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Abstract

We derive the high energy asymptotic of one- and two-loop corrections in the next-
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production at the LHC. For large invariant mass of the W-pair the (negative) one-loop
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two-loop terms of up to 10%.
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1 Introduction

With the LHC now starting its operation, the experimental investigation of scattering pro-
cesses at the TeV scale is within reach. Starting from these energies electroweak corrections are
strongly enhanced by Sudakov logarithms of the form (a®, In*"s/M2,)" [I]. The full evaluation
of electroweak one-loop corrections to fermion- or W-pair production is by now a straightforward
task. Two-loop corrections, however, can be obtained only in the high energy limit. By employing
the evolution equation approach the analysis of the dominant logarithmically enhanced two-loop
corrections for four-fermion processes has been pushed successfully from next-to-leading logarith-
mic (NLL) approximation [2J3/4] to NNLL [5] and even N3LL approximation [6/7], which accounts
for all the two-loop logarithmic terms (for additional work on this topic see e.g. [8I9J10]). Subse-
quent analysis performed in the effective theory framework [I1] employing the two-loop anomalous
dimensions calculated in Refs.[6/7] have confirmed the formentioned result.

In this paper we consider specifically pair production of W-bosons. Previously, the electroweak
corrections were studied mainly in the context of the electron-positron annihilation. The one-loop
corrections have been evaluated for the W-pair production [I2J13IT4/T5] and the W-boson mediated
ete™ — 4f processes [L6UI7UI819]. For high energies the two-loop logarithmically enhanced terms
have been obtained up to the NNLL approximation [3/4J20J2T]. The one-loop contribution amounts
to typically -20% for 1 TeV and -50% for 3 TeV while two-loop terms vary between 2 and 5%
for 1 TeV, for 3 TeV they may even rise to 20%. For the W-pair production at the LHC the
analysis of the one-loop electroweak logarithms to the NLL approximation is given in [22]23] with
the realistic cuts and the effect of gauge boson decay included. Beyond one loop the logarithmic
corrections to the partonic cross sections were considered in [24]. In view of the extremely large
partonic energies and with the LHC eventually operating at full luminosity (not to speak of the
SLHC) invariant masses of the W-pair exceeding 1 TeV and approaching 3 TeV seem within reach.
Therefore the evaluation of the enhanced electroweak corrections is of particular interest. Here we
present the explicit result for the one- and two-loop corrections to the partonic gg — WTW~ and
hadronic pp — WTW ™ cross section in high energy limit in the NNLL approximation. Note that
the cross section of W-pair hadronic production is a subject of large corrections due to the strong
interaction of the initial states. Currently the analysis of QCD corrections is completed to the NLO
and NLL approximation (see [25]26l27] and references therein). The size of the corrections depends
strongly on a particular observable and in many cases the available approximation provides a few
percent accuracy. As we will see the two-loop electroweak logarithms become essential at this level
of precision and have to be included in the theoretical predictions.

Our paper is organized as follows: the partonic processes in Born approximation are introduced
in Section 2l In Section [Blthe evolution equation approach is outlined for the simplified case of a pure
SU(2) spontaneously broken gauge theory. The discussion closely follows Ref. [21]. However in the
present paper we derive the explicit result for the one-loop corrections to scattering amplitudes given
in Appendix A. The generalization to the SU(2) ® U(1) Standard Model is presented in Section [4],
which contains a more detailed analysis of the separation of infrared singularities connected with
virtual photon emission. The results for the one- and the two-loop corrections to the partonic
cross section in NNLL approximation are listed in the Appendix B. In Section we present a
numerical study of these corrections for v/§ = 1 TeV and 3 TeV respectively. Based on these results,
the corrections to the transverse and longitudinal W-pair production in proton-proton collisions at
14 TeV are presented in Section [4.3] together with the discussion of the anticipated statistical errors.
Section Bl contains a brief summary and conclusions. In Appendix C we present the correction to



the two-loop NNLL result for the transverse W-pair production in electron-positron annihilation
[21].

2 The partonic process

The partonic processes relevant for the W-pair production at hadron colliders are gluon fusion
and quark-antiquark annihilation. The gluon contribution to the total cross section is about 5%
[28] and we focus on the process g — WT W ™. In the leading order it is described by the diagrams
in Fig. [
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Figure 1: Tree level diagrams contributing to the partonic process
The kinematics at partonic level is defined by:
a(p1, A1) + @(p2, A=) = W (ko hig) + W (k- k), (1)

where AL and k4 are the helicities of the incoming and outgoing particles respectively. For on-shell
W -bosons, the matrix element can be then expressed as function of the Mandelstam variables:

5= (p1 +p2)?, t=(p1— k)% o= (p1 —ky)?, (2)

They are related to the scattering angle 6 through the relations:
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In the high energy limit only final states where the W-bosons have the same polarization are not
suppressed by a factor MEV /s or higher. In addition, the case where both W’s are longitudinal can
be reduced by means of the Goldstone equivalence theorem to the production of a pair of charged
Goldstone bosons as shown in Fig. 2
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Figure 2: Goldstone equivalence theorem at Born level

3 Massive gauge boson production in SU(2) model

Let us, in a first step, neglect the hypercharge and consider a simplified model with sponta-
neously broken gauge group SU(2). The model retains the main features of the massive gauge
boson sector of the Standard Model. In this case the result can be presented in a simple analytical
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Figure 3: Fermion/scalar scattering in an external singlet vector field and scattering of a gauge boson in an
external scalar field. The momentum of external field satisfies p? = s = —Q?2.

form and constitutes the basis for the further extension to the full electroweak theory. We study
the process of gauge boson pair production in fermion-antifermion annihilation at high energy and
fixed angle with all kinematical invariants of the same order and far larger than the gauge boson
mass M, |s| ~ [t| ~ |u| > M?. In this limit the asymptotic energy dependence of the amplitudes
is dominated by Sudakov logarithms [29]30] and governed by the evolution equations [3T32]33].
The method of the evolution equations in the context of the electroweak corrections is described in
detail for fermion pair production in Ref. [7] and for W-pair production in Ref. [21].

