditions			Min	Тур	Max	Units	
Off Char	acteristics								
BV _{DSS}	Drain-Source Breakdown Volta	age	$V_{GS} = 0 \text{ V}, \qquad I_{D} = 250 \text{ V}, \ V_{GS} = 0 \text{ V}, \qquad I_{D} = -250 \text{ V}, \ V_{D} = -250 \text{ V}, \ V_{$) μΑ 50 μΑ	Q1 Q2	60 –60			V
<u>ΔBV_{DSS}</u> ΔT _J	Breakdown Voltage Temperatu Coefficient	Breakdown Voltage Temperature I _D = 250 μ			Q1 Q2		67 –57		mV/°C
I _{DSS}	Zero Gate Voltage Drain Curre	Zero Gate Voltage Drain Current		V V	Q1 Q2			1 –1	μА
I _{GSSF}	Gate-Body Leakage, Forward		$V_{GS} = 20 \text{ V}, V_{DS} = 0$	٧	All			100	nA
I _{GSSR}	Gate-Body Leakage, Reverse		$V_{GS} = -20 \text{ V}, V_{DS} = 0$	V	All			-100	nA
On Char	acteristics (Note 2)								
V _{GS(th)}	Gate Threshold Voltage	Q1	$V_{DS} = V_{GS}, I_D = 250$) μΑ		1	2.1	2.5	V
(,		Q2	$V_{DS} = V_{GS}$, $I_D = -25$			-1	-1.9	-3.5	
$\Delta V_{GS(th)}$	Gate Threshold Voltage	Q1	$I_D = 250 \mu\text{A}, \text{Reference}$	•	25°C		-3.8		mV/°C
ΔTJ	Temperature Coefficient	Q2	$I_D = -250 \mu\text{A}, \text{Ref. to } 2$				3.2		
R _{DS(on)}	Static Drain–Source	Q1	$V_{GS} = 10 \text{ V}, I_{D} = 0.5$				1	2	Ω
INDS(on)	On–Resistance	١٠	$V_{GS} = 4.5 \text{ V}, I_D = 0.3$	5 A			2	4	22
			$V_{GS} = 10 \text{ V}, I_D = 0.51 \text{ A}$		25°C		1.7	3.5	
		Q2	$V_{GS} = -10 \text{ V}, I_D = -0.$				1.2	5	
			$V_{GS} = -4.5 \text{ V}, I_D = -0.2 \text{ V}$ $V_{GS} = -10 \text{ V}, I_D = -0.34 \text{ W}$		25°€		1.5	7.5	
1	On-State Drain Current	Q1	$V_{GS} = 10 \text{ V}$ $V_{DS} = 10 \text{ V}$		20 0	1.5	1.9	10	Α
I _{D(on)}	On-State Drain Current		$V_{GS} = 10 \text{ V}$ $V_{DS} = 10 \text{ V}$ $V_{DS} = -10 \text{ V}$						A
		Q2				-1	000		
g FS	Forward Transconductance	Q1	$V_{DS} = 10 \text{ V}$ $I_{D} = 0.5$				380		mS
		Q2	$V_{DS} = -10 \text{ V} I_{D} = -0$.34A			700		
Dynamic	Characteristics		T-						•
C_{iss}	Input Capacitance	Q1	For Q1 :	.,			20		pF
		Q2	$V_{DS} = 25 \text{ V}, V_{GS} = 0$	V			66		
Coss	Output Capacitance	Q1	f = 1.0MHz				11		pF
		Q2	For Q2 : $V_{DS} = -25 \text{ V}, V_{GS} = 0$	\/			13		
C_{rss}	Reverse Transfer Capacitance		$v_{DS} = -25 \text{ v}, v_{GS} = 0$ f = 1.0 MHz	V			4.3		pF
		Q2	1 = 1.0WI12			1	6		
R_G	Gate Resistance	Q1	V _{GS} = 15 mV, f = 1.0 l	MHz			11.2		Ω
		Q2					11.2		
Switchin	g Characteristics (Note 2)					1			ı
$t_{d(on)}$	Turn-On Delay Time	Q1	For Q1 :				2.8	5.6	ns
	Turn On Bi Ti	Q2	$V_{DS} = 25 \text{ V}, I_{DS} = 1 \text{ A}$ $V_{GS} = 10 \text{ V}, R_{GEN} = 0$				3.2	6.4	
t _r	Turn-On Rise Time	Q1	┪	O 22			8	16	ns
+	Turn Off Dolov Time	Q2 Q1	For Q2 : V _{DS} =–25 V, I _{DS} = –1	Α			10 14	20 26	no
$t_{d(off)}$	Turn-Off Delay Time	Q1 Q2	$V_{GS} = -10 \text{ V}, R_{GEN} = 0$				8	16	ns
t _f	Turn-Off Fall Time	Q1	1				4	8	ns
*1	Tani On Lan Illio	Q2	1				1	2	110
Qg	Total Gate Charge	Q1	For Q1 :				1.1	1.5	nC
- 49	2 2 2	Q2	$V_{DS} = 25 \text{ V}, I_{DS} = 0.5$	51 A			1.6	2.2	
Q _{gs}	Gate-Source Charge	Q1	V_{GS} = 10 V, R_{GEN} =				0.2		nC
g-		Q2	For Q2 :	25.4			0.3		
Q_{gd}	Gate-Drain Charge	Q1	$V_{DS} = -25 \text{ V}, I_{DS} = -0$ $V_{GS} = -10 \text{ V}, R_{GEN} = 0$				0.4		nC
		Q2	- Go- 10 V, NGEN -	J 11			0.3		

