

PET1600-12-074NA

FEATURES

- Best-in-class, 80 PLUS certified "Platinum" efficiency
- INTEL CRPS (Common Redundant Power Supply) compatible
- Wide input voltage range: 90-264 V_{AC}
- AC input with power factor correction
- 1600W continuous and 2100W peak output power capability
- Always-On 12V/3.5A standby output
- Hot-plug capable
- Parallel operation with active current sharing
- Full digital controls for improved performance
- High density design: 33.7 W/in3
- Small form factor: 73.5 x 40.0 x 265mm
- PMBus communication interface for control, programming and monitoring
- Status LED with fault signalling

DESCRIPTION

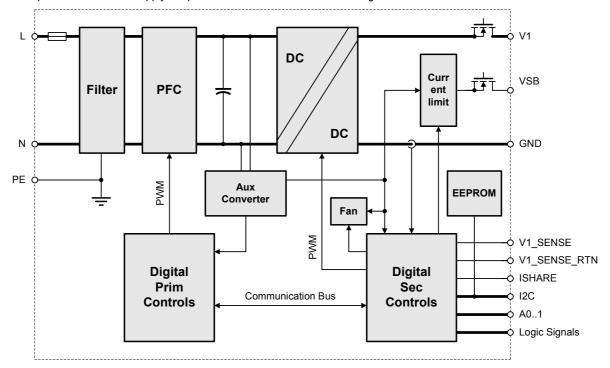
The **PET1600-12-074NA** is a 1600 Watt AC to DC, power-factor-corrected (PFC) power supply that converts standard AC power into a main output of +12 VDC for powering intermediate bus architectures (IBA) in high performance and reliability servers, routers, and network switches. The PET1600-12-074NA utilizes full digital control architecture for greater efficiency, control, and functionality. This power supply meets international safety standards and displays the CE-Mark for the European Low Voltage Directive (LVD).

1 ORDERING INFORMATION

PET	1600	-	12	-	074	N	Α
Product Family	Power Level	Dash	V1 Output	Dash	Width	Airflow	Input
PET Front-Ends	1600 W		12 V		74 mm	N: Normal	A: AC

2 OVERVIEW

The PET1600-12-074NA AC/DC power supply is a fully DSP controlled, highly efficient front-end power supply. It incorporates resonance-soft-switching technology to reduce component stresses, providing increased system reliability and very high efficiency. With a wide input operational voltage range the PET1600-12-074NA maximizes power availability in demanding server, network, and other high availability applications. The supply is fan cooled and ideally suited for integration with a matching airflow path.


The PFC stage is digitally controlled using a state-of-the-art digital signal processing algorithm to guarantee best efficiency and unity power factor over a wide operating range.

The DC/DC stage uses soft switching resonant techniques in conjunction with synchronous rectification. An active OR-ing device on the output ensures no reverse load current and renders the supply ideally suited for operation in redundant power systems.

The always-on standby output provides power to external power distribution and management controllers. It is protected with an active OR-ing device for maximum reliability.

Status information is provided with a front-panel LED. In addition, the power supply can be controlled and the fan speed set via the I²C bus. The I²C bus allows full monitoring of the supply, including input and output voltage, current, power, and inside temperatures.

Cooling is managed by a fan controlled by the DSP controller. The fan speed is adjusted automatically depending on the actual power demand and supply temperature and can be overridden through the I²C bus.

3 ABSOLUTE MAXIMUM RATINGS

Stresses in excess of the absolute maximum ratings may cause performance degradation, adversely affect long-term reliability, and cause permanent damage to the supply.

		TER	DESCRIPTION / CONDITION	MIN	NOM	MAX	UNIT
	V _{i maxc}	Maximum Input Voltage	Continuous			264	VAC

4 INPUT

General Condition: $T_A = 0...55$ °C unless otherwise noted.

PARAME	TER	DESCRIPTION / CONDITION	MIN	NOM	MAX	UNIT
V _{i nom}	Nominal Input Voltage	Rated Voltage High Line (V _{i nom HL})	200	230	240	VAC
V i nom	Nominal input voltage	Rated Voltage Low Line (Vinom LL)	100	115	127	VAC
Vi	Input Voltage Ranges	Normal operating ($V_{i min HL}$ to $V_{i max HL}$), High Line	180		264	VAC
V	input voltage Nanges	Normal operating (V _{i min LL} to V _{i max LL}), Low Line	90		140	VAC
I _{i max}	Maximum Input Current	V _{IN} =100VAC, 100% load			13	Arms
l _{i inrush}	Inrush Current Limitation	Vi min to Vi max, TNTC=25°C, 5ms			10	Ap
fi	Input Frequency		47	50/60	63	Hz
		10% Load	0.8			W/VA
	PF Power Factor	20% Load	0.9			W/VA
PF		50% Load	0.9			W/VA
		100% Load	0.95			W/VA
THD	Total Harmonic Distortion	TBD			TBD	%
Vion	Turn-on Input Voltage ¹	Ramping up	87		90	VAC
V _{i off}	Turn-off Input Voltage ¹	Ramping down	82		87	VAC
		V _{IN} =230VAC, 10% load	82	90.8		%
	F #:-:2	V _{IN} =230VAC, 20% load	90	93.5		%
η	Efficiency ²	V _{IN} =230VAC, 50% load	94	94.4		%
		V _{IN} =230VAC, 100% load	91	93.0		%
T _{V1 holdup}	Hold-up Time V ₁	12V output, 70% Load	10.6			ms
T _{VSB} holdup	Hold-up Time V _{SB}	12V _{SB} , full load	70			ms
		I I		1	I .	1

4.1 INPUT FUSE

Time-lag 16A input fuse (5 x 20 mm) in series with the L-line inside the power supply protects against severe defects. The fuse is not accessible from the outside and is therefore not a serviceable part.

4.2 INRUSH CURRENT

The AC-DC power supply exhibits an X-capacitance of only 5.2µF, resulting in a low and short peak current, when the supply is connected to the mains. The internal bulk capacitor will be charged through an NTC which will limit the inrush current.

NOTE: Do not repeat plug-in / out operations within a short time, or else the internal in-rush current limiting device (NTC) may not sufficiently cool down and excessive inrush current or component failure(s) may result.

4.3 INPUT UNDER-VOLTAGE

If the sinusoidal input voltage stays below the input undervoltage lockout threshold V_{ion} , the supply will be inhibited. Once the input voltage returns within the normal operating range, the supply will return to normal operation again.

-

¹ The Front-End is provided with a minimum hysteresis of 3V during turn-on and turn-off within the ranges

² Efficiency measured without fan power per EPA server guidelines

4.4 POWER FACTOR CORRECTION

Power factor correction (PFC) is achieved by controlling the input current waveform synchronously with the input voltage. A fully digital controller is implemented giving outstanding PFC results over a wide input voltage and load ranges. The input current will follow the shape of the input voltage. If for instance the input voltage has a trapezoidal waveform, then the current will also show a trapezoidal waveform.