Following Ref. [21] we introduce the functions Zy 4 4 which describe the asymptotic dependence
on the large momentum transfer ) of the scattering amplitude of the spinor (¢) or scalar (¢) field
in an external singlet vector field and of the vector boson (A) in an external singlet scalar field,
i.e. of the respective form factors in the Euclidean region (see Fig. B). In leading order in M?2/Q?
these functions are known to satisfy the following linear evolution equation [31/32/33]

Z; (4)
M2

Q@ dg
E%?&:l/ %%W@D+MM¢»+mme

with the solution

Q2
Zi:exp{/ dw [
M2 X

which satisfies the initial condition Zi|Q2: a2 = 1. Here the perturbative functions v;(«) ete. are

M2 X

/méiwmuw+@mu»+&mwﬂﬂ}, 9

given by the series in the coupling constant a(u?), e.g. vi(a) = E;’O:l(oz/mr)"%("). Then the
amplitude of the transverse (longitudinal) gauge boson production Ap (LAr) can be decomposed

as follows _
A7 =a(urn)ZyZaeArL - (6)

where AT, 1, is the reduced amplitude and we factor out the Born coupling constant a(ur ). The
scale dependence of this factor is cancelled by the higher order renormalization group logarithms
replacing pr 7, by a physical scale of the process. In the case of the longitudinal W-pair the proper
scale is uy, = /s because it describes the interaction of far off-shell intermediate gauge boson with
virtuality of order /s. For the transverse W-pair production it is ur = My corresponding to the
coupling of the on-shell W-bosons. Note that in an alternative approach based on the soft-collinear
effective theory [24] the normalization scale of the Born coupling constant for the transverse gauge
bosons is set to y/s. This is compensated by an additional 3y contribution to the anomalous
dimension CS) which effectively shift the normalization of the Born coupling constant to My, in
agreement with our result.

Due to the factorization property of the Sudakov logarithms associated with the collinear diver-
gences of the massless theory [35] the reduced amplitude satisfies the simple renormalization group



like equation [36J3738]
0

0ln Q2

where Q2 = —s and X1, is the soft anomalous dimension matrix acting in the space of the isospin
amplitudes. The solution of the above equation is given by the path-ordered exponent

AT,L = XT,L(O‘(Q2))AT,L ) (7)

~ Q? T
Ar 1 = Pexp [/M2 %XT,L(O‘(:E))] Ao r,(a(M?)), (8)

where Ag 7, determines the initial conditions for the evolution equation at ) = M. By calcu-
lating the functions entering the evolution equations order by order in a one gets the logarithmic
approximations for the amplitude. By expanding the exponents one gets the one- and two-loop
corrections in the following form

1
A= |08+ (e D) A Al SO0 F=a

1 1 1 1 2
A = {g )Lt + 50 {4“) +60 +xf) - gﬁo} L + 3 H”+(<(”+£(”+ X\1)

1
—Bo (C(1)+X(T?2>]L2} AL + 31V, + O(L), D=y +48 (9

where L = In(Q?/M?) and fy is the one-loop beta function. The anomalous dimensions 7(a),
((a) and x(«) are mass-independent and can be associated with the infrared divergences of the
massless (unbroken) theory. At the same time the functions &;(a) and Az () do depend on the
infrared structure of the model and require the calculation in the spontaneously broken phase. All
the perturbative coefficients in Egs. (@) except .A(()I% ., are known [2I]. In Ref. [2I] the result for the
one-loop correction to the cross section [19] has been used to obtain the two-loop NNLL terms. We
complete this part of the calculation and present the explicit result for the one-loop corrections to
the amplitude in Appendix A. Our result for the cross section agrees with Ref. [19].

The large Yukawa coupling of the third generation quarks to the scalar (Higgs and Goldstone)
bosons results in specific logarithmic corrections proportional to m? /M‘%V This kind of Sudakov
logarithms were studied in Ref. [32] and have universal structure for any renormalizable non-gauge
theory. The factorization in this case is much simpler than in gauge theories and the logarithmic
corrections are completely determined by the ultraviolet field renormalization of the external on-
shell lines. Since the Yukawa coupling of the initial light quark states is suppressed the Yukawa
enhanced Sudakov logarithms for hadronic production of W-pair are similar to those for W-pair
production in electron-positron annihilation [2I]. Thus the Yukawa enhanced corrections can be
taken into account through the modification of the evolution equations for the corresponding Z4-
function. The main complication is that the Yukawa interaction mixes the evolution of the quark
and scalar boson form factors and in general does not commute with the SU(2) coupling. Thus
the evolution equation has a complicated matrix form:

M2

Q% qg
mezz = [/ d?‘)’(a(iﬂ)) + ¢ (a(@), ayur(Q%)) + E(a(M?)) | 2, (10)



with the solution

Q2
Z:Pexp{/ d_x [
M2 X

where v(1) = (=3/2)1, £ = 0, ayyu;, = M} /(2M3,) o, and we introduce the five-component vector

/| d—%(a(w’))+<<a<x>,ay“k<x>>+£<a<M2>>]}zo, 1)

M2 X

Z=(Z4 2y, Zoy Zi_, Zis). (12)

The subscript + (—) stand for the right (left) quark fields and Z,, corresponds to the transition of
the Higgs boson into the neutral Goldstone boson in the external singlet vector field. The one-loop
anomalous dimension matrix reads [21]

120000 0 0 6 0 -6
L[ 012000 000 6 —6
¢W=2|0 00900 +g 100 0-1], (13)
00090 01 0 0 -1
00000 1-1-1-10

where the first term represents the pure SUp(2) contribution, the second term represents the

Yukawa contribution and we introduce the ratio p = ayyr/a = ~ 1. The proper initial

M
2MZ,
condition for the evolution equation which corresponds to the SUL(2) Born amplitudes of the third
generation quark and scalar boson production in light quark-antiquark annihilation is given by the
vector Zg = 2(T§’, T;’, Tg”_, T, Tt?jr) = (1,—1,—1,1,0) where T stands for the particle isospin
and the overall factor of 2 is introduced for convenience. Since the Yukawa enhanced logarithmic
corrections can be attributed to the external on-shell field renormalization we expect a diagonal

form of the corrections. This is indeed the case due to a nontrivial matrix relation

2n 352\ " 2n+1 352\ "
(¢) -zo:<§> 2o, (W) -zo:<§) (~30,30,p/2,~p/2,0) ,  (14)

where the vector on the right hand side of the second equation represents the one loop correction
Cg,lgk - Z¢. By factorizing the components of Zy we can rewrite it as follows

1 1 1
Cyon - 20 = 2p(=3T3, =3T3, 5T . 3T ~T},). (15)

The coefficients of T in the above expression depend only on the field renormalization of the particle
i as it has been explicitly shown in Ref. [39]. For example, for the hypercharge mediated Born
amplitudes of the same process we have different initial conditions Zg = (Y, Yy, Y, Vi, Yiy) =
(1,1,1/3,1/3,4/3) where Y; stands for the particle hypercharge. However the one loop coefficients
are the same as in Eq. (I3)

1 1
Cyun - 20 = p(=3Yy, =3Yy, —5 Yo, —5 Yie, ~Yiy). (16)

The different form of the odd and even order corrections is dictated by the off-diagonal character
of the matrix of field renormalization by Yukawa interaction.