Electrical Characteristics T_A = 25°C unless otherwise noted **Symbol Parameter Test Conditions** Min Max **Units** Typ **Drain-Source Diode Characteristics and Maximum Ratings** Maximum Continuous Drain-Source Diode Forward Current Q1 0.51 Α -0.34 Q2 V_{SD} $V_{GS} = 0 \text{ V}, I_{S} = 0.51 \text{ A}$ Drain-Source Diode Forward Q1 8.0 1.2 ٧ Voltage $V_{GS} = 0 \text{ V}, I_{S} = -0.34 \text{ A}$ (Note 2) Q2 -0.8 -1.4 $I_F = 0.51 \text{ A}, d_{iF}/d_t = 100 \text{ A}/\mu\text{s}$ $t_{\text{rr}} \\$ Diode Reverse Recovery Q1 18 nS Time $I_F = -0.34 \text{ A}, \quad d_{iF}/d_t = 100 \text{ A/}\mu\text{s}$ 16 $I_F = 0.51 \text{ A}, d_{iF}/d_t = 100 \text{ A}/\mu\text{s}$ Q_{rr} Diode Reverse Recovery Q1 16 nC Charge $I_F = -0.34 \text{ A},$ $d_{iF}/d_t = 100 \text{ A/}\mu\text{s}$ 11

Notes

 R_{8,JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{8,JC} is guaranteed by design while R_{8CA} is determined by the user's board design.

 a) 130 °C/W when mounted on a 0.125 in² pad of 2 oz. copper.

b) 140°C/W when mounted on a .005 in² pad of 2 oz copper

c) 180°C/W when mounted on a minimum pad.

Scale 1:1 on letter size paper

2. Pulse Test: Pulse Width < 300µs, Duty Cycle < 2.0%

Typical Characteristics: N-Channel

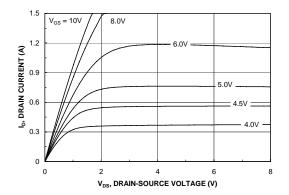


Figure 1. On-Region Characteristics.

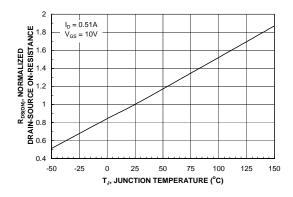


Figure 3. On-Resistance Variation withTemperature.

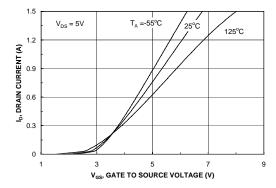


Figure 5. Transfer Characteristics.

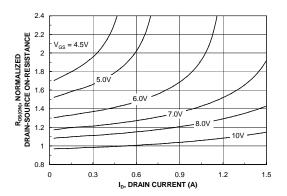


Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

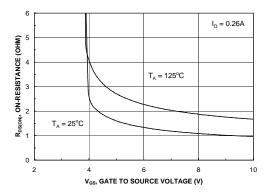


Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

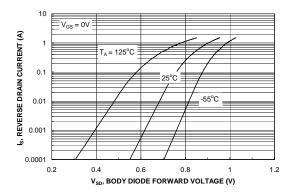
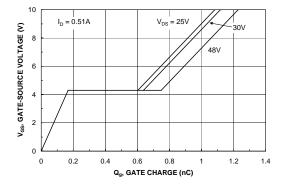



Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Characteristics: N-Channel (continued)

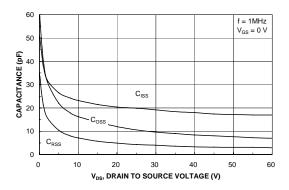
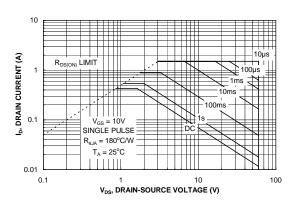



Figure 7. Gate Charge Characteristics.

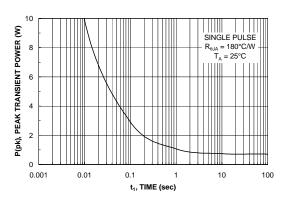


Figure 9. Maximum Safe Operating Area.