4.5 EFFICIENCY

High efficiency (see *Figure 1*) is achieved by using state-of-the-art silicon power devices in conjunction with soft-transition topologies minimizing switching losses and a full digital control scheme. Synchronous rectifiers on the output reduce the losses in the high current output path. The speed of the fan is digitally controlled to keep all components at an optimal operating temperature regardless of the ambient temperature and load conditions.

Figure 1 - Efficiency vs. Load current (ratio metric loading)

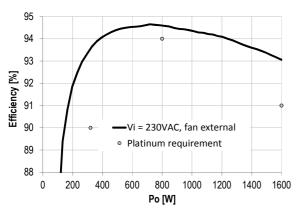
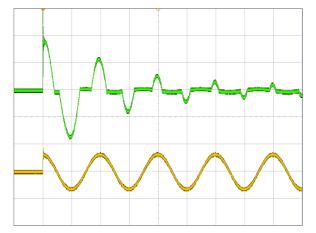



Figure 2 - Power factor vs. Load current 1 0.98 0.96 **Lower factor [1] Bower factor [1]** -Vi = 230VAC 0.84 0.82 0.8 0 200 400 600 800 1000 1200 1400 1600 Po [W]

Figure 3 - Inrush current, V_{in} = 230Vac, 90° CH1: V_{in} (500V/div), CH2: I_{in} (10A/div)

5 **OUTPUT**

General Condition: $T_A = 0...55$ °C unless otherwise noted.

PARAME	ΓER	DESCRIPTION / CONDITION	MIN	NOM	MAX	UNIT
Main Out	out V ₁					
V _{1 nom}	Nominal Output Voltage	0.5 / T 0500		12.0		VDC
V _{1 set}	Output Setpoint Accuracy	$0.5 \cdot I_{1 nom}, T_A = 25^{\circ} \text{C}$	-0.5		+0.5	%V _{1 nom}
dV _{1 tot}	Total Regulation	V _{i min} to V _{i max} , 0 to 100% I _{1 nom}	-1		+1	%V _{1 nom}
_		Vi min HL to Vi max HL		1600		W
P _{1 nom}	Nominal output power	V _{i min LL} to V _{i max LL}		1000		W
	D 101 1D 2	V _{i min HL} to V _{i max HL}		2100		W
P _{1 peak}	Peak Output Power ³	V _{i min LL} to V _{i max LL}		1320		W
I _{1 nom}	0.4101	V _{i min HL} to V _{i max HL}	0.0		133	ADC
I _{1 nom red}	Output Current	Vi min LL to Vi max LL	0.0		83	ADC
I _{1 peak}		Vi min HL to Vi max HL	0.0		175	ADC
I _{1 peak red}	Peak Output Current ³	V _{i min LL} to V _{i max LL}	0.0		110	ADC
V _{1 pp}	Output Ripple Voltage ⁴	V _{i min} to V _{i max} , 0 to 100% I _{1 nom} , T _{A min} to T _{A max}			120	mVpp
dV _{1 load}	Load Regulation	V _{inom HL} , 0 to 100% I _{1 nom}	-67	-89	-111	mV
dV _{1 line}	Line Regulation	V _{i min} to V _{i max} , 0.5 · I _{1 nom}	-24	0	24	mV
dV _{1 temp}	Thermal Drift	V _{i nom HL} , 0.5 · I _{1 nom}			TBD	%/°C
dI _{1 share}	Current Sharing	Deviation from $I_{1 \text{ tot}} / N$, $I_1 > 10\%$	-4		+4	ADC
VISHARE	Current Share Bus Voltage	I _{1 peak}	9.93	10.0	10.07	VDC
dV _{1 dyn}	Dynamic Load Regulation	$\Delta I_1 = 50\% I_1 \text{ nom}, I_1 = 5 \dots 100\% I_1 \text{ nom},$	11.40		12.60	VDC
trec	Recovery Time	$dI_1/dt = 1A/\mu s$, recovery within 1% of $V_{1 \text{ nom}}$			2	ms
tv1 rise	Output Voltage Rise Time	V ₁ = 1090% V _{1 nom} , external capacitance < 10mF	6	8	10	ms
tv1 ovr sh	Output Turn-on Overshoot	Vi nom HL, 0 to 100% I1 nom			12.60	V
dV₁ sense	Remote Sense	Compensation for cable drop, 0 to 100% I _{1 nom}			0.25	V
Cv1 load	Capacitive Loading		0		25	mF
Standby (Output V _{SB}					
$V_{\it SB\ nom}$	Nominal Output Voltage	$I_{SB} = 0A$, $T_A = 25$ °C		12.15		VDC
V _{SB set}	Output Setpoint Accuracy		-0.5		+0.5	%V _{SBnom}
dV _{SB tot}	Total Regulation	V _{i min} to V _{i max} , 0 to 100% I _{SB nom}	-3		+1	%V _{SBnom}
P _{SB} nom	Nominal output power	V _{i min} to V _{i max}		42		W
P _{SB peak}	Peak Output Power ⁵	V _{i min} to V _{i max}		48		W
I _{SB nom}	Output Current	Vi min to Vi max	0.0		3.5	ADC
I _{SB peak}	Peak Output Current ⁵	Vi min to Vi max	0.0		4	ADC
V _{SB pp}	Output Ripple Voltage4	Vi min to Vi max, 0 to 100% ISB nom, TA min to TA max			120	mVpp
dV _{SB load}	Load Regulation	Vi nom HL, 0 to 100% I _{SB nom}	-200	-300	-400	mV
dV _{SB line}	Line Regulation	$V_{i min}$ to $V_{i max}$, $I_{SB nom} = 0A$	-24	0	24	mV
dV _{SB temp}	Thermal Drift	V _{i nom HL} , I _{SB nom} = 0A			TBD	%/°C
dI _{SB share}	Current Sharing	Deviation from $I_{SB \text{ tot}} / N$, $I_{SB} = 0.5 \cdot I_{SB \text{ nom}}$	-1		+1	ADC
dV _{SB dyn}	Dynamic Load Regulation	$\Delta I_{SB} = 50\% I_{SB \text{ nom}}, I_{SB} = 5 \dots 100\% I_{SB \text{ nom}},$	11.40		12.60	VDC
trec	Recovery Time	$dI_{SB}/dt = 0.25A/\mu s$, recovery within 1% of $V_{SB nom}$			2	ms
tvsB rise	Output Voltage Rise Time	V _{SB} = 1090% V _{SB nom} , external capacitance < 1mF	1	2	5	ms
tvsB ovr sh	Output Turn-on Overshoot	Vi nom HL, 0 to 100% ISB nom			12.60	V
C _{VSB load}	Capacitive Loading		0		3100	μF

³ Peak combined power for all outputs does not exceed 2100 W; maximum of peak power duration is 20 seconds without asserting the SMBAlert signal. ⁴ Measured with a 10uF low ESR capacitor in parallel with a 0.1uF ceramic capacitor at the point of measurement.

