To our customers,

Old Company Name in Catalogs and Other Documents

On April 1%, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESANS



10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sal es office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

Y ou should not ater, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. Y ou are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. 'Y ou should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific’. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “ Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as“ Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is“ Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home el ectronic appliances, machine tools; persona electronic equipment; and industria robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific™: Aircraft; agrospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or heathcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

Y ou should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especialy with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics’ as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.




LENESAS

-
»
)
ﬁ\
»
<
)
>
-
=

R8C/Tiny Series

Software Manual

RENESAS 16-BIT SINGLE-CHIP
MICROCOMPUTER

—
@)

Renesas Electronics
WWW.renesas.com RGV200 2005.10



Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products
better and more reliable, but there is always the possibility that trouble may occur with
them. Trouble with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with ap-
propriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-
flammable material or (i) prevention against any malfunction or mishap.

Notes regarding these materials

1. These materials are intended as a reference to assist our customers in the selection of the
Renesas Technology Corp. product best suited to the customer's application; they do not
convey any license under any intellectual property rights, or any other rights, belonging to
Renesas Technology Corp. or a third party.

2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of
any third-party's rights, originating in the use of any product data, diagrams, charts, pro-
grams, algorithms, or circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, pro-
grams and algorithms represents information on products at the time of publication of these
materials, and are subject to change by Renesas Technology Corp. without notice due to
product improvements or other reasons. It is therefore recommended that customers con-
tact Renesas Technology Corp. or an authorized Renesas Technology Corp. product dis-
tributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other
loss rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corp. by vari-
ous means, including the Renesas Technology Corp. Semiconductor home page (http://
www.renesas.com).

4. When using any or all of the information contained in these materials, including product
data, diagrams, charts, programs, and algorithms, please be sure to evaluate all informa-
tion as a total system before making a final decision on the applicability of the information
and products. Renesas Technology Corp. assumes no responsibility for any damage, liabil-
ity or other loss resulting from the information contained herein.

5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a
device or system that is used under circumstances in which human life is potentially at
stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology
Corp. product distributor when considering the use of a product contained herein for any
specific purposes, such as apparatus or systems for transportation, vehicular, medical,
aerospace, nuclear, or undersea repeater use.

6. The prior written approval of Renesas Technology Corp. is necessary to reprint or repro-
duce in whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions,
they must be exported under a license from the Japanese government and cannot be im-
ported into a country other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/
or the country of destination is prohibited.

8. Please contact Renesas Technology Corp. for further details on these materials or the
products contained therein.




Using This Manual

This software manual is written for the R8C/Tiny Series. It applies to all microcomputers
integrating the R8C/Tiny Series CPU core.

The reader of this manual is assumed to have a basic knowledge of electrical circuits, logic
circuits, and microcomputers.

This manual consists of six chapters. The chapters and the subjects they cover are listed
below.

* QOutline of the R8C/Tiny Series and its features ...........ccccccevvvinnnnnn. Chapter 1, “Overview”
 Operation of addressing MOdES ..........cccevvvvivievine i Chapter 2, “Addressing Modes”
« Instruction functions (syntax, operation, function, selectable src/dest (labels), flag changes,
description example, related iNStrUCtioNS) .........ccoovviiiiiiiieeeeiniiiiieen, Chapter 3, “Functions”
* Instruction codes and CycCles ..........ccccoeevvvrerenn Chapter 4, “Instruction Codes/Number of Cycles”
e INStruction INLErrUPLS ...ccoeeiieiii Chapter 5, “Interrupts”
» How to calculate the number of cycles ................ Chapter 6, “Calculating the Number of Cycles”

This manual also contains quick reference sections immediately following the table of con-
tents. These quick reference sections can be used to rapidly find the pages referring to
specific functions, instruction codes, and cycle counts.

* Alphabetic listing by mnemonic ............ccccvveveeeeennns Quick Reference in Alphabetic Order
e Listing of mnemonics by function.........................ce Quick Reference by Function
* Listing of addressing modes by mnemonic ........... Quick Reference by Addressing Mode

A Q&A table, symbols, a glossary, and an index are appended at the end of this manual.



M16C Family Documents

The following documents were prepared for the M16C family. @

Document Contents
Short Sheet Hardware overview
Data Sheet Hardware overview and electrical characteristics

Hardware Manual

Hardware specifications (pin assignments, memory maps, periph-
eral specifications, electrical characteristics, timing charts).
*Refer to the application note for how to use peripheral functions.

Software Manual

Detailed description of assembly instructions and microcomputer
performance of each instruction

Application Note

» Usage and application examples of peripheral functions
* Sample programs

« Introduction to the basic functions in the M16C family

* Programming method with Assembly and C languages

RENESAS TECHNICAL
UPDATE

Preliminary report about the specification of a product, a document, etc.

NOTES:

1. Before using this material, please visit the our website to verify that this is the most updated

document available.



Table of Contents

Chapter 1  Overview

1.1 Features Of RBC/TINY SEIES ...cccceiiiiii ittt et e e e e e e e e e st e e e e e e e e e e s s e snnarereeeeees 2
1.1.1 Features Of RBC/TINY SEIES ......cccccuiiiiiiiiieee e e et e e e e e e e e e s s ar e e e e e e e e e s e s ssnennraaeeees 2
I 2 Y o 1= T=To =T {0 T [ SRR 2
2 o [0 | LTI o= (o =Y PR 3
IR = =T |15 (= G @] T [0 T ir= o) o U 4
1.3.1 Data registers (RO, ROH, ROL, R1, R1H, R1L, R2, and R3) ......ccccvvvririeieeeiiiiiiiiiiieeeee e, 4
1.3.2 Address RegiSters (AD @Nd AL) .....uuuuiieirieieeeieeiecciiree e e et e e e e e e s s e e e aa e e e e e s e aea s 5
1.3.3 Frame Base ReQISEr (FB) ....c.coii it e e 5
1.3.4 Program COUNLEE (PC) ..eviiiiie ittt e e e e e e et e e et e e e e e e s s e sttt e e e e aaeeeeessssnnnnenranneees 5
1.3.5 Interrupt Table ReQIStEr (INTB) .....uuiiiiiiiiiiee e e e e e e e s eeee s 5
1.3.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP) ..o 5
1.3.7 Static Base REQISIEN (SB) .....uuiiiiiiiiiiiieiiiiii ettt 5
1.3.8 Flag REGISIEN (FLG) ...utetieiiiiiiiee ittt ettt et e sttt e et e e e st e e s annnneeeeas 5
1.4 Flag REGISIEr (FLG) ..oiiiiiiiiiieiiitiiee ettt et e e e ekt e e e e e abb e e e e anbeeeeeeaaes 6
1.4.1 Bit O: Carry FIag (C FIAQ) ... .ueeeeeiiriiiieiiiiieee ettt ettt e e e sbbe e e e 6
1.4.2 Bit 1: Debug Flag (D FIag) . .eeeeeiiiiiiie ittt 6
1.4.3 Bit 2: Zero FIag (Z FIAg) .......ueeeeeiiiiiiiee ittt 6
1.4.4 Bit 3: Sign Flag (S FIAg) .....uveeeeeiiiiiiie et 6
1.4.5 Bit 4: Register Bank Select Flag (B Flag) ......ccuueeiiiiiiiiiiiiiiee e 6
1.4.6 Bit 5: OVerflow Flag (O FIAg) ...c.coiuuiiiiiiiiiiiiei ittt 6
1.4.7 Bit 6: Interrupt Rnable Flag (I FIag) .......cueeiiiiiiiiiee e 6
1.4.8 Bit 7: Stack Pointer Select Flag (U FIag) .......ccueeieiiiiiiie e 6
1.4.9 BitS 810 11: RESEIVEM ...coiiiiiiiiii ittt s bt e e s b e e e s annneeeens 6
1.4.10 Bits 12 to 14: Processor Interrupt Priority Level (IPL).........ocoociiiieiiieee e, 7
1.4.10 Bit 15: RESEIVEM ...ooeiiiiiiiiie ittt ettt ettt re e bt e e e s e e s e e nanee s 7
1.5 REQISIEr BANKS ....ccooiiiii et e e e e e e e e e e e e e ———rraaaa e e e s e e aaaraes 8
1.6 Internal State after RESEtiS ClEAred ..........coiiiiiiiiiiiiiiie et 9
A B - L= R I o[ SO UPPTPPT 10
N R [ 01 =0 =T PRSPPI 10
A D 1= 1ol o T | OO PP PR PTRR PSR T 11
O T = 71 £ PSP 12
R A v ] o SRR 15



1.8 Data ArTANGEMENT ...coeiiiiiiiiiitr ettt e et e e e e e e e s e e e e et et e e e e e e e sa e e e et e e e e e e e e s nnrnrrees 16

1.8.1 Data Arrangement in REJISTEN ........uiiiiiiiiii et 16
1.8.2 Data Arrangement iN MEIMOTY .......oouuuiiiiiiiiie ettt e e 17
1.9 INSLIUCHION FOIMALS .....eiiiiiiiiiie ettt ettt e bbbt e e s ab bt e e s abb et e e e anbb e e e e e anneeeas 18
1.9.1 GeneriC FOIMAL ((G) ..ouuiiieieiiiiie ettt ettt e et e e et e e e e 18
1.9.2 QUICK FOIMAL (1Q) +ertteiutttiieeiittt ittt ettt ettt e e st e e et e e s e bt e e e aabr e e e e e e 18
1.9.3 SNOI FOIMMAL (1S) ..eetieiititiiee ittt e et e e et e e s e anb e e e e e 18
1.9.4 ZEIO FOIMAL (1Z) eeeeeeiiiiite ettt ettt e et e ettt e e e e ettt e e e e anb e e e e e annneas 18
1,10 VECIOE TADIES ..tttk et s et e e st e s b e e st e e s be e e srn e e snnee e 19
1.10.1 FiXed VECtOr TADIES ......ooiiiiieiiiie et 19
1.10.2 Variable VECIOr TADIES .......eviiiiieiiiiee ettt 20

Chapter 2  Addressing Modes

b0 R o [ £ TSI o 1Y, oo [T UREPRRR 22
2.1.1 General INStruction AdAreSSiNg .......c.ooiiiiiiiiiiiiiii e e e e e e e e e e 22
2.1.2 Special INSruCtion AAArESSING ......ciirriiiiiiiiiiiee ittt e e e e e e 22
2.1.3 Bit INSrUCtiON AArESSING ...cciiuvteieeeiiiiie ettt et e e e e e e 22

2.2 GUIAE 10 ThIS CRAPLEL ....eii ittt e e et e e et re e e e e e 23

2.3 General INStruCtion AAArESSING ........eeeeiiuuiiiieiiiiie et s et e e e aabre e e e e aeee 24

2.4 Special INSIrUCtON AAAIESSING .......vveiieiiiiiiite ettt e e e e e aabbe e e e e neee 27

2.5 Bit INSTrUCHON AQAIESSING .. ..eeeeiiiiiiiiiei ittt e st e e et e e e e et e e e s e nbbe e e e e annnes 30

Chapter 3  Functions

TN TV o [ (o T I TS O g T o (= U PEERR 34

G T U Tox 1o 1N 39

Chapter 4  Instruction Codes/Number of Cycles

N R U] To [T (o T I g1 ESJ O g =T o] (] SRR 136

4.2 Instruction CodeS/NUMDBEr Of CYCIES ....ovviiiiiiiii i a e 138

Chapter 5  Interrupts

5.1 OULINE OF INTEITUPLS ...ttt e et e e e et e e e et e e e e eeeee 246
5.1.1 TYPES OF INTEITUPES ...eeiiiitiiiee ettt e e et e e e e st e e e e s anbaneeeeaa 246
5.1.2 SOWAIE INTEITUPLS .eeiiiiieiii etttk e e e e s st e e e e s anbaeeeeeans 247
5.1.3 Hardware INTEITUDLS ....cooiueiiiieiiiiiiee ettt ettt e e st e e e e e s anneeee s 248



L2 (01 (= ¢ {0 o1 A @0 o o SRR 249

LT R T = - Vo TSRS 249
LT | O =T USRS 249
5.2.3 ILVL2 10 ILVLO DS, IPL ..ttt ettt e et e e e e nnee s 250
5.2.4 Changing Interrupt Control REGISTEN .......coicuuiiiiiiiiiiiie e 251
5.3 INEITUPE SEUUENCE ...oeeeiiiiee ittt e e e e et e e e e e e s e e e e e e e eenaas 252
5.3.1 INterrupt RESPONSE TIME ..ooeiiiiiiiieiiiiiiee ettt e ettt e e s abb e e e s st e e e e anbeeeaeeaa 253
5.3.2 Changes of IPL When Interrupt Request Acknowledged ...........ccccocuiieiiiiiiiiieiiiiieeeens 253
5.3.3 Saving RegIStEr CONENTS ......oiuviiiiiiiiiiiii ettt eaneeeeeas 254
5.4 Returning from INtErrupt ROULINES ......cooiiiiiiiiiiiiiiie ettt et e e e 255
R I 1 (=T o (0] o 0 e T 1T PP PP P PP OUPPPT 256
5.6 MUIIPIE INTEITUDLS ...ttt ettt e e e e kb e e e et e e e et e e e e e e e 257
5.7 NOEE ON INTEITUPES ..eeeiieieeiie ittt e et et e e e et e e s e e e e e e e e e e naaaae 259
5.7.1 Reading AddreSS 0000016 ......ccceeeeeeeiiiiiiiiiiiieeeee e e e e e s ee st e e e e e eeaesaessssanrrrsaeereaaaeessaaanns 259
BU7.2 SP SELNG -ttt ettt b e b e bbbt nreeennes 259
5.7.3 Modifying Interrupt Control REGISIEN .........uuviiiiiiiie e e e 259

Chapter 6  Calculating the Number of Cycles

6.1 INStruction QUEUE BUFFEI ... e e e e e e e e e e e aans 262



Quick Referen

ce in Alphabetic Order

Mnemonic Page No. for Page No. for Mnemonic Page No. for Page No. for
Function Instruction Code Function Instruction Code
INo. of Cycles INo. of Cycles
ABS 39 138 | DIVU 68 171
ADC 40 138 | DIVX 69 172
ADCF 41 140 | DSBB 70 173
ADD 42 140 | DSuB 71 175
ADJINZ 44 146 | ENTER 72 177
AND 45 147 | EXITD 73 178
BAND 47 150 | EXTS 74 178
BCLR 48 150 | FCLR 75 179
BMCnd 49 152 | FSET 76 180
BMEQ/Z 49 152 | INC 77 180
BMGE 49 152 | INT 78 181
BMGEU/C 49 152 | INTO 79 182
BMGT 49 152 | JCnd 80 182
BMGTU 49 152 JEQ/Z 80 182
BMLE 49 152 JGE 80 182
BMLEU 49 152 JGEU/C 80 182
BMLT 49 152 JGT 80 182
BMLTU/NC 49 152 JGTU 80 182
BMN 49 152 JLE 80 182
BMNE/NZ 49 152 JLEU 80 182
BMNO 49 152 JLT 80 182
BMO 49 152 JLTU/NC 80 182
BMPZ 49 152 JN 80 182
BNAND 50 153 JNE/NZ 80 182
BNOR 51 154 JNO 80 182
BNOT 52 154 JO 80 182
BNTST 53 155 JPZ 80 182
BNXOR 54 156 | JMP 81 183
BOR 55 156 | JMPI 82 185
BRK 56 157 | JSR 83 187
BSET 57 157 | JSRI 84 188
BTST 58 158 | LDC 85 189
BTSTC 59 159 | LDCTX 86 191
BTSTS 60 160 | LDE 87 191
BXOR 61 160 | LDINTB 88 192
CMP 62 161 | LDIPL 89 193
DADC 64 165 | MOV 90 193
DADD 65 167 | MOVA 92 200
DEC 66 169
DIV 67 170

Quick Reference-1




Quick Reference in Alphabetic Order
Mnemonic Page No. for | Page No. for | pMnemonic Page No. for | Page No. for
Function Instruction Code Function Instruction Code

/No. of Cycles INo. of Cycles
MOV Dir 93 201 ROT 112 220
MOVHH 93 201 RTS 113 221
MOVHL 93 201 SBB 114 222
MOVLH 93 201 SBJINZ 115 224
MOVLL 93 201 SHA 116 225
MUL 94 203 SHL 117 228
MULU 95 205 SMOVB 118 230
NEG 96 207 SMOVF 119 231
NOP 97 207 SSTR 120 231
NOT 98 208 STC 121 232
OR 99 209 STCTX 122 233
POP 101 211 STE 123 233
POPC 102 213 STNZ 124 235
POPM 103 213 STZ 125 235
PUSH 104 214 STZX 126 236
PUSHA 105 216 SUB 127 236
PUSHC 106 216 TST 129 239
PUSHM 107 217 UND 130 241
REIT 108 217 WAIT 131 241
RMPA 109 218 XCHG 132 242
ROLC 110 218 XOR 133 243