Figure 10. Single Pulse Maximum Power Dissipation.

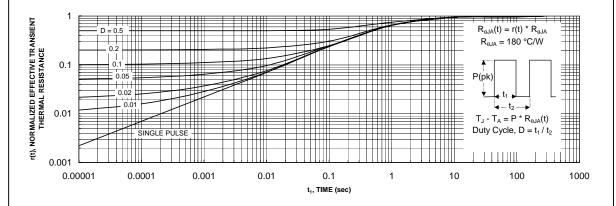


Figure 21. Transient Thermal Response Curve.

Thermal characterization performed using the conditions described in Note 1c. Transient thermal response will change depending on the circuit board design.

Typical Characteristics: P-Channel

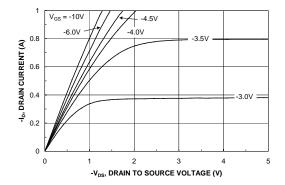


Figure 11. On-Region Characteristics.

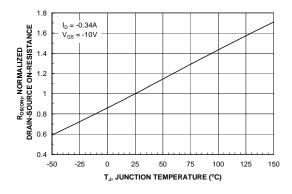


Figure 13. On-Resistance Variation withTemperature.

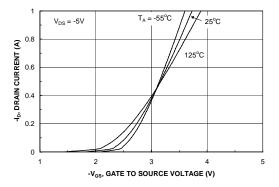


Figure 15. Transfer Characteristics.

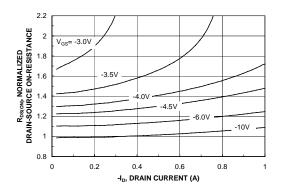


Figure 12. On-Resistance Variation with Drain Current and Gate Voltage.

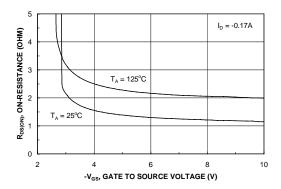


Figure 14. On-Resistance Variation with Gate-to-Source Voltage.

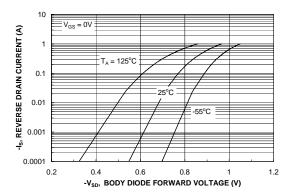
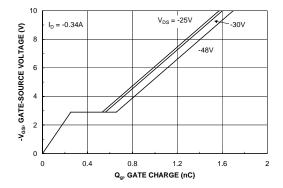



Figure 16. Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Characteristics: P-Channel (continued)

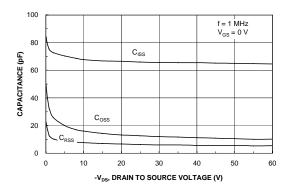


Figure 17. Gate Charge Characteristics.

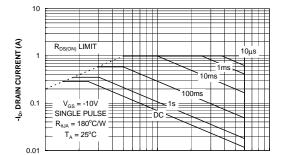


Figure 18. Capacitance Characteristics.

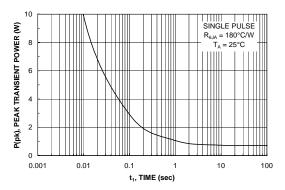


Figure 19. Maximum Safe Operating Area.

10 -V_{DS}, DRAIN-SOURCE VOLTAGE (V)

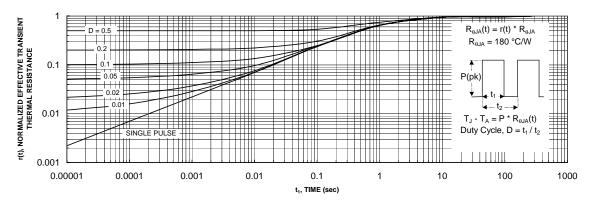


Figure 21. Transient Thermal Response Curve.

Thermal characterization performed using the conditions described in Note 1c.

Transient thermal response will change depending on the circuit board design.

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

FAST ® SILENT SWITCHER® UHC™ ACEx™ MICROWIRE™ SMART START™ UltraFET® FASTr™ Bottomless™ OPTOLOGIC® $\mathsf{CoolFET^{\mathsf{TM}}}$ SPM™ **VCX**TM FRFET™ OPTOPLANAR™ GlobalOptoisolator™ STAR*POWER™ CROSSVOLT™ PACMAN™ DenseTrench™ GTO™ РОР™ Stealth™ SuperSOT™-3 DOME™ HiSeC™ Power247™ I²CTM SuperSOT™-6 EcoSPARK™ PowerTrench ® SuperSOT™-8 E²CMOSTM ISOPLANAR™ QFET™ QS™ SyncFET™ EnSigna™ LittleFET™ TinyLogic™ FACT™ MicroFET™ QT Optoelectronics™ TruTranslation™ FACT Quiet Series™ MicroPak™ Quiet Series™

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. H5