
PQC250 Series

250W 3" x 5" Convection Cooled AC-DC Power Supply

DESCRIPTION

The PQC250 series switching power supplies utilize advanced component and circuit technologies to deliver high efficiency and low power dissipation in both operational and standby operation in a compact 3.0" x 5.0" x 1.40" package. Designed for medical, computing, communications, telecom, industrial, consumer, and other OEM applications, deployable in 1U customer systems. All models offer universal AC input capability with active power factor correction (PFC) and compliance to worldwide safety and EMC standards.

Optional cover kit assembly see PQC-COVER datasheet for details PQC-COVER Output De-Rating at 70°C is for horizontal orientation with component side up only. Please refer to ACAN-77 for details

Please contact Murata for additional details and availability for Cover/Chassis kit

29V model available, consult with factory for more information

FEATURES

- Industry leading MTBF
- Certified to IEC60601 Ed.3 medical (2 x MOPP Pri-Sec; 1 x MOPP Pri-Chassis Ground); PQC250-xx Series.
- 60950-1 compliant
- IEC60335-1 Certificate
- Designed to comply with IEC60601-1-2 4th Edition EMC Standard Requirements¹
- 250W compact high density; operation to 250W at +50°C
- Very low no load standby power; designed to meet **ENERGY STAR® Program Requirements for Single Voltage** External AC-DC Power Supplies
- True zero load operation of the Main (V1) output; no minimum load requirements
- 3" x 5" industry standard footprint
- Optional DC input capability
- High efficiency 94% typical
- Remote sense, main output
- Universal AC input with active PFC
- Less than 1U high
- RoHS compliant
- Active inrush protection
- Compatibility with MVAC250 Series products¹
- Droop Current Share option
- When deployed in End User Systems
- Some features of MVAC250 Series not available on this product
- 3 Pending certification

CB Test Certificate and Test Reports available upon request

Available now at www.murata-ps.com/en/3d/acdc.html

INPUT CHARACTERISTICS					
Parameter	Conditions	Min	Nom	Max	Units
Input Voltage AC Operating Range	Single Phase	90	100/240	264	V _{AC}
Input Frequency		47	50/60	63	Hz
Turn-on input voltage	Input rising	75		90	V _{AC}
Turn-off input voltage	Input falling	65		80	V _{AC}
² DC input ¹ refer to:		127		300	
Part Number Options Guide		260		400	
	Vin = 115V _{AC} ; Full Load		2.5		Arms
Maximum input current	² Vin = 127-300			2.7	Α
·	² Vin = 260-400			1.5	Α
Inrush Current	230V _{AC} ,Cold start, 25°C;		30		Apk
Power Factor	At 115Vac, full load	0.95			W/VA
Hold-up Time	90V _{AC} ; Full Load	16			msec
Efficiency @ 020V for D000F0 40	20% Full Load		88.5		
Efficiency @ 230V _{AC} for PQC250-48 model.	50% Full Load		94		%
mouer.	100% Full Load		95		
No Load Input Power Consumption	$(PS_ON = OFF; Aux (V2) = OA)$			<0.5W	W

¹ Consult with factory for details and availability

Medical certification applies to AC input models only.						
OUTPUT CHARACTERISTICS						
Parameter	Conditions	Min	Nom	Max	Units	
Line, Load Regulation	Main (V1) Output ¹			±1	%	
Lille, Load negulation	Aux (V2) Output			±5	70	
Minimum Load Capability	Stable Operation	0			Α	
Output Ripple	Zero to Full Load ²			120	mVp-p	

¹ zero load output regulation will increase by up to +10% of nominal set point voltage for all models. 200mA min. load current is required to keep output

voltage within ±1%.

Ripple and noise are measured with 0.1uF ceramic capacitor and 10uF tantalum capacitor. A short coaxial cable with 50 ohm termination is used

AUXILIARY OUTPUT CHARACTERISTICS (ALL MODELS)					
Auxiliary Output	Aux Output Voltage	Load Current	Load Capacitance	Line, Load, Cross Regulation	Ripple Voltage & Noise
Aux (V2)	5V	0 to 0.5A	0 to 220μF	± 5%	120mVp-p