⁵ In single power supply configuration.

Figure 4 - Turn-On AC Line 230VAC, full load (200ms/div) CH1: Vin (500V/div) CH3: V1 (2V/div) CH4: VSB (2V/div)

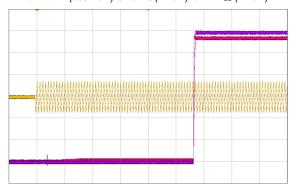


Figure 6 - Turn-Off AC Line 230VAC, full load (10ms/div) CH1: Vin (500V/div) CH3: V₁ (2V/div) CH4: V_{SB} (2V/div)

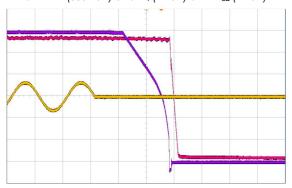


Figure 8 - AC drop out 10ms (10ms/div), 75% load CH1: Vin (500V/div) CH3: V₁ (2V/div) CH4: V_{SB} (2V/div)

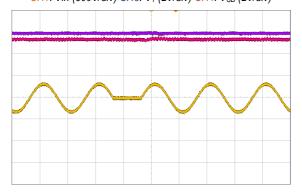
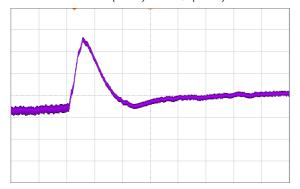


Figure 10 - Load transient V₁, 133 to 53A (1ms/div) CH3: V₁ (2V/div) CH4: V_{SB} (2V/div)



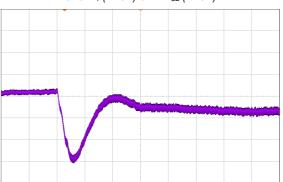

Figure 5 - Turn-On AC Line 230VAC, full load (5ms/div) CH3: V₁ (2V/div) CH4: V_{SB} (2V/div)

Figure 7 - Short circuit on V1 (10ms/Div) CH3: V₁ (2V/div)

Figure 9 - Load transient V₁, 53 to 133A (1ms/div) CH3: V₁ (2V/div) CH4: V_{SB} (2V/div)

5.1 OUTPUT GROUND / CHASSIS CONNECTION

The output return path serves as power and signal ground. All output voltages and signals are referenced to these pins. To prevent a shift in signal and voltage levels due to ground wiring voltage drop a low impedance ground plane should be used as shown in *Figure 11*. Alternatively separated ground signals can be used as shown in *Figure 12*. In this case the two ground planes should be connected together at the power supplies ground pins.

NOTE: Within the power supply the output GND pins are connected to the Chassis, which in turn is connected to the Protective Earth terminal on the AC inlet. Therefore it is not possible to set the potential of the output return (GND) to any other than Protective Earth potential.

Figure 11 - Common low impedance ground plane

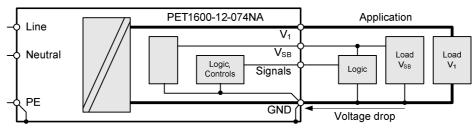
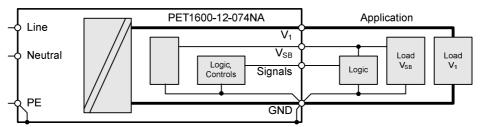



Figure 12 - Separated power and signal ground

6 PROTECTION

PARAMETER		DESCRIPTION / CONDITION	MIN	NOM	MAX	UNIT
F	Input fuse (L)	Not use accessible, time-lag (T)		16		Α
V _{1 OV}	OV Threshold V ₁	Over Voltage V ₁ Protection, Latch-off Type	13.3	13.9	14.5	VDC
tv1 ov	OV Trip Time V ₁	Over voltage v71 folection, Later-on Type			1	ms
V _{VSB OV}	OV Threshold V _{SB}	Over Velterre V. Dustration Automotic nature and de	13.3	13.9	14.5	VDC
tvsB ov	OV Trip Time V _{SB}	Over Voltage V ₁ Protection, Automatic retry each 1s			1	ms
L	OC Limit V ₁	Over Current Limitation, Latch-off, V _{i min HL} to V _{i max HL}			140	ADC
Iv1 oc slow	OG LITTIK V7	Over Current Limitation, Latch-off, $V_{i min LL}$ to $V_{i max LL}$	85		88	ADC
tv1 oc slow	OC Trip time V ₁	Over Current Limitation, Latch-off time	20			S
1	Foot OC Limit V	Fast Over Current Limit., Latch-off, V _{i min HL} to V _{i max HL}	175		180	ADC
V1 OC Fast	Fast OC Limit V ₁	Fast Over Current Limit., Latch-off, V _{i min LL} to V _{i max LL}	110		115	ADC
tv1 OC Fast	Fast OC Trip time V ₁	Fast Over Current Limitation, Latch-off time	50		60	ms
l√1 sc	Max Short Circuit Current V ₁	V ₁ < 3V			180	А
tv1 sc	Short Circuit Regulation Time	V_1 < 3V, time until I_{V1} is limited to < I_{V1} sc			2	ms
Ivsb oc	OC Limit V _{SB}	Over Current Limitation, Constant-Current Type	4		5	Α
t _{VSB OC}	OC Trip time V _{SB}	Over Current Limit., time until I/SB is limited to I/SB OC			10	ms
T _{SD}	Over Temperature On Heat Sinks	Automatic shut-down		115		°C

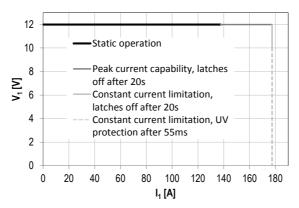
6.1 OVERVOLTAGE PROTECTION

The PET1600-12-074NA front-end provides a fixed threshold overvoltage (OV) protection implemented with a HW comparator for both the main and the standby output. Once an OV condition has been triggered on the main output, the supply will shut down and latch the fault condition. The latch can be unlocked by disconnecting the supply from the AC mains or by toggling the PSON_L input. The standby output will continuously try to restart with a 1 s interval after OV condition has occurred.

6.2 UNDERVOLTAGE DETECTION

Both main and standby outputs are monitored. LED and PWOK_H pin signal if the output voltage exceeds ±5% of its nominal voltage.