RORC 111 219

Quick Reference-2



Quick Reference by Function

Function Mnemonic Description Page No. for| Page No. for
Function |Instruction Code
INo. of Cycles
Transfer MOV Transfer 90 193
MOVA Transfer effective address 92 200
MOVDir Transfer 4-bit data 93 201
POP Restore register/memory 101 211
POPM Restore multiple registers 103 213
PUSH Save register/memory/immediate data 104 214
PUSHA Save effective address 105 216
PUSHM Save multiple registers 107 217
LDE Transfer from extended data area 87 191
STE Transfer to extended data area 123 233
STNZ Conditional transfer 124 235
STZ Conditional transfer 125 235
STzZX Conditional transfer 126 236
XCHG Exchange 132 242
Bit BAND Logically AND bits 47 150
manipulation | BCLR Clear bit 48 150
BMCnd Conditional bit transfer 49 152
BNAND Logically AND inverted bits 50 153
BNOR Logically OR inverted bits 51 154
BNOT Invert bit 52 154
BNTST Test inverted bit 53 155
BNXOR Exclusive OR inverted bits 54 156
BOR Logically OR bits 55 156
BSET Set bit 57 157
BTST Test bit 58 158
BTSTC Test bit and clear 59 159
BTSTS Test bit and set 60 160
BXOR Exclusive OR bits 61 160
Shift ROLC Rotate left with carry 110 218
RORC Rotate right with carry 111 219
ROT Rotate 112 220
SHA Shift arithmetic 116 215
SHL Shift logical 117 228
Arithmetic ABS Absolute value 39 138
ADC Add with carry 40 138
ADCF Add carry flag 41 140
ADD Add without carry 42 140
CMP Compare 62 161
DADC Decimal add with carry 64 165

Quick Reference-3



Quick Reference by Function

Function Mnemonic Description Page No. for| Page No. for
Function |Instruction Code|
INo. of Cycles
Arithmetic DADD Decimal add without carry 65 167
DEC Decrement 66 169
DIV Signed divide 67 170
DIVU Unsigned divide 68 171
DIVX Signed divide 69 172
DSBB Decimal subtract with borrow 70 173
DSUB Decimal subtract without borrow 71 175
EXTS Extend sign 74 178
INC Increment 77 180
MUL Signed multiply 94 203
MULU Unsigned multiply 95 205
NEG Complement of two 96 207
RMPA Calculate sum-of-products 109 218
SBB Subtract with borrow 114 222
SUB Subtract without borrow 127 236
Logical AND Logical AND 45 147
NOT Invert all bits 98 208
OR Logical OR 99 209
TST Test 129 239
XOR Exclusive OR 133 243
Jump ADJNZ Add and conditional jump 44 146
SBJINZ Subtract and conditional jump 115 224
JCnd Jump on condition 80 182
JMP Unconditional jump 81 184
JMPI Jump indirect 82 185
JSR Subroutine call 83 187
JSRI Indirect subroutine call 84 188
RTS Return from subroutine 113 221
String SMOVB Transfer string backward 118 230
SMOVF Transfer string forward 119 231
SSTR Store string 120 231
Other BRK Debug interrupt 56 157
ENTER Build stack frame 72 177
EXITD Deallocate stack frame 73 178
FCLR Clear flag register bit 75 179
FSET Set flag register bit 76 180
INT Interrupt by INT instruction 78 181
INTO Interrupt on overflow 79 182
LDC Transfer to control register 85 189
LDCTX Restore context 86 189
LDINTB Transfer to INTB register 88 192

Quick Reference-4



Quick Reference by Function

Function Mnemonic Description Page No. for| Page No. for
Function | Instruction Code
INo. of Cycles
Other LDIPL Set interrupt enable level 89 193
NOP No operation 97 207
POPC Restore control register 102 213
PUSHC Save control register 106 216
REIT Return from interrupt 108 216
STC Transfer from control register 121 232
STCTX Save context 122 233
UND Interrupt for undefined instruction 130 241
WAIT Wait 131 241

Quick Reference-5



Quick Reference by Addressing Mode (General Instruction Addressing)

Mnemonic Addressing Mode Page No. for| Page No. for
Function Instruction
_ Code

_ ,i:,i =z INo. of Cycles

22|28 |_|2|82\5]g|2|2|8|;
FJEEEEEBEE R IHEHE

ABS OO0 O|O|O[O|O0|O|O|0O|O 39 138
ADC OOl OlO|I0|O0|O0|O0|O0|O[O]O|O 40 138
ADCF OlO|O|O|O[O0|0|O0|0O|O|O0 41 140
ADD* O|l0]O0lO0|O|O|O|O0|0|O0]10|0O|0O 42 140
ADJINZ* OO0 O|O|O|IO0|O|0|0O|0O]|O0 O 44 146
AND O|l0]OIO|OIO0|O|O|O0|O|l0]0|0 45 147
CMP O|l0]|O|O|O|IO0|O0|O|0|0O|10]0]|0 62 161
DADC (ORNG®) ORN@) 64 165
DADD (ORNG®) o0 65 167
DEC (ORNG®) O O O 66 169
DIV Ol0|O|O|OIO0|O0|O|O|O0l0|O0]|0O 67 170
DIVU OO0 O|O|OIO|O0|O|O|O0[0O|0]|0 68 171
DIVX O|O|O|O|O|O0|O|O|O0|O|0|0]|0O 69 172
DSBB (ORNG) Ol0O 70 173
DSuUB OO ORNG; 71 175
ENTER O 72 177
EXTS O ok O|O0|O|0O|0|0O 74 178
INC oo™ O O O 77 180
INT O 78 181
IJMPI? OO0 Ol0OI0|0|0]|0 OO 82 185
JSRI! CANCANCINCANCH KON ECRE®) o]0 83 187
LDC™ O|O|O0|O|O|O|O0]O0|0|0]|0 O 85 189
LDE" O|O0|0O|O|O|O|O|O|O|O|O 87 191
LDINTB O 88 192
LDIPL O 89 193

*1 Has special instruction addressing.
*2 Only R1L can be selected.
*3 Only ROL can be selected.
*4 Only ROH can be selected.

Quick Reference-6



Quick Reference by Addressing Mode (General Instruction Addressing)

Wmmm, m|o|ld|le|lvw x|l |lo|dlm(f ||| |0O|N|T|[W|[0 (N |0 0]|wW|wW
S O uw o |olojloflolojlojlold | A A A | A |AdA | A | N[N NN [N O OOl | ™M
g = £
2 ¢
O.U
- 188|388 (8(8(|8/8|3|8(5|2 |2 /9222 /5/8/8/8[88
DWF
ININI# O Ol10 |0
OCNINI#
ITWNNI# | O 0|0 O O
8NN | O oo ) @) ol o
9tsqe | o |o|o|lo|lo|O|olol|o olo olololololo|lolololololo
o [aslotdsp |o|o|o|o|O0|O|lo|0O]|0O oo olololololo|olo @)
S [uvlot:dsp |0 | o|o|o|o|O|o|o|o olo olololololololo O
(@)]
£ [gy/aslgdse |o|o|lo|o|O|O|o|O|0O o)fe) olololo|o|ololo o|olo
(7]
L uvlsdsp (ol ololo|o|ololo]o olo ololo|lololololo @)
©
< [uvl | o O|O0|O0|O|l0|O|0O O O|O|O|O|0O|O|O|0O O
w oo o|lo|o|olololo]|o olololo|lo|olololo 0
edHTY |o|o|olololololololo]o olo|lololo|ololo|o 0
2dntd (ol olololololololololo olo|lololo|ololo|o 0
TdHOY |o|o|o|olololo|o|lo|o]|o olololo|lo|olo|olo olo|o
0d10d |o|o|ololololo|olololo ololololololo|o|o ofolo
.m 1Am - WHMWCC S w_TA
SIS > Zl= |« | o | N
o 0131331318161 «!851518(8/8|a|&|5/2|2|s|Z|C|C|E|g|N
S S| =Zz|Z|l=z|=z2|Z2|lZ2|0|lajla|la|la|lajlx|lg|lclunlnlunlnlnlnlnln|ln

*1 Has special instruction addressing.

Quick Reference-7



Quick Reference by Addressing Mode (General Instruction Addressing)

Mnemonic Addressing Mode Page No. for| Page No. for
Function Instruction
Code
@ =| = INo. of Cycles
cld|l<| 0
22|88 R BREE
312133255 5 5|2|5|2|5|2
el <|<|3|3|8|3|® | |=|®|=
STZX OO0 O ORN®; 126 236
SUB CGANCANCANCGRICH NCANCANCANOI O NORNORNG) 127 236
TST (ORNOANCARCRIC NCANOCINCANCINCI RO RORNC; 129 239
XCHG O|O|O0|O0O|O]|OIO|O0]0O0|0O]0 132 242
XOR CANOANCRECRICR ECANCARCR RO RO HOREORNG) 133 243

Quick Reference-8



Quick Reference by Addressing Mode (Special Instruction Addressing)

Mnemonic Addressing Mode Page No. for| Page No. for
Function Instruction
Code
T
by, o0 INo. of Cycles
S| = @
3| = o T N =
oo x = |9, ml|® =
NIN|]|g2lTF|®|gle|2 m
2221813228 al2|QE]|o
S|d8|lslg|l<|X|B|8|n|L|T|Z|a
ADD" O 42 140
ADJINZ? o a4 146
JCnd O 80 182
JMP O O 81 184
IJMPI? O1]0 oREe) 82 185
JSR O O 83 187
JSRI? OO 0|0 84 188
LDC™? O|Ol0o |0 85 189
LDCTX O 86 189
LDE™! @) O O 87 191
LDINTB o 88 102
MOV O 90 193
POPC O]0O| OO 102 213
POPM™ O 103 213
PUSHC Ol O] OO 106 216
PUSHM™ O 107 217
SBINZ™ O 115 224
SHA™ O 116 225
SHL? O 117 228
STC! o110 O| Ol Ol0O|0O 121 232
STCTX! O 122 233
STE" O O O 123 233

*1 Has general instruction addressing.
*2 INTBL and INTBH can be set simultaneously when using the LDINTB instruction.

Quick Reference-9



Quick Reference by Addressing Mode (Bit Instruction Addressing)

Mnemonic Addressing Mode Page No. for| Page No. for
Function Instruction
_ Code
M
[ = Q INo. of Cycles
m %) )
—| AT S| o« |N
IR gD S| D
— @ (o] (O] (O] (] E
AR I IS
gl <|=(%S|l8|8|8(5|8
558 5|8|5|5|8|3
BAND O|lO0|O|O|O0(0|O|0O 47 150
BCLR OO0 |O|Ol0O]O]0O|0O 48 150
BM Cnd OlO0O|O|O|O[0O]0O]0O O 49 152
BNAND OO0 |O|O[0O]0O]0O 50 153
BNOR O]|O|O0O|O|O0|O OO 21 154
BNOT OlO0O|O|O|Ol0O]O]0O|0O 52 154
BNTST O|l|O|O|O|O0|O|0O|0O 53 155
BNXOR Ol|O|O|O|O0|O |00 54 156
BOR Ol|O|O|O|O0|O |00 55 156
BSET OlO|O|O|O[0O]O0|0O |0 57 157
BTST Ol|O|O|O|O|O|]O|O|O 58 158
BTSTC O|l|O|O|O|O0|O0O 0|0 59 159
BTSTS Ol|O|O0|O|O|0O |00 60 160
BXOR O|O|O|O|O0|0O |00 61 160
FCLR O 75 179
FSET O 76 180

Quick Reference-10



This page intentionally left blank.

Quick Reference-11



Chapter 1

Overview

1.1 Features of R8C/Tiny Series

1.2 Address Space

1.3 Register Configuration

1.4 Flag Register (FLG)

1.5 Register Banks

1.6 Internal State after Reset is Cleared
1.7 Data Types

1.8 Data Arrangement

1.9 Instruction Formats

1.10 Vector Tables



Chapter 1 Overview 1.1 Features of R8C/Tiny Series

1.1 Features of R8C/Tiny Series

The R8C/Tiny Series of single-chip microcomputers was developed for embedded applications.

The R8C/Tiny Series supports instructions tailored for the C language, with frequently used instructions
implemented in one-byte op-code. It thus allows development of efficient programs with reduced memory
requirements when using either assembly language or C. Furthermore, some instructions can be executed
in a single clock cycle, enabling fast arithmetic processing.

The instruction set comprises 89 discrete instructions matched to the R8C’s many addressing modes. This
powerful instruction set provides support for register-register, register-memory, and memory-memory op-
erations, as well as arithmetic/logic operations using single-bit and 4-bit data.

Some R8C/Tiny Series models incorporate an on-chip multiplier, allowing for high-speed computation.

1.1.1 Features of R8C/Tiny Series
e Register configuration

Data registers: Four 16-bit registers (of which two can be used as 8-bit registers)
Address registers: Two 16-bit registers

Base registers: Two 16-bit registers

e Versatile instruction set

Instructions suited to C language (stack frame manipulation): ENTER, EXITD, etc.
Instructions that do not discriminate by register or memory area MOV, ADD, SUB, etc.
Powerful bit manipulation instructions: BNOT, BTST, BSET, etc.

4-bit transfer instructions: MOVLL, MOVHL, etc.

Frequently used 1-byte instructions: MOV, ADD, SUB, JMP, etc.

High-speed 1-cycle instructions: MOV, ADD, SUB, etc.

e Fast instruction execution time

Minimum 1-cycle instructions: Of 89 instructions, 20 are 1-cycle instructions. (Approximately 75% of
instructions execute in five cycles or fewer.)

1.1.2 Speed Performance
Register-register transfer 2 cycles
Register-memory transfer 2 cycles
Register-register addition/subtraction 2 cycles
8 bits x 8 bits register-register operation 4 cycles
16 bits x 16 bits register-register operation 5 cycles
16 bits / 8 bits register-register operation 18 cycles
32 hits / 16 bits register-register operation 25 cycles

Rev.2.00 Oct 17,2005 page 2 of 263 XENESAS
REJO9B0001-0200



Chapter 1 Overview 1.2 Address Space

1.2 Address Space

Figure 1.2.1 shows the address space.

Addresses 0000016 through 002FF16 make up an SFR (special function register) area. In some models in
the R8C/Tiny Series, the SFR area extends from 002FF16 to lower addresses.

Addresses from 0040016 and below make up the memory area. In some models in the R8C/Tiny Series, the
RAM area extends from address 0040016 to higher addresses, and the ROM area extends from OFFFF16 to
lower addresses. Addresses OFFDC16 through OFFFF16 make up a fixed vector area.

0000016 The SFR area of some
SFR area models extends to
002EE16 A lower-address locations.

0040016 | The RAM area of some

Internal RAM area models extends to
higher-address loca-
tions.

Internal ROM area The ROM area of some
OFFDC16 Foced vect models extends to

ixed vector area . i
OFFFF16 1 lower-address locations.

Extention area

FFFFF16

Figure 1.2.1 Address Space

Rev.2.00 Oct 17,2005 page 3 of 263 RENESAS
REJ09B0001-0200



Chapter 1 Overview

1.3 Register Configuration

1.3 Register Configuration

The central processing unit (CPU) contains the 13 registers shown in figure 1.3.1. Of these registers, RO,
R1, R2, R3, A0, Al, and FB each consist of two sets of registers configured as two register banks.

b31 b15 b8 b7 b0
:- T h-Z ----------- ROH (High-order of RO) | ROL (Low-order of RO) 1
R2 |

R3

A0

Al

, FB
b19 b15 b0

[ INTBH | INTBL

INTBH is the upper 4 bits of INTB.
INTBL is the lower 16 bits of INTB.
b19

Data register*

} Address register*

Frame base register*

Interrupt table register

PC Program counter
b15 b0
USP User stack pointer
ISP Interrupt stack pointer
SB Static base register
b15 b0
| FLG | Flag register
- I
p15s_ ---" " b8 b7 b
Ll ey [ [ 1] [u[i]ols[s[z]p]c]
I— Carry flag
Debug flag
Zero flag
Sign flag
Register bank select flag
Overflow flag

Interrupt enable flag

Stack pointer select flag

Reserved area

Processor interrupt priority level

Note: * These registers configure register banks.This register
bank consists of two sets.

Reserved area

Figure 1.3.1 CPU Register Configuration

1.3.1 Data Registers (RO, ROH, ROL, R1, R1H, R1L, R2, and R3)
The data registers (RO, R1, R2, and R3) each consist of 16 bits and are used primarily for transfers and

arithmetic/logic operations.