Applies to AC Input models

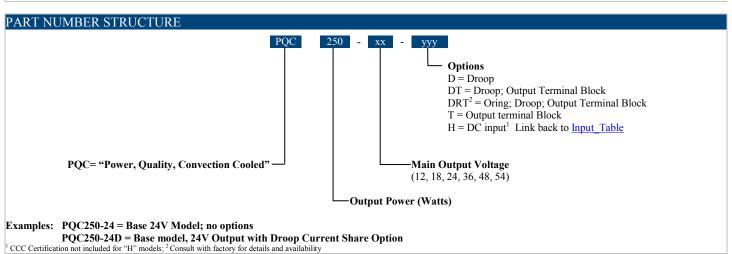
Parameter	Conditions	Тур.	Max.	Units
Transient Response ¹	50% load step, 1A/µsec slew rate and min 0.1A load		± 5	%
Settling Time to 1% of Nominal			500	μsec
Turn On Delay	After application of input power		3	sec
Output Voltage Rise	Monotonic		50	msec
Remote Sense	Compensates for up to 120mV of total lead drop (output and return connections) with remote sense connected. Protected against short circuit and reverse connection.		120	mV

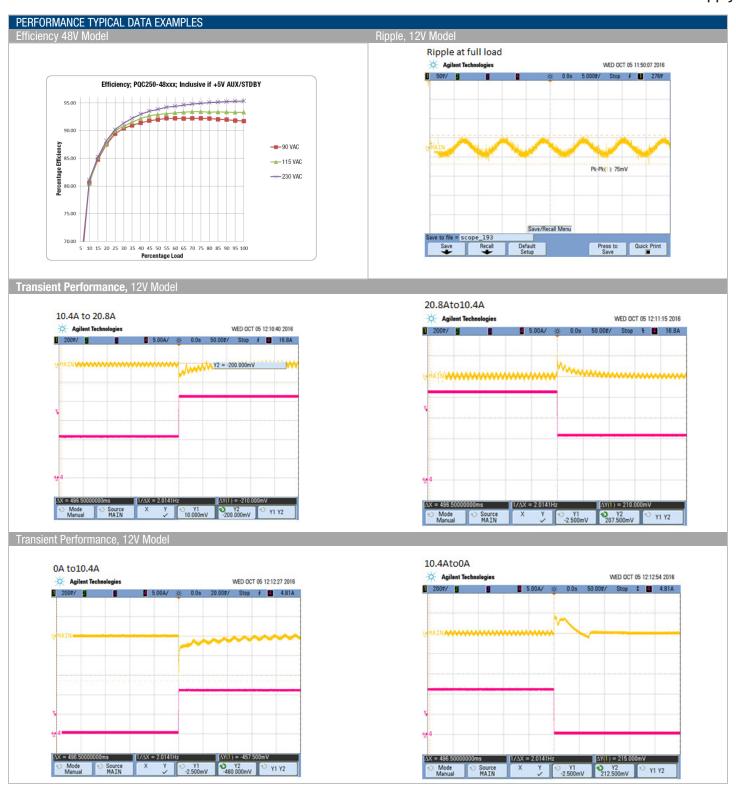
Parameter	Conditions		Min.	Typ.	Max.	Units
Storage Temperature Range			-40		85	
	See power derating curves	See power derating curves			70	°C
Operating Temperature Range	Start up with -20C @ 100VAC minimum in	put	-20			
Operating Humidity	Non-condensing		10		95	%
Operating Altitude			-200		² 5000	m
MTBF	Telcordia SR-332 Issue 3; M1C3 @ 40°C Telcordia SR-332 Issue 3; M1C3 @ 25°C			2,145K 4,500K		Hours
Shock	30G, non-operating	Complies				
	ne Sweep; 5-150Hz, 2G					
Operational Vibration	Random Vibration, 5-500Hz, 1.11G	Complies				
Operational Vibration Safety – Medical Standards 2 x MOPP (Primary-Secondary)		ANSI/AAMI ES60601-1 (200	5+C1:09+A2:10) (D	esigned to comply	v with IEC60601-1	-2 4 th Edition
Safety – Medical Standards	Random Vibration, 5-500Hz, 1.11G IEC60601-1 (Ed. 3) – CB Cert and Report EMC Standard Requirements ³) CAN/CSA 22.2 No. 60601-1 (2008) 3rd E	ANSI/AAMI ES60601-1 (200	5+C1:09+A2:10) (D	esigned to comply	v with IEC60601-1	-2 4 th Edition
Safety – Medical Standards 2 x MOPP (Primary-Secondary) Safety – ITE, Audio/Video & Consumer Standards	Random Vibration, 5-500Hz, 1.11G IEC60601-1 (Ed. 3) – CB Cert and Report EMC Standard Requirements³) CAN/CSA 22.2 No. 60601-1 (2008) 3rd EE060601-1:2006+CORR:2010 IEC/EN/UL/CSA 60950-1 IEC/EN/UL/CSA 60335-1¹ (CB Report & CeCE Marking per LVD	ANSI/AAMI ES60601-1 (200 dition	5+C1:09+A2:10) (D	esigned to comply	v with IEC60601-1	-2 4 th Edition
Safety – Medical Standards 2 x MOPP (Primary-Secondary) Safety – ITE, Audio/Video &	Random Vibration, 5-500Hz, 1.11G IEC60601-1 (Ed. 3) – CB Cert and Report EMC Standard Requirements ³) CAN/CSA 22.2 No. 60601-1 (2008) 3rd E EN60601-1:2006+CORR:2010 IEC/EN/UL/CSA 60950-1 IEC/EN/UL/CSA 60335-1¹ (CB Report & CE Marking per LVD IEC62368-1¹	ANSI/AAMI ES60601-1 (200 dition ertificate)	5+C1:09+A2:10) (D	esigned to comply	v with IEC60601-1	-2 4 th Edition

