Parallel Programming for Everyone

Naftali D. Schwartz

New York University, 251 Mercer St., New York, NY 10012-1185

Abstract. This article proposes a novel architectural model which aug-
ments the latest developments in automatic program parallelization and
distributed systems to achieve a level of practicality as yet unknown to ei-
ther field. Today’s premier automatic parallelization model is well suited
to implementation on a network of commodity workstations (NOW) us-
ing only a very thin layer of software support. We describe a paralleliz-
ing compiler framework which greatly simplifies the parallelization of
even highly complex sequential applications while producing extremely
effective parallelizations for the NOW. We further show how our model
greatly enhances programmer productivity through the use of minimally
invasive C++ transformation techniques, aiding both debugging and
portability.

1 Introduction

There has always been a dim awareness of some common motivation between
the fields of Automatic Parallelization and Distributed Systems. After all, the
raison d’etre of both is to aid programmer and execution efficiency through the
construction of elaborate software tools. These tools unburden the programmer
of the substantial programming investment needed for effective speedups on some
parallel platform.

Naturally, the focus of the two fields is not identical. In Automatic Paral-
lelization, emphasis is placed on deriving maximum performance from elaborate
multiprocessing hardware with little or no programmer intervention. Distributed
Systems, on the other hand, stresses effective utilization of existing commodity
hardware, even if some programming convenience must be sacrificed.

Recently, researchers from either field have begun to consider the goals of
the other. Eigenmann, et al.[EPV97], looking for a more economically feasible
target architecture, investigated parallelizing transformations for parallel work-
stations. Baratloo, et al.[BDK95], attempting to ease the complexity of writing
distributed applications, devised an environment to provide efficient network ex-
ecution within a simplified programming paradigm. What has been overlooked,
however, is that the time is ripe for a convergence of the fields where each can
benefit from the methodologies of the other.

Such a convergence has been made possible by complimentary discoveries.
The parallelization community has learned the value of data-locality over efficient
data-distribution[EHP98] and the significance of coarse-grain loopsfHAM™95].
The distributed systems community has found that fault masking can be more
effectively handled at the systems level than at the application level[DKR95].

Interestingly enough, a synthesis of all these ideas leads to an extremely effi-
cient and effective mapping of sequential applications onto a NOW, without any
run-time hardware or software sophistication of any kind. In this paper, we set
forth the details of this mapping. We also show that a C++ implementation of
this mapping is especially attractive, not only because of its increasing popular-
ity, but because it incorporates features which support a completely platform-
independent program transformation methodology. Furthermore, debugging is
eased by the simplicity of the parallelization model, and also by performing only
the most minimally invasive transformations for parallelization.

The rest of this paper is organized as follows. In Section 2, we describe a novel
technique for efficient demand-driven parallelization. In Section 3, we describe
how to effectively limit the high cost of communications over a NOW. Then, in
Section 4, we show how C++ can serve as a universal parallel language, neatly
sidestepping the parallel versioning problem. The following Section 5 details the
mechanics of sharing memory via NFS for simplicity and portability. In Section
6, we show how our unification of the concepts of static and dynamic memory
has simplified the handling of both. Section 7 outlines the different scheduling
issues relevant to workstation network execution. Section 8 discusses caveats and
some extensions and limitations of our method. Section 9 mentions the limited
related work, and Section 10 concludes.

2 Demand-driven Parallelization for NOW

As outlined in the Introduction, NOW is ideally suited for the execution of
coarse, independent grains. However, finding the ideal loop which can provide
these grains is a non-trivial task, requiring an elaborate interprocedural analysis.
Here we offer such an analysis, building on work done in dynamic compilation.