Registers RO and R1 can be divided into separate high-order (ROH, R1H) and low-order (ROL, R1L)
parts for use as 8-bit data registers. For some instructions, moreover, R2 and RO or R3 and R1 can be
combined to configure a 32-bit data register (R2R0 or R3R1).

Rev.2.00 Oct17,2005 page 4 of 263 XENESAS

REJ09B0001-0200



Chapter 1 Overview 1.3 Register Configuration

1.3.2 Address Registers (A0 and Al)
The address registers (A0 and Al) are 16-bit registers with functions similar to those of the data regis-
ters. These registers are used for address register-based indirect addressing and address register-
based relative addressing.
For some instructions, registers A1 and AO can be combined to configure a 32-bit address register
(A1A0).

1.3.3 Frame Base Register (FB)
The frame base register (FB) is a 16-bit register used for FB-based relative addressing.

1.3.4 Program Counter (PC)

The program counter (PC) is a 20-bit register that indicates the address of the instruction to be executed
next.

1.3.5 Interrupt Table Register (INTB)

The interrupt table register (INTB) is a 20-bit register that indicates the initial address of the interrupt
vector table.

1.3.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)
There are two types of stack pointers: a user stack pointer (USP) and an interrupt stack pointer (ISP).
Each consists of 16 bits.
The stack pointer (USP/ISP) to be used can be switched with the stack pointer select flag (U flag).
The stack pointer select flag (U flag) is bit 7 of the flag register (FLG).

1.3.7 Static Base Register (SB)
The static base register (SB) is a 16-bit register used for SB-based relative addressing.

1.3.8 Flag Register (FLG)

The flag register (FLG) is an 11-bit register used as flags in one-bit units. For details on the functions of
the flags, see Section 1.4, “Flag Register (FLG).”

Rev.2.00 Oct 17,2005 page 5 of 263 RENESAS
REJ09B0001-0200



Chapter 1 Overview 1.4 Flag Register (FLG)

1.4 Flag Register (FLG)

Figure 1.4.1 shows the configuration of the flag register (FLG). The function of each flag is described
below.

1.4.1 Bit O: Carry Flag (C Flag)
This flag holds bits carried, borrowed, or shifted-out by the arithmetic/logic unit.

1.4.2 Bit 1: Debug Flag (D Flag)
This flag enables a single-step interrupt.
When this flag is set to 1, a single-step interrupt is generated after an instruction is executed. When the
interrupt is acknowledged, the flag is cleared to 0.

1.4.3 Bit 2: Zero Flag (Z Flag)
This flag is set to 1 when an arithmetic operation results in 0; otherwise, its value is 0.

1.4.4 Bit 3: Sign Flag (S Flag)
This flag is set to 1 when an arithmetic operation results in a negative value; otherwise, its value is 0.

1.4.5 Bit 4: Register Bank Select Flag (B Flag)
This flag selects a register bank. Ifitis set to 0, register bank 0 is selected; if it is set to 1, register bank
1is selected.

1.4.6 Bit 5: Overflow Flag (O Flag)
This flag is set to 1 when an arithmetic operation results in an overflow.

1.4.7 Bit 6: Interrupt Enable Flag (I Flag)
This flag enables a maskable interrupt.
When this flag is set to 0, the interrupt is disabled; when it is set to 1, the interrupt is enabled. When the
interrupt is acknowledged, the flag is cleared to 0.

1.4.8 Bit 7: Stack Pointer Select Flag (U Flag)
When this flag is set to 0, the interrupt stack pointer (ISP) is selected; when it is set to 1, the user stack
pointer (USP) is selected.
This flag is cleared to 0 when a hardware interrupt is acknowledged or an INT instruction is executed for
software interrupt numbers 0 to 31.

1.4.9 Bits 8to 11: Reserved

Rev.2.00 Oct 17,2005 page 6 of 263 XENESAS
REJO9B0001-0200



Chapter 1 Overview

1.4 Flag Register (FLG)

1.4.10 Bits 12 to 14: Processor Interrupt Priority Level (IPL)

The processor interrupt priority level (IPL) consists of three bits, enabling specification of eight proces-
sor interrupt priority levels from level O to level 7. If a requested interrupt’s priority level is higher than the

processor interrupt priority level (IPL), the interrupt is enabled.

1.4.11 Bit 15: Reserved

b15

o]0]

IPL

Flag register (FLG)

Carry flag

Debug flag

Zero flag

Sign flag

Register bank select flag
Overflow flag

Interrupt enable flag

Stack pointer select flag
Reserved area

Processor interrupt priority level

Reserved area

Figure 1.4.1 Configuration of Flag Register (FLG)

Rev.2.00 Oct 17,2005 page 7 of 263
REJ09B0001-0200

RENESAS




Chapter 1 Overview 1.5 Register Banks

1.5 Register Banks

The R8C/Tiny has two register banks, each comprising data registers (R0, R1, R2, and R3), address regis-
ters (A0 and Al), and a frame base register (FB). These two register banks are switched by the register
bank select flag (B flag) in the flag register (FLG).

Figure 1.5.1 shows the configuration of the register banks.

Register bank 0 (B flag = 0) Register bank 1 (B flag = 1)

I I I I
I I I I
: bl5  b8b7 bO : bl5  b8b7 bO
. RO | . RO |
| T I I I | | | T I I I | |
:Rl | | : :Rl | | :
:R2 N I I | : :R2 N I I | :
:R3 I I I | : :R3 I I I | :
A0 | A0 |
A1 | A1 |
: RN : : RN :
. FB . . FB !
| EEEEEEEEE RN | | EEEEEEEEE RN |
I I I I

Figure 1.5.1 Configuration of Register Banks

Rev.2.00 Oct 17,2005 page 8 of 263 XENESAS
REJO9B0001-0200



Chapter 1 Overview 1.6 Internal State after Reset is Cleared

1.6 Internal State after Reset is Cleared

The contents of each register after a reset is cleared are as follows.
* Data registers (RO, R1, R2, and R3): 000016

 Address registers (A0 and Al): 000016

» Frame base register (FB): 000016

« Interrupt table register (INTB): 0000016

 User stack pointer (USP): 000016

« Interrupt stack pointer (ISP): 000016

« Static base register (SB): 000016

* Flag register (FLG): 000016

Rev.2.00 Oct 17,2005 page 9 of 263 RENESAS
REJ09B0001-0200



Chapter 1 Overview 1.7 Data Types

1.7 Data Types

There are four data types: integer, decimal, bit, and string.

1.7.1 Integer
An integer can be signed or unsigned. A negative value of a signed integer is represented by two’s
complement.
b7 b0
Signed byte (8 bit) integer
b7 b0
Unsigned byte (8 bit) integer m
b15 b0
Signed word (16 bit) integer |S. L | L ||
b15 b0
Unsigned word (16 bit) integer | o | L ||
b3l b0
Slgned Iong Word (32 blt) Integer |S|| | | | | | | I | |
b31 b0
UnSIgned Iong Word (32 blt) Integer | | | | I | | I | | I | |
S: Sign bit

Figure 1.7.1 Integer Data

Rev.2.00 Oct 17,2005 page 10 of 263 XENESAS
REJO9B0001-0200



Chapter 1 Overview 1.7 Data Types

1.7.2 Decimal
The decimal data type is used by the DADC, DADD, DSBB, and DSUB instructions.

Pack format b7 b0
(2 digits) m
Pack format b15 ho
(4 digits) Lol

Figure 1.7.2 Decimal Data

Rev.2.00 Oct 17,2005 page 11 of 263 RENESAS
REJ09B0001-0200



Chapter 1 Overview

1.7 Data Types

1.7.3 Bits

e Register bits

Figure 1.7.3 shows register bit specification.
Register bits can be specified by register directly (bit, Rn or bit, An). Use bit, Rn to specify a bit in a
data register (Rn); use bit, An to specify a bit in an address register (An).

The bits in each register are assigned bit numbers from 0 to 15, from LSB to MSB. Therefore, bit, Rn
and bit, An can be used to specify a bit number from 0 to 15.

b15

Rn

b0

bit,RN |

(bit: 0 to 15, n: 0 to 3)

bit,An |
(bit: 0 to 15, n: 0 to 1)

An

b15 b0

Figure 1.7.3 Register Bit Specification

e Memory bits

Figure 1.7.4 shows the addressing modes used for memory bit specification. Table 1.7.1 lists the ad-
dress range in which bits can be specified in each addressing mode. Be sure to observe the address
range in Table 1.7.1 when specifying memory bits.

Addressing modes —— Absolute addressing

addressing
| Address register-based indirect A
addressing — [An]
|__Address register-based relative ]
addressing T base:8[An]

| addressing

| FB-based relative

SB-based relative

bit,base:16

bit,base:11[SB]

i: bit,base:8[SB]
bit,base:16[SB]

bit,base:8[FB]

base:16[An]

Figure 1.7.4 Addressing Modes Used for Memory Bit Specification

Table 1.7.1 Bit Specification Address Range

Addressing Specification range
Lower Limit (Address) | Upper Limit (Address) Remarks

bit,base:16 0000016 01FFF16

bit,base:8[SB] [SB] [SB]+0001F16 The access range is 0000016 to OFFFF1s6.
bit,base:11[SB] [SB] [SB]+000FF16 The access range is 0000016 to OFFFF1s6.
bit,base:16[SB] [SB] [SB]+01FFF16 The access range is 0000016 to OFFFF1s6.
bit,base:8[FB] [FB]-0001016 [FB]+0000F16 The access range is 0000016 to OFFFF1s6.
[An] 0000016 01FFF16

base:8[An] base:8 base:8+01FFF16 The access range is 0000016 to 020FE1s.
base:16[An] base:16 base:16+01FFF16 | The access range is 0000016 to OFFFF16.

Rev.2.00 Oct 17,2005 page 12 of 263

REJ09B0001-0200

RENESAS



Chapter 1 Overview

(1) Bit Specification by Bit, Base

1.7 Data Types

Figure 1.7.5 shows the relationship between the memory map and the bit map.

Memory bits can be handled as an array of consecutive bits. Bits can be specified by a combination of
bit and base. Using bit 0 of the address that is set in base as the reference (= 0), set the desired bit
position in bit. Figure 1.7.6 shows examples of how to specify bit 2 of address 0000A16.

Address
b7 b0

0

n-1

n+l

----------------- n+1

b7

Y
n n-1 0

bOb7 b0 b7 b0

T S T T T

(8

~ Memory map =

Bit map

Figure 1.7.5 Relationship between Memory Map and Bit Map

Address 0000A16 N
b7 b2 b0
BSET 2,AH 3 I | | | 1 I
Address 0000916
b15 b10 b8b7 b0
BSET 109H | I | | | 1 I [ T R N N I These SpeCiﬁca'
tion examples all
specify bit 2 of
Address 0000816 address 0000A16.
b23 b18 b16b15 b8b7 b0
BSET 188H I L | | ] I T R T B R B I T R T B R R I
Address 0000016
b87 b82 h80b79 b72 b7 b0
BSET 820H I L | | | ] I T N T B R R | I____Sg____l TR T I I
J

Figure 1.7.6 Examples of How to Specify Bit 2 of Address 0000A16

Rev.2.00 Oct 17,2005 page 13 of 263
REJ09B0001-0200

RENESAS



Chapter 1 Overview 1.7 Data Types

(2) SB/FB Relative Bit Specification
For SB/FB-based relative addressing, use bit 0 of the address that is the sum of the address set in
static base register (SB) or frame base register (FB) plus the address set in base as the reference
(= 0), and set the desired bit position in bit.

(3) Address Register Indirect/Relative Bit Specification
For address register-based indirect addressing, use bit 0 of address 0000016 as the reference (= 0)
and set the desired bit position in the address register (An).
For address register-based relative addressing, use bit 0 of the address set in base as the reference
(= 0) and set the desired bit position in the address register (An).

Rev.2.00 Oct17,2005 page 14 of 263 XENESAS
REJO9B0001-0200



Chapter 1 Overview 1.7 Data Types

1.7.4 String
String data consists of a given length of consecutive byte (8-bit) or word (16-bit) data.
This data type can be used in three string instructions: character string backward transfer (SMOVB
instruction), character string forward transfer (SMOVF instruction), and specified area initialize (SSTR

instruction).
Byte (8-bit) data Word (16-bit) data
b7 b0 b15 b0
| 1 1 1 1 1 1 1 | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
b7 b0 b15 b0
| 1 1 1 1 1 1 1 | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
b7 b0 b15 b0

Figure 1.7.7 String Data

Rev.2.00 Oct 17,2005 page 15 of 263 RENESAS
REJ09B0001-0200



Chapter 1 Overview 1.8 Data Arrangement

1.8 Data Arrangement

1.8.1 Data Arrangement in Register
Figure 1.8.1 shows the relationship between a register’'s data size and bit numbers.

b3 o

Nibble (4-bit) data [
b7 bo

Byte (8-bit) data T
b15 b0

Word (16'b|t) data | | | Ll |
b31 b0

Long Word (32_b|t) data‘ O I | O I | I I |
MSB LSB

Figure 1.8.1 Data Arrangement in Register

Rev.2.00 Oct 17,2005 page 16 of 263 XENESAS
REJO9B0001-0200



Chapter 1 Overview

1.8.2 Data Arrangement in Memory

Figure 1.8.2 shows the data arrangement in memory. Figure 1.8.3 shows some operation examples.

1.8 Data Arrangement

b7 b0
N DATA
N+1
N+2
N+3

Byte (8-bit) data

b7 )
N DATA(L)
N+1 DATA(M)
N+2 DATA(H)
N+3

20-bit (Address) data

b7 [
N DATA(L)
N+1 DATA(H)
N+2
N+3

Word (16-bit) data

b7 b0
N DATA(LL)
N+1 DATA(LH)
N+2 DATA(HL)
N+3 DATA(HH)

Long Word (32-bit) data

Figure 1.8.2 Data Arrangement in Memory

MOV.B N,ROH
b7 b0 Does not change.
N DATA
N+1 l
N+2 b15 b0
N+3 ROlIIPATAIlllllllll
H L
Byte (8-bit) data
MOV.W N,RO
b7 b0
N DATA(L)
N+1 DATA(H)
N+2 b15 b0
N+3 RO | . DATA(H), | | . DATAQL), | |
H L
Word (16-bit) data
Figure 1.8.3 Operation Examples
Rev.2.00 Oct17,2005 page 17 of 263 RENESAS

REJ09B0001-0200




Chapter 1 Overview 1.9 Instruction Formats

1.9 Instruction Formats

The instruction formats can be classified into four types: generic, quick, short, and zero. The number of
instruction bytes that can be chosen by a given format is least for the zero format, and increases succes-
sively for the short, quick, and generic formats, in that order.

The features of each format are described below.

1.9.1 Generic Format (:G)
The op-code in this format comprises two bytes. This op-code contains information on the operation
and the src™ and dest? addressing modes.
The instruction code is composed of op-code (2 bytes), src code (0 to 3 bytes), and dest code (0 to 3
bytes).

1.9.2 Quick Format (:Q)
The op-code in this format comprises two bytes. This op-code contains information on the operation
and the immediate data and dest addressing modes. Note, however, that the immediate data in the op-
code is a numeric value that can be expressed as -7 to +8 or -8 to +7 (depending on the instruction).
The instruction code is composed of op-code (2 bytes) containing immediate data and dest code (0 to 2
bytes).

1.9.3 Short Format (:S)
The op-code in this format comprises one byte. This op-code contains information on the operation and
the src and dest addressing modes. Note, however, that the usable addressing modes are limited.
The instruction code is composed of op-code (1 byte), src code (0 to 2 bytes), and dest code (0 to 2
bytes).

1.9.4 Zero Format (:2)
The op-code in this format comprises one byte. This op-code contains information on the operation
(plus immediate data) and dest addressing modes. Note, however, that the immediate data is fixed at O,
and that the usable addressing modes are limited.
The instruction code is composed of op-code (1 byte) and dest code (0 to 2 bytes).

*1 srcis an abbreviation of “source.”
*2 dest is an abbreviation of “destination.”

Rev.2.00 Oct17,2005 page 18 of 263 XENESAS
REJO9B0001-0200



Chapter 1 Overview 1.10 Vector Tables

1.10 Vector Tables

Interrupt vector tables are the only vector tables. There are two types of interrupt vector tables: fixed and
variable.

1.10.1 Fixed Vector Tables
A fixed vector table is an address-fixed vector table. Part of the interrupt vector table is allocated to
addresses OFFDC16 through OFFFF16. Figure 1.10.1 shows a fixed vector table.
Interrupt vector tables are composed of four bytes per table. Each vector table must contain the inter-
rupt handler routine’s entry address.