The main output will latch off if the main output voltage V_1 falls below 10V (typically in an overload condition) for more than 55 ms. The latch can be unlocked by disconnecting the supply from the AC mains or by toggling the PSON_L input.


6.3 CURRENT LIMITATION

MAIN OUTPUT

The main output exhibits a substantially rectangular output characteristic controlled by a software feedback loop. If output current exceeds $I_{V1 OC Fast}$ it will reduce output voltage in order to keep output current at $I_{V1 OC Fast}$. If the output voltage drops below ~10.0 VDC for more than 55 ms, the output will latch off (standby remains on), see also *chapter* 6.2.

Figure 13 - Current Limitation on V_1 ($V_i = 230VAC$)

A second SW controlled current limit will latch off the main output if the power supply is operated for long duration in its peak current capability region. This protection trips as soon as the output current exceeds *Ivt* oc slow for duration of more than 20 s.

The third current limitation implemented as a fast hardware circuit will immediately switch off the main output if the output current increases beyond the peak current trip point, occurring mainly if a short circuit is applied to the output voltage. The supply will re-start 4 ms later with a soft start, if the short circuit persists ($V_1 < 10.0V$ for >55 ms) the output will latch off; otherwise it continuous to operate.

The latch can be unlocked by disconnecting the supply from the AC mains or by toggling the PSON_L input.

The main output current limitation thresholds depend on the actual input applied to the power supply.

STANDBY OUTPUT

The standby output exhibits a substantially rectangular output characteristic down to 0V (no hiccup mode / latch off). The current limitation of the standby output is independent of the AC input voltage.

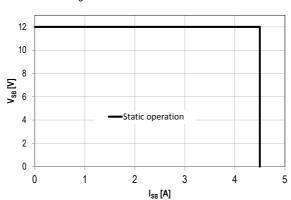


Figure 14 - Current Limitation on VSB

7 MONITORING

The power supply operating parameters can be accessed through I²C interface. For more details refer to chapter I²C / PMBus COMMUNICATION and document URP.00234 (PET1600-12-074NA PMBus Communication Manual).

PARAME ^T	TER	DESCRIPTION / CONDITION	MIN	NOM	MAX	UNIT
V _{i mon}	Input RMS Voltage	$V_{i min LL} \leq V_{i} \leq V_{i max HL}$	-2		+2	VAC
l _{i mon}	Input PMS Current	<i>Ii</i> > 6.7A _{rms}	-3		+3	%
II MON	Input RMS Current	$I_i \le 6.7 A_{rms}$	-0.2		+0.2	Arms
P _{i mon}	True Input Power	P _i > 250W	-4		+4	%
	True input i owei	P _i < 250W	-10		+10	W
V _{1 mon}	V₁ Voltage		-0.1		+0.1	VDC
I _{1 mon}	V₁ Current	I ₁ > 25A	-1		+1	%
I1 mon	V1 Guilent	I ₁ ≤ 25A	-0.25		+0.25	ADC
P _{1 nom}	V ₁ Output Power	P _i > 250W	-2		+2	%
r 1 nom	V1 Output Fower	P _i < 250W	-5		+5	W
V _{SB mon}	V _{SB} Voltage		-0.1		+0.1	VDC
I _{SB mon}	V _{SB} Current		-0.1		+0.1	ADC
T _{A mon}	Inlet Temperature	$T_{A min} \le T_{A} \le T_{A max}$	-2		+2	°C

8 SIGNALLING AND CONTROL

8.1 ELECTRICAL CHARACTERISTICS

PARAME	TER	DESCRIPTION / CONDITION	MIN	NOM	MAX	UNIT
PSON_H	/ HOTSTANDBYEN_H					
VıL	Input Low Level Voltage	PSON_L: Main output enabled	-0.2		0.8	V
VIL	input Low Level Voltage	HOTSTANDBYEN_H: Hot Standby mode not allowed	0.2		0.0	V
Vıн	Input High Level Voltage	PSON_L: Main output disabled	2		3.5	V
VIH	input riigii Ecver voitage	HOTSTANDBYEN_H: Hot Standby mode allowed			0.0	V
I _{IL,H}	Maximum Input Sink or Source Current	V _I = -0.2V to +3.5V	-1		1	mA
Rpull up	Internal Pull up Resistor to internal 3.3V			10		kΩ
R _{LOW}	Maximum external Pull down Resistance to GND to obtain Low Level				1	kΩ
R _{HIGH}	Minimum external Pull down Resistance to GND to obtain High Level		50			kΩ
PWOK_H	ĺ					
V _{OL}	Output Low Level Voltage	$Vi < V_{i min LL}, V_{l sink} < 4mA$	0		0.4	V
V _{OH}	Output High Level Voltage	Vi > V _{i min LL} , I _{source} < 0.5mA	2.4		3.5	V
R _{pull up}	Internal Pull up Resistor to internal 3.3V			1		kΩ
loL	Maximum Sink Current	V _O < 0.4V			4	mA

8.2 SENSE INPUTS

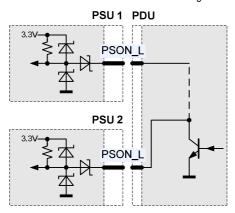
The main output has sense lines implemented to compensate for voltage drop on load wires in both positive and negative path. The maximum allowed voltage drop is 200 mV on the positive rail and 100 mV on the GND rail.

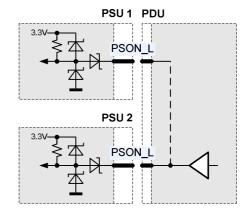
With open sense inputs the main output voltage will rise by 270 mV. Therefore if not used, these inputs should be connected to the power output and GND at the power supply connector. The sense inputs are protected against short circuit. In this case the power supply will shut down.

8.3 CURRENT SHARE

The PET front-ends have an active current share scheme implemented for V₁. All the ISHARE current share pins need to be interconnected in order to activate the sharing function. If a supply has an internal fault or is not turned on, it will disconnect its ISHARE pin from the share bus. This will prevent dragging the output down (or up) in such cases.

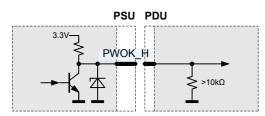
The current share function uses an analog bus to transmit and receive current share information. The controller implements a Master/Slave current share function. The power supply providing the largest current among the group is automatically the Master. The other supplies will operate as Slaves and increase their output current to a value close to the Master by slightly increasing their output voltage. The voltage increase is limited to +250 mV.

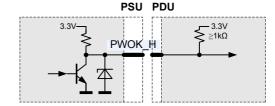

The standby output uses a passive current share method (droop output voltage characteristic).


