High Frequency Planar Transformers

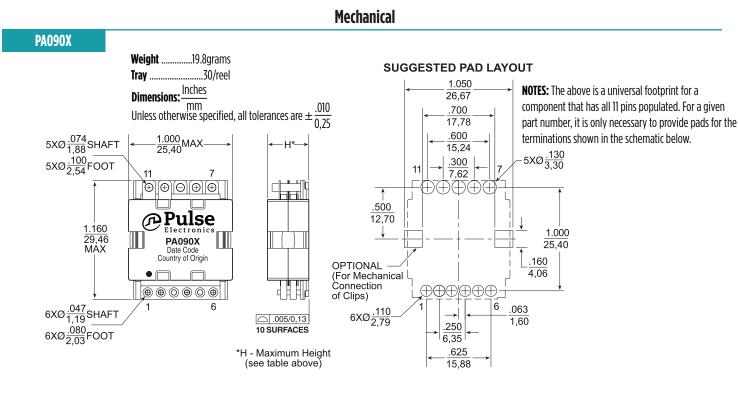
PA09XXNL Series (up to 250W)

- **Power Rating:** up to 250W
- Height: 9.1mm to 10.4mm Max
- **Footprint:** 29.5mm x 26.7mm Max
- **Frequency Range:** 200kHz to 700kHz

SPM2007 (03/15)

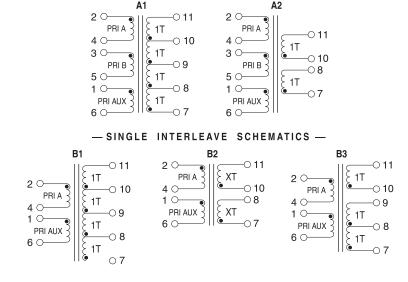
Isolation (Primary to Secondary): 1750VDC

Electrical Specifications @ 25°C - Operating Temperature -40°C to +125°C											
Part	Turns Ratio			Primary*	Leakage**	DCR (m Ω MAX)				Maximum	
Number	Primary A	Secondary	Schematic	Inductance (µH MIN)	Inductance (µH MAX)	Primary A	Primary B	Primary Aux.	Secondary	Height (mm)	
Double Interleave Designs (Higher Efficiency, Lower DCR and Lower Leakage)											
PA0901NL	4T & 4T		A1	216	0.3	13	13	—	4.5	10.2	
PA0903NL	5T & 5T (w/5T aux)			340	0.3	15	15	235			
PA0905NL	6T & 6T (w/2T aux)	4T (1T:1T:1T:1T)		480	0.3	21	21	78			
PA0907NL	7T & 7T (w/3T aux)	(11.11.11.11)		660	0.3	50	50	100			
PA0909NL	8T & 8T			860	0.3	60	60				
PA0908NL	4T & 4T	1T & 1T	A2	216	0.3	13	13		0.56 & 0.56	10.2	
PA0910NL	5T & 5T (w/5T aux)			340	0.3	15	15	235			
PA0912NL	6T & 6T (w/2T aux)			480	0.3	21	21	78			
PA0914NL	7T & 7T (w/3T aux)			660	0.3	50	50	100			
Single Inter	eave Designs (Lower	Cost)									
PA0930NL	4T	4T	M	54	0.3	13					
PA0931NL	5T (w/5T aux)	(11:11:11:11)	B1	85	0.3	15		470			
PA0934NL	4T		B2	54	0.3	13			40 & 40	9.1	
PA0935NL	5T (w/5T aux)	7T & 7T		85	0.3	15		470			
PA0936NL	6T (w/2T aux)			120	0.3	21		156			
PA0937NL	7T (w/3T aux)			165	0.3	50		200			
PA0947NL	8T			215	0.3	60					
PA0943NL	5T (w/5T aux)	2T & 1T	B3	85	0.3	15		470	1.8 & 0.6	9.1	


Notes: *Inductance is measured, where applicable, with both primary windings connected in series (2 to 5, with 3 and 4 shorted).

**Leakage inductance is measured with both primary windings connected in series (where applicable) with all other windings shorted.

High Frequency Planar Transformers


PA09XXNL Series (up to 250W)

Schematics

- DOUBLE INTERLEAVE SCHEMATICS -

PA090X

SPM2007 (03/15)

93

PA09XXNL Series (up to 250W)

PA09XX Transformer Winding Configuration Matrix

The following is a matrix of the winding configurations that are possible with the Pulse PAO9XX Planar Transformer Platform. The package is typically capable of handling between 150-250W of power depending on the application, ambient conditions and available cooling. Once a configuration is selected, the formulae and charts can be used to determine the approximate power dissipation and temperature rise of the component in a given application.