OFFDC16 . FFFDC16 = ndefined instruction 3
n erruptbl FFFEO16 £ Overflow =
vector table FFFE416 £ BRK instruction =

OFFFF16 FFFE816 = Address match =

\ FFFEC16 E  gingle step =

\ FFFFO16 E Oscillation stop detection/ E
watchdog timer

\ FFFFA16 £ (Reserved) =

\\ FFFF816 £ (Reserved) =

\ FFFFC16 E Reset -

Figure 1.10.1 Fixed Vector Table

Rev.2.00 Oct 17,2005 page 19 of 263 RENESAS
REJ09B0001-0200



Chapter 1 Overview 1.10 Vector Tables

1.10.2 Variable Vector Tables
A variable vector table is an address-variable vector table. Specifically, this type of vector table is a 256-
byte interrupt vector table that uses the value indicated by the interrupt table register (INTB) as the entry
address (IntBase). Figure 1.10.2 shows a variable vector table.
Variable vector tables are composed of four bytes per table. Each vector table must contain the inter-
rupt handler routine’s entry address.
Each vector table has software interrupt numbers (0 to 63), which are used by the INT instruction.
Interrupts for the on-chip peripheral functions of each M16C model are allocated to software interrupt
numbers O through 31.

b19 b0
INTB IntBase
I I I O A B |
) > - ]
IntBase+4  E 30 E ]
IntBase+8 _ E 10 0
“E 3 [0  [] Vectors accommodat-
— E E Eing peripheral 1/0O
— = interrupts
S 1 o g™
= 4 0 0O
= 431 E 0
= 32 [ Software interrupt
= 433 [ numbers
= 4 U
= 4 O
— - []
= 1 O
= 4 U
IntBase+252 . | = ]
“E H463 ]

Figure 1.10.2 Variable Vector Table

Rev.2.00 Oct 17,2005 page 20 of 263 XENESAS
REJO9B0001-0200



2.1
2.2
2.3
2.4
2.5

Chapter 2

Addressing Modes

Addressing Modes

Guide to This Chapter

General Instruction Addressing
Special Instruction Addressing
Bit Instruction Addressing



Chapter 2 Addressing Modes 2.1 Addressing Modes

2.1 Addressing Modes

This section describes the symbols used to represent addressing modes and operations of each address-
ing mode. The R8C/Tiny Series has three types of addressing modes as outlined below.

2.1.1 General Instruction Addressing
This addressing mode type accesses the area from address 0000016 through address OFFFF16.
The names of the general instruction addressing modes are as follows:
* Immediate
* Register direct
* Absolute
 Address register indirect
 Address register relative
* SB relative
* FB relative
« Stack pointer relative

2.1.2 Special Instruction Addressing
This addressing mode type accesses the area from address 0000016 through address FFFFF16 and the
control registers.
The names of the specific instruction addressing modes are as follows:
* 20-bit absolute
« Address register relative with 20-bit displacement
« 32-bit address register indirect
« 32-bit register direct
« Control register direct
« Program counter relative

2.1.3 Bit Instruction Addressing
This addressing mode type accesses the area from address 0000016 through address OFFFF16.
The names of the bit instruction addressing modes are as follows:
* Register direct
 Absolute
 Address register indirect
» Address register relative

* SB relative
* FB relative
* FLG direct
Rev.2.00 Oct17,2005 page 22 of 263 XENESAS

REJ09B0001-0200



Chapter 2 Addressing Modes 2.2 Guide to This Chapter

2.2 Guide to This Chapter

An example illustrating how to read this chapter is shown below.

(1)
Addr%ss re@ster relative
>—TThe value indicated by the displace-
(2) — ment (dsp) plus the content of the
address register (A0O/Al)—added Register Memory
without the sign hits—is the effective
address for th€ opergtion. dsp
3) However, if tke additjon results in a
Mg-ORFFF16, bits 17 | AO/AL[_address |— @
and above are ignored, and the N
address returns to 0000016. )
(4)
(1) Name

The name of the addressing mode.

(2) Symbol
The symbol representing the addressing mode.

(3) Description

A description of the addressing operation and the effective address range.

(4) Operation diagram
A diagram illustrating the addressing operation.

Rev.2.00 Oct 17,2005 page 23 of 263 RENESAS
REJ09B0001-0200



Chapter 2 Addressing Modes 2.3 General Instruction Addressing

2.3 General Instruction Addressing

Immediate
#IMM The immediate data indicated by #IMM | ~ #IMM8 |b7I_|bO
is th j f th ion.
#IMM8 is the object of the operation
b15 h8 b7 b0
#IMM16 AMML6 | |
#IMM20 ¥ I N N N - i1 11 1L
bh19 b15 b8 b7 b0
#mv2o || [ |
Register direct
ROL The specified register is the object of Register
the operation. b0

ROH ROL/RIL O L]
RIL. |
R1H ror/RiH Lo o0

RO

R1 RO/R1/R2/ DI5 b8 b7 bo
R2 R3/AO/A1 |||||||||||||||
R3
A0
Al
Absolute
Memory

abs16 The value indicated by abs16 is the

effective address for the operation.

The effective address range is 0000016 to abs16

OFFFF16.
Address register indirect
[AO] The value indicated by the content of
[A1] the address register (AO/Al) is the Register

effective address for the operation.

. . A0/ Al
The effective address range is 0000016 —

to OFFFFu1se.

Memory

Rev.2.00 Oct17,2005 page 24 of 263 XENESAS
REJO9B0001-0200



Chapter 2 Addressing Modes

2.3 General Instruction Addressing

Address register relative

dsp:8[AOQ]
dsp:8[A1l]
dsp:16[A0]
dsp:16[A1]

The value indicated by the displace-
ment (dsp) plus the content of the
address register (A0/Al)—added
without the sign bits—is the effective
address for the operation.

However, if the addition results in a
value exceeding OFFFF1s, bits 17 and
above are ignored, and the address
returns to 000001s6.

dsp
Register |

P01 A1 [“address - @

Memory

SB relative

dsp:8[SB]
dsp:16[SB]

The address indicated by the content
of the static base register (SB) plus
the value indicated by the displace-
ment (dsp)—added without the sign
bits—is the effective address for the
operation.

However, if the addition results in a
value exceeding OFFFF1s, bits 17 and
above are ignored, and the address
returns to 000001s.

Register

SB[ _address |- address
|

- ®

L,

dsp

Memory

FB relative

dsp:8[FB]

The address indicated by the content
of the frame base register (FB) plus
the value indicated by the displace-
ment (dsp)—added including the sign
bits—is the effective address for the
operation.

However, if the addition results in a
value outside the range 0000016 to
OFFFF1s, bits 17 and above are
ignored, and the address returns to
0000016 or OFFFF1s.

If the dsp value is negative

N

dsp - @
Register t

FB| address |- address
|

dsp-»@

IR

If the dsp value is positive

Memory

Rev.2.00 Oct 17,2005 page 25 of 263

REJ09B0001-0200

RENESAS




Chapter 2. Addressing Modes 2.3 General Instruction Addressing

Stack pointer relative

dsp:8[SP] |The address indicated by the content of the Memory

stack pointer (SP) plus the value indicated by | If the dsp value is negative

the displacement (dsp)—added including the

sign bits—is the effective address for the P

operation. The stack pointer (SP) here is the

one indicated by the U flag. dsp — ®
Register t

However, if the addition results in a value SP[ address |-

outside the range 0000016 to OFFFFz186, bits |

17 and above are ignored, and the address dsp — &)

returns to 0000016 or OFFFF1s.

This addressing mode can be used with the L

MOV instruction. If the dsp value is positive

Rev.2.00 Oct 17,2005 page 26 of 263 XENESAS
REJO9B0001-0200



Chapter 2 Addressing Modes 2.4 Special Instruction Addressing

2.4 Special Instruction Addressing

20-bit absolute

abs20 The value indicated by abs20 is the
effective address for the operation. Memory

The effective address range is 0000016 to
FFFFF16. abs20

This addressing mode can be used with
the LDE, STE, JSR, and JMP instructions.

Address register relative with 20-bit displacement OLDE, STE instructions
Memory

. The address indicated by the displacement : ds
dsp:ZO[AO] (dsp) plus the content of the address Register ! P
dsp:20[A1] register (AO/Al)—added without the sign AO[ address |- @

bits—is the effective address for the
operation. |ﬁ

However, if the addition results in a value . .

exceeding FFFFF1s, bits 21 and above are O JMPI, JSRI instructions Memory

ignored, and the address returns to

0000016, . dsp
Register !

This addressing mode can be used with A0/ Al_’ ®

the LDE, STE, JMPI, and JSRI instructions. |9

Valid addressing mode and instruction
combinations are as follows. PC

dsp: 20[A0]
— LDE, STE, JMPI, and JSRI
instructions
dsp: 20[A1]
— JMPI and JSRI instructions

32-bit address register indirect

Register
[A1A0] The address indicated by the 32 Al g AD

concatenated bits of the address ||°31a Tdrese ,316|b15a TdressT b(i
registers (A0 and Al) is the effective
address for the operation.

value exceeds FFFFF1s, bits 21 and

I

, . I

However, if the concatenated register |
above are ignored. I

Memory
v

This addressing mode can be used adaress
with the LDE and STE instructions.

Rev.2.00 Oct 17,2005 page 27 of 263 RENESAS
REJ09B0001-0200



Chapter 2 Addressing Modes 2.4 Special Instruction Addressing

32-bit register direct
O SHL, SHA instructions
R2R0 The 32-bit concatenated register content of two
R3R1 specified registers is the object of the operation. R2R0O b3l b16 b15 b0
. . . R3R1 | |
Al1lAO This addressing mode can be used with the
SHL, SHA, JMPI, and JSRI instructions.
Valid register and instruction combinations
are as follows. O JMPI, JSRI instructions
R2R0, R3R1 R2R0O
b16 b15
— SHL, SHA, JMPI, and JSRI 3l ot
: . R3R1 | [ |
instructions
ALAO A1A0 I
— JMPI and JSRI instructions |
\Z
PC |
Control register direct Register
INTBL The specified control register is the b15 b0
object of the operation. INTBL o i i i |
INTBH
ISP This addressing mode can be used INTBH |O|15 ————— bab3 B0
Sp with the LDC, STC, PUSHC, and L—— — —
POPC instructions. b15 bo
SB |SP Ll 1 1 Ll 1 Ll 1 1 1 L1l |
FB If SP is specified, the stack pointer
FLG indicated by the U flag is the object of b15 bo
the operation. usp il
b15 b0
SB Ll 1 1 Ll 1 1 1 1 1 Ll 1 |
b15 b0
FB Ll 1 1 Ll 1 1 1 1 1 Ll 1 |
b15 b0
FLG Ll 1 1 Ll 1 1 1 1 1 Ll 1 |
Rev.2.00 Oct 17,2005 page 28 of 263 XENESAS

REJ09B0001-0200



Chapter 2 Addressing Modes 2.4 Special Instruction Addressing

Program counter relative

label « If the jump length specifier (.length)

is (.S), the base address plus the
value indicated by the displacement
(dsp)—added without the sign bits—is
the effective address.

Base address

|

Memory

dsp —- @

b label

This addressing mode can be used
with the JMP instruction.

+0=dsp=+7

*1 The base address is (start address of instruction + 2).

« If the jump length specifier (.length) is
(.B) or (.W), the base address plus the
value indicated by the displacement
(dsp)—added including the sign bits—is
the effective address.

If the dsp value is negative

|% label

dsp - @

However, if the addition results in a value t
outside the range 0000016 to FFFFF1s, Base address
bits 21 and above are ignored, and the }
address returns to 0000016 or FFFFF16. dsp - @
L label

If the dsp value is positive

This addressing mode can be used with
the JMP and JSR instructions.

If the specifier is (.B), -128 dsp +127
If the specifier is (W), -32768 dsp +32767
*2 The base address varies depending on the instruction.

Rev.2.00 Oct 17,2005 page 29 of 263 RENESAS

REJ09B0001-0200



Chapter 2 Addressing Modes 2.5 Bit Instruction Addressing

2.5. Bit Instruction Addressing

This addressing mode type can be used with the following instructions: BCLR, BSET, BNOT, BTST,
BNTST, BAND, BNAND, BOR, BNOR, BXOR, BNXOR, BMCrnd, BTSTS, BTSTC

Register direct
bit,RO The specified register bit is the object
bit,R1 of the operation. bit,RO
bit,R2 A value of 0 to 15 may be specified
i as the bit position (bit).
b!t’R3 b15 RO bo
bit,A0 ] J < | |
bit,Al t
Bit position
Absolute
bit,pase:16 | The bit that is the number of bits
indicated by bit away from bit 0 at the
address indicated by base is the object
of the operation. b7 b0
base <S——
Bits at addresses 0000016 through N
01FFF16 can be the object of the S N
operation. :
=
Bit position
Address register indirect
[AO] The bit that is the number of bits ALl bo
- . 0000016 &
[A1] indicated by the address register (AO/ | |
Al) away from bit 0 at address i - —
0000016 is the object of the operation. E A
Bits at addresses 0000016 through » |_| <
01FFF16 can be the object of the T
operation. . .
Bit position
Rev.2.00 Oct 17,2005 page 30 of 263 XENESAS

REJ09B0001-0200



Chapter 2 Addressing Modes 2.5 Bit Instruction Addressing

Address register relative

base:8[A0] The bit that is the number of bits
base:8[Al] indicated by the address register
base:16[AQ] (AO/A1) away from bit 0 at the b7 b0
base:16[A1] address indicated by base is the i
object of the operation.

b))
[<¢
)

[<¢

However, if the address of the bit base | ,
that is the object of the operation P2
exceeds OFFFFz1s, bits 17 and — —
above are ignored and the T
address returns to 0000016. Bit position

The address range that can be
specified by the address register
(AO/Al) extends 8,192 bytes
from base.

SB relative

bit,base:8[SB] |The bit that is the number of bits
bit,pbase:11[SB]|indicated by bit away from bit 0 at Memory

bit,base:16[SB] the address indicated by the static b7 b0
base register (SB) plus the value L
indicated by base (added without
the sign bits) is the object of the Register

operation. SB — address
|

)]
118
D))
(<

However, if the address of the bit base — @
that is the object of the operation |
exceeds OFFFF1se, bits 17 and s l ]el
above are ignored and the address t
returns to 000001s.

Bit position

The address ranges that can be
specified by bit,base:8, bit,base:11,
and bit,base:16, respectively, extend
32 bytes, 256 bytes, and 8,192
bytes from the static base register
(SB) value.

Rev.2.00 Oct 17,2005 page 31 of 263 RENESAS
REJ09B0001-0200



Chapter 2 Addressing Modes

2.5 Bit Instruction Addressing

FB relative

bit,base:8[FB]

The bit that is the number of bits
indicated by bit away from bit 0 at the
address indicated by the frame base
register (FB) plus the value indicated by
base (added including the sign bit) is the
object of the operation.

However, if the address of the bit that is
the object of the operation is outside the
range 0000016 to OFFFF16, bits 17 and
above are ignored and the address
returns to 0000016 or OFFFF16.

The address range that can be specified
by bit, base:8 extends 16 bytes toward
lower addresses or 15 bytes toward
higher addresses from the frame base
register (FB) value.

If the base value is negative

1
(Bit position)

«

ALY

base - @ .
Register i ¥
FB — address
l T T I |
base - @ #A A
N
If the base value is positive PE—
11 11

Bit position

FLG direct
U The specified flag is the object of

the operation.
| Reqi

. . b7 egister b0

(@] This addressing mode can be
B used with the FCLR and FSET FLG|U|||O|B|S|Z|D|C|

instructions.
S
Z
D
C

Rev.2.00 Oct 17,2005 page 32 of 263

REJ09B0001-0200

RENESAS




Chapter 3

Functions

3.1 Guide to This Chapter
3.2 Functions



Chapter 3 Functions 3.1 Guide to This Chapter

3.1 Guide to This Chapter

In this chapter each instruction’s syntax, operation, function, selectable src/dest, and flag changes are
listed, and description examples and related instructions are shown.
An example illustrating how to read this chapter is shown below.

Chapter 3 Functions .
3.2 Functions

1) +— V Transfer M OV

2 [ tax | MOve [ Instn Code/Number of Cycles ]

T Page: 193

.size (:format) src,dest
| ' G,Q,Z,S (Can be specified)

B,W
@) T— [ation]

dest <« src

B)T— [@tion ]

* This instruction transfers src to dest.

» If dest is AO or Al and the selected size specifier (.size) is (.B), src is zero-expanded to
transfer data in 16 bits. If src is AO or A1, the 8 low-order bits of A0 or Al are transferred.