8.4 PSON_L INPUT

The PSON_L is an internally pulled-up (3.3 V) input signal to enable/disable the main output V_1 of the front-end. With low level input the main output is enabled. This active-low pin is also used to clear any latched fault condition. The PSON_L can be either controlled by an open collector device or by a voltage source.

Figure 15 - PSON_H connection






8.5 PWOK_H OUTPUT

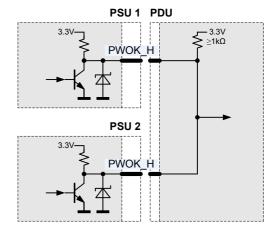

The PWOK_H is an open drain output with an internal pull-up to 3.3 V indicating whether both V_{SB} and V_1 outputs are within regulation. This pin is active-low.

Figure 16 - PWOK_H connection

8.6 HOT-STANDBY IN-/OUTPUT

The hot-standby operation is an operating mode allowing to further increase efficiency at light load conditions in a redundant power supply system. Under specific conditions one of the power supplies is allowed to disable its DC/DC stage. This will save the power losses associated with this power supply and at the same time the other power supply will operate in a load range having a better efficiency. In order to enable the hot standby operation, the HOTSTANDBYEN_H and the ISHARE pins need to be interconnected. A power supply will only be allowed to enter the hot-standby mode, when the HOT-STANDBYEN_H pin is high, the load current is low (see *Figure 17*) and the supply was allowed to enter the hot-standby mode by the system controller via the appropriate I²C command (by default disabled). The system controller needs to ensure that only one of the power supplies is allowed to enter the hot-standby mode.

If a power supply is in a fault condition, it will pull low its active-high HOTSTANDBYEN_H pin which indicates to the other power supply that it is not allowed to enter the hot-standby mode or that it needs to return to normal operation should it already have been in the hot-standby mode.

NOTE: The system controller needs to ensure that only one of the power supplies is allowed to enter the hot-standby mode.

Figure 18 shows the achievable power loss savings when using the hot-standby mode operation. A total power loss reduction of 45% is achievable.

Figure 17 - Hot-standby enable/disable current thresholds

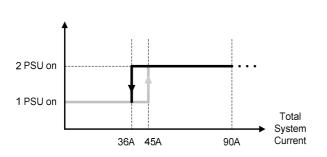


Figure 18 - PSU power losses with/without hot-standby mode

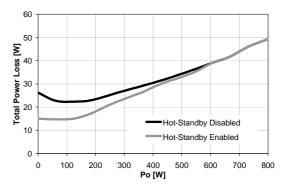
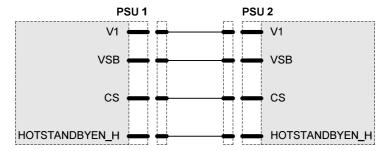



Figure 19 - Recommended hot-standby configuration

8.7 SIGNAL TIMING

Figure 20 – AC turn-on timing

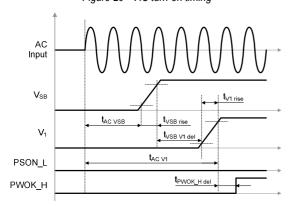


Figure 22 - AC long dips

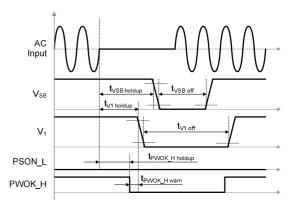


Figure 21 - AC short dips

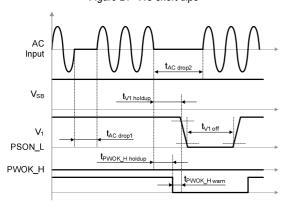
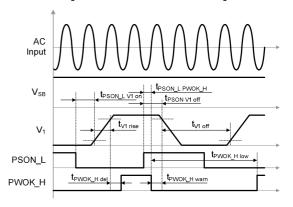



Figure 23 - PSON_L turn-on/off timing

PARAMETER		DESCRIPTION / CONDITION	MIN	NOM	MAX	UNIT
tac vsb	AC Line to 90% V _{SB}				1.5	S
t _{AC V1}	AC Line to 90% V ₁	PSON_L = Low			3	S
tvsB v1 del	V _{SB} to V₁ delay	PSON_L = Low	50		1000	ms
tv1 rise	V₁ rise time	See chapter OUTPUT				
tvsB rise	V _{SB} rise time	See chapter OUTPUT				
tAC drop1	AC drop without V₁ leaving regulation	0.7 · I1 nom, ISB nom			10	ms
t _{AC drop2}	AC drop without V_{SB} leaving regulation	I _{1 nom} , I _{SB nom}			70	ms
t _{V1 holdup}	Loss of AC to V₁ leaving regulation	See chapter INPUT				
tvsB holdup	Loss of AC to V₁ leaving regulation	See chapter INPUT				
tpwok_H del	Outputs in regulation to PWOK_H asserted		100		500	ms
tPWOK_H warn	Warning time from de-assertion of PWOK_H to V_1 leaving regulation		1			ms
t _{PWOK_H holdup}	Loss of AC to PWOK_H de-asserted		10.6			ms
tpwok_H low	Time PWOK_H is kept low after being deasserted		100			ms
tPSON_L V1 on	Delay PSON_L active to V₁ in regulation		5		400	ms
tpson_L v1 off	Delay PSON_L de-asserted to V₁ disabled			TBD		ms
tpson_l pwok_h	Delay PSON_L de-asserted to PWOK_H de- asserted				5	ms
tv1 off	Time V₁ is kept off after leaving regulation			1		S
tvsB off	Time V _{SB} is kept off after leaving regulation			1		S

8.8 LED INDICATOR

The front-end has one front LED showing the status of the supply. The LED is bi-colored: green and amber, and indicates AC and DC power presence and warning or fault conditions. *Table 1* lists the different LED status.

Table 1 - LED Status

OPERATING CONDITION 1)	LED SIGNALING	
No AC or AC Line in UV condition, V_{SB} not present from paralleled power supplies	Off	
PSON_L High	Blinking Green 1Hz	
Hot-Standby Mode	Billiking Green 1112	
No AC or AC Line in UV condition, V_{SB} present from paralleled power supplies		
V_1 or V_{SB} out of regulation		
Over temperature shutdown	Solid Amber	
Output over voltage shutdown (V ₁ or V _{SB})		
Output over current shutdown (V_1 or V_{SB})		
Fan error (>15%)		
Over temperature warning	Dipling Ambor 111	
Minor fan regulation error (>5%, <15%)	Blinking Amber 1Hz	
Firmware bootloading in process	Blinking Green 2Hz	
Outputs V1 and VSB in regulation	Solid Green	

¹⁾ The order of the criteria in the table corresponds to the testing precedence in the controller.