Autrey[AW97] outlines an interprocedural analysis for discovering the fre-
quency of modification of particular program variables. Global Recursion Level
Analysis (GRLA) is a Value Specific Optimization (VSO) formulated as a for-
ward data-flow problem over the program’s complete call graph (whose non-
trivial construction in C++ is described in [CHS95]). GRLA partitions the com-
putations of a program by labeling them with Code Stating Levels (CSL) which
are the monotonically increasing elements of a single-chain stage-level lattice.
More deeply nested code is associated with higher lattice values. Once CSLs
have been assigned, Glacial Value Propagation (GVP) labels variable definitions
and expressions with elements of the same lattice, indicating the frequency with
which each value changes.

We modify this analysis to assign labels in the other direction, with lowest
values assigned to simple loops without function calls and increasing for each loop
nesting. For non-recursive programs, this can be done in a single pass. Recursive
cycles need to be iterated over. While in GRLA functions are evaluated as the
MAX meet of their callers, we assign values to functions based on the MAX
meet of their constituent loops. At the end of the analysis, a clear picture of the

global program loop nesting emerges from which a coarse-grain parallelization
scheme can be devised.

In general, this analysis will discover a number of “main” functions if there
are several unused functions included in the program (this is usually the case).
Although it is possible to distinguish the real one by matching to the main
identifier, this would prevent application of the system to the parallelization of
libraries. A truly general solution simply takes the highest-labeled function as
the main function.!

The structure of the chosen main function is then examined. In general,
it will consist of a sequence of statements, function calls and loops. Individual
statements and low-numbered function calls and loops (below a parallel-practical
threshold) are ignored. Loops with high level are considered for parallelization,
and functions with high level are recursively examined. In this manner the main
function is (recursively) divided up into an alternating sequence of sequential
code and parallelizeable loops. 2

Fach coarse grained loop is then analyzed for parallelizeability. This involves
testing for a number of disqualifying conditions:

— Loop-carried flow-dependence or control-dependence

Input operations or other operating system calls

Non-local transfers of control such as longjmp or C++ exceptions
Allocation of memory without corresponding deallocation

Notice that loop-carried output- and anti-dependences do not disqualify a
loop, because these are memory-related and each iteration will use a private
copy of the shared memory. Notice also that as special cases, writes to output
and error streams are also permitted within a parallel loop.

The final disqualifier, allocation of memory which will be used outside of the
parallel loop, can in the general case not be checked statically, but this error
condition can be checked at run-time by intercepting and matching up all calls
to memory allocation and deallocation at the client. If unmatched allocations
are discovered at client termination, a special error condition would have to be
returned to the server to have it inform the user and abort.>

If one or more of the main program loops do not satisfy the parallelization
prerequisites, the internal loop structure is further analyzed in a recursive man-
ner as performed on the original main program function. * At the end, we arrive

! This works as long as the loop depth of the unused code is lower than the loop depth
of the main program—probably a safe assumption.

2 Attempt is made to split up long sequences of sequential code into parallel sections
as well, but the best division in this case is less well defined and needs further study.

3 In this unlikely circumstance, the user can insert a more obviously illegal allocation
inside of the would-be parallel loop to discourage the compiler from subsequent
parallelization attempts on the loop.

4 As an aid to the user, we can also indicate which loop was a desirable parallelism
candidate and why it had to be disqualified. This should be a great deal more effective
than current interactive parallelization systems, because it quickly focuses attention

at the maximal set of parallelizeable coarse-grained loops present in the input
program. We accomplish this in a simple two-phase algorithm: first bottom up,
assigning labels to loops and functions, and then top-down, finding the largest-
grain parallelizeable loops. This procedure is very efficient, and focuses attention
quickly on the loops of interest.

Once qualifying loops have been identified, we use an analysis similar in spirit
to GVP to determine which variables must be shared. Our criteria, however, is
not frequency of execution, but access both outside and inside (in a recursive
sense) of any parallel loop, or within two or more parallel loops. Each variable
meeting this criterion is considered shared, and is transformed as laid out in
Section 4. Variables which are accessed exclusively outside of any parallel loop
need no action, and variables accessed only inside of one particular loop should
be defined only in the client application which performs that loop’s iterations.
The mechanics of this shared variable test, as well as the construction of each
client, is described next.