(6) — [@table src/dest ] (See next page for src/dest classified by format.)
src dest

ROL/RO ROH/R1 R1L/R2 R1H/R3 ROL/RO ROH/R1 R1L/R2 R1H/R3
AO/AD Al/AL [AO] [A1] AO/AO Al/AL [AO] [A1]
dsp:8[A0] dsp:8[A1l] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1l] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[AQ] dsp:16[A1] dsp:16[SB] abs16

#MM

dsp:8[SP] dsp:8[SP]

@) +— [hange]
| o

Flag | U B|S|zZz|DJ|C
Changg — | —| —| —| O| O| —| —
Conditions
S : Theflag is set when the transfer results in MSB of dest = 1; otherwise cleared.
Z : The flag is set when the transfer results in 0; otherwise cleared.
81— [ription Example ]
VIOV.B:S #0ABH,ROL
MOV.W #-1,R2
(9) [Instruction] LDE, STE, XCHG
90
Rev.2.00 Oct 17,2005 page 34 of 263 XENESAS

REJ09B0001-0200



Chapter 3 Functions 3.1 Guide to This Chapter

(1) Mnemonic
The mnemonic explained in the page.

(2) Instruction Code/Number of Cycles
The page on which the instruction code and number of cycles is listed.
Refer to this page for information on the instruction code and number of cycles.

(3) Syntax
The syntax of the instruction using symbols. If (:format) is omitted, the assembler chooses the optimum
specifier.
MOV.size (: format) src, dest
' G,Q0,5,Z2 - (0
B,wW - (e)

Vo | |
(@) (b) © (9

(@) Mnemonic MOV
Shows the mnemonic.

(b) Size specifier .Size
Shows the data sizes in which data is handled. The following data sizes may be specified:
.B Byte (8 bits)
W Word (16 bits)
L Long word (32 bits)
Some instructions do not have a size specifier.

(c) Instruction format specifier (: format)
Shows the instruction format. If (: format) is omitted, the assembler chooses the optimum specifier.

If (: format) is entered, its content is given priority. The following instruction formats may be specified:

:G Generic format
:Q Quick format
:S Short format

:Z Zero format
Some instructions do not have an instruction format specifier.

(d) Operands src, dest
Shows the operands.

(e) Shows the data sizes that can be specified in (b).

(f) Shows the instruction formats that can be specified in (c).

Rev.2.00 Oct 17,2005 page 35 of 263 RENESAS

REJ09B0001-0200



Chapter 3 Functions 3.1 Guide to This Chapter

Chapter 3 Functions ,
3.2 Functions

1) +— V Transfer M OV

@ MOVe [ Instructie/Number of Cycles ]
[ax ] Page: 193

3

|
41— [ation]

dest <« src

5) +— [@tion ]
* This instruction transfers src to dest.

» |If dest is AO or Al and the selected size specifier (.size) is (.B), src is zero-expanded to transfer
data in 16 bits. If src is AO or Al, the 8 low-order bits of A0 or Al are transferred.

/.size (:format) src,dest
' G,Q,Z,S (Can be specified)
B,W

6) +— [@table src/dest ] (See next page for src/dest classified by format.)
src dest

ROL/RO ROH/R1 R1L/R2 R1H/R3 ROL/RO ROH/R1 R1L/R2 R1H/R3
AO/A0 AL/AL [AO] [A1] AO/A0 AL/AL [AO] [A1]
dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[AQ] dsp:16[A1] dsp:16[SB] abs16

#IMM

dsp:8[SP] dsp:8[SP]

(7) +— [hange]

Flg [u|1 |o|B|S|z]|D]|C
Changel — | —| —| —| ©| O] —| —
Conditions
S : Theflag is set when the transfer results in MSB of dest = 1; otherwise cleared.
Z : The flag is set when the transfer results in 0; otherwise cleared.
O [ription Example ]
VIOV.B:S #0ABH,ROL
MOV.W #1,R2

9 +— [ed Instruction]  LDE, STE, XCHG

90

Rev.2.00 Oct 17,2005 page 36 of 263 XENESAS
REJO9B0001-0200



Chapter 3 Functions 3.1 Guide to This Chapter

(4) Operation
Explains the operation of the instruction using symbols.

(5) Function
Explains the function of the instruction and precautions to be taken when using the instruction.

(6) Selectable src/ dest (label)
If the instruction has operands, the valid formats are listed here.

(a)
e =
ROL/RO FQ:?1 R1L/R2 R1H/R3 [ROL/RO  ROH/R1L ~RIL/R2  RIH/R3— (b)
AO/AQ AT/AL1 A0] — 0 Al/A1 [AO] [A1]
dsp:8[AO0] dsp:8[Al]  dsp:8 dsp:8[FB] |dsp:8[A0]  dsp:8[Al] sp: : - ()
dsp:16[A0] dsp:16[Al] dsp:16[SB] absl dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6
#IMM @
dsp:8[SP] m{‘ (d)
(a) ltems that can be selected as src (source) (e)

(b) Items that can be selected as dest (destination)
(c) Addressing modes that can be selected
(d) Addressing modes that cannot be selected

(e) Shown on the left side of the slash (ROH) is the addressing mode when data is handled in bytes (8 hits).
Shown on the right side of the slash (R1) is the addressing mode when data is handled in words (16 bits).

(7) Flag change
Shows a flag change that occurs after the instruction is executed. The symbols in the table mean the
following.

“ " The flag does not change.

“O” The flag changes depending on a condition.

(8) Description example
Description examples for the instruction.

(9) Related instructions
Related instructions that cause an operation similar or opposite to that of the instruction.

Rev.2.00 Oct 17,2005 page 37 of 263 RENESAS
REJ09B0001-0200



Chapter 3 Functions 3.1 Guide to This Chapter

The syntax of the jump instructions JMP, JPMI, JSR, and JSRI are illustrated below by example .

Chapter 3 Functions 3.2 Functions

Q) —+— @ Unconaitional jump J M P

(2) JuMP uction Code/Number of Cycles ]
[ tax ]

@) length) label Page: 183

L S, B, W, A (Can be specified)

(3) Syntax

Indicates the instruction syntax using symbols.

JMP (.length) label
L

S,B,W,A — (d)
! | !
@ O (o)

(&) Mnemonic JMP
Shows the mnemonic.

(b) Jump distance specifier length
Shows the distance of the jump. If (.length) is omitted from the JMP or JSR instruction, the assem-
bler chooses the optimum specifier. If (.length) is entered, its content is given priority.
The following jump distances may be specified:
.S 3-bit PC forward relative (+2 to +9)
B 8-bit PC relative
W 16-bit PC relative
A 20-bit absolute

(c) Operand label
Shows the operand.

(d) Shows the jump distances that can be specified in (b).

Rev.2.00 Oct 17,2005 page 38 of 263 XENESAS
REJO9B0001-0200



Chapter 3 Functions 3.2 Functions

Absolute value
ABS ABSolute ABS
[ Syntax ] [ Instruction Code/Number of Cycles ]

ABS.size dest Page: 138
: B,W

[ Operation ]
dest < | dest |

[ Function ]
» This instruction takes the absolute value of dest and stores it in dest.

[ Selectable dest ]

dest
ROL/RO ROH/R1 R1L/R2 R1H/R3
AO Al [AQ] [A1]

dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6

[ Flag Change ]

Fag |lU| I |O|B|S|Z|D|C
Change| — | — | O | —|O|O|—1|0O
Conditions

O : Theflagis set (= 1) when dest before the operation is —128 (.B) or —32768 (.W); otherwise cleared (= 0).
S The flag is set when the operation results in MSB = 1; otherwise cleared.

Z . The flag is set when the operation results in 0; otherwise cleared.

C The flag value is undefined.

[ Description Example ]
ABS.B ROL
ABS.W A0

Rev.2.00 Oct 17,2005 page 39 of 263 RENESAS

REJ09B0001-0200



Chapter 3 Functions 3.2 Functions

Add with carry
ADC ADdition with Carry ADC
[ Syntax ] [ Instruction Code/Number of Cycles ]

ADC.size src,dest Page: 138
: B,W

[ Operation ]
dest <« src + dest + C

[ Function ]
 This instruction adds dest, src, and the C flag and stores the result in dest.

« If dest is A0 or Al and the selected size specifier (.size) is (.B), src is zero-expanded to perform
calculation in 16 bits. If src is AO or A1, the operation is performed on the eight low-order bits of AO or
Al.

[ Selectable src/dest ]

src dest
ROL/RO ROH/R1 R1L/R2 R1H/R3 |ROL/RO ROH/R1 R1L/R2 R1H/R3
AOQ/A0™ Al/A1™? [AQ] [A1] AOQ/A0™ Al/A1™ [AQ] [A1]

dsp:8[AO0] dsp:8[Al]  dsp:8[SB] dsp:8[FB] |dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6 dsp:16[A0] dsp:16[Al] dsp:16[SB] absl16
#IMM

*1 If (.B) is selected as the size specifier (.size), A0 or Al cannot be chosen for src and dest simulta-
neously.

[ Flag Change ]

Fag |lU| 1 |O|B|S|Z|D]|C
Changel — | — | O | —|O|O|—-10
Conditions

O : Theflag is set when a signed operation results in a value exceeding +32767 (.\W) or —32768 (\W)
or +127 (.B) or —128 (.B); otherwise cleared.

S : The flag is set when the operation results in MSB = 1; otherwise cleared.

Z : The flag is set when the operation results in 0; otherwise cleared.

C : Theflagis set when an unsigned operation results in a value exceeding +65535 (.\W) or +255 (.B);
otherwise cleared.

[ Description Example ]

ADC.B #2,ROL
ADC.W AO,RO
ADC.B AO,ROL : 8 low-order bits of A0 and ROL are added.

ADC.B ROL,AQ ; ROL is zero-expanded and added to AO.
[ Related Instructions ] ADCF, ADD, SBB, SUB

Rev.2.00 Oct 17,2005 page 40 of 263 XENESAS
REJO9B0001-0200



Chapter 3 Functions 3.2 Functions

Add carry flag
ADCF ADdition Carry Flag ADCF
[ Syntax ] [ Instruction Code/Number of Cycles ]

ADCF.size dest Page: 140
: B,W

[ Operation ]
dest <« dest + C

[ Function ]

This instruction adds dest and the C flag and stores the result in gest.

[ Selectable dest ]

dest
ROL/RO ROH/R1 R1L/R2 R1H/R3
AO Al [AQ] [A1]

dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6

[ Flag Change ]

Fag |lU| 1 |O|B|S|zZ|D|C
Change| — |[— | O | —|O|O|—-10
Conditions

O : The flag is set when a signed operation results in a value exceeding +32767 (.W) or —32768 (.\W)
or +127 (.B) or —128 (.B); otherwise cleared.

S : The flag is set when the operation results in MSB = 1; otherwise cleared.

Z . The flag is set when the operation results in 0; otherwise cleared.

C : The flag is set when an unsigned operation results in a value exceeding +65535 (.\W) or +255 (.B);
otherwise cleared.

[ Description Example ]
ADCF.B ROL
ADCF.W  Ram:16[AQ]

[ Related Instructions ] ADC, ADD, SBB, SUB

Rev.2.00 Oct 17,2005 page 41 of 263 RENESAS

REJ09B0001-0200



Chapter 3 Functions 3.2 Functions

Add without carry
ADD ADDition ADD
[ Syntax ] [ Instruction Code/Number of Cycles ]
ADD.size (:format) src,dest Page: 140
‘ ' G, Q,S (Can be specified)
B,wW
[ Operation ]
dest <« dest + src

[ Function ]

 This instruction adds dest and srcand stores the result in dest.

« If dest is AO or Al and the selected size specifier (.size) is (.B), src is zero-expanded to perform calculation
in 16 bits. If src is AO or Al, the operation is performed on the eight low-order bits of A0 or Al.

* If dest is a stack pointer and the selected size specifier (.size) is (.B), src is sign extended to perform
calculation in 16 bits.

[ Selectable src/dest ] (See next page for src/dest classified by format.)
src dest
ROL/RO ROH/R1 R1L/R2 R1H/R3 [ROL/RO ROH/R1 R1L/R2 R1H/R3
AO0/A0™ A1/AL1? [AQ] [A1] AO0/A0™ Al/A1? [AQ] [A1]

dsp:8[AO0] dsp:8[Al]  dsp:8[SB] dsp:8[FB] |dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6 dsp:16[A0] dsp:16[Al] dsp:16[SB] absl16
#IMM SP/SP™

*1 If (.B) is selected as the size specifier (.size), A0 or A1l cannot be chosen for s7c and dest simultaneously.

*2 The operation is performed on the stack pointer indicated by the U flag. Only #IMM can be selected for src.

[ Flag Change]

Fag |lU| I |O|B|S|Z|D]|C
Changel — [ — | O | —|O|O|—-10
Conditions

O : The flag is set when a signed operation results in a value exceeding +32767 (.W) or —32768 (.W)
or +127 (.B) or —128 (.B); otherwise cleared.

S : The flag is set when the operation results in MSB = 1; otherwise cleared.

Z : The flag is set when the operation results in 0; otherwise cleared.

C : The flag is set when an unsigned operation results in a value exceeding +65535 (.\W) or +255 (.B);
otherwise cleared.

[ Description Example ]
ADD.B AO0,ROL : 8 low-order bits of A0 and ROL are added.
ADD.B ROL,AOQ
ADD.B Ram:8[SB],ROL
ADDW  #2,[A0]

; ROL is zero-expanded and added to AO.

[ Related Instructions ] ADC, ADCF, SBB, SUB

Rev.2.00 Oct 17,2005 page 42 of 263 XENESAS
REJO9B0001-0200



Chapter 3 Functions

[src/dest Classified by Format]

3.2 Functions

G format
src dest
ROL/RO ROH/R1 R1L/R2 R1H/R3 [ROL/RO ROH/R1 R1L/R2 R1H/R3
AO0/A0™ A1/A1? [AQ] [A1] AO0/A0™ A1/A1" [AQ] [A1]
dsp:8[AO0] dsp:8[Al]  dsp:8[SB] dsp:8[FB] |dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6 dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6
#IMM SP/SP™?

*1 If (.B) is selected as the size specifier (.size), A0 or Al cannot be chosen for s7¢ and dest simultaneously.

*2 The operation is performed on the stack pointer indicated by the U flag. Only #IMM can be selected for src.

Q format
src dest
ROL/RO ROH/R1 R1L/R2 R1H/R3
AO/A0 Al/Al [AO] [A1]
dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]

#IMM™

dsp:16[A0] dsp:16[A1]

dsp:16[SB] absl6

SP/SP™

*2 The operation is performed on the stack pointer indicated by the U flag. Only #IMM can be selected for src.

*3 The acceptable range of values is -8 < #IMM < +7.

S format™
src dest
ROL ROH dsp:8[SB]  dsp:8[FB]
#IMM abs16
ROL™ ROH™ dsp:8[SB]  dsp:8[FB] |ROL™ ROH™
abs16

*4  Only (.B) can be selected as the size specifier (.size).

*5 The same register cannot be used for src and dest simultaneously.

Rev.2.00 Oct 17,2005 page 43 of 263
REJ09B0001-0200

RENESAS



Chapter 3 Functions 3.2 Functions

Add and conditional jump
AD\] NZ ADdition then Jump on Not Zero ADJ NZ
[ Syntax ] [ Instruction Code/Number of Cycles ]

ADJNZ.size src,dest,label Page: 146
: B,W

[ Operation ]
dest < dest + src
if dest+ 0 then jump label

[ Function ]
 This instruction adds dest and srcand stores the result in dest.

« If the addition results in any value other than 0, control jumps to label. If the addition results in 0, the
next instruction is executed.
» The op-code of this instruction is the same as that of SBINZ.

[ Selectable src/dest/label ]

src dest label
ROL/RO ROH/R1 R1L/R2
R1H/R3 /AQ /A1
#IMM™ [AO] [Al] dsp:8[AQ] PC?-126= label= PC?+129

dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB]
abs16

*1 The acceptable range of values is -8 < #IMM < +7.

*2 PC indicates the start address of the instruction.

[ Flag Change]
Flag |lU| I [|O|B|S|Z|D|C

Change| — | —| — | —| — | = | — | —

[ Description Example ]
ADINZW  #-1,R0,label

[ Related Instructions ] SBJNZ

Rev.2.00 Oct17,2005 page 44 of 263 XENESAS
REJO9B0001-0200



Chapter 3 Functions 3.2 Functions

A N D Log/zaKI/JE)AND A N D

[ Syntax ] [ Instruction Code/Number of Cycles ]

AND.size (:format) src,dest Page: 147
' G, S (Can be specified)

B,W

[ Operation ]
dest <« src /A dest

[ Function ]
* This instruction logically ANDs dest and src and stores the result in dest

« If dest is A0 or Al and the selected size specifier (.size) is (.B), src is zero-expanded to perform
calculation in 16 bits. If s/c is AO or Al, operation is performed on the eight low-order bits of AO or Al.