9 I²C / PMBus COMMUNICATION

The PET front-end is a communication Slave device only; it never initiates messages on the I²C/SMBus by itself. The communication bus voltage and timing is defined in *Table 2* further characterized through:

- The SDA/SCL IOs use 3.3V logic levels
- External pull-up resistors on SDA/SCL required for correct signal edges
- Full SMBus clock speed of 100 kbps
- Clock stretching limited to 1 ms
- SCL low time-out of >25 ms with recovery within 10 ms
- Recognizes any time Start/Stop bus conditions

Figure 24 - Physical layer of communication interface

3.3V

TX_EN

TX_DSP or EEPROM

SDA/SCL

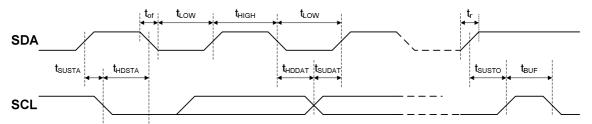

Communication to the DSP or the EEPROM will be possible as long as the input AC voltage is provided. If no AC is present, communication to the unit is possible as long as it is connected to a live V_{SB} output (provided e.g. by the redundant unit). If only V_1 is provided, communication is not possible.

Table 2 - I²C / SMBus Specification

PARAMETER	DESCRIPTION	CONDITION	MIN	MAX	UNIT
SCL / SDA					
V _{iL}	Input low voltage		-0.5	1.0	V
V _{iH}	Input high voltage		2.3	3.5	V
V _{hys}	Input hysteresis		0.15		V
V _{oL}	Output low voltage	3 mA sink current	0	0.4	V
<i>t</i> r	Rise time for SDA and SCL		20+0.1C _b ¹	300	ns
$t_{\sf of}$	Output fall time ViHmin → ViLmax	10 pF < C _b 1 < 400 pF	20+0.1C _b ¹	250	ns
<i>I</i> i	Input current SCL/SDA	0.1 VDD < Vi < 0.9 VDD	-10	10	μA
Ci	Internal Capacitance for each SCL/SDA			50	pF
f _{SCL}	SCL clock frequency		0	100	kHz
R _{pull-up}	External pull-up resistor	f _{SCL} ≤ 100 kHz		1000 ns / C _b 1	Ω
<i>t</i> hdsta	Hold time (repeated) START	f _{SCL} ≤ 100 kHz	4.0		μs
<i>t</i> LOW	Low period of the SCL clock	f _{SCL} ≤ 100 kHz	4.7		μs
<i>t</i> HIGH	High period of the SCL clock	f _{SCL} ≤ 100 kHz	4.0		μs
<i>t</i> susta	Setup time for a repeated START	f _{SCL} ≤ 100 kHz	4.7		μs
thddat	Data hold time	f _{SCL} ≤ 100 kHz	0	3.45	μs
<i>t</i> sudat	Data setup time	f _{SCL} ≤ 100 kHz	250		ns
<i>t</i> susto	Setup time for STOP condition	f _{SCL} ≤ 100 kHz	4.0		μs
<i>t</i> _{BUF}	Bus free time between STOP and START	f _{SCL} ≤ 100 kHz	5		ms

¹ Cb = Capacitance of bus line in pF, typically in the range of 10...400pF

Figure 25 - I²C / SMBus Timing

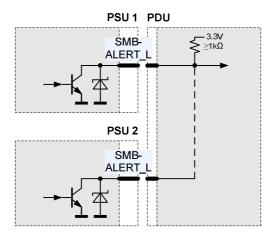
9.1 ADDRESS SELECTION

The address for I²C communication can be configured by pulling address input pins A1 and A0 either to GND (Logic Low) or leave them open (Logic High). An internal pull up resistor will cause the A1 / A0 pin to be in High Level if left open. A fixed addressing offset exists between the Controller and the EEPROM.

Table 3 - Address and protocol encoding

A 1	A0	I2C Add	Iress 1)
AI	AU	Controller	EEPROM
0	0	0xB0	0xA0
0	1	0xB2	0xA2
1	0	0xB4	0xA4
1	1	0xB6	0xA6

¹⁾ The LSB of the address byte is the R/W bit.


9.2 SMBALERT_L OUTPUT

The SMBALERT_L signal indicates that the power supply is experiencing a problem that the system agent should investigate. This is a logical OR of the Shutdown and Warning events. It is asserted (pulled Low) at Shutdown or Warning events such as reaching temperature warning/shutdown threshold of critical component, general failure, over-current, over-voltage, under-voltage or low-speed of failed fan. This signal may also indicate the power supply is operating in an environment exceeding the specified limits.

The SMBAlert signal is asserted simultaneously with the LED turning to solid amber or blinking amber.

PARAME	TER	DESCRIPTION / CONDITION	MIN	NOM	MAX	UNIT
SMB_ALI	MB_ALERT_L					
Vext	Maximum External Pull up Voltage				12	V
Іон	Maximum High Level Leakage Current	No Failure or Warning condition, V _O = 12V			10	μΑ
Vol	Output Low Level Voltage	Failure or Warning condition, Isink < 4mA	0		0.4	V
R _{pull up}	Internal Pull up Resistor to internal 3.3V			None		
I _{OL}	Maximum Sink Current	V ₀ < 0.4V			4	mA

Figure 26 - SMBALERT_L connection

9.3 CONTROLLER AND EEPROM ACCESS

The controller and the EEPROM in the power supply share the same I²C bus physical layer (see Figure 27) and can be accessed under different addresses, see ADDRESS SELECTION. The SDA/SCL lines are connected directly to the controller and EEPROM which are supplied by internal 3.3V.

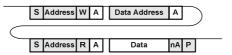
The EEPROM provides 256 bytes of user memory. None of the bytes are used for the operation of the power supply.

A1..0 Address Selection DSP SCL **EEPROM**


Figure 27 - I²C Bus to DSP and EEPROM

9.4 **EEPROM PROTOCOL**

The EEPROM follows the industry communication protocols used for this type of device. Even though page write / read commands are defined, it is recommended to use the single byte write / read commands.


WRITE

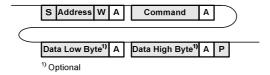
The write command follows the SMBus 1.1 Write Byte protocol. After the device address with the write bit cleared a first byte with the data address to write to is sent followed by the data byte and the STOP condition. A new START condition on the bus should only occur after 5ms of the last STOP condition to allow the EEPROM to write the data into its memory.

READ

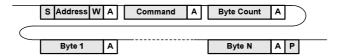
The read command follows the SMBus 1.1 Read Byte protocol. After the device address with the write bit cleared the data address byte is sent followed by a repeated start, the device address and the read bit set. The EEPROM will respond with the data byte at the specified location.