3 Controlling Communication Costs for NOW

Once this loop is located and its parallelism verified, we must be particularly
meticulous in minimizing the communications costs, which on a NOW are ex-
pected to be rather high. In the following two subsections we show a methodology
for the custom generation of a scheduling server and cooperative clients which
minimize both data and code communication, assuring maximal performance
within the constraints of our model.

3.1 Minimal Shared Memory by Memory Classification Analysis

The minimal set of shared memory locations are those which are accessed both
within and without a parallel step. We call these locations collectively shared
memory, and in the following section we introduce a transformation methodology
to ensure that the values in these locations are made available at thread startup
and new values are returned to the server at thread termination. It turns out
that the information needed to determine this set of memory elements precisely
is computed by existing parallelization analysis techniques.

Memory Classification Analysis (MCA) is a recent technique for precisely
(up to conservative approximation) describing the memory reference behavior of
any code section. It was first introduced for Fortran arrays by Hoeflinger[Hoe98],
and recently extended by the author[Sch99] to deal with the nested and recursive
structures characteristic of C code.

MCA is a symbolic analysis which operates in a single pass over the program,
constructing Read-Only, Write-First and Read/Write sets for each statement.
Access summaries are generated for straight-line code, conditionals, loops and

to the most important loops in the program and their problems, instead of making
the user decide which loops should be parallelized. It should then be a fairly easy
task for the user to remove or modify the offending code.

procedure calls by the appropriate merging operations defined on these sets. In
order to precisely determine the shared data, then, all that is needed is a final
intersection of these sets for code inside the parallel loop with the merged sets of
the rest of the program code. Of course, since this is an interprocedural analysis,
any code executed through sequences of function calls will also be considered.

Furthermore, our extensions of the basic MCA technique include a method-
ology for the classification of heap allocated as well as static data. Using this
technique, we can classify every allocation statement as to whether it creates
shared or unshared blocks, and modify it as appropriate to allocate memory
from a shared segment.

3.2 Minimal Shared Code by Code Classification Analysis

We define a Code Classification Analysis, analogous to MCA, but vastly simpler.
The general idea is to sweep through the program, associating every statement
with the functions that it calls, and summarizing appropriately. With this infor-
mation, we can generate custom server and client functions which contain only
the functions relevant to each. This is particularly critical for clients, because
today’s networks don’t implement demand-paging for code as they do for data,
which means that large clients can take a substantial performance hit at the
start of a parallel step.

It is true that some caution must be exercised for both virtual functions
and functions whose addresses have been taken to ensure that these function
addresses are consistent between the server and all clients. However, these func-
tions tend to be quite small, so that inserting all of these as a common program
preamble into the server and all client files should be quite inexpensive.

All datatype declarations, of course, can be copied indiscriminantly, as they
take up no room in the (stripped) executable.

4 C+H+: A Universal Parallel Language

A persistent difficulty associated with the use of all parallelizing compilers is
that the output code is generated for a specific parallel platform, whether it be
a particular multiprocessor, network DSM, or popular message-passing library.
This scheme has several disadvantages. Firstly, users’ choice of parallel platform
is constrained by the model(s) supported by the parallelizing compiler. This en-
courages the incorporation of support for a multiplicity of parallel models within
the compiler, already a highly complex (and often fragile) piece of software. Fur-
thermore, users wanting to run the code on several different targets are forced
to generate (sometimes at high cost) and maintain separate versions for each
platform, an onerous task. In C++, at least, there is a better way.