High Efficiency Double Interleaved Designs										
						SECO	NDARY WINDING	iS		
				Si	ngle Winding			Tapped Winding		Dual Winding
		Turns		π	21	4T	1:1	1:3	2:2	1T & 1T
			DCR (m Ω)	0.28	1.12	4.5	1.12	4.5	4.5	1.12
	Single Winding	4T	5	PA0908	PA0908	PA0901	PA0908	PA0901	PA0901	PA0908
PRIMARY WINDINGS		5T	7.5	PA0910	PA0910	PA0903	PA0910	PA0903	PA0903	PA0910
		6T	12	PA0912	PA0912	PA0905	PA0912	PA0905	PA0905	PA0912
		71	30	PA0914	PA0914	PA0907	PA0914	PA0907	PA0907	PA0914
		8T	20	PA0908	PA0908	PA0901	PA0908	PA0901	PA0901	PA0908
		10T	30	PA0910	PA0910	PA0903	PA0910	PA0903	PA0903	PA0910
		12T	48	PA0912	PA0912	PA0905	PA0912	PA0905	PA0905	PA0912
		14T	120	PA0914	PA0914	PA0907	PA0914	PA0907	PA0907	PA0914
		16T	140	PA0916	PA0916	PA0909	PA0916	PA0909	PA0909	PA0916
	Dual Winding	4T/4T	20	PA0908	PA0908	PA0901	PA0908	PA0901	PA0901	PA0908
		4T/5T	30	PA0910	PA0910	PA0903	PA0910	PA0903	PA0903	PA0910
		5T/5T	48	PA0912	PA0912	PA0905	PA0912	PA0905	PA0905	PA0912
		5T/6T	120	PA0914	PA0914	PA0907	PA0914	PA0907	PA0907	PA0914
		6T/6T	140			PA0909		PA0909	PA0909	

Lower Cost Single Interleaved Designs

								SECONDARY WINDINGS						
					Single Winding			Tapped	Dual Winding					
		Turns		31	4T	71	1:2	1:3	2:2	7:7	1T & 2T	7T & 7T		
			DCR (m Ω)	3.4	4.5	20	3.4	4.5	4.5	80	4.5	80		
<u>IS</u>	Single Winding	4T	10	—	PA0930	PA0934		PA0930	PA0930	PA0934	—	PA0934		
WINDINGS		5T	15	PA0943	PA0931	PA0935	PA0943	PA0931	PA0931	PA0935	PA0943	PA0935		
ΥWI		6T	24	—		PA0936	—	—		PA0936	—	PA0936		
PRIMARY		71	60	—		PA0937	—	—		PA0937	—	PA0937		
		8T	70	—		PA0947	—			PA0947	PA0947	PA0947		

Notes:

1. The primary inductance for any configuration can be calculated as: Primary Inductance (μ H MIN) = 3.4 * (Primary_Turns)²

2. The above base part numbers (PA09XXNL) are available from stock.

3. It is possible to add a small gap to the transformer. Gapped transformers are

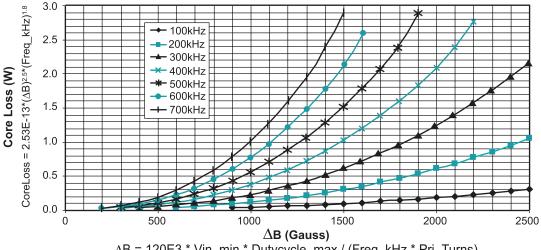
non-standard and can be made available upon request, but are not typically available from stock. To request a gapped version of the transformer, add a suffix "G" to the base number (i.e. PA0901NLG). The nominal inductance with the a gap can be calculated as: Primary Inductance (µH nominal) = 2.2 * (Primary Turns)²

94

pulseelectronics.com

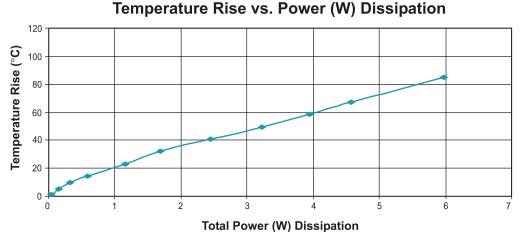
SPM2007 (03/15)

High Frequency Planar Transformers


PA09XXNL Series (up to 250W)

Notes from Tables

1. The above transformers have been tested and approved by Pulse's IC partners and are cited in the appropriate datasheet or evaluation board documentation at these companies. To determine which IC and IC companies are matched with the above transformers, please refer to the IC cross reference on the Pulse web page.


2. To determine if the transformer is suitable for your application, it is necessary to ensure that the temperature rise of the component (ambient plus temperature

rise) does not exceed its operating temperature. To determine the approximate temperature rise of the transformer, refer to the graphs below.

Core Loss vs. Flux Density

△B = 120E3 * Vin_min * Dutycycle_max / (Freq_kHz * Pri_Turns)

Total Power Dissipation (W) = .001 * (DCRprimary * IRMs_primary² + DCRsecondary * IRMs_secondary²) + Core Loss (W)

SPM2007 (03/15)