PMBus™ PROTOCOL

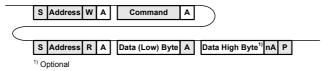
The Power Management Bus (PMBus™) is an open standard protocol that defines means of communicating with power conversion and other devices. For more information, please see the System Management Interface Forum web site at : www.powerSIG.org.


PMBus™ command codes are not register addresses. They describe a specific command to be executed. The PET1600-12-074NA supply supports the following basic command structures:

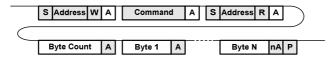
- Clock stretching limited to 1 ms
- SCL low time-out of >25 ms with recovery within 10 ms
- Recognized any time Start/Stop bus conditions


WRITE

The write protocol is the SMBus 1.1 Write Byte/Word protocol. Note that the write protocol may end after the command byte or after the first data byte (Byte command) or then after sending 2 data bytes (Word command).



In addition, Block write commands are supported with a total maximum length of 255 bytes. See PET1600-12-074NA PMBus Communication Manual URP.00234 for further information.



READ

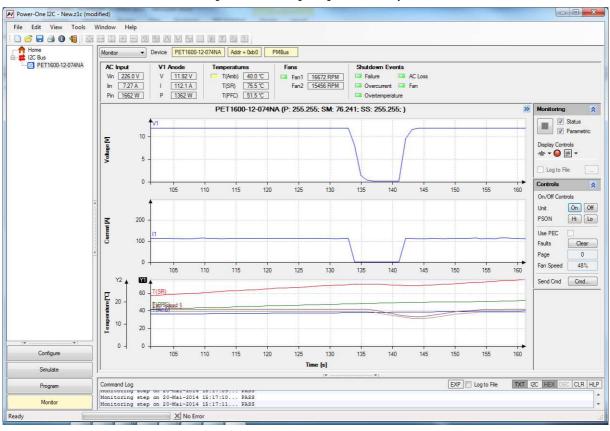
The read protocol is the SMBus 1.1 Read Byte/Word protocol. Note that the read protocol may request a single byte or word.

In addition, Block read commands are supported with a total maximum length of 255 bytes. See PET1600-12-074NA PMBus Communication Manual URP.00234 for further information.

9.6 GRAPHICAL USER INTERFACE

Power-One provides with its "Power-One I²C Utility" a Windows® XP/Vista/Win7 compatible graphical user interface allowing the programming and monitoring of the PET1600-12-074NA Front-End. The utility can be downloaded on: www.power-one.com and supports both the PSMI and PMBus™ protocols.

The GUI allows automatic discovery of the units connected to the communication bus and will show them in the navigation tree. In the monitoring view the power supply can be controlled and monitored.


If the GUI is used in conjunction with the YTM.00045 Evaluation Board it is also possible to control the PSON_L pin(s) of the power supply.

Further there is a button to disable the internal fan for approximately 10 seconds. This allows the user to take input power measurements without fan consumptions to check efficiency compliance to the Climate Saver Computing Platinum specification.

The monitoring screen also allows to enable the hot-standby mode on the power supply. The mode status is monitored and by changing the load current it can be monitored when the power supply is being disabled for further energy savings. This obviously requires 2 power supplies being operated as a redundant system (as in the evaluation kit).

NOTE: The user of the GUI needs to ensure that only one of the power supplies have the hot-standby mode enabled.

Figure 28 - Monitoring dialog of the I²C Utility

10 TEMPERATURE AND FAN CONTROL

To achieve best cooling results sufficient airflow through the supply must be ensured. Do not block or obstruct the airflow at the rear of the supply by placing large objects directly at the output connector. The PET1600-12-074NA is provided with a rear to front airflow, which means the air enters through the DC-output of the supply and leaves at the AC-inlet. The PET1600-12-074NA supply has been designed for horizontal operation.

The fan inside of the supply is controlled by a microprocessor. The rpm of the fan is adjusted to ensure optimal supply cooling and is a function of output power and the inlet temperature.

The PET1600-12-074NA provides access via I^2C to the measured temperatures of in total 6 sensors within the power supply, see *Table 4*. The microprocessor is monitoring these temperatures and if warning threshold of one of these sensors is reached it will set fan to maximum speed. If temperatures continue to rise above shut down threshold the main output V_1 (or V_{SB} if auxiliary converter is affected) will be disabled. At the same time the warning or fault condition is signalized accordingly through LED, PWOK_H and SMBALERT_L.

Table 4 – Temperature sensor location and thresholds

TEMPERATURE SENSOR	DESCRIPTION / CONDITION	PMBus register	Warning threshold	Shut down threshold
Inlet air temperature	Sensor located on control board close to DC end of power supply	8Dh	TBD	TBD
Synchronous rectifier	Sensor located on secondary side of DC/DC stage	8Eh	TBD	TBD
Primary heat sink	Sensor located on primary heat sink	8Fh	TBD	TBD
Output oring element	Sensor located close to output	D1h	TBD	TBD
Auxiliary converter	Sensor located on secondary side on auxiliary rectifier	D2h	TBD	TBD
Bridge rectifier	Sensor located on heat sink for AC rectifier	D3h	TBD	TBD

Figure 29 - Airflow direction

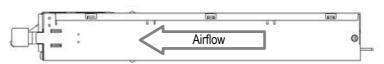


Figure 30 - Fan speed vs. main output load

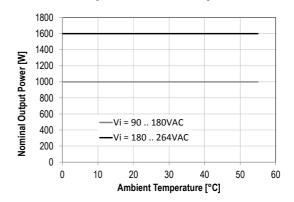



Figure 31 - Thermal derating

11 ELECTROMAGNETIC COMPATIBILITY

11.1 IMMUNITY

PARAMETER	DESCRIPTION / CONDITION	CRITERION
ESD Contact Discharge	IEC / EN 61000-4-2, ±8 kV, 25+25 discharges per test point (metallic case, LED, connector body)	А
ESD Air Discharge	IEC / EN 61000-4-2, ±15 kV, 25+25 discharges per test point (non-metallic user accessible surfaces)	А
Radiated Electromagnetics Filed	IEC / EN 61000-4-3, 10 V/m, 1 kHz/80% Amplitude Modulation, 1µs Pulse Modulation, 10 kHz 2 GHz	А
Burst	IEC / EN 61000-4-4, Level 3	A
Buist	AC port ±2 kV, 1 minute	A
	IEC / EN 61000-4-5, Level 3	
Surge	Line to Earth: ±2 kV	Α
	Line to Line: ±1 kV	
RF Conducted Immunity	IEC / EN 61000-4-6, Level 3, 10 Vrms, CW, 0.1 80 MHz	Α
	IEC / EN 61000-4-11	
Voltage Dips and Interruptions	1. Vi 230VAC, 70% load, Phase 0°, Dip 100%, duration 10.6 ms	V ₁ : A, V _{SB} : A
voltage Dips and interruptions	2. Vi 230VAC, 70% load, Phase 0°, Dip 100%, duration 70 ms	V₁: B, V _{SB} : A
	3. Vi 230VAC, 70% load, Phase 0°, Dip 100%, duration100 ms	V ₁ : B, V _{SB} : B