[ Selectable src/dest ] (See next page for src/dest classified by format.)
src dest
ROL/RO ROH/R1 R1L/R2 R1H/R3 [ROL/RO ROH/R1 R1L/R2 R1H/R3
AO0/A0™ A1/A1? [AQ] [A1] AO0/A0™ A1/A1" [AQ] [A1]

dsp:8[AO0] dsp:8[Al]  dsp:8[SB] dsp:8[FB] |dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6 dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6
#IMM

*1 If (.B) is selected as the size specifier (.size), A0 or Al cannot be chosen for sr/c and dest simulta-
neously.

[ Flag Change ]

Fag |lU| I |O|B|S|Z|D|C
Changee — | — | — | — | O | O | —| —
Conditions

S : The flag is set when the operation results in MSB = 1; otherwise cleared.
Z . The flag is set when the operation results in 0; otherwise cleared.

[ Description Example ]
AND.B Ram:8[SB],ROL
AND.B:G  AO,ROL : 8 low-order bits of AO and ROL are ANDed.

AND.B:G  ROL,A0 : ROL is zero-expanded and ANDed with AO.
AND.B:S #3,ROL

[ Related Instructions ] OR, XOR, TST

Rev.2.00 Oct 17,2005 page 45 of 263 RENESAS
REJ09B0001-0200



Chapter 3 Functions 3.2 Functions
I

[src/dest Classified by Format]

G format
src dest
ROL/RO ROH/R1 R1L/R2 R1H/R3 [ROL/RO ROH/R1 R1L/R2 R1H/R3
AO0/A0™ Al/A1? [AQ] [A1] AO0/A0™ A1/A1? [AQ] [A1]

dsp:8[A0] dsp:8[Al]  dsp:8[SB] dsp:8[FB] |dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6 dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6
#IMM

*1 If (.B) is selected as the size specifier (.size), A0 or Al cannot be chosen for sr/c and dest simulta-

neously.
S format™
src dest
ROL ROH dsp:8[SB]  dsp:8[FB]
#IMM abs16
ROL™ ROH™ dsp:8[SB]  dsp:8[FB] |ROL™ ROH™
abs16

*2 Only (.B) can be selected as the size specifier (.size).

*3 The same register cannot be used for src and dest

Rev.2.00 Oct 17,2005 page 46 of 263 XENESAS
REJO9B0001-0200



Chapter 3 Functions 3.2 Functions

Logrcally AND bits
BAND Bit AND carry flag BAND
[ Syntax ] [ Instruction Code/Number of Cycles ]
BAND src Page: 150

[ Operation ]
C <« src AN C

[ Function ]

« This instruction logically ANDs the C flag and sr¢ and stores the result in the C flag.

[ Selectable src ]

SIrc
bit,RO bit,R1 bit,R2 bit,R3
bit,AO bit, AL [AO] [A1]

base:8[A0]  base:8[Al] bit,base:8[SB] bit,base:8[FB]
base:16[A0] base:16[A1]  bit,base:16[SB] bit,base:16

[ Flag Change ]
Fag |lU| Il |O|B|S|Z|D]|C
Change| — |— | —|—|—|—|—1]O

Conditions
C : The flag is set when the operation results in 1; otherwise cleared.

[ Description Example ]

BAND flag

BAND 4,Ram

BAND 16,Ram:16[SB]
BAND [AQ]

[ Related Instructions ] BOR, BXOR, BNAND, BNOR, BNXOR

Rev.2.00 Oct 17,2005 page 47 of 263 RENESAS
REJ09B0001-0200



Chapter 3 Functions 3.2 Functions

Clear bit
BCI—R Bit CLeaR BCLR
[ Syntax ] [ Instruction Code/Number of Cycles ]

BCLR (:format) dest Page: 150
' G, S (Can be specified)

[ Operation ]
dest < O

[ Function ]
* This instruction stores 0 in dest.

[ Selectable dest ]

dest
bit,RO bit,R1 bit,R2 bit,R3
bit,A0 bit,A1 [AO] [Al]

base:8[A0]  base:8[Al] bit,base:8[SB] bit,base:8[FB]

base:16[A0] base:16[A1]  bit,base:16[SB] bit,base:16
bit,base:11[SB]*

*1 This gest can only be selected when in S format.

[ Flag Change ]
Fag (lU| I |O|B|S|Z|D]|C

Change| — | — | — | — | —|— | —| —

[ Description Example ]

BCLR flag

BCLR 4,Ram:8[SB]
BCLR 16,Ram:16[SB]
BCLR [AQ]

[ Related Instructions ] BSET, BNOT, BNTST, BTST, BTSTC, BTSTS

Rev.2.00 Oct 17,2005 page 48 of 263 XENESAS
REJO9B0001-0200



Chapter 3 Functions

3.2 Functions

BMCnd

[ Syntax ]
BMCnd dest
[ Operation ]
if truethen dest < 1
else dest <« 0
[ Function ]

Conaditional bit transfrer
Bit Move Condition

BMCnd

[ Instruction Code/Number of Cycles ]
Page: 152

« This instruction transfers the true or false value of the condition indicated by Cnd to dest. If the
condition is true, 1 is transferred,; if false, 0 is transferred.
» The supported types of Cnd are as follows.

cnd Condition Expression|| Cnd Condition Expression
GEUIC| C=1 Equal to or greater than = LTU/NC|C=0 Less than >
Cflagis 1. Cflagis 0.
EQiZ |Z=1 Equal to = NE/NZ |Z=0 Not equal *
Zflagis 1. Zflagis 0.
GTU |CAZ=1 Greater than < LEU [CAZ=0 Equal to or less than =
PZ |S=0 Positive or zero 0= N S=1 Negative 0>
GE SV0=0 Equal to or greater than = LE (SV0O)V Z=1| Equal to or less than =
(signed value) (signed value)
GT (SYO)V Z=0 | Greater than (signed value) < LT SVO0=1 Less than (signed value) >
0 0=1 Oflagis 1. NO 0=0 Oflagis 0.
[ Selectable dest ]
dest
bit,RO bit,R1 bit,R2 bit,R3
bit,AO bit,A1 [AQ] [A1]
base:8[A0]  base:8[Al] bit,base:8[SB] bit,base:8[FB]
base:16[A0] base:16[A1l]  bit,base:16[SB] bit,base:16
C
[ Flag Change ]
Fag ([lU| I |O|B|S|Z|D|C
Change| — | — | — | — | — | —|—|*1 *1 The flag changes if the C flag was specified for dest.
[ Description Example ]
BMN 3,Ram:8[SB]
BMZ C
[ Related Instructions ] JCnd

Rev.2.00 Oct 17, 2005
REJ09B0001-0200

page 49 of 263

RENESAS




Chapter 3 Functions 3.2 Functions

Logically AND inverted bits
BNAND Bit Not AND carry flag BNAND
[ Syntax ] [ Instruction Code/Number of Cycles ]
BNAND src Page: 153

[ Operation ]
C <« src AN C

[ Function ]
 This instruction logically ANDs the C flag and the inverted value of sr¢ and stores the result in the C

flag.

[ Selectable src ]

Src
bit,RO bit,R1 bit,R2 bit,R3
bit,AO bit, AL [AO] [A1]

base:8[A0]  base:8[Al] hit,base:8[SB] bit,base:8[FB]
base:16[A0] base:16[A1]  bit,base:16[SB] bit,base:16

[ Flag Change ]

Fag |lU| 1 |O|B|S|Z|D]|C
Change| — | — | — | —|—|—|—|0O
Condition

C : The flag is set when the operation results in 1; otherwise cleared.

[ Description Example ]
BNAND flag
BNAND 4,Ram
BNAND 16,Ram:16[SB]
BNAND [AO]

[ Related Instructions ] BAND, BOR, BXOR, BNOR, BNXOR

Rev.2.00 Oct 17,2005 page 50 of 263 XENESAS
REJO9B0001-0200



Chapter 3 Functions
3.2 Functions

Logically OR inverted bits
BNOR Bit Not OR carry flag BNOR
[ Syntax ] [ Instruction Code/Number of Cycles ]
BNOR src Page: 154

[ Operation ]
C < src V C

[ Function ]
 This instruction logically ORs the C flag and the inverted value of s7/c and stores the result in the C
flag.

[ Selectable src ]

SIrc
bit,RO bit,R1 bit,R2 bit,R3
bit,AO bit, AL [AO] [A1]

base:8[A0]  base:8[Al] bit,base:8[SB] bit,base:8[FB]
base:16[A0] base:16[A1]  bit,base:16[SB] bit,base:16

[ Flag Change ]

Fag |lU| I |O|B|S|Z|D]|C
Change| — |[— | — | —|—|—|—10O

Condition
C : The flag is set when the operation results in 1; otherwise cleared.

[ Description Example ]

BNOR flag
BNOR 4,Ram
BNOR 16,Ram:16[SB]

BNOR [A0]

[ Related Instructions ] BAND, BOR, BXOR, BNAND, BNXOR

Rev.2.00 Oct 17,2005 page 51 of 263 RENESAS
REJ09B0001-0200



Chapter 3 Functions
3.2 Functions

Invert bit
BNOT Bit NOT BNOT
[ Syntax ] [ Instruction Code/Number of Cycles ]

BNOT(:format) dest Page: 154
' G ,S (Can be specified)

[ Operation ]
dest <« dest

[ Function ]
» This instruction inverts gest and stores the result in dest

[ Selectable dest ]

dest
bit,RO bit,R1 bit,R2 bit,R3
bit,A0 bit,A1 [AO] [Al]

base:8[A0]  base:8[Al] bit,base:8[SB] bit,base:8[FB]

base:16[A0] base:16[A1]  bit,base:16[SB] bit,base:16
bit,base:11[SB]*

*1 This dest can only be selected when in S format.

[ Flag Change]
Fag ([U| 1 |O|B|S|Z|D]|C

Change| — | — | — | — | —|—|— | —

[ Description Example ]

BNOT flag

BNOT 4,Ram:8[SB]
BNOT 16,Ram:16[SB]
BNOT [AO]

[ Related Instructions ] BCLR, BSET, BNTST, BTST, BTSTC, BTSTS

Rev.2.00 Oct 17,2005 page 52 of 263 XENESAS
REJO9B0001-0200



Chapter 3 Functions
3.2 Functions

7est inverted bit
BNTST Bit Not TeST BNTST
[ Syntax ] [ Instruction Code/Number of Cycles ]
BNTST src Page: 155

[ Operation ]
Z <« src
C <« src

[ Function ]
« This instruction transfers the inverted value of s/c¢ to the Z flag and the inverted value of sr¢ to the C
flag.

[ Selectable src ]

SIrc
bit,RO bit,R1 bit,R2 bit,R3
bit,AO bit, AL [AO] [A1]

base:8[A0]  base:8[Al] bit,base:8[SB] bit,base:8[FB]
base:16[A0] base:16[A1]  bit,base:16[SB] bit,base:16

[ Flag Change ]

Flag |U| 1 |O|B|S|Z|D]|C
Changel — | — | — | — | — | O| -1 0O
Conditions

Z . The flag is set when src is 0; otherwise cleared.
C : Theflag is set when src is 0; otherwise cleared.

[ Description Example ]
BNTST flag
BNTST 4,Ram:8[SB]
BNTST 16,Ram:16[SB]
BNTST [AQ]

[ Related Instructions ] BCLR, BSET, BNOT, BTST, BTSTC, BTSTS

Rev.2.00 Oct 17,2005 page 53 of 263 RENESAS
REJ09B0001-0200



Chapter 3 Functions
3.2 Functions

Exclusive OR inverted bits
B NXOR Bit Not eXclusive OR carry flag B NXOR
[ Syntax ] [ Instruction Code/Number of Cycles ]
BNXOR src Page: 156

[ Operation ]
C <« scV C

[ Function ]

« This instruction exclusive ORs the C flag and the inverted value of src and stores the result in the C
flag.

[ Selectable src ]

Src
bit,RO bit,R1 bit,R2 bit,R3
bit,AO bit, AL [AO] [A1]

base:8[A0]  base:8[Al] hit,base:8[SB] bit,base:8[FB]
base:16[A0] base:16[A1]  bit,base:16[SB] bit,base:16

[ Flag Change ]

Fag |lU| Il |O|B|S|Z|D|C
Change| — | — | — | —| —|—|—10O
Conditions

C : The flag is set when the operation results in 1; otherwise cleared.

[ Description Example ]
BNXOR flag
BNXOR 4,Ram
BNXOR 16,Ram:16[SB]
BNXOR [AO]

[ Related Instructions ] BAND, BOR, BXOR, BNAND, BNOR

Rev.2.00 Oct 17,2005 page 54 of 263 XENESAS
REJO9B0001-0200



Chapter 3 Functions
3.2 Functions

Logically OR bits
BOR Bit OR carry flag BOR
[ Syntax ] [ Instruction Code/Number of Cycles ]
BOR src Page: 156

[ Operation ]
C <« src vV C

[ Function ]

* This instruction logically ORs the C flag and src and stores the result in the C flag.

[ Selectable src ]

SIrc
bit,RO bit,R1 bit,R2 bit,R3
bit,AO bit, AL [AO] [A1]

base:8[A0]  base:8[Al] bit,base:8[SB] bit,base:8[FB]
base:16[A0] base:16[A1]  bit,base:16[SB] bit,base:16

[ Flag Change ]

Fag |lU| I |O|B|S|Z|D|C
Change| — | — | — | — | —|—| =10
Conditions

C : The flag is set when the operation results in 1; otherwise cleared.

[ Description Example ]

BOR flag

BOR 4, Ram

BOR 16,Ram:16[SB]
BOR [AQ]

[ Related Instructions ] BAND, BXOR, BNAND, BNOR, BNXOR

Rev.2.00 Oct 17,2005 page 55 of 263 RENESAS
REJ09B0001-0200



Chapter 3 Functions .
3.2 Functions

Debug interrupt
BRK BReaK BRK

[ Syntax ] [ Instruction Code/Number of Cycles ]
BRK Page: 157

[ Operation ]
SP - SsP - 2
M(SP) <« (PC + 1)H, FLG
SP - SsP - 2
M(SP) < (PC + 1ML
PC - M(FFFE416)

[ Function ]

 This instruction generates a BRK interrupt.

» The BRK interrupt is a nonmaskable interrupt.

[ Flag Change ]*

Flag |lU | 1 |O|B|S|Z|D|C| *1 Theflags are saved to the stack area before the BRK in-
Changel O | O | — | —|—|—|O| — struction is executed. After the interrupt, the flags
Conditions change state as shown at left.

U : Theflag is cleared.
I : Theflag is cleared.
D : Theflagis cleared.

[ Description Example ]
BRK

[ Related Instructions ] INT, INTO

Rev.2.00 Oct 17,2005 page 56 of 263 XENESAS
REJO9B0001-0200



Chapter 3 Functions
3.2 Functions

Set bit
BSET Bit SET BSET
[ Syntax ] [ Instruction Code/Number of Cycles ]

BSET (:format) dest Page: 157
' G, S (Can be specified)

[ Operation ]
dest <« 1

[ Function ]

« This instruction stores 1 in dest

[ Selectable dest ]

dest
bit,RO bit,R1 bit,R2 bit,R3
bit,A0 bit,A1 [AQ] [A1]

base:8[A0]  base:8[Al] bit,base:8[SB] bit,base:8[FB]

base:16[A0] base:16[A1]  bit,base:16[SB] bit,base:16
bit,base:11[SB]*

*1 This dest can only be selected when in S format.

[ Flag Change ]
Fag |lU| Il |O|B|S|Z|D|C
Change| — | — | — | — | —|—|—| —

[ Description Example ]

BSET flag

BSET 4,Ram:8[SB]
BSET 16,Ram:16[SB]
BSET [AO]

[ Related Instructions ] BCLR, BNOT, BNTST, BTST, BTSTC, BTSTS

Rev.2.00 Oct 17,2005 page 57 of 263 RENESAS
REJ09B0001-0200



Chapter 3 Functions
3.2 Functions

7est bit
BTST Bit TeST BTST
[ Syntax ] [ Instruction Code/Number of Cycles ]

BTST (:format) src Page: 158
' G, S (Can be specified)

[ Operation ]
Z <« src
C <« src

[ Function ]

« This instruction transfers the inverted value of src to the Z flag and the non-inverted value of src to
the C flag.

[ Selectable src ]

Src
bit,RO bit,R1 bit,R2 bit,R3
bit,AO bit, AL [AO] [A1]

base:8[A0]  base:8[Al] hit,base:8[SB] bit,base:8[FB]

base:16[A0] base:16[A1]  bit,base:16[SB] bit,base:16
bit,base:11[SB]*

*1 This src can only be selected when in S format.

[ Flag Change ]

Fag ([U| 1 |O|B|S|Z|D]|C
Change| — | — | — | —|—|1O|—1]0O
Conditions

Z : The flag is set when src is 0; otherwise cleared.
C : The flag is set when src is 1; otherwise cleared.