There are two primary concepts which need to be specified in the paralleliza-
tion of a sequential code: the loops or code sections which are to be executed
in parallel, and the declarations and uses of shared data. We show how each of
these may be done completely portably in C++. Furthermore, we show that the

various scheduling and memory sharing policies can be effectively encapsulated
in a library, providing users with unlimited options in the parallel execution of
their programs, simply by linking in different support libraries. To be sure, some
memory models perform best when associated with particular program paral-
lelization styles, but the value of the portability and modularity of this approach
is indisputable.

4.1 Parallelism Specification

Specification of parallelism is done by wrapping up the relevant sections of code
into independently executable functions which are then packaged together with
all code and data on which the sections depend into independently executable
“mini-apps.” The names of these concurrently executable mini-apps are then
written into the program as arguments to a scheduling call. If the code is the
body of a parallelized loop, a specification of the index variable sequence is also
passed to the scheduler, which can then call the proper mini-app with appro-
priate arguments. Stack variables and parameters are transformed into global
variables (with appropriate name clash resolution) which are assigned to before
the scheduler is called, and (perhaps) read from after the scheduler terminates.

So far, we have not appealed to any specific C++ features; all of the foregoing
works just as well in C. In the next subsection, we outline the special C++
property which makes ultra-portable parallel programming possible.

4.2 CH+ Shared Memory Declaration and Use

The general procedure for sharing data is the mapping of shared variables to a
special shared segment which is protected through operating system page fault
mechanisms. This provides the flexibility to implement a wide variety of shared
memory semantics.

The problem with this scheme is that there is no language-independent way of
mapping particular variables to particular storage areas, forcing all parallelizing
compilers to generate platform-dependent code. Indeed, this has brought about
the design of a great variety of incompatible syntaxes for the specification of
shared data.

We solve this problem by adding one level of indirection to every shared vari-
able and initializing it to point to an appropriately-sized chunk allocated from
the shared memory segment. This works fine in C, as long as no shared variables
happen to be static. But global and static variables in C must have static (con-
stant) initializers! To be sure, some hackery is possible, such as collecting all the
proper initializations in a preamble to main (), but this is not a general solution.
Problems would arise when the values or addresses of global shared variables
are used in other global definitions, not to mention the complications of dealing
with shared variables defined in multiple files.’

5 There is certainly no general solution for C4++, which does not specify the order in
which the global initializers defined in different source files are executed. Any scheme

This is where the special feature of C++ comes to play. In C++, any variable
can have dynamic initialization. Which means that any variable can be initialized
at definition to point into shared memory. Furthermore, the language provides
direct support for this chicanery with the placement new operator which can
direct the allocation to a particular shared arena[Str97]. Accesses to this memory
use an additional indirection, and address operators are simply removed. Now
that the basic infrastructure is in place, we just need a way of properly handling
initializations that may be associated with shared variables.

Any variable which is either scalar or initialized with a constructor has a
simple mapping to a shared declaration by the simple insertion of the placement
new operator in front of the constructor call. The only difficulty is with aggre-
gates initialized using the aggregate initialization syntax. This, however, is easily
dealt with (if at the minor expense of some program namespace pollution) by
appeal to the general expressional nature of C ad C++ initializers. Basically, a
garbage declaration is inserted right after the shared variable declaration, whose
initialization expression is a parenthesized, comma separated list of assignments
to the individual aggregate elements, and terminated with a zero (or any value
of the appropriate type for the garbage declaration).

We have described a natural and platform-independent method of specifying
parallelism and defining, initializing and accessing shared memory in C++. Using
this methodology, many different scheduling and shared memory policies can be
implemented by linking in particular versions of the placement new operator and
the relevant scheduling functions. In the next section, we describe a surprisingly
simple and effective scheme based on the Network File System[PJST94] (NFS)
and memory-mapped files.