By expanding the solution for the component Z,4 we obtain the Yukawa enhanced logarithmic
corrections to the amplitude of the longitudinal W-pair production. Let us introduce the following
notation

(Qvur =€ 20l (17)

where only the terms proportional to the second or fourth power of the top quark mass are kept on
the right hand side. Then the Yukawa contribution to the amplitude (@) takes the following form

Y ‘Yuk = <C(1)>YukL A(O) + A((]l) ‘Yuk

1 1
APy = {5“/(1)(C(1)>YukL3 + [(C(l) +&0 +x M - 3 (iJ/uk> €Dy,

l\DI»—\

where 53/ uk — g /4—3p/2 is the one-loop beta-function of the Yukawa coupling constant and .A((]l) |'Vuk
is the one-loop nonlogarithmic Yukawa contribution given in the Appendix A.

4 W-pair production in the electroweak model

4.1 Analytic results

The electroweak Standard Model with the spontaneously broken SUp(2) x U(1) gauge group
involves both the massive W and Z-bosons and the massless photon. The corrections to the fully
exclusive cross sections due to the virtual photon exchange are infrared divergent and should be
combined with real photon emission to obtain infrared finite physical observables. The infrared
divergences of the virtual corrections are regulated by giving the photon a small mass A. In the
limit \? < MI%V < @Q? the dependence of the amplitudes on A in the full theory is the same
as in QED. Thus the logarithmic corrections can be separated into “pure electroweak” Sudakov
logarithms and QED Sudakov logarithms of the form In(Q?/A?) or In(M3,/A\?).

To disentangle the electroweak and QED logarithms we use the approach of Ref. [1J57]. While
the dependence of the amplitudes on the large momentum transfer is governed by the hard evolution
equations (c.f. Eqs. (4 [7)), their dependence on the photon mass is governed by the infrared evo-
lution equations [I]. Two sets of equations completely determine the dependence of the amplitudes
on two dimensionless variables @) /My, and @/ up to the initial conditions which are fixed through
the matching to the fixed-order result. For \? < MV2V the singular dependence of the amplitudes on
the infrared regulator is governed by the QED evolution equation. Its solution to NNLL accuracy
in the massless fermion approximation my = 0 (f # t) is given by the factor

_ ac(N?) 2 2 Q 2 U Q? > My Mg,
U= Uo(ae)exp{ g [ (Q —i—l) In 3Qq—4qun? lnF—Hn T—FQI 2

2()\2 2 §
+OEZ;)2)§{—§(Q§+1>1113Q ( Q2+——20Qq1 —>1n2ﬁ+0<ln%>}+0(a§)}7 (19)

where «, is the MS QED coupling constant, and @, is the quark electric charge. The NNLL
approximation for U/ can be obtained from the result for the fermion-antifermion production [5] by



proper modification of the QED anomalous dimensions. Note that we take into account the top
quark decoupling and Eq. (I9]) corresponds to five light flavors in contrast to Ref. [5] where all the
quarks were assumed to be massless. To exclude the top quark contribution in the expressions for
the QED anomalous dimensions in [5] N, should be replaced by N, — 1/2. The preexponential
factor Uy in Eq. (I9)) is factorization scheme dependent. It is convenient to fix it by normalizing
U(ae) |8: Yoz, = 1. We factorize the QED factor and write the full theory amplitude as a product

A= UA.,. (20)

where A.,, includes only electroweak Sudakov logarithms. The logarithms of the photon mass in
U are generated by loops with soft photons, photons collinear to the initial state fermions, and
soft photons collinear to the final state gauge bosons, which result in the logarithmic dependence
of the coefficients on Myy. In the physically motivated cross section which is inclusive in respect
to the photons with the energy much less than electroweak scale the singular dependence of U
on the photon mass is replaced by the experimental cuts on the soft photon energy or absorbed
into the parton distribution functions. One may easily change the regularization scheme and use
e.g. dimensional regularization which is more convenient for the analysis of the parton distribution
functions. In the present paper we focus on the pure electroweak part of the amplitude A.,,. The
factorization formula (20) implies that the anomalous dimensions corresponding to the electroweak
Sudakov logarithms are obtained by subtracting the QED contribution from anomalous dimensions
of the full theory. The functions v, {, and x are mass-independent. Therefore the anomalous
dimensions parametrizing the electroweak logarithms can be obtained by subtracting the QED
contribution from the result of the unbroken symmetry phase calculation to all orders in the coupling
constants. In particular in one loop we get

O _ . Lo 2 2 2 1L _ Q) 2 2
Ta,p = 7A,¢>‘SU(2) oA &t 2QA7¢ Sy <A,¢ - <A,¢ e + YA,¢ [

L~ (”‘ 1Q,s2 %1 W _ (”‘ (%Y +4Qqs2 )21, (21
XT X SUQ)‘i’ Qq Sy nt ) XL XL SUQ)"‘ aYot, +4Qqs,, nt , (21)

where Yy, Y4 = 0, Yy = —1 are the hypercharges of quarks, gauge and Goldstone bosons, sV2V =
sin? Oy, tV2V = tan? fyy, and Oy is the electroweak mixing angle. The SU(2) part of the anomalous
dimensions can be found in [21] while the hypercharge contribution and QED subtraction term are
given explicitly. The anomalous dimensions for the quark Z-functions can be found in Ref. [5]. The

only two-loop coefficients we need are

@ _ .2

52 800
Yo = VA, + g VAol Q65 (22)