11.2 EMISSION

PARAMETER	DESCRIPTION / CONDITION	CRITERION
Conducted Emission	EN 55022 / CISPR 22: 0.15 30 MHz, QP and AVG, single power supply	Class B 6 dB margin
Conducted Linission	EN 55022 / CISPR 22: 0.15 30 MHz, QP and AVG, 2 power supplies in a system	Class B 6 dB margin
Radiated Emission	EN 55022 / CISPR 22: 30 MHz 1 GHz, QP, single power supply	Class B 6 dB margin
Radiated Effission	EN 55022 / CISPR 22: 30 MHz 1 GHz, QP, 2 power supplies in a system	Class B 6 dB margin
Harmonic Emissions	IEC 61000-3-2, Vi = 115 VAC / 60 Hz & 230 VAC / 50 Hz, 100% Load	Class A
AC Flicker	IEC 61000-3-3, Vi = 230 VAC / 50Hz, 100% Load	Pass
Acoustical Noise	Distance 1 meter, 25°C, 50% Load	46 dBA

12 SAFETY/APPROVALS

Maximum electric strength testing is performed in the factory according to IEC/EN 60950, and UL 60950. Input-to-output electric strength tests should not be repeated in the field. Power-One will not honor any warranty claims resulting from electric strength field tests.

PARAMETER	DESCRIPTION / CONDITION	NOTE
Agency Approvals	UL 60950-1 2nd Edition CANCE A COLOR OF THE	Approved by ent body claration)
	Input (L/N) to chassis (PE)	Basic
Isolation Strength	Input (L/N) to output	Reinforced
- Sound State gar	Output to chassis	None (Direct connection)
Creepage / Clearance	Primary (L/N) to chassis (PE)	A - a suding to a - fat.
Oreepage / Orearance	Primary to secondary	According to safety standards
Electrical Strength Test	Input to chassis / Input to output	- Candardo

13 ENVIRONMENTAL

PARAME	TER	DESCRIPTION / CONDITION	MIN	NOM	MAX	UNIT
TA	Ambient Temperature	Up to 1'000m ASL	0		+55	°C
I A		Linear derating from 1'000 to 3'048m ASL			+45	°C/
T _{Aext}	Extended Temp. Range				TBD	°C
Ts	Storage Temperature	Non-operational	-20		+70	°C
	Altitude	Operational, above Sea Level	-		3'048	m
	Non-operational, above Sea Level	-		10'600	m	
	Shock, operational	Half sine, 11ms, 10 shocks per direction, 6 directions			1	g peak
	Shock, non-operational				30	g peak
	Vibration, sinusoidal, operational	IEC/EN 60068-2-6, sweep 5 to 500 to 5 Hz, 1 octave/min, 5 sweep per axis			1	g peak
	Vibration, sinusoidal, non- operational				4	g peak
	Vibration, random, non- operational	IEC/EN 60068-2-64, 5 to 500 Hz, 1 hour per axis			0.025	g²/Hz
Na	Audible noise			TBD		dBA

14 RELIABILITY

PARAME	TER	DESCRIPTION / CONDITION	MIN	NOM	MAX	UNIT
MTBF	Mean time to failure	$T_A = 25^{\circ}\text{C}$, $V_i = 230\text{VAC}$, $0.7 \cdot I_{1 \text{ nom}}$, $I_{SB \text{ nom}}$	500			kh
	Expected life time	$T_A = 25^{\circ}\text{C}, V_i = 230\text{VAC}, 0.7 \cdot I_{1 \text{ nom}}, I_{\text{SB nom}}$		TBD		years
Expected file time	T _A = 55°C, V _i = 230VAC, I _{1 nom} , I _{SB nom}	TBD				

15 MECHANICAL

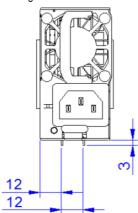

PARAME	TER	DESCRIPTION / CONDITION	MIN	NOM	MAX	UNIT
		Width		73.5		mm
	Dimensions	Heigth		40.0		mm
		Depth		265.0		mm
m	Weight			1.1		kg


Figure 32 – Top and side view

Figure 33 – Front view

16 CONNECTORS

PARAME [*]	TER	DESCRIPTION / CONDITION	MIN	NOM	MAX	UNIT
	AC inlet	IEC 60320 C14				
	AC cord requirement	Wire size		16		AWG
	Output connector	25-Pin PCB card edge				
	Mating output connector	FCI 10035388-106 or equivalent				

Figure 35 – Output connector pin assignment

PIN	SIGNAL NAME	DESCRIPTION
A1 ~ A9	GND	Device and since accord (set up)
B1 ~ B9	GND	Power and signal ground (return)
A10 ~ A18	V1	410VDC main output
B10 ~ B18	V1	+12VDC main output
A19	SDA	I ² C data signal line
A20	SCL	I ² C clock signal line
A21	PSON_L	Power supply on input, active-low
A22	SMB_ALERT_L	SMB Alert signal output, active-low
A23	V1_SENSE_R	Main output negative sense
A24	V1_SENSE	Main output positive sense
A25	PWOK_H	Power OK signal output, active-high
B19	A0	12C address calcation input
B20	A1	l ² C address selection input
B21	VSB	+12V Standby positive output
B22	HOTSTANDBYEN_H	Hot standby enable signal, active-high
B23	ISHARE	Analog current share bus
B24	Reserved	For future use, keep open circuit
B25	Reserved	For future use, keep open circuit

17 ACCESSORIES

ITEM	DESCRIPTION	ORDERING PART NUMBER	SOURCE
The The Table III.	Power-One I ² C Utility Windows XP/Vista/7 compatible GUI to program, control and monitor PET1600-12-074NA Front-Ends (and other I ² C units)	N/A	www.power-one.com
	Evaluation Board Connector board to operate PET1600-12-074NA. Includes an on- board USB to I ² C converter (use Power-One I ² C Utility as desktop software).	YTM.00045	Power-One

NUCLEAR AND MEDICAL APPLICATIONS - Power-One products are not designed, intended for use in, or authorized for use as critical components in life support systems, equipment used in hazardous environments, or nuclear control systems without the express written consent of the respective divisional president of Power-One, Inc.

TECHNICAL REVISIONS - The appearance of products, including safety agency certifications pictured on labels, may change depending on the date manufactured. Specifications are subject to change without notice.