5 Sharing Memory Over NFS

The shared arena used in the placement new shared memory definitions is ac-
tually mapped to a disk file. When the scheduler spawns off a client, a copy of
this file is created over NFS. As the client starts up, it will execute a similar
sequence of shared memory allocation calls to set the shared variable pointers
to the identical addresses in shared memory, which is likewise mapped to this
shared memory file copy, but without any initialization. As execution proceeds,
some or all of the data pages in the disk file will be paged in. Any page which is
written to is backed up beforehand, and at the client’s termination a set of diffs
can be sent back to the scheduler. When the set of diffs from each client has
been collected, they are committed to the official copy of the shared memory,
with conflicts resolved in favor of the logically later writer.

In the past, many different groups have tried unsuccessfully to harness NFS
as a DSM manager. In fact, Minnich has developed his own souped up version
of NFS, Mether-NFS[Min93], which fills the gaps in NFS to make it a power-
ful communication and synchronization subsystem. Minnich contends that NFS

which tries to collect global definitions from different files together must take a stand
on this issue, thereby introducing a platform dependence.

was never designed to support shared memory, and presents several compelling
arguments for the necessity of a more powerful drop-in replacement:

— NFS client code does not differentiate between read and write faults.

— NFS server code does not ensure that only one process is writing a page at
a time.

The only coherency mode supported is completely incoherent.

— More than one page size is needed.

A mechanism for delivering a writable copy of a page to holders of read-only
copies is needed.

— A mechanism for direct application-to-application synchronization is needed.

However, all of these features go unused in the coarse, independent-grain
parallelization model which characterizes some of today’s most powerful systems.
So it appears that the NFS feature set, once dismissed as insufficient for the needs
of DSM, needs another look in light of today’s DSM needs.

6 Unified Shared Memory Allocation

We have designed our shared variable definition transformation in a manner
which does not in any way interfere with original program semantics. We have
developed a simple and effective methodology for allocating shared memory and
communicating it over workstation networks. Here we describe in detail how
memory allocation is done at the server and each client.

6.1 Shared Memory Address Assignment at the Server

As described above, shared memory operations may take place either implicitly
in the initialization of shared variables, or explicitly when an ordinary allocation
statement whose heap blocks have been determined to have shared memory
semantics is modified to use the same placement new operator. With this model,
we unify both static and dynamic memory allocation with regard to shared
memory. All of this memory, because it is mapped to the same disk file, can
easily be copied and supplied to every client.

6.2 Shared Memory Address Assignment at the Client

Our task in this subsection is to describe in detail how the shared variables
used at the client side are correctly mapped to the identical addresses originally
assigned to them at the server side. This would be trivial if we could arrange
for identical sequence of shared variable allocation calls to be executed at the
client as were done at the server. (Although the actual placement new operator
itself could not be used because it would insist on calling a constructor, a similar
allocator is called.)

However, we do encounter some complications. For one thing, the original
collection of shared variables could have been defined in multiple source files. In

this case, the order of their initializations is undefined, and therefore cannot be
duplicated within the client application. (This problem is a consequence of our
insistence on creating custom client executables for each parallel step.5)

A different problem occurs even when all shared variables are defined in
a single source file. This has to do with shared heap allocations occurring in
between shared variable allocations. Because these shared allocations only occur
within the server program, they will throw off future shared variable address
calculations which must occur within the client as well.

One way of solving these problems is to use a different shared arena/file
for each of the source files in which shared variables are defined. One additional
arena/file would also be allocated for objects on the shared heap. However, as this
significantly multiplies file management operations and/or introduces artificial
limits on the size of each of these segments, we choose instead to tabulate within
the parallelizer the shared address to which each shared variable is to point.

The basic idea is to statically compute every shared address and explicitly
initialize every shared variable with the appropriate address, both in the server
and in the client applications. (Shared heap allocations, however, would still be
allocated dynamically from the shared arena which logically begins following the
memory occupied by the statically shared variables.) In order to prevent platform
dependences from being manifest in the generated code, however, these “hard”
addresses could be specified symbolically in terms of the sizeof the various
constituent datatypes.