PROTECTION CHARACTERISTICS					
Parameter	Conditions	Min.	Typ.	Max.	Units
Over Veltage Protection	V1 (main output) latching	115		140	%
Over Voltage Protection	V2 (aux output) latching	5.5		7.5	V
	V1, hiccup mode	120		150	
Over Current Protection	V1, latch mode	160		Short circuit	%Amax
	V2, auto-recovery	110		150	
Over Temperature Protection (Primary and Secondary Heatskink Temperature)	Auto-recovery	125		130	°C
Remote Sense Short Circuit Protection			Complies		
Remote Sense Reverse Connection Protection			Complies		

ISOLATION CHARACTERISTICS					
Parameter	Conditions	Min.	Typ.	Max.	Units
	Primary to Chassis	1500			
Isolation	Primary to Secondary (2xMOPP)	4000			
	Secondary to Chassis	1500			V _{AC}
	Output to Output	1500			
Earth Leakage Current (under single fault condition)	264V _{AC} , 60Hz, 25°C		300		μΑ
Earth Leakage Current (under normal conditions)	264V _{AC} , 60Hz, 25°C		150		μΑ

 ³⁰⁰⁰ M max. altitude for Medical applications
 when deployed in End User Systems


CURRENT SHARING OPTION – PQC250-XX-DXX				
Model Number	Description			
PQC250-XX-Dxx Refer to <u>ACAN-78</u> for additional details	Main Output current share is achieved using "the droop method". Nominal output voltage is achieved at 50% load and output voltage increases/decreases approximately ±3% of nominal voltage. This regulation window does not include the additional tolerance due to line, temperature, long term stability etc. Startup of parallel power supplies is not internally synchronized. If more than 250W combined power is needed, start-up synchronization must be provided by system using a common PS_ON signal. To account for ±10% full load current sharing accuracy and the reduction in full load output voltage due to droop, available output power must be derated by 15% when units are operated in parallel. Current sharing can be achieved with or without remote sense connected to the common load. If ORing protection is desired, please contact Murata sales for external ORING FET board or external ORING MOSFET reference circuit design (also see Application notes, <u>ACAN-78</u> for additonal details). Aux (V2) output can be tied together for redundancy but total combined output power must not exceed 2.5W, external ORing devices are recommended to preserve redundancy.			


EMISSIONS AND IMMUNITY		
Characteristic	Standard	Compliance
Input Current Harmonics	IEC/EN 61000-3-2	Class A
Voltage Fluctuation and Flicker	IEC/EN 61000-3-3	Complies
Conducted Emissions	EN 55022	Class B
Conducted Emissions	FCC Part 15	Class B
Radiated Emissions	CISPR 22 -3 meter	Class B
nduidleu Elliissiolis	FCC 15.109 - 3 meter	Class B
ESD Immunity	IEC/EN 61000-4-2	Level 4, Criterion 2
Radiated Field Immunity	IEC/EN 61000-4-3	Level 3, Criterion A
Electrical Fast Transient Immunity	IEC/EN 61000-4-4	Level 4, Criterion A
Surge Immunity	IEC/EN 61000-4-5	Level 3, Criterion A (Com. Mode: 2kV 12 OHM, Diff. Mode: 1kV, 2 OHM)
Radiated Field Conducted Immunity	IEC/EN 61000-4-6	Level 3, 10V/m, Criterion A
Magnetic Field Immunity	IEC/EN 61000-4-8	Level 3, Criterion A
Voltage dips, interruptions	IEC/EN 61000-4-11	Level 3, Criterion B