4 _—
w27

SUR)

in the MS scheme. On the other hand the functions ¢ and Ay are infrared sensitive and require
the use of the true mass eigenstates of the Standard Model in the perturbative calculation. In
NNLL approximation one needs the one-loop contribution to these quantities which can be found by
comparing the solution of the evolution equation with the explicit one-loop result for the amplitudes.
In this way we find that the anomalous dimensions 52-(1) get contributions just from the mass
difference between My, and Mz and obtain:

Y\ 2 M2 :
é.l(l) = 2 |:(CZ—;3)2 + (?> tV2V — 7/28V2V:| In M—QZ7 1= w7A7 (b? (23)
w



where TZ-3 = @;—Y;/2 is the third component of the isospin. The expressions for the nonlogarithmic
one-loop corrections to the amplitude .A(()l) are rather cumbersome and we collect them in Appendix
A. Note that .A(()l) depends on the normalization of the QED factor. We use the normalization where

all the nonlogarithmic one-loop corrections are contained in A((]l). With the above parameters of
the evolution at hand we can write down the two-loop NNLL corrections to the amplitudes as in
Eq. ([@). The two-loop Yukawa contribution in the NLL approximation is given by the interference
of the one-loop double logarithms and the one-loop Yukawa enhanced single logarithms. Thus it is
straightforward to obtain this contribution exactly. For the NNLL two-loop Yukawa contribution
we use the SU(2) model of the previous section with p = m?/(2Mg,), which approximates the
exact result with the accuracy of order sin? Oy ~ 0.2.

Now we are in the position to present the final result for the cross sections. We define the
perturbative series as follows

do [1 + (i> 50 4 (43)26(” +.. ] doro (24)

dcos® A7 T dcosf

The coefficients for the one and two-loop NNLL terms are listed in the Appendix B. Below we
present the numerical analysis of the corrections to the partonic and hadronic cross sections.

4.2 The partonic cross section

For the numerical estimates we adopt the following input values

My =80.41 GeV, My =91.19GeV, My =117GeV,  m;=1727CeV,  (25)

1
a(M3) = THE st = 0.231,

and take /s = 1 TeV as characteristic example. The one and two-loop corrections for left-handed
u-quarks in the initial state are plotted in Fig. Ml showing a sizable NNLL contributio. The
structure of the corrections for the left-handed d-quarks is similar, see Fig. Bl To facilitate the
comparison of the u- and d-quarks cases related by crossing symmetry in the Born approximation,
we plot the cross section for u-quarks as a function of — cos 6. In the Born cross section we always
use the physically motivated normalizarion scale of the coupling constants, which is u = My for
the transverse and pu = /s for the longitudinal boson production.

The contribution of the right-handed quarks vanishes for transversally polarized W-bosons, and
for longitudinally polarized bosons it is significantly smaller than the one of left-handed quarks, see
Fig.[6l In one as well as in two-loop approximation one observes large compensations between LL,
NLL and NNLL terms. Evidently the LL approximation, even when combined with NLL terms
only, does not lead to an adequate description of the full result. In Ref. [I5] the quality of the high
energy approximation has been studied at one-loop level. The error turns out to be less than a few
percents for a partonic center of mass energy above 500 GeV and a scattering angle in the range
30° < 0 < 150°.

! Numerical results for the partonic cross section have been presented in Ref. [24] and qualitatively agree with
our analysis. However a direct comparison of the results is not possible since the authors of [24] use different power
counting and QED subtraction prescription.
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Figure 4: One and two-loop corrections to the partonic cross section for left-handed u-quarks in the initial
state, transverse (left panel) and longitudinal (right panel) W-bosons at v/ = 1 TeV.

4.3 Hadronic cross section

To obtain transverse momentum and invariant mass distributions for the process pp — WTW ~+
X the partonic cross section must be convoluted with the parton distribution functions f3, ;(z1, ,u%)
and fhz,j(:ng,u%), where pp is the factorization scale, x1 and xo are the momentum fractions
carried by the parton ¢ in the hadron A; and by the parton j in the hadron hy respectively. The
pr-distribution is given by

6y

do B doj
dpr’

. (26)

1 1 1
N2 Z/Odl’l/odxz Frni (@1, 15) frg.j (w2, 1) 0(2122 — Tmin)
¢

where N, is the number of colors, the sum is over all possible ¢ partonic initial state, pr =

sinfy/§— 4MV2V / 2 is the transverse momentum of the W-bosons and we adopt up = pr. The

quantity

A(pt + M)
S

is related to the minimal partonic energy that is needed to produce two W-bosons with a given

transverse momentum pr. The partonic differential cross section dé;;/dpr are given in terms of

(27)

Tmin =
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Figure 5: One and two-loop corrections to the partonic cross section for left-handed d-quarks in the initial
state, transverse (left panel) and longitudinal (right panel) W-bosons at v/3 = 1 TeV.

the angular differential cross section as follows

6y 4 déy; -
i = br %y (t < a) |, §=x1225. (28)

BT [3— AME 5T - L08Y

The numerical results are obtained by using the MRST parton distributions [40] and the integra-
tion routine CUHRE from the CUBA library [41]. The upper panel of Fig. [{l shows the NNLO
pr-distributions for the production of transverse and longitudinal W-bosons in the NNLL approx-
imation. Transverse bosons production is evidently dominant, with the cross section being about
twenty times larger than the one of the longitudinal bosons. The lower panel of Fig. [{] shows the
NLO and NNLO corrections separately. For the production of transversely polarized W-pairs the
one-loop correction reaches 40% at pr = 1 TeV and 60% at pr = 2 TeV. The two-loop contribution
amounts up to 10% at pp = 1 TeV and 20% at pt = 2 TeV and partially compensate the one-loop
corrections. For the longitudinal boson production the one-loop correction is about 15% (30%) at
pr =1 TeV (pyr =2 TeV), while the two-loop contribution does not exceed a few percent up to
pt = 2 TeV. As anticipated above the radiative corrections for the longitudinal case are smaller
than those for transverse W bosons. This is because the value of the quadratic Casimir operator
of the SUL(2) electroweak group, which govern the leading logarithmic contribution, is smaller
for the fundamental representation of the longitudinal degrees of freedom than for the adjoint
representation of the transversely polarized W-bosons.