7 Scheduling

The abundance of node faults characteristic of real NOW platforms could eas-
ily cripple any large-scale parallel computation. This problem can be effectively
dealt with through Idempotent Eager Scheduling] AKPR93]. In this model, multi-
ple copies of idempotent computations are started on all available nodes, and the
first successfully terminated client has results committed; all others are killed.
In our independent parallel grain model, all clients are of course idempotent.
Therefore, this technique may be directly applied.

Idempotent Eager Scheduling not only gracefully supports node faults, but
the introduction of new nodes as well. One way of providing this feature is this
is to keep a list of machines which can be used in a disk file which is reread by
the server when changed, or providing some type of GUI for introducing the new
nodes.

Furthermore, for the scheduling of parallel loops, we can draw on the work
of Yan, et al.[YJZ97] for an optimal scheduling policy. They describe how to
adaptively adjust loop scheduling granularities to match the particular runtime
workload characteristics of the iterations.

6 There seems to be no guarantee even that within the identical compiler and platform
the linkage order will be the same for two different applications[Str97]

8 Caveats and Extensions/Limitations

Although we expect our model to support the parallelization of a wide variety
of codes, there are some points which must be kept in mind.

In the model we describe, it is essential that the shared memory file be
mapped to the identical memory address at all nodes. This is usually not prob-
lematic if the original address is “sufficiently high” not to interfere with anything
which may already be mapped.

It must be noted that the reason we cannot parallelize loops which allocate
memory which is not also deallocated within the loop is that we cannot co-
ordinate the different threads of execution in our independent-grain model to
guarantee non-overlapping allocations from the shared arena/file. At least two
workarounds for this restriction are possible. One is actually synchronizing all
shared memory allocations at the server, but this would detract from the sim-
plicity of our model. The other is to allow shared allocations at the client, but
to resolve them at the end of a parallel step, moving things around in shared
memory, if necessary. A sweep of memory (such as is used in garbage-collectors)
could then find and “correct” pointers into shared memory to their new values.
However, while in the garbage-collector routine incorrect memory pointer identi-
fication could result at worse in uncleared memory, applying this procedure safely
here could only be done in conjunction with sophisticated type inference[0J96].

With some additional effort, this framework could be constructed on a hetero-
geneous NOW platform. A very precise datatype memory layout will be required
to translate memory images across platforms. Data and function pointers should
be able to be translated as well. Of course, type inference would be extremely
helpful here as well.

Furthermore, although the semantics we have described for stack allocated
shared variables turns them into globals and renders recursive calls of the par-
allelized function incorrect, recursion could be supported by the explicit incor-
poration of a shared variable stack into the shared segment. However, because
these stack variables would then not have static addresses, the technique we
described above for ensuring identical addresses for statically shared memory in
the server and clients would need to be modified.

We have only described an architecture which can fairly accurately flag and
transform parallelizeable loops. An important enhancement would be to use
loop distribution[Wol96] or other sophisticated transformation techniques to au-
tomatically produce maximally sized parallelizeable loop subsections from nom-
inally unparallelizeable loops. For example, a loop whose iterations are compu-
tationally complex but begin with an input statement can be split up into one
input loop followed by one computation loop, the latter of which can be par-
allelized. Even loop-carried flow-dependences can sometimes be broken in this
manner.

9 Related Work

This work unifies the fields of distributed systems and automatic parallelization.
Previous distributed systems, such as Calypso[Bar99] and Chime[SD], require
explicit programmer annotations for effective parallelization, making the port-
ing of large existing codes impractical. On the other hand, Coelho[Coe94] has
demonstrated that naive application of automatic parallelization techniques to
the NOW setting leads to disappointing performance, with the network quickly
emerging as the bottleneck. We show that by combining the best ideas in both
fields, an extremely powerful parallelization model emerges.

10 Conclusion

We have developed a remarkably simple, flexible, effective and efficient model
for the automatic and portable construction of parallel versions of sequential
applications targeted for today’s cheapest and most popular platform, networks
of commodity workstations. We have demonstrated the independent value of
each of these ideas and the particular utility of their combination.

