

Precision Monolithics Inc.

FEATURES

- On-Chip Latches For Both DACs
- +5V To +15V Single Supply Operation
- DACs Matched To 1%
- Four-Quadrant Multiplication
- TTL/CMOS Compatible From +5V To +15V
- 8-Bit Endpoint Linearity (±1/2 LSB)
- Full Temperature Operation
- Low Power Consumption
- Microprocessor Compatible (60ns write time)
- Improved ESD and Latch-Up Resistance
- Automatically Insertable Cerdip and Plastic Packages
- Available in Surface Mount SO, PLCC, and LCC Packages
- Improved AD7628

APPLICATIONS

- Disk Drives
- Digital Gain/Attenuation Control
- Digitally-Controlled Filter Parameters
- Digitally-Controlled Audio Circuits
- X-Y Graphics
- Digital/Synchro Conversion
- Robotics
- Ideal For Battery-Operated Equipment

ORDERING INFORMATION[†]

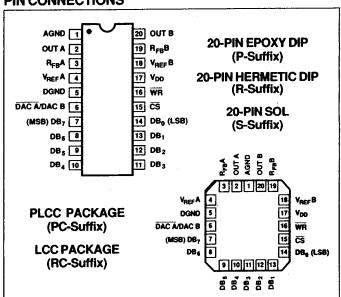
RELATIVE ACCURACY		PACKAGE: 20-Pin DIP			
	GAIN ERROR T _A = 25°C	MILITARY* TEMP -55°C TO +125°C	EXTENDED INDUSTRIAL TEMP -40°C TO +85°C		
±1/2LSB	±2LSB	PM7628AR	PM7628ER		
±1/2LSB	±2LSB	PM7628ARC/883	PM7628HP		
±1/2LSB	±2LSB	_	PM7628HPC ^{ff}		
±1/2LSB	±2LSB	-	PM7628HS ^{t1}		

For devices processed in total compliance to MIL-STD-883, add /883 after part number. Consult factory for 883 data sheet.

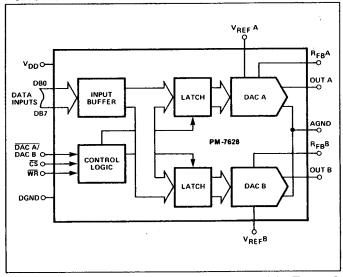
GENERAL DESCRIPTION

The PM-7628 is an improved version of the AD7628 offering TTL compatibility from +5 to +15 volts and faster AC timing. It contains two 8-bit multiplying CMOS digital-to-analog converters that are fabricated in a single chip. This monolithic construction offers excellent DAC-to-DAC matching and tracking over temperature.

The PM-7628 consists of two thin-film R-2R resistor-ladder networks, two tracking span resistors, two data latches, one input buffer, and control logic circuitry.


The PM-7628's digital inputs are bus compatible with most 8-bit microprocessors, including the 6800, 8080, 8085, and Z80. Data loading is similar to that of a RAM's write cycle. Digital input data is directed into one of the DAC data latches determined by the DAC selection control line DAC A/DAC B.

Operating from a single +5V to +15V power supply, the PM-7628 dissipates only 12mW of power in a space saving 20-pin 0.3" DIP, and 20-terminal surface mount packages. The PM-7628 features circuitry designed to protect against damage from electrostatic discharges.


CROSS REFERENCE

PMI	ADI	TEMPERATURE RANGE	
PM7628AR	AD7628TQ AD7628TE	MILITARY	
PM7628ARC/883 PM7628ER	AD7628BQ	INDUSTRIAL	
PM7628HP PM7628HPC	AD7628KN AD7628KP	COMMERCIAL	

PIN CONNECTIONS

FUNCTIONAL DIAGRAM

12/88, Rev. A

Burn-in is available on commercial and industrial temperature range parts in cerdip, plastic dip, and TO-can packages. For ordering information, see 1988 Data Book, Section 2.

For availability and burn-in information on SO and PLCC packages, contact your local sales office.

ABSOLUTE MAXIMUM RATINGS

ABSOLUTE MINAMIONI TATA	
$(T_A = +25^{\circ}C, \text{ unless otherwise noted.})$	
(1 _A = 120 0, 500	0V, +17V
V _{DD} to DGND	0V, +17V
AGND to DGND	0.07.77 +0.37
Digital Input Voltage to DGND	0.3 v , v _{DD} +0.3 v
V _{PIN2} , V _{PIN20} to AGNDV _{REF} A, V _{REF} B to AGND	–0.3v, v _{DD}
PIN2' PIN20 ACND	±25V
V _{REF} A, V _{REF} TO AGNO	±25V
V _{REF} A, V _{REF} B to AGND V _{RFB} A, V _{RFB} B to AGND Power Dissipation (Any Package) to +75°C	450mW
Derate Above +75°C by	
- II Tomasanturo Dongo	
Operating remperators rulings	55°C to +125°C
AR, ARC Versions	_40°C to +85°C
ED UD UDC US Versions	
Dice Junction Temperature	+150 C
Dice outlotters a superson	

Storage TemperatureLead Temperature (Soldering, 60 sec)	65°C to +150°C
Lead Tomporture	

- **CAUTION:** 1. Do not apply voltages higher than $V_{\rm DD}$ or less than GND potential on any terminal except V_{REF}.
- 2. The digital control inputs are zener-protected; however, permanent damage may occur on unprotected units from high-energy electrostatic fields. Keep units in conductive foam at all times until ready to use.
- 3. Do not insert this device into powered sockets; remove power before insertion or removal.
- 4. Use proper anti-static handling procedures.
- 5. Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.

ELECTRICAL CHARACTERISTICS: at $V_{DD} = +5V \pm 5\%$; $V_{REF}A = V_{REF}B = +10V$; $I_{OUT}A = I_{OUT}B = 0V$; $T_A = Full Temperature Range specified under Absolute Maximum Ratings, unless otherwise noted.$

Decimed under Absolute		gs, unless otherwise noted.	MIN	PM -7628 TYP	MAX	UNITS
PARAMETER	SYMBOL	CONDITIONS				
STATIC ACCURACY (Note 1)			8			Bits
Resolution	N				±1/2	LSB
Relative Accuracy (Note 2)	INL		<u>-</u>			
Differential Nonlinearity	DNL			_	±1	LSB
(Note 3) Full Scale Gain Error	G _{FSE}	T _A = +25°C T _A = Full Temp. Range	-	±0.5 ±1.0	±2 ±3	LSB
(Note 4) Gain Temperature Coefficient	TCG _{FS}	A=Tull tompthals	_	_	±0.007	%/°C
(Δ Gain / Δ Temperature) (Notes 4, 10)				±5	±50	nA
Output Leakage Current I _{OUT} A (Pin 2) I _{OUT} B (Pin 20) (Note 5)	I _{LKG}	T _A = +25°C T _A = Full Temp. Range	_		±200	
Input Resistance (V _{REF} A, V _{REF} B)	R _{IN}		8	_	15	kΩ
(Note 6) Input Resistance Match (V _{REF} A/V _{REF} B)	ΔR _{IN} R _{IN}		_	±0.1	±1	9/