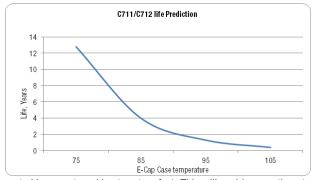
EMI CONSIDERATIONS

For optimum EMI performance, the power supply should be mounted to a metal plate grounded to all 4 mounting holes of the power supply. To comply with safety standards, this plate must be properly grounded to protective earth (see mechanical dimension notes). Pre-compliance testing has shown the stand-alone power supply to comply with EN55022 class B radiated emissions with a metal enclosure. Testing was based on adding a toroid, Fair-Rite#5961004901 with five turns of both of the output leads. Radiated emission results vary with system enclosure and cable routing paths.

STATUS A	STATUS AND CONTROL SIGNALS				
Parameter	Models	Conditions			
PS_ON	All Models	This pin must be pulled low (sink current >2mA) to +5V_AUX_RTN to turn on the main output. The +5V_AUX output is independent of the PS_ON signal, and comes up automatically when the input AC or input DC voltage is applied within their specified operating ranges.			
PWR_OK	All Models	Open collector logic goes high 40-100ms after the main output is within regulation; it goes low at least 2msecs before loss of regulation. Internal 10K pull up to +5V_Aux is provided. Applications using the PWR_0K signal should maintain a minimum load of 5W on the main output.			

THERMAL CONSIDERATIONS

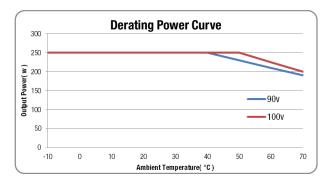

System thermal management is critical to the performance and reliability of the PQC250 series power supplies. Performance <u>derating curves</u> are provided which can be used as a guideline for what can be achieved in a system configuration with controlled airflow at various input voltage conditions.


The product is designed to provide 250W¹ using natural convection cooling when mounted horizontally with un-obstructed convection current airflow flow at room temperature. At elevated temperature the power supply data is taken while it is surrounded by a large vented enclosure to minimize forced cross flows inherent in the elevated temperature test.

The product is capable of operation when mounted in other orientations; operational/derating curves shall be provided to show the effect of such mounting.

Capacitor case temperature and Mounting Orientation:

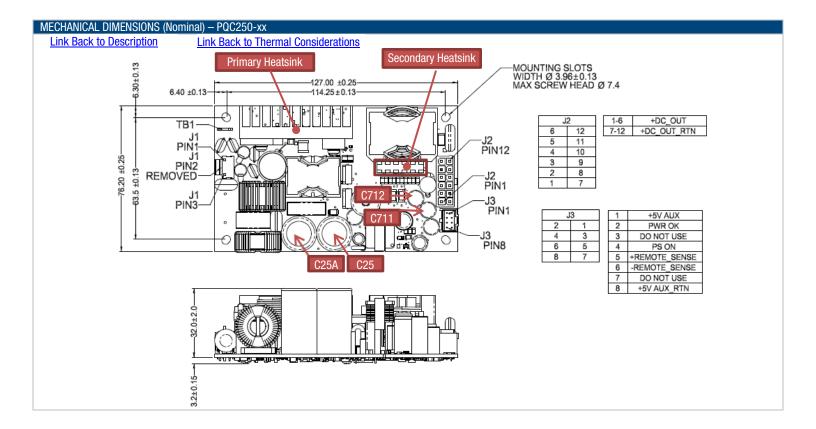
The power supply can operate in any orientation; however, the power supply contains overtemperature protection that will shut off the output as the temperature of the power supply heatsinks approach the limt specified in the <u>protection table</u>. Additional the life expectantcy of the power supply is inversly proportional to the case temperature of electrolytic capacitors <u>C25</u>, <u>C25A</u>, <u>C711</u> & <u>C712</u>. The designer of the system in which this power supply is deployed should consider this relationship to ensure optium product life. The following charts illustrate this relationship:



The PQC250 Series will also benefit from the provision of forced cooling airflow (generated by an external host system fan). This will enable operation at potentially higher local surrounding ambient temperatures.