We have shown how each of the three issues raised in Cook, et al.[CPW94]
as impediments to widespread acceptance of parallelization are addressed in our
model. Our model:

— minimizes the need for expert parallel programmers by focusing the user’s
attention on the parallelism disqualifiers of the most important loops

— demonstrates how the most popular hardware, software and language can be
used together in an extremely simple system with unprecedented flexibility
and power

— eases debugging by retaining simple sequential semantics in the generated
parallel program as well as maximizing programmer recognition of the gen-
erated code by maintaining almost all original program structure

Furthermore, we have done all this without significantly mangling the orig-
inal program source code, which leaves the programmer with a high degree of
confidence in the transformed code[Ram98]. A common but dubious feature of
parallelizing compilers, especially those that work with C, is indiscriminate “nor-
malizing” of every difficult programming construct into lower-level code. In two
companion papers[Sch98, Sch99], we show how proper analysis can proceed with-
out this undesirable normalization for two of the most significant analysis issues
that come up in C.

A further way in which we maintain original code integrity as compared with
most parallelizing compilers is to concentrate solely on the coarse-grained opti-
mizations, leaving any memory hierarchy tuning up to the subsequent compiler,
which can be arbitrarily chosen to any level of sophistication.

The realization of this model will finally bring parallel programming within
everyone’s reach.

11 Acknowledgements

The author wishes to acknowledge the thoughtful comments of Zvi Kedem and
Arash Baratloo on an earlier draft of this paper.

This research was sponsored by the Defense Advanced Research Projects
Agency and Rome Laboratory, Air Force Materiel Command, USAF, under
agreement number F30602-96-1-0320; by the National Science Foundation under
grant number CCR-94-11590. The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes notwithstanding any copy-
right annotation thereon. The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of the Defense Ad-
vanced Research Projects Agency, Rome Laboratory, or the U.S. Government.

References

[AKPR93] Y. Aumann, Z. Kedem, K. Palem, and M. Rabin. Highly Efficient Asyn-
chronous Execution of Large-grained Parallel Programs. In 8/th IEEE Ann.
Symp. on Foundations of Computer Science, pages 271-280, 1993.

[AW97] T. Autrey and M. Wolfe. Initial results for glacial variable analysis. Lecture
Notes in Computer Science, 1239:120-77, 1997.

[Bar99] A. Baratloo. Metacomputing on Commodity Computers. PhD thesis, New
York University, May 1999.

[BDK95] A. Baratloo, P. Dasgupta, and Z. Kedem. Calypso: A novel software sys-
tem for fault-tolerant parallel processing on distributed platforms. In Pro-
ceedings of the 4th IEEE International Symposium on High Performance
Distributed Computing, 1995.

[CHS95] P. Carini, M. Hind, and H. Srinivasan. Flow-Sensitive Interprocedural
Type Analysis for C++4. Technical Report 20267, IBM Corporation,
November 1995.

[Coe94] F. Coelho. Experiments with HPF compilation for a network of worksta-
tions. Lecture Notes in Computer Science, 797:423-77, 1994.

[CPW94] C. R. Cook, C. M. Pancake, and R. Walpole. Are Expectations for Par-
allelism Too High? A Survey of Potential Parallel Users. In Proceedings,
Supercomputing ’94: Washington, DC, November 14-18, 1994, pages 126—
133, November 1994.

[DKR95] P. Dasgupta, Z. M. Kedem, and M. O. Rabin. Parallel Processing on Net-
works of Workstations: A Fault-Tolerant, High Performance Approach. In
Proceedings of the 15th Intl. Conf on Distributed Computing Systems, to
appear, June 1995.

[EHP98] R. Eigenmann, J. Hoeflinger, , and D. Padua. On the automatic paral-
lelization of the perfect benchmarks. IEEE Transactions on Parallel and
Distributed Systems, 9(1):5-23, January 1998.