[ Description Example ]

BTST flag

BTST 4,Ram:8[SB]
BTST 16,Ram:16[SB]
BTST [AQ]

[ Related Instructions ] BCLR, BSET, BNOT, BNTST, BTSTC, BTSTS

Rev.2.00 Oct 17,2005 page 58 of 263 XENESAS

REJ09B0001-0200



Chapter 3 Functions
3.2 Functions

7est bit and clear
BTSTC Bit TeST and Clear BTSTC
[ Syntax ] [ Instruction Code/Number of Cycles ]
BTSTC dest Page: 159

[ Operation ]

Z <« dest
C «~ dest
dest <« O

[ Function ]

« This instruction transfers the inverted value of dest to the Z flag and the non-inverted value of
dest to the C flag. Then it stores 0 in dest

[ Selectable dest ]

dest
bit,RO bit,R1 bit,R2 bit,R3
bit,A0 bit,A1 [AQ] [A1]

base:8[A0]  base:8[Al] bit,base:8[SB] bit,base:8[FB]
base:16[A0] base:16[A1]  bit,base:16[SB] bit,base:16

[ Flag Change ]

Fag |lU| |1 |O|B|S|Z|D]|C
Changel — | — | — | — | —|O|—1]0O
Conditions

Z . The flag is set when dest is 0; otherwise cleared.
C : Theflag is set when dest is 1; otherwise cleared.

[ Description Example ]
BTSTC flag
BTSTC 4,Ram
BTSTC 16,Ram:16[SB]
BTSTC [AQ]

[ Related Instructions ] BCLR, BSET, BNOT, BNTST, BTST, BTSTS

Rev.2.00 Oct 17,2005 page 59 of 263 RENESAS

REJ09B0001-0200



Chapter 3 Functions
3.2 Functions

7est bit and set
BTSTS Bit TeST and Set BTSTS
[ Syntax ] [ Instruction Code/Number of Cycles ]
BTSTS dest Page: 160

[ Operation ]

Z <« dest
C «~ dest
dest <« 1

[ Function ]

 This instruction transfers the inverted value of dest to the Z flag and the non-inverted value of dest to
the C flag. Then it stores 1 in dest.

[ Selectable dest ]

dest
bit,RO bit,R1 bit,R2 bit,R3
bit,AO bit,A1 [AO] [A1]

base:8[A0]  base:8[Al] bit,base:8[SB] bit,base:8[FB]
base:16[A0] base:16[A1]  bit,base:16[SB] bit,base:16

[ Flag Change ]

Fag |lU| 1 ]|]O|B|S|Z|D|C
Change| — | — | — | — | —|1O|—1]10O
Conditions

Z . The flag is set when dest is 0; otherwise cleared.
C : Theflag is set when dest is 1; otherwise cleared.

[ Description Example ]
BTSTS flag
BTSTS 4,Ram
BTSTS 16,Ram:16[SB]
BTSTS [AQ]

[ Related Instructions ] BCLR, BSET, BNOT, BNTST, BTST, BTSTC

Rev.2.00 Oct 17,2005 page 60 of 263 XENESAS

REJ09B0001-0200



Chapter 3 Functions 3.2 Functions

Exclusive OR bits
BXOR Bit eXclusive OR carry flag BXOR
[ Syntax ] [ Instruction Code/Number of Cycles ]
BXOR src Page: 160

[ Operation ]
C <« src V C

[ Function ]
« This instruction exclusive ORs the C flag and src and stores the result in the C flag.

[ Selectable src ]

SIrc
bit,RO bit,R1 bit,R2 bit,R3
bit,AO bit, AL [AO] [A1]

base:8[A0]  base:8[Al] bit,base:8[SB] bit,base:8[FB]
base:16[A0] base:16[A1]  bit,base:16[SB] bit,base:16

[ Flag Change ]

Fag lU| 1 |O|B|S|Z|D]|C
Change| — | — | — | — | —=|—=|—=|O
Conditions

C : The flag is set when the operation results in 1; otherwise cleared.

[ Description Example ]

BXOR flag

BXOR 4,Ram

BXOR 16,Ram:16[SB]
BXOR [AO]

[ Related Instructions ] BAND, BOR, BNAND, BNOR, BNXOR

Rev.2.00 Oct 17,2005 page 61 of 263 RENESAS
REJ09B0001-0200



Chapter 3 Functions 3.2 Functions

CMP Compore CMP

[ Syntax ] [ Instruction Code/Number of Cycles ]
CMP.size (:format) src,dest Page: 161
‘ ' G, Q,S (Can be specified)
B,wW
[ Operation ]
dest — src
[ Function ]

* Flag bits in the flag register change depending on the result of subtraction of ssc from dest.

« If dest is AO or Al and the selected size specifier (.size) is (.B), src is zero-expanded to perform
operation in 16 bits. If src is AO or A1, operation is performed on the 8 low-order bits of A0 or Al.

[ Selectable src/dest ] (See next page for src/dest classified by format.)
src dest
ROL/RO ROH/R1 R1L/R2 R1H/R3 [ROL/RO ROH/R1 R1L/R2 R1H/R3
AO/A0™ A1/A1" [AO] [A1] AO/A0™ Al/A1" [AQ] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] |dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1] dsp:16[SB] absl6 dsp:16[A0] dsp:16[A1] dsp:16[SB] absl6
#IMM

*1 If (.B) is selected as the size specifier (.size), A0 or Al cannot be chosen for src and dest simulta-

neously.
[ Flag Change]

Fag |[U| 1 |O|B|S|Z|D]|C
Changel — | — | O|—]O|1O|—|0O
Conditions

O : Theflagis set when a signed operation results in a value exceeding +32767 (.\W) or —32768 (\W),
or +127 (.B) or —128 (.B); otherwise cleared.

S : The flag is set when the operation results in MSB = 1; otherwise cleared.

Z : The flag is set when the operation results in 0; otherwise cleared.

C : The flag is set when an unsigned operation results in any value equal to or greater than 0;
otherwise cleared.

[ Description Example ]
CMP.B:S  #10,ROL
CMP.W:G RO0,A0
CMP.W #-3,R0

CMP.B #5,Ram:8[FB]
CMP.B AO,ROL ; 8 low-order bits of AO and ROL are compared.

Rev.2.00 Oct 17,2005 page 62 of 263 XENESAS
REJO9B0001-0200



Chapter 3 Functions 3.2 Functions

[src/dest Classified by Format]

G format
src dest
ROL/RO ROH/R1 R1L/R2 R1H/R3 [ROL/RO ROH/R1 R1L/R2 R1H/R3
AO0/A0™ A1/A1? [AQ] [A1] AO0/A0™ A1/A1" [AQ] [A1]

dsp:8[AO0] dsp:8[Al]  dsp:8[SB] dsp:8[FB] |dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6 dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6
#IMM

*1 If (.B) is selected as the size specifier (.size), AO or Al cannot be chosen for sr¢c and dest simulta-

neously.
Q format
src dest
ROL/RO ROH/R1 R1L/R2 R1H/R3
AO/A0 Al/Al [AO] [A1]

dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6
#IMM™

*2 The acceptable range of values is -8 < #IMM < +7.

S format™
src dest
ROL ROH dsp:8[SB]  dsp:8[FB]
#IMM abs16
ROL™ ROH™ dsp:8[SB]  dsp:8[FB] |ROL™ ROH™
abs16

*3 Only (.B) can be selected as the size specifier (.size).

*4 The same register cannot be used for sr/c and dest.

Rev.2.00 Oct 17,2005 page 63 of 263 RENESAS
REJ09B0001-0200



Chapter 3 Functions 3.2 Functions

Decimal add with carry
DA DC Decimal ADdition with Carry DA DC
[ Syntax ] [ Instruction Code/Number of Cycles ]

DADC.size src,dest Page: 165
|

[ Operation ]
dest < src + dest + C

[ Function ]

« This instruction adds dest, src, and the C flag as decimal data and stores the result in dest.

[ Selectable src/dest ]

src dest
ROH/R1 ROL/RO
#IMM
[ Flag Change ]
Fag |U| I |O|B|S|Z|D|C
Change| — | — | — | — | O|O|—1]0O

Conditions
S : The flag is set when the operation results in MSB = 1; otherwise cleared.
Z : The flag is set when the operation results in 0; otherwise cleared.
C : Theflag is set when the operation results in a value exceeding +9999 (.W) or +99 (.B); otherwise
cleared.

[ Description Example ]
DADC.B  #3,ROL
DADC.W R1,RO

[ Related Instructions ] DADD, DSUB, DSBB

Rev.2.00 Oct 17,2005 page 64 of 263 XENESAS

REJ09B0001-0200



Chapter 3 Functions 3.2 Functions

Decimal add without carry
DADD Decimal ADDition DADD
[ Syntax ] [ Instruction Code/Number of Cycles ]

DADD.size src,dest Page: 167
: B,W

[ Operation ]
dest <« src + dest

[ Function ]
* This instruction adds dest and src as decimal data and stores the result in gest

[ Selectable src/dest ]

src dest
ROH/R1 ROL/RO
#IMM
[ Flag Change ]
Fag |lU| 1 |O|B|S|Z|D]|C
Change| — | — | — | — | OO |—10O

Conditions
S : The flag is set when the operation results in MSB = 1; otherwise cleared.
Z . The flag is set when the operation results in 0; otherwise cleared.
C : Theflag is set when the operation results in a value exceeding +9999 (.W) or +99 (.B); otherwise
cleared.

[ Description Example ]
DADD.B  #3,ROL
DADD.W R1,R0O

[ Related Instructions ] DADC, DSUB, DSBB

Rev.2.00 Oct 17,2005 page 65 of 263 RENESAS

REJ09B0001-0200



Chapter 3 Functions 3.2 Functions

Decrement
DEC DECrement DEC
[ Syntax ] [ Instruction Code/Number of Cycles ]

DEC.size dest Page: 169
: B,W

[ Operation ]
dest <« dest — 1

[ Function ]
« This instruction decrements dest by 1 and stores the result in dest.

[ Selectable dest ]

dest
ROL™ ROH™ dsp:8[SB]* dsp:8[FB]*
abs16™ A0™ Al7?

*1 Only (.B) can be specified as the size specifier (.size).

*2  Only (W) can be specified as the size specifier (.size).

[ Flag Change]

Fag (U| I |O|B|S|Z|D|C
Change| — | — | — | — | O |O| —1| —
Conditions

S : The flag is set when the operation results in MSB = 1; otherwise cleared.
Z : The flag is set when the operation results in 0; otherwise cleared.

[ Description Example ]
DEC.W A0
DEC.B ROL

[ Related Instructions ] INC

Rev.2.00 Oct 17,2005 page 66 of 263 XENESAS
REJO9B0001-0200



Chapter 3 Functions 3.2 Functions

Signed divide
DIV DIVide DIV
[ Syntax ] [ Instruction Code/Number of Cycles ]

DIV.size src Page: 170
: B,W

[ Operation ]
If the size specifier (.size) is (.B)
ROL (quotient), ROH (remainder) < RO - src
If the size specifier (.size) is (\W)
RO (quotient), R2 (remainder) <~ R2R0~src

[ Function ]

« This instruction divides R2R0 (R0)™ by the signed value of src and stores the quotient in RO (ROL)™
and the remainder in R2 (ROH)™. The remainder has the same sign as the dividend. Items in paren-
theses and followed by™" ()™ indicate registers that are the object of the operation when (.B) is
selected as the size specifier (.size).

« If src is AO or Al and the selected size specifier (.size) is (.B), the operation is performed on the 8 low-
order bits of AO or Al.

« If (.B) is selected as the size specifier (.size), the O flag is set when the operation results in a quotient
exceeding 8 bits or the divisor is 0. In this case, ROL and ROH are undefined.

« If (\W) is selected as the size specifier (.size), the O flag is set when the operation results in a quotient
exceeding 16 bits or the divisor is 0. In this case, RO and R2 are undefined.

[ Selectable src ]

src
ROL/RO ROH/R1 R1L/R2 R1H/R3
AO0/AO A1/A1 [AQ] [A1]
dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1] dsp:16[SB] absl6

#IMM
[ Flag Change ]
Fag |lU| 1 |O|B|S|Z|D|C
Change| — | — O | — | —|—|—| —
Conditions

O : Theflag is set when the operation results in a quotient exceeding 16 bits (.\W) or 8 bits (.B) or the
divisor is 0; otherwise cleared.

[ Description Example ]

DIV.B AO :Value of 8 low-order bits of AO is the divisor.
DIV.B #4
DIV.W RO

[ Related Instructions ] DIVU, DIVX, MUL, MULU

Rev.2.00 Oct 17,2005 page 67 of 263 RENESAS
REJ09B0001-0200



Chapter 3 Functions 3.2 Functions

Unsigned adivide
DIVU DIVide Unsigned DIVU
[ Syntax ] [ Instruction Code/Number of Cycles ]

DIVU.size src Page: 171
: B,W

[ Operation ]
If the size specifier (.size) is (.B)
ROL (quotient), ROH (remainder) < R0~ src
If the size specifier (.size) is (\W)
RO (quotient), R2 (remainder) <~ R2R0 - src

[ Function ]

« This instruction divides R2R0 (R0)™! by the unsigned value of sr/¢ and stores the quotient in RO
(ROL)™" and the remainder in R2 (ROH)™. Items in parentheses and followed by™" ()" indicate
registers that are the object of the operation when (.B) is selected as the size specifier (.size).

« If src is AO or Al and the selected size specifier (.size) is (.B), the operation is performed on the 8 low-
order bits of AO or Al.

« If (.B) is selected as the size specifier (.size), the O flag is set when the operation results in a quotient
exceeding 8 bits or the divisor is 0. In this case, ROL and ROH are undefined.

 If (W) is selected as the size specifier (.size), the O flag is set when the operation results in a quotient
exceeding 16 bits or the divisor is 0. In this case, RO and R2 are undefined.

[ Selectable src ]

SIrc
ROL/RO  ROH/R1  RIL/R2 R1H/R3
AO/AD AL/AL [AO] [Al]

dsp:8[AO] dsp:8[Al] dsp:8[SB]  dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6

#IMM
[ Flag Change ]
Fag ([lU| 1 |O|B|S|Z|D]|C
Change| — |[— |O |—|—|—|—|—
Conditions

O : The flag is set when the operation results in a quotient exceeding 16 bits (.W) or 8 bits (.B) or the
divisor is 0; otherwise cleared.

[ Description Example ]

DIVU.B AO :Value of 8 low-order bits of AO is the divisor.
DIVU.B #4
DIVU.W RO

[ Related Instructions ] DIV, DIVX, MUL, MULU

Rev.2.00 Oct 17,2005 page 68 of 263 XENESAS
REJO9B0001-0200



Chapter 3 Functions 3.2 Functions

Signed divide
D IVX DIVide eXtension D IVX
[ Syntax ] [ Instruction Code/Number of Cycles ]

DIVX.size  src Page: 172
: B,W

[ Operation ]
If the size specifier (.size) is (.B)
ROL (quotient), ROH (remainder) < R0 +-src
If the size specifier (.size) is (\W)
RO (quotient), R2 (remainder) <~ R2R0 +src

[ Function ]

« This instruction divides R2R0 (R0)™ by the signed value of src and stores the quotient in RO (ROL)" and the
remainder in R2 (ROH)™. The remainder has the same sign as the divisor. Items in parentheses and followed
by™*" ()" indicate registers that are the object of the operation when (.B) is selected as the size specifier (.size).

« If src is AO or Al and the selected size specifier (.size) is (.B), the operation is performed on the 8 low-
order bits of AO or Al.

« If (.B) is selected as the size specifier (.size), the O flag is set when the operation results in a quotient
exceeding 8 bits or the divisor is 0. At this time, ROL and ROH are undefined.

« If (\W) is selected as the size specifier (.size), the O flag is set when the operation results in a quotient
exceeding 16 bits or the divisor is 0. At this time, RO and R2 are undefined.

[ Selectable src ]

src

ROL/RO ROH/R1 R1L/R2 R1H/R3

AO0/AQ A1/A1 [AQ] [A1]

dsp:8[A0] dsp:8[Al]  dsp:8[SB]  dsp:8[FB]

dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6
#IMM

[ Flag Change ]

Flag Uull1l |0
Change | — | — | O | —| —|—|—| —

Conditions
O : The flag is set when the operation results in a quotient exceeding 16 bits (.\W) or 8 bits (.B) or the
divisor is 0; otherwise cleared.