Please refer to ACAN-78 for additional details

Derating Curve vs. Temperature (based on horizontal mounting, PTH components facing up, natural convection)


Derating curves are provided to indicate operation at varying input voltages with respect to temperature. Link Back to Thermal Considerations; Ordering Guide

WIRING DIAGRAM FOR OUTPUT Dotted lines show optional remote sense connections, that can be extended to the Point of Load (POL) which can be some physical distance from the power module output connector (J2). The intent is to compensate for any voltage drop in the cables to the to maintain voltage regulation at the POL J3 Pin 5 +REMOTE_SENSE +DC_OUT PQC250x J2 Pins 1-6 Main Output (POL) +DC_OUT_RTN REMOTE_SENSE J3 Pin J3 Pin 4 PS_ON Auxiliary/Standby Load FET, BJT, Permanent Connection or manual switch (debounced) to "enable" (tum on) +DC_OUT 5V_AUX_RTN J3 Pin 8 ► PWR OK

Note: For parallel (current share) operation it is required to connect the sharing power supplies in parallel (+DC out connected together and DC out Return connected together on sharing power supplies. Since each output has an identical "droop" share characteristic then each output will intrinsically share the total load current.

PQC250 Series

250W 3" x 5" Convection Cooled AC-DC Power Supply

SAFETY CONSIDERATIONS

- This power supply is a component level power supply intended for use in Class I or Class II applications. Secondary ground traces need to be suitably isolated from primary ground traces when used in Class II applications.
- When the power supply is used in Class II equipment, all ground traces and components connected to the primary side are considered primary for spacing and insulation considerations.
- 3. Protective bonding conductor from the end product protective earthing terminal must be tied to TB1. For optimum EMI performance, while maintaining Class I safety isolation all 4 mounting holes must be tied to the end product protective earthing terminal. To maintain Class II safety isolation mounting holes MTG1 and MTG2 need to be isolated from protective earth and should use standoffs of non-conductive material.
- 4. This power supply requires mounting standoffs of minimum 6mm in height. If there is risk of chassis deformation or shorter standoff height is required, an appropriate insulator must be used under the power supply with adequate extension beyond the outline of the power supply. In all cases, the applicable safety standards must be applied to ensure proper creepage and clearance requirements are met.
- 5. The primary heatsink is considered a live primary circuit, and should not be touched. It is recommended that the primary heatsink be kept at least
- 6. 3.5mm from chassis, and 7mm from secondary circuits. In all cases, the applicable safety standards must be applied to ensure proper creepage and clearance requirements are met.
- This product is subject to the following operating requirements and the Life and Safety Critical Application Sales Policy: http://www.murata-ps.com/requirements/
- 8. Used only in non-tropical conditions.

INPUT/OUTPUT CONNECTOR AND SIGNAL SPECIFICATION AND MATING CONNECTORS – PQC250x				
Connector	PIN	Description	Mating Housing	Crimp terminal/pins
Input Connector J1:	1	AC Neutral	Molex 0009930300	Molex 0008500105 (18-24 AWG) Molex
Molex 26-62-4030	3	AC Line	Miniex 0009930300	0008500107 (22-26 AWG)
Output Connector J2:	1,2,3,4,5,6	+DC_OUT	Molex 0039012125	Molex 0039000038
Molex 39-28-1123	7,8,9,10,11,12	+DC_OUT_RTN	WIDIEX 0039012123	INIDIEX 0039000036
	1	+5V_AUX		
	2	PWR_OK		
	3	DO NOT USE		
Output Connector J3:	4	PS_ON	Moley 0001 420000	Malay 0001100100
Molex 90130-1108	5	+Remote Sense	Molex 0901420008	Molex 0901190109
	6	-Remote Sense		
	7	DO NOT USE		
	8	+5V_AUX_RTN		

APPLICATION NOTES				
Document Number	Description	Link to Document		
ACAN-77	Thermal deployment notes	http://power.murata.com/datasheet?/data/apnotes/acan-77.pdf		
ACAN-78	Current Sharing deployment notes	http://power.murata.com/datasheet?/data/apnotes/acan-78.pdf		

Links back to:
Thermal Considerations
Order Guide
Current Sharing Option

Murata Power Solutions, Inc. 129 Flanders Road Westborough, MA 01581 ISO 9001 and 14001 REGISTERED

This product is subject to the following operating requirements and the Life and Safety Critical Application Sales Policy. Refer to: http://www.murata-ps.com/requirements/

Murata Power Solutions, Inc. ("Murata") makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein do not imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Buyer represents and agrees that it has all the necessary expertise to create and implement seleguards that articipate designerous consequences of failures, monitor claimses and their consects, lessen the likelihood of failures that might causes harm, and take appropriate remedial actions. Buyer will fully indemnify Murata, its affiliated companies, and its representatives against any damages arising out of the use of any Murata products in safety-critical applications. Secretarious are subject to change and without portion.

© 2016 Murata Power Solutions, Inc