[EPV97] R. Eigenmann, I. Park, and M. J. Voss. Are parallel workstations the right
target for parallelizing compilers? Lecture Notes in Computer Science,
1239:300-77, 1997.

[GSW95] Michael P. Gerlek, Eric Stoltz, and Michael Wolfe. Beyond induction vari-
ables: Detecting and classifying sequences using a demand-driven SSA form.

ACM Transactions on Programming Languages and Systems, 17(1):85-122,
January 1995.

[HAM™95] M. Hall, S. Amarasinghe, B. Murphy, S. Liao, and M. Lam. Detecting

[Hoe98]

[Min93]

[0396]

[PIST94]

[Ram9g]

[Rep94]

[Sch98]

[Sch99]

[SD]

[Str97]
[SWG94]
[Tu95]
[Wol96]

[YIZ97]

coarse-grain parallelism using an interprocedural parallelizing compiler. In
Proceedings of Supercomputing ’95, San Diego, CA, December 1995.

J. Hoeflinger. Interprocedural Parallelization Using Memory Classificaiton
Analysis. PhD thesis, University of Illinois at Urbana-Champaign, 1998.
R. G. Minnich. Mether-nfs: A modified nfs which supports virtual shared
memory. In Proc. of the Symp. on Ezperiences with Distributed and Multi-
processor Systems (SEDMS-1V), pages 89-107, September 1993.

R. O’Callahan and D. Jackson. Practical Program Understanding with
Type Inference. Technical Report CMU-CS-96-130, School of Computer
Science, Carnegie-Mellon University, May 1996.

Brian Pawlowski, Chet Juszczak, Peter Staubach, Carl Smith, Diane Lebel,
and Dave Hitz. NFS version 3: Design and implementation. In USENIX
Association, editor, Proceedings of the Summer 1994 USENIX Conference:
June 6-10, 1994, Boston, Massachusetts, USA, pages 137-151, Berkeley,
CA, USA, Summer 1994. USENIX.

N. Ramsey. Unparsing Expressions with Prefix and Postfix Operators. Soft-
ware—Practice and Ezperience, 28(8), August 1998.

T. Reps. Solving demand versions of interprocedural analysis problems. In
Proceedings of the Fifth International Conference on Compiler Construc-
tion, pages 389-403, April 1994.

N. D. Schwartz. Steering Clear of Triples: Deriving the Control Flow Graph
Directly from the Abstract Syntax Tree in C Programs. Technical Report
TR1998-766, New York University, Department of Computer Science, June
1998.

N. D. Schwartz. Memory Classification Analysis for Recursive C Struc-
tures. Technical Report TR1999-776, New York University, Department of
Computer Science, Feb 1999.

S. Sardesai and P. Dasgupta.
Chime: A Versatile Distributed Parallel Processing Environment. Avail-
able as http://www.eas.asu.edu/ calypso/frames/research_papers/chime/.
B. Stroustrup. The C++ Programming Language. Reading, Mass.:
Addison-Wesley, third edition, 1997.

E. Stoltz, M. Wolfe, and M. P. Gerlek. Constant Propagation: A Fresh,
Demand-Driven Look. In Symposium on Applied Computing, March 1994.
P. Tu. Automatic Array Privatization and Demand-Driven Symbolic Anal-
ysts. PhD thesis, University of Illinois at Urbana-Champaign, 1995.

M. Wolfe. High Performance Compilers for Parallel Computing. Addison-
Wesley, Redwood City, CA, 1996.

Yong Yan, Canming Jin, and Xiaodong Zhang. Adaptively scheduling par-
allel loops in distributed shared-memory systems. IEEFE Transactions on
Parallel and Distributed Systems, 8(1):70-81, January 1997.

This article was processed using the IXTEX macro package with LLNCS style