10
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Figure 6: One and two-loop corrections to the partonic cross section for right-handed u-quarks (left panel)
and d-quarks (right panel) in the initial state, and longitudinal W-bosons at v/ = 1 TeV.

The invariant mass distribution for the W-pair production is defined as follows

do 1 1 1 ) o 46 (M2. )
i, = N_E%:/o dxl/o defhhi(xl?:uF)thJ(anNF)W7 (29)

where M,,,, = \/(ky +k_)2 = /5 is the invariant mass of the WW-pair system and we adopt
pur = My, . Here the partonic differential cross section dé;;/d M, is obtained by integrating the
angular differential cross section in the region — cosfyin < cos @ < cos Omin

dé;; (M2 €08 Omin dé;; (M?

dij (My,) :/ dco M(;( o725 — M,,) | (30)

dM,,, — cos O dcos

which excludes the range of small angles where the high energy and the Sudakov approximations
are not valid. The results for the invariant mass distribution are plotted in Fig. 8 with an angular
cutoff Oy = 30°. To estimate the potential statistical sensitivity, the corresponding plots are
shown for the production cross section of W pairs with py > p§'*. Taking, as crude estimate, an
integrated luminosity of 200 fb~!, about 1200 W pairs with pr > 600 GeV would be produced.
Assuming that the experimental analysis would be based on the final state with one W-boson
decaying leptonically and the other hadronically a fraction of about 4/9 of the pairs could be
observed, leading to a nominal statistical error of about 4%. Under this (optimistic) assumption

the one-loop terms would be clearly relevant and the two-loop terms start to contribute.
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Figure 7: Transverse momentum distribution (including corrections) of transverse and longitudinal W pairs
and relative corrections for proton-proton collisions at /s = 14 TeV.

5 Summary

In the present paper we derived the one and two-loop electroweak corrections to W-pair produc-
tion at the LHC in NNLL approximation in high energy limit. We present the analytical result for
the amplitudes, differential partonic cross sections, hadronic py- and invariant mass distributions.
The structure of the corrections is similar to the W-pair production in eTe™ annihilation [2I]. In
the case of the transverse boson production we observe the cancellation between the huge NLL and
NNLL contributions so that the sum is dominated by the LL term. For the longitudinal bosons the
corrections exhibit significant cancellation between the LL, NLL and NNLL terms. The maximal
effect of the corrections is on the pr-distribution of the transverse W-pair production and reaches
60% and 20% at pr = 2 TeV in one and two loops, respectively. To push the theoretical error below
1% the evaluation of the two-loop linear logarithmic terms should be completed, which requires the
calculation of the two-loop mass-dependent anomalous dimensions [7].
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Appendix A

In this appendix we give the explicit analytical result, valid in the high energy limit, for the
one and two-loop NNLL amplitudes of the processes:

Arg_ o a-(p1) + @ (p2) = Wy (k) + Wy (ko)
Argz + ax(p1) + @x(p2) = @7 (k) + 67 (ko) (31)

where ¢4 are the left/right handed fermions in the initial state, which can be either u or d quarks.
The amplitude Ar describes the production of transversely polarized W-bosons and vanishes for
the right-handed initial quarks. The amplitude A,+ describes through the one-loop Goldstone
equivalence theorem the production of the longitudinally polarized W-bosons. The one-loop cor-
rections to the Goldstone equivalence theorem of Fig. [2] can be properly described by introducing
the following effective wave function counterterm for the ¢+ field:

e SHOR)  sWeadd) 1aM
¢ M2, My 2 M2,

1
+ 562w +0(a?), (32)

where E%/ is the longitudinal part of the W self-energy, ¥W¢ is the W—¢ self-energy, 5M§V and
dZyw are the mass and wave function counterterms of the W boson (see also [42]).
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Figure 9: Cross section (including corrections) for transverse and longitudinal W pair production and
relative corrections for proton-proton collisions at /s = 14 TeV (see text).

The results given in this section are obtained by adopting the MS renormalization for the
couplings and the weak mixing angle and on-shell renormalization for the masses. As before the
renormalization scale in the Born amplitudes is fixed to ,u?p = M‘%V for the transverse and ,uQL =5
for the longitudinal case. The Lorentz-Dirac structure of the amplitudes in the high energy limit
takes a simple form:

Arg = a(p2) | frprci Ang. + R (pr-6) Bro | w-a(p).
Argr = a(p2) k4 w q(p1) Arge (33)

where wy = # and we use the relation between the polarization vectors ek (k) of the transversely

polarized W+ in the center of mass frame
eh(ky) = —el (ko) = e, (34)

where k = &1 stands for the polarization. The perturbative series for the amplitudes read

(o @] a n " o a n "
Apgz = dma(ud) - (E) AL (P=T,L),  Bry=4ray <E> By . (35)
n=0

n=0
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where a(u?) = ae(1?)/s2 (1?) and the coupling constants are supposed to be normalized at 1 = My
unless the normalization point is indicated explicitly. The Born amplitudes read:

1
J4g27:: 57 “4m) = 7 Eﬁ%l ::07

£2 (12 £2 (12
AR= L [1 + %} 40 {_ 1+ %] C A=), A= ),
(36)
The one-loop contribution to the second transverse Lorentz-Dirac structure of Eq.(33]) is particularly
simple and does not contain Sudakov logarithms

1 ~ .
B — [ﬂT o + t@ﬂ%] =, BY — B (o a), (37)

2

1 1 la\a,, o 9 1/3 a 1
=—|14+=-=]=|L ——| =+ = | Lus — —. 38
Bry 9<+2t>t[us+w} gla+7)Lus 13 (38)
All the notations are explained at the end of the section. The one-loop corrections to the remaining

Lorentz-Dirac structure can be formally decomposed according to the gauge coupling constant
factor

. 54\ @ ¢ 9 .a D
80, = _<4— §?>;[L35 + %] 4 3= L + %] - (— —5;>Lus ty

1
Al = ““Pﬁ a2 Ay + 52 (AR — AL ) (P=TL), (39)
where the last term A P, sub corresponds to the first order term of the expansion of the singular QED
factor (I9) and cancels the infrared logarithms coming from soft photons and from photons collinear

to the incoming quarkdd. The QED correction factorizes with respect to the Born amplitude and
reads

