

Power MOSFET

30 V, 2.5 A, Single N-Channel, SOT-23

Features

- Leading Planar Technology for Low Gate Charge / Fast Switching
- 4.5 V Rated for Low Voltage Gate Drive
- SOT–23 Surface Mount for Small Footprint (3 x 3 mm)
- Pb-Free Package is Available

Applications

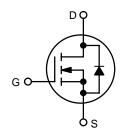
- DC-DC Conversion
- Load/Power Switch for Portables
- Load/Power Switch for Computing

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter		Symbol	Value	Unit		
Drain-to-Source Voltage			V _{DSS}	30	V	
Gate-to-Source Voltage			V _{GS}	±20	V	
Continuous Drain Current (Note 1)	Steady	T _A = 25°C	I _D	2.0	Α	
Current (Note 1)	State	T _A = 85°C		1.5		
	t ≤ 10 s	T _A = 25°C		2.5		
Power Dissipation (Note 1)	Steady State	T _A = 25°C	P _D	0.73	W	
Continuous Drain	Steady	T _A = 25°C	I _D	1.5	Α	
Current (Note 2)	State	T _A = 85°C		1.1		
Power Dissipation (Note 2)		T _A = 25°C	P _D	0.42	W	
Pulsed Drain Current	t _p = 10 μs		I _{DM}	6.0	Α	
ESD Capability (Note 3)		100 pF, 1500 Ω	ESD	125	V	
Operating Junction and Storage Temperature		T _J , T _{stg}	–55 to 150	°C		
Source Current (Body Diode)		I _S	2.0	Α		
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)		TL	260	°C		

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

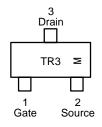
THERMAL RESISTANCE RATINGS


Parameter	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	170	°C/W
Junction-to-Ambient - t < 10 s (Note 1)	$R_{\theta JA}$	100	
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	300	

- 1. Surface-mounted on FR4 board using 1 in sq pad size.
- Surface—mounted on FR4 board using the minimum recommended pad size.
- 3. ESD Rating Information: HBM Class 0.

NTR4503N

V _{(BR)DSS}	R _{DS(on)} TYP	I _D MAX
30 V	85 mΩ @ 10 V	2.5 A
	105 mΩ @ 4.5 V	2.071


N-Channel

MARKING DIAGRAM/ PIN ASSIGNMENT

SOT-23 CASE 318 STYLE 21

TR3 = Specific Device Code M = Date Code

ORDERING INFORMATION

Device	Package	Shipping [†]
NTR4503NT1	SOT-23	3000/Tape & Reel
NTR4503NT1G	SOT-23 (Pb-Free)	3000/Tape & Reel
NTR4503NT3G	SOT-23 (Pb-Free)	10000/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

NTR4503N

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
OFF CHARACTERISTICS						
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	30	36		V
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 24 V			1.0	μA
		V _{GS} = 0 V, V _{DS} = 24 V, T _J = 125°C			10	
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$			±100	nA
TY CHARACTERISTICS (Note 4)						
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 250 \mu A$	1.0	1.75	3.0	V
Drain-to-Source On-Resistance	R _{DS(on)}			85	110	mΩ
		$V_{GS} = 4.5 \text{ V}, I_D = 2.0 \text{ A}$		105	140	
Forward Transconductance	9FS	$V_{DS} = 4.5 \text{ V}, I_D = 2.5 \text{ A}$		5.3		S
CHARGES AND CAPACITANCES	•			•	•	
Input Capacitance	C _{iss}			135		pF
Output Capacitance	C _{oss}	$V_{GS} = 0 \text{ V, f} = 1.0 \text{ MHz,}$ $V_{DS} = 15 \text{ V}$		52		
Reverse Transfer Capacitance	C _{rss}	v _{DS} = 15 v		15		
Input Capacitance	C _{iss}			130	250	pF
Output Capacitance	C _{oss}	$V_{GS} = 0 \text{ V, f} = 1.0 \text{ MHz,}$ $V_{DS} = 24 \text{ V}$		42	75	
Reverse Transfer Capacitance	C _{rss}	VDS - 2- V		13	25	
Total Gate Charge	Q _{G(TOT)}			3.6	7.0	nC
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 10 V, V _{DS} = 15 V,		0.3		
Gate-to-Source Charge	Q _{GS}	$I_D = 2.5 \text{ A}$		0.6		
Gate-to-Drain Charge	Q_{GD}			0.7		
Total Gate Charge	Q _{G(TOT)}			1.9		nC
Threshold Gate Charge	Q _{G(TH)}	Vcc = 4.5 V. Vcc = 24 V.		0.3		
Gate-to-Source Charge	Q _{GS}	$V_{GS} = 4.5 \text{ V}, V_{DS} = 24 \text{ V},$ $I_{D} = 2.5 \text{ A}$		0.6		1
Gate-to-Drain Charge	Q_{GD}			0.9		1
SWITCHING CHARACTERISTICS (No	te 5)			•	•	
Turn-On Delay Time	t _{d(on)}			5.8	12	ns
Rise Time	t _r	V _{GS} = 10 V, V _{DD} = 15 V,		5.8	10	
Turn-Off Delay Time	t _{d(off)}	$I_D = 1 \text{ A}, R_G = 6 \Omega$		14	25	
Fall Time	t _f			1.6	5.0	
Turn-On Delay Time	t _{d(on)}			4.8		ns
Rise Time	t _r	V _{GS} = 10 V, V _{DD} = 24 V.		6.7		
Turn-Off Delay Time	t _{d(off)}	$V_{GS} = 10 \text{ V}, V_{DD} = 24 \text{ V},$ $I_{D} = 2.5 \text{ A}, R_{G} = 2.5 \Omega$		13.6		
Fall Time	t _f			1.8		
DRAIN-SOURCE DIODE CHARACTE	RISTICS			•	•	•
Forward Diode Voltage	V_{SD}	$V_{GS} = 0 \text{ V}, I_{S} = 2.0 \text{ A}$		0.85	1.2	V
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 \text{ V, } I_{S} = 2.0 \text{ A,}$		9.2		ns
Reverse Recovery Charge	Q _{RR}	$dI_{S}/dt = 100 \text{ A/}\mu\text{s}$		4.0	<u> </u>	nC

^{4.} Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.

^{5.} Switching characteristics are independent of operating junction temperatures.