A i = [2 (Q2+1) Ly L +4Qq Ly Lus — Q212 = 2Q2Ly L, — (3Q2+2) Ly + A(l)]A( )

Pqx»

1 9 7 2 4 3 13 2 4
AT’))\ = <§_§wz+§wz2>szz_ [E — <§—€w —|—3wZ>w 54 i — % 45w, —ngz,
A _ (9 2 4 (L 2
A= 5—11wZ+3wZ w, L, — ﬁ +5w w, B, LXZ—i-L +7% 411w, —6w
Z
Q* Q> o My
AD) = [ (Q3+1) n? 55 + (3Q2-4QLut ) In 35 +In? <& +21n quI (40)
where Q? = —§ — 0" and @, is the electric charge of the quark. Note that AS;1(1)¢,QED vanishes for

My ~ X — 0. After the subtraction the A-dependence disappears and we get the QED contribution
in terms of the parameters of the evolution equation

(1)
7 b
AL - Agg%sub _ [ d SED 124 <§(§}%ED + e + X%ED)L n APZ),QED] AL

2In contrast to Section I we normalize here U (c. {QQ N2—n2, = 1. In this case the amplitude is manifestly A

independent. The numerical estimates are obtained with the normahzation of Section 4] where the A\ dependence

survives in the imaginary part of the one-loop amplitude, but does not contribute to the cross section up to N*LL
approximation.
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o = =2(Q241), e =303 AW, = —AQuLus &= 2(Q241) Ly,
Al = —(3Q2+2) L, +4Q,L, Ly — Q212 — ALY, (41)

In order to present the result of the remaining SU(2) and Y components, in terms of the coefficients
of the evolution equations, it is necessary to analyze the isospin structure of the amplitude for left
handed quarks. The general SU(2) basis for the amplitude A7 of the left-handed quark-antiquark
pair transition into two transverse gauge bosons reads
- o, 0 o, 0 Uu_

Q. qr — By By : (Z_L+ d+) <A17a7b+./427b?a+¢435ab]1> (d >, a,b=1,2,3, (42)
where B, are SU(2) gauge fields and o, are the Pauli matrices. From the definition Wjjf =
(B1 FiB3)/V2 we get the following structure for the production of W W

_ _ _ = o_0O . 0 _ U_
quL%W;WTi (’LL_|_ d+)<./4177++u427+7+¢431> <d_>:

w2 (1) (0] (2):

where o4 = (o1 £i03)/v/2. Thus

1 1
Ay = 5442 + As, Ara_ = §A1 + As. (44)
We introduce now the isospin vector amplitude A; of Section
Ay
Arg. = [ A2 (45)
As

The Born amplitudes A(T‘Bf and Agpod)i of Eq.(36)) correspond to the vector

0 = . (46)
0

For the amplitude A;, of the left-handed quark-antiquark pair transition into Goldstone bosons,
the isospin basis is:

U—

A, (s dy) %" <d_> (@, q>+)%<§3> b Ay (s do)1 <Z:> (® &)1 @’3) T

In the first term the sum over a goes from 1 to 3, but only o3 contributes to the production of
charged ¢ pair so that

1 1
ALu, = _Z Ao + Aﬂa ALd, = Z Acr + Aﬂ- (48)

As for the transverse case we introduce the isospin vector amplitude A; of Section [3]

A= (50): (19)
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The Born amplitudes AL(% and .AL([Oi{ of Eq.(B6l) correspond to the vector

1 —1
2 2
AV _ 2 yy 2|1 : (50)
" 5 Tftfv (i) $ ﬁt‘?‘, (u7)

where Y; (Y}) is the hypercharge of the initial (final) state. The isospin vector amplitudes can also
be decomposed according to the gauge couplings

AL = AL ey 12 AR+ 2 (AL g = AL L) (P=TL). (51)

The expressions for the SU(2) and Y components of the vectorial amplitude are then written in
terms of the parameters of the evolution equation

(1)

1 fYP — Z 0 i
Apy. z—[ S (G b)) D+ AL ,,]Aiq o (=SU@.Y). (52)
The coefficients 71(312, ng and x(l)i are universal, the other are obtained by explicit calculation.

The expression for the amplitudes .AT i and .AL _; in terms of the anomalous dimensions can
be then obtained by using Eqgs.(d4] [4S) and takes the form:

AW

Pq— Z

(1)
Y Z _ -
[ gy (ggg,ﬁggg,iﬂgg_)HA }4 [ O L4 AW ] A9 (53

where we introduced the notations

—(0 0 —(0 0

AL AL A - A, o)
The coefficient are given by:

Transverse W, left-handed quarks, SU(2) component:

—A4Ls 0 ALy

W=y W aw=p &lew=ole KD =[O -aLu Ly,
Lys Lis 0
X o= 2Lt —4Lus, XY = 2Lus— 4L, XY =2Lus, XY o= 2L,
A(Tlu)f,sw) = A(Tl,)suew Ag“lcg ,Sue) A(Tl,)swz)(IE ), A (qu)f,sw) =0,
AV = _Z <1—§%+?§>Lus - 3L < >LtsLus - <i Z £>Lus +2L, L + 4%
+%2<7+ 3? 5?—5) % , + g 2 — %wH + éwj %wt —w?+ I, + (1—wt3)LtW
- i <%+17 2 3—21wz2+3 j)LZ — iLZQ + %<1—;wH+iwfl—%wf’l>LH+ L2
+ [gé - (1 189wz+zwzz>wzﬁz]llxz —% [i—l— (1 12wH+éw§>wHﬁH]Lx (55)



Transverse W, left-handed quarks, Y component:

o 1 o _ 1 o _ 1 ) _ ) _ o) _
Tq-y = TR Tq-Y T 197 Tq_,y — 1_8LZ7 Xg"q)iyy_07 ngq) ’Y—ngq) 7Y—O,
Al =2, AL = AN (e a), AL =0,

1 o 02 1 24 67 w2 a2
AY = (138 2 - (1428 L+ =+ (1492 +3—
ny 36< 3 +t2> w37 MECRNTI ] +3t2
1, 1(5 1/1
55t 5 (5 ) (g ) o

Longitudinal W, left-handed quarks, SU(2) component:

_2Lus - 2Lts 4Lut

1 1 21 3 1

’Yiq),,sz}(z) =—3, C£q),,su(2) = Z - §wt7 éq),,sc]@) :Lz7 X(qu),,su(z): 3 s
1 Ly 0

1 _ 1 _ —(1 _ -1 _

X(Lu),,SU(z)_ Lts - 3Lu37 X(Ld),,SU(z)_ Lus - 3Lt87 X(Lu),,SU(Q)_ 2Lusv X(Ld),,SU@)_ 2Ltsa
1 575 5 19 416
— L4+ —+4-n’+—inr  L_—4LyL,———82ir

(1) 27t 2 T3 6 23 1)

ALq,,SU(Z) = 3 1 43 1 9 + AL,SU(Z)]:L?
2L —=LyL 2
16 g 21 3"

1 335 135 1471 2 71 1
AY o= 13 (Lis+w2> 1z (L§S+w2) Ll + o + 57+ im+ AN s

1 35 153 1025 2 26 . 1
Agd)aSU(Z): 1% <L?s+772> 17 (Liﬁwz) —Lu L, — 5 T3 ? 5t A(L,)sue),
~(1 13 112 26 ~(1 15 200 71,
ALU)?,SU(Z) = —5; (Lis‘i‘ﬂ'z) +T —7'('2—’—?271', AL(d),,SU(Q) = —55 (L?S+7T2> — 7 —7T2— FZTI’,

1 27 1 3 3 1 117 27
A(L’)SU@) = —1Tw, + ng —w, + wal + QU 5“&2 1 <13+39wZ —ng—k?w;’)Lz
1 5 5 1 4 3 3 5 1, 1., 1,
+5 (1—3wH+ZwH—ZwH>LH +iuL+3 (1—wt)thtW - L2+ 50, + 50,

91 1 63 27 11 3 1
(35 + (G e Fot Juea o[+ (1 g gud Juss 2, 0

Longitudinal W, left-handed quarks, Y component:

Yo v = —g, ¢y = % ey v = gLZ, X L= —%Lm 1,
W= e W, =0 Al =l Al =al AR =0
AL = —1—12L_ + %LutLZ — % — %H — %m + %(g - ;wZ + %ug)LZ

gl - 18, — 1|2+ Brw)us|i, - . (59)
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For the right-handed quarks the amplitudes are isospin singlet so that the SU(2) and Y contribu-
tions factorize with respect to the Born amplitude:

Lq+-,2 Lgy i

)
Vg i ;
A [WT+ P () + €0 Yo+ Al Z]A;(;L, i=SU@.Y.  (59)

Longitudinal W, right-handed quarks, SU(2) component:

(1) 3 3 (1) o 1

Vogy,sve) = — 2 CLq+,SU(2) 3 - 5“% XLq+,SU(2) =0, 6Lq+,.5’[](2) 2LZ7

27 1 3 3 5 1 3
A(le1)+,su(2) —17w, + ’w — Wy + —w? + ’wt—— w24 =+ Zn? 4+ 2(1 ’u))’thtW—i— —w, L,

4 4 " 2 T 6"
1 117 w2 27 w3 1 5 1 9 2
_Z<10+39wz - +7 >LZ 2(1 3wy, +4wH—ZwH>L + - L .+ 2LxH

91 1 63 27 11 3
*E@*(*z%—§%>%@ﬁﬁ‘kg+@‘ﬁ“%%ﬁH@]H"““

Longitudinal W, right-handed quarks, Y component:

P 25 7 1 4 25
Youy,y = _Ev CLu+, - 3 XE,uL,}f = _gLuta 6Lu+7 = 18LZ’
1 4 209 25 1 5 7 1 4

PN Sy R R Nl & 2\ 42
pupy = TgheTghuly — g T o oty — G T ) e T g
1 1] 2
- iz_z[ﬁ—+ (5—wz)wZﬁZ]LXZ,
o _ 13 o _4 o2 o 13
’YLd+7Y - _E7 CLdJr,Y - §7 ng)+’y - gLuta Uy, LY — ELZ,
o1 2 94 13 , 41 1 1 7 1, 1,
ALdJmY - EL_ o gL“tLZ - 3 + 5_47T - EZF - §wz + 6 - sz + ZwZ LZ — §LZ
1 172
_ZLiZ [ﬁ (5 w >w BZ] (61)
Z

The NNLL two-loop amplitudes are obtained by using Eqs. (QZ4[4S]):

4

BY) =

By L,

(
¥ 2
&;%u@ﬁ[m@wmﬁ&gwmﬂﬁ2pﬁ@m@m

+2 ((Chiy +68d; )b + DI, — 18IS, — 18x0%0, +A¥2§+v&2’¢Aéq’4L2}A;}¢
(1)
Y 1 _

+{ LS [(cpqﬁspﬁ) S (P~ 0, 6L AL |2 }A (62)
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where

1 1 —(1 —(1 -1
qu¢ qu;F,SU(Q) + t‘/zvffgqi,Y - 32 ft.I(Q)EDa f:f% IPE A; Xf(’q), = Xlgq),7.5'[](2)7 Xf(’q)+ =0,
1 19 1 41 80 1 1) 19 _ 1 —1(1
[ﬁf]}gqlz Efp(qq):,sv(z) ——t quq:y“‘ 3 ;lv q(,Q)ED7 =76 [6X]1(>q, 6 X}gq),7sv(2)a [ﬁX]}quZOa
_ _ — 1
AL(;), = AL(é),,SU(zw (}1) AL(};zL - A?k, =0; AYL%]IZ: = _Zwt - 3wt27 (63)

with P = T L and ¢ = u,d. Note that the Yukawa contribution of Eq.(I8]) is partially contained
already in C L.sue) and the remaining piece is given by AY“k The square of the matrix x gives the
following contribution:

I = DL, + 2085y (265

qx,50e) | Gy Xpgz,y — v2vXq(,163ED> + <t§/XIg]):F,Y - xf/Xq(}C)ZED)z
DY) o= 16155 — 12L4s Lys + 417, D)) = 4Las = 12L4s Lus + 16L7,
DY) g=9L0s = 2LesLus + Ly DI 0= Loy = 2LesLus + 9LE, D) =0,
P = B e+ 2680 (0 — 00 )
Y o= —4L%s — 4LusLus, [C10) ey = —4Lis — 4Lts Lus,
DY ooy = —4Las = 4LisLus, X)) o = —4L7, — 4Lts Lus, [;z?]gqlw) =0. (64)
Finally, the pure two-loop quantities ’y,(gq)]F are given by:
'71(31)1[ 71(°2q)i,SU(2) + t§v7§’2¢1)i Y é/VS?%ED’ 182; = 1(2);1%’ /yc(l?C?QED = %’
Voo e = 3;%5 + %W% Yoy = 2—? V2 ) = —? +21%, Ay = 5;—10,
’Y£%])+,su(2) = —33—5 +m V) = %, 'YS}W = %716- (65)
Throughout this section the following notations have been used
lnM—AgV — o, L =1 t L,s=1In —?11 + i, Ly=1n % Ly, =1In é,
Li__TS<LiS+7r2>i_a§<Lfs+7r2>, LtW:ln< —]\i—vj;> L,Y_ln]\%,
L= 1n]\]\j—§v, Ly, =In ;g B = —i ]\]\i—fgq, w; = ]\]\j—; i=ZH,t (66)
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Appendix B

In this appendix we present the result for the one and two-loop corrections to the partonic cross
section in NNLL approximation. The differential cross sections are obtained from the amplitudes

given in the previous appendix through the relations:

_dUTq 330 « \ 5 o 28 4
C@ 3974 Z Z ‘ Tq— | = 256 |:‘ATq ‘ 1"‘66) Re<AquBTq7)§SG cy + ‘Bqu‘ 1—636
SPIN k==%£1
dorg 5 89 2 .
T;_ 32778%‘ L‘II‘ 138 ‘ Lq$| , sg =sinf, cy = cosh. (67)
The perturbative series Eq.(24]) for the cross section takes the form
Aorez _[1, (250 a\? (@) d&z(;gy):F Qe
o= |1 () e+ (7)o + | =0 ‘T
da(o) a’r 2 | 4(0) 2 d&goq) o’ (0) 12
“dey = NCF 855 (14 cp) ‘ATq | ) ﬁ = Nc7 S ‘ALqJ—J (68)
We expand the corrections terms 5,(372)]F in powers of the large logarithm £ = In(5/M3,)
8o, = aby, L2480 L+ chy., ol =al £t 08) £ 4 8 2. (69)

Numerically for the one-loop coefficients we get

all) = —4.85, i) = < _6.77 + 4%)@ 2771, + 4.86,

~ /\2 ~
A (— 2.48 + 1.553 - 2.48?—)13 +302 - 4? Luly + (5.25 - 4.97%)@ —0.701, — 3.24

u2 _|_t2

t— t 7
L) [(4 03— ~2.48% >z§ — 3= 17+ (4.55 - 4.97%)@ - 2.48} :

t
aby =-5.00, ) = ( 738 + 45>lt +3.381, + 5.40,

t 2 t
A= (— 2.48 + 1.55— — 2.48A—2>lf 432420, 0, + <5.40 - 4.977>lt —0.851, — 3.37
- u u u u

0—1) 1t t {2 i t
LD osl oas V2382 4 (45— 07t Vi, — 28]
02412 a u? t U

alh) = -2.50, B\t = —4.971, +0.971, — 2.81,
= 1.55% 12— 0.552 124 0.241, — 0.241, + 70.47;

all) =-2.65, ) = 5181, + 1.181, — 2.27,
A = 145212 — 045212 4 0.301 — 0.301, + 1.01;
} - ;
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afl), = —1.25, b, = 0431, +0.431, — 6.69,
Al =0.20212 - 020212~ 0.111, +0.111; + 46.23;
t U

al) =-1.20, o) =0221 — 0221, — 6.85,
i, = 0107 17 = 0.107 2 — 0051, +0.051, + 46.31. (70)

The two-loop coefficients read

a? 1176, b2 — <32.82 - 19.40%)@ —13.421, — 17.34,

~ /\2 ~
A2 — (34,95 — 22502 1 16.04% )12 — 107212 + ( — 34.13 — 20.33% )1, 1,
f £2 ) ¢ f

~ ~2
4 (- 44.44 + 37.21%)@ 19.241, — 28.46 + 39.481;—2

o ’ » . )
(t—@)a K— 19.56 % + 12.043‘—)13 145512 4 (— 92.06 + 24.083)@ n 12.04] ;
u?+t? t t2 U t
t
al?) =1252, b2 = (36.94 - 20.015>lt —16.931, — 20.89,

t t2 t
A2 = <39.69 —25.29— + 16.42A—2>lt2 —9.2812 + <— 41.00 — 18.487>lu I
- u u u

t 2
+ <— 53.63 + 40.135>lt + 15.581,, — 23.56 + 39.48ﬁ
(a9
ﬂ2_|_£2

t t2 0 t
[(- 20.18~ + 12.42A—2>lf +15.01% 12 + <— 22.77 + 24.857>lt + 12.42} ;
u u t u

a2 =312, 02— 12421, — 2421, + 10.54,

o <— 3.87% + 12.34> 124 (1.372 + 0.47> 12— 0.811, 1 +23.931, — 6.341, — 274.80;

al?) =352, b\ =13.761, — 3.141, + 9.44,

(2) S 2 S 2

= <— 3.85- + 13.44> 12+ (1.192 + 0.70) 12— 2141, 1, +21.331; — 5.911, — 101.71;
al), = 0.78, b2, = 0.541; — 0.541, + 10.11,

U4 T

1 t
2 = <0.34 + 0.25%)13 + (— 0.16 — 0.255>l§ — 0190, Iy — 2.301, + 2.301; — 88.00;

aly) =072, b2 = —0.261 +0.261, +10.03,
tA ~
2 = <0.14 + 0.127>l§ + <— 0.10 — 0.123)13 —0.050,0; —1.190, + 1.191, — 85.17. (71
+ m t

Here I, = In(—a/3) and I; = In(—1/3).
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Appendix C

In Ref. [21] the contribution of the imaginary part of the anomalous dimension matrix ngl)

(given in Eq. (BO) above) has been missed in the numerical estimates. This contribution changes
the NNLL two-loop correction in the transverse boson production cross section. It results in an

additional term ) )
T4 —x
2L_ +
i
+

in the coefficient of the quadratic logarithm in Eqgs. (14, 33) of Ref. [21].
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