[ Description Example ]

DIVX.B AO :Value of 8 low-order bits of AO is the divisor.
DIVX.B #4
DIVX.W RO

[ Related Instructions ] DIv, DIVU, MUL, MULU

Rev.2.00 Oct 17,2005 page 69 of 263 RENESAS
REJ09B0001-0200



Chapter 3 Functions 3.2 Functions

Decimal subtract with borrow
DSB B Decimal SuBtract with Borrow DSB B
[ Syntax ] [ Instruction Code/Number of Cycles ]
DSBB.size src,dest Page: 173
' B,W

[ Operation ]
dest <« dest — src - C

[ Function ]
 This instruction subtracts sr¢ and the inverted value of the C flag from dest as decimal data and
stores the result in dest.

[ Selectable src/dest ]

Ssrc dest
ROH/R1 ROL/RO
#IMM
[ Flag Change]
Fag ([U| 1 |O|B|[S|Z|D]|C
Change| — | — | — | —|O|O| =10

Conditions
S : The flag is set when the operation results in MSB = 1; otherwise cleared.
Z . The flag is set when the operation results in 0; otherwise cleared.
C : The flag is set when the operation results in any value equal to or greater than 0; otherwise
cleared.

[ Description Example ]

DSBB.B #3,ROL
DSBB.W  R1,RO

[ Related Instructions ] DADC, DADD, DSUB

Rev.2.00 Oct 17,2005 page 70 of 263 XENESAS

REJ09B0001-0200



Chapter 3 Functions 3.2 Functions

Decimal subtract without borrow
DSUB Decimal SUBtract DSUB
[ Syntax ] [ Instruction Code/Number of Cycles ]

DSUB.size src,dest Page: 175
: B,W

[ Operation ]
dest <« dest - src

[ Function ]
* This instruction subtracts src from dest as decimal data and stores the result in dest.

[ Selectable src/dest |

src dest
ROH/R1 ROL/RO
#IMM
[ Flag Change ]
Flag ujrjojp|s|z|bj|cC
Change| — | — | — | — | OO —10O

Conditions
S : The flag is set when the operation results in MSB = 1; otherwise cleared.
Z . The flag is set when the operation results in 0; otherwise cleared.
C : The flag is set when the operation results in any value equal to or greater than 0; otherwise
cleared.

[ Description Example ]
DSUB.B #3,ROL
DSUB.W R1,RO

[ Related Instructions ] DADC, DADD, DSBB

Rev.2.00 Oct 17,2005 page 71 of 263 RENESAS
REJ09B0001-0200



Chapter 3 Functions 3.2 Functions

Build stack 1
ENTER ENTER function ENTER
[ Syntax ] [ Instruction Code/Number of Cycles ]
ENTER src Page: 177

[ Operation ]

SP - SP - 2

M(SP) - FB

FB - SP

SP - SP - src
[ Function ]

« This instruction generates a stack frame. s/c represents the size of the stack frame.

 The diagrams below show the stack area status before and after the ENTER instruction is executed at
the beginning of a called subroutine.

Before instruction execution After instruction execution
Sp ' A iabl Nl;nl;rzf bytes
L uto variable area indicated by src
Direction in -
which address FB— ) FB (L)
increases FB (H)
SP—— | Return address (L) J' Return address (L)
Return address (M) Return address (M)
Return address (H) Return address (H)
Argument of function Argument of function
[ Selectable src ]
src
#IMM8
[ Flag Change ]
Flg (lU| I |O|B|S|Z|D]|C
Change| — | — | — | — | — | — | — | —
[ Description Example ]
ENTER #3
[ Related Instructions ] EXITD
Rev.2.00 Oct17,2005 page 72 of 263 XENESAS

REJ09B0001-0200



Chapter 3 Functions 3.2 Functions

Deallocate stack frame
EXITD EXIT and Deallocate stack frame EXITD
[ Syntax ] [ Instruction Code/Number of Cycles ]
EXITD Page: 178

[ Operation ]

SP ~— FB

FB ~  M(SP)
SP ~ SP + 2
PCmL ~  M(SP)
SP ~ SP + 2
PCH ~  M(SP)
SP ~ SP + 1

[ Function ]

» This instruction deallocates a stack frame and exits from the subroutine.
» Use this instruction in combination with the ENTER instruction.

» The diagrams below show the stack area status before and after the EXITD instruction is executed
at the end of a subroutine in which an ENTER instruction was executed.

Before instruction execution After instruction execution

SP——)
Auto variable area

FB— FB (L)

FB (H)
Return address (L) J
Return address (M)
Return address (H)

Argument of function

Direction in which
address increases

spP——) Argument of function

[ Flag Change ]
Fag flu|1|O|B|S|Z|D|C

Change| — | — | — | — | — | — | — | —

[ Description Example ]
EXITD

[ Related Instructions ] ENTER

Rev.2.00 Oct 17,2005 page 73 of 263 RENESAS
REJ09B0001-0200



Chapter 3 Functions 3.2 Functions

Extend sign
EXTS EXTend Sign EXTS
[ Syntax ] [ Instruction Code/Number of Cycles ]

EXTS.size dest Page: 178
: B,W

[ Operation ]
dest <« EXT(dest)

[ Function ]
« This instruction sign extends dest and stores the result in dest.
« If (.B) is selected as the size specifier (.size), dest is sign extended to 16 bits.
« If (W) is selected as the size specifier (.size), RO is sign extended to 32 bits. In this case, R2 is used
for the upper bytes.

[ Selectable dest ]

dest
ROL/RO Ri1L
[AQ] [A1]
dsp:8[AO0] dsp:8[Al] dsp:8[SB]  dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6

[ Flag Change ]

Fag |lU| 1 ]|]O|B|S|Z|D|C
Change| — | — | — | — | O |O| —| —

Conditions
S : If (.B) is selected as the size specifier (.size), the flag is set when the operation results in MSB =
1; otherwise cleared. The flag does not change if (\W) is selected as the size specifier (.size).
Z : If (.B) is selected as the size specifier (.size), the flag is set when the operation results in 0;
otherwise cleared. The flag does not change if (\W) is selected as the size specifier (.size).

[ Description Example ]
EXTS.B ROL
EXTSW RO

Rev.2.00 Oct 17,2005 page 74 of 263 XENESAS
REJO9B0001-0200



Chapter 3 Functions 3.2 Functions

Clear flag register bit
FCL R Flag register CLeaR FCI— R
[ Syntax ] [ Instruction Code/Number of Cycles ]
FCLR dest Page: 179

[ Operation ]
dest <« O

[ Function ]
» This instruction stores 0 in dest.

[ Selectable dest ]

dest
C D z S B @] I U
[ Flag Change ]
Fag (U] I |O|B|S|Z|D]|C
Change| *1 | *1 | *1 | *1 | *1 | *1 | *1 | *1 *1 The selected flag is cleared to 0.

[ Description Example ]
FCLR I
FCLR S

[ Related Instructions ] FSET

Rev.2.00 Oct 17,2005 page 75 of 263 RENESAS
REJ09B0001-0200



Chapter 3 Functions 3.2 Functions

Set flag register bit
FS ET Flag register SET FS ET
[ Syntax ] [ Instruction Code/Number of Cycles ]
FSET dest Page: 180

[ Operation ]
dest < 1

[ Function ]
» This instruction stores 1 in dest.

[ Selectable dest ]

[ Flag Change]

Fag ([U| 1 |O|B|S|Z|D]|C
Change| *1 [ *1 | *1 | *1 | *1 [*1|*1 | *1| *1 The selected flag is set (= 1).

[ Description Example ]

FSET I
FSET S

[ Related Instructions ] FCLR

Rev.2.00 Oct 17,2005 page 76 of 263 XENESAS
REJO9B0001-0200



Chapter 3 Functions 3.2 Functions

/ncrement
I NC INCrement I NC
[ Syntax ] [ Instruction Code/Number of Cycles ]

INC.size dest Page: 180
: B,W

[ Operation ]
dest < dest + 1

[ Function ]

» This instruction adds 1 to gdest and stores the result in gest.

[ Selectable dest ]

dest
ROL™ ROH™ dsp:8[SB]* dsp:8[FB]*
abs16™ AQ* Al

*1 Only (.B) can be selected as the size specifier (.size).

*2  Only (.\W) can be selected as the size specifier (.size).

[ Flag Change ]

Fag ([U| I |O|B|S|Z|D]|C
Change| — | — | — | —=| O | O| —| —
Conditions

S : The flag is set when the operation results in MSB = 1; otherwise cleared.
Z : The flag is set when the operation results in 0; otherwise cleared.

[ Description Example ]
INC.W A0
INC.B ROL

[ Related Instructions ] DEC

Rev.2.00 Oct 17,2005 page 77 of 263 RENESAS

REJ09B0001-0200



Chapter 3 Functions 3.2 Functions

I N T Interrupt by INT instruction I N T
INTerrupt

[ Syntax ] [ Instruction Code/Number of Cycles ]

INT src Page: 181

[ Operation ]

SP ~ SP - 2

M(SP) <« (PC + 2)H,FLG

SP ~ SP - 2

M(SP) <« (PC + 2mL

PC - M(IntBase + src X 4)
[ Function ]

 This instruction generates a software interrupt specified by src. src represents a software interrupt
number.

« If src is 31 or smaller, the U flag is cleared to 0 and the interrupt stack pointer (ISP) is used.

« If src is 32 or larger, the stack pointer indicated by the U flag is used.

» The interrupts generated by the INT instruction are nonmaskable.

[ Selectable src ]

Src

#IMM™12
*1 #IMM denotes a software interrupt number.

*2 The acceptable range of values is 0 < #IMM < 63.

[ Flag Change ]

Flag UlllOo|BIS|Z|DJ|c| *3 Theflags are saved to the stack area before the INT in-
Change | O | Q| = | =|—=|—=|0O]| — struction is executed. After the interrupt, the flags
change state as shown at left.

Conditions
U : Theflag is cleared if the software interrupt number is 31 or smaller. The flag does not change if
the software interrupt number is 32 or larger.
| : Theflagis cleared.
D : Theflagis cleared.

[ Description Example ]
INT #0

[ Related Instructions ] BRK, INTO

Rev.2.00 Oct 17,2005 page 78 of 263 XENESAS
REJO9B0001-0200



Chapter 3 Functions 3.2 Functions

Interrupt on overflow
INTO INTerrupt on Overflow INTO
[ Syntax ] [ Instruction Code/Number of Cycles ]
INTO Page: 182

[ Operation ]
SP -~ SP - 2
M(SP) « (PC + 1)H, FLG
SP < SP - 2
M(SP) < (PC + 1)ML
PC - M(FFFEO16)

[ Function ]

« If the O flag is set to 1, this instruction generates an overflow interrupt. If the flag is cleared to 0, the
next instruction is executed.
» The overflow interrupt is nonmaskable.

[ Flag Change ]

W)
@)

Fag |lU| 1 |O|B|S]|Z *1 The flags are saved to the stack area before the INTO
Change| O | O | —|—|—|—=|0O| — instruction is executed. After the interrupt, the flags
change state as shown at left.

Conditions
U : Theflagis cleared.
| : Theflagis cleared.
D : Theflagis cleared.

[ Description Example ]
INTO

[ Related Instructions ] BRK, INT

Rev.2.00 Oct 17,2005 page 79 of 263 RENESAS
REJ09B0001-0200



Chapter 3 Functions 3.2 Functions

Jump on condition
Jump on Condition

JCnd

[ Instruction Code/Number of Cycles ]
Page: 182

JCnd

[ Syntax ]

JCnd label

[ Operation ]
if true then jump label

[ Function ]
« This instruction causes program flow to branch after checking the execution result of the preceding

instruction against the following condition. If the condition indicated by Crd is true, control jumps to
label. If false, the next instruction is executed.
» The following conditions can be used for Cna'

cnd Condition Expression|| Crnd Condition Expression

GEUIC| C=1 Equal to or greater than = LTU/NC|C=0 Smaller than >
Cflagis 1. Cflagis 0.

EQz |Z=1 Equal to = NE/NZ |Z=0 Not equal *
Zflagis 1. Zflagis 0.

GTU |[CAZ=1 Greater than < LEU |[CAZ=0 Equal to or smaller than =

PZ |S=0 Positive or zero 0= N S=1 Negative 0>

GE |SV0=0 Equal to or greater than = LE (SV 0)V Z=1 Equal to or smaller than Z
(signed value) (signed value)

GT (SV0)V Z=0| Greater than (signed valug) < LT SVO0=1 Smaller than (signed value) >

0 0=1 Oflagis 1. NO 0=0 Oflagis 0.

[ Selectable label ]
label Cnd
PC'-127 = label = PC'+128 | GEU/C, GTU, EQ/Z, N, LTU/NC, LEU, NE/NZ, PZ
PC"1-126 = label = PC'+129 | LE, O, GE, GT, NO, LT

*1 PC indicates the start address of the instruction.

[ Flag Change ]

Fag ([U| 1 |O|B|S|Z|D]|C
Change| — | — | — | — | — | — | —| —
[ Description Example ]

JEQ label

JNE label
[ Related Instructions ] BMCnd

Rev.2.00 Oct 17,2005 page 80 of 263 XENESAS

REJ09B0001-0200



Chapter 3 Functions 3.2 Functions

U aitional /i
JMP e Y JMP

[ Syntax ] [ Instruction Code/Number of Cycles ]
JMP(.length) label Page: 184
|

S,B,W, A (Can be specified)

[ Operation ]
PC <« label

[ Function ]

« This instruction causes control to jump to label.

[ Selectable label ]

Jlength label

.S PC'+2 = label = PC'+9

.B PC*-127 = label = PC+128
W PC'-32767 = label = PC"+32768
A abs20

*1 PC indicates the start address of the instruction.

[ Flag Change ]
Fag |lU| 1 |O|B|S|Z|D]|C

Change| — | — | — | —|—|— | — | —

[ Description Example ]
JMP label

[ Related Instructions ] JMPI

Rev.2.00 Oct 17,2005 page 81 of 263 RENESAS
REJ09B0001-0200



Chapter 3 Functions 3.2 Functions

Jump Indirect
JMPI JUuMP Indirect JMPI
[ Syntax ] [ Instruction Code/Number of Cycles ]

JMPl.length src Page: 185
: W, A

[ Operation ]

When jump distance specifier (.length) is (.\W) When jump distance specifier (.length) is (.A)
PC <« PC £ src PC <« src
[ Function ]

» This instruction causes control to jump to the address indicated by src. If src is a location in the
memory, specify the address at which the low-order address is stored.

« If (W) is selected as the jump distance specifier (.length), control jumps to the start address of the instruction
plus the address indicated by src (added including the sign bits). If src is a location in the memory, the
required memory capacity is 2 bytes.

« If src is a location in the memory and (.A) is selected as the jump distance specifier (.length), the
required memory capacity is 3 bytes.

[ Selectable src ]

If (W) is selected as the jump distance specifier (.length)

src
RO R1 R2 R3
A0 Al [AQ] [A1]
dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[SB] absl6
dsp:20[A0] dsp:20[A1]

If ((A) is selected as the jump distance specifier (.length)

Src

[A0] [A]
dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[SB] absl6
dsp:20[A0] dsp:20[A1]
R2R0 R3R1 A1AO0

[ Flag Change ]

Flag |lU| 1 |O|B|S|Z|D|C
Change| — |— | — | — | —|—|— | —

[ Description Example ]

JMPLA A1A0
JMPIL.W RO

[ Related Instructions ] JMP

Rev.2.00 Oct 17,2005 page 82 of 263 XENESAS

REJ09B0001-0200



Chapter 3 Functions 3.2 Functions

Subroutine call
Jump SubRoutine

JSR

[ Instruction Code/Number of Cycles ]
Page: 187

JSR

[ Syntax ]
JSR(.length) label
|

W, A (Can be specified)
[ Operation ]

SP ~ SP -1

M(SP) ~ (PC + nkMH

SP ~ SP - 2

M(SP) - (PC + n)MmL

PC - label

*1 n denotes the number of instruction bytes.

[ Function ]
« This instruction causes control to jump to a subroutine indicated by label.

[ Selectable label ]

Jength label
W PC-32767 = label = PC"*+32768
A abs20

*1 PC indicates the start address of the instruction.

[ Flag Change ]

Fag |lU| 1 |O|B|S|Z|D|C
Change| — | — | — | = | = | —| = | —
[ Description Example ]

JSR.W func

JSR.A func
[ Related Instructions ] JSRI

Rev.2.00 Oct 17,2005 page 83 of 263 RENESAS

REJ09B0001-0200



Chapter 3 Functions

JSRI

[ Syntax ]

JSRl.length src
[

Indirect subroutine call
Jump SubRoutine Indirect

[ Operation ]

When jump distance specifier (.length) is (\W)

SP -~
M(SP) <«
SP -~
M(SP)
PC -~

[ Function ]

SP

(PC +

SP

(PC +

1
n)H
2
n)ML

PC £ src
*1 n denotes the number of instruction bytes.

W, A

SP

3.2 Functions

JSRI

[ Instruction Code/Number of Cycles ]

-

M(SP) <«

SP

-

M(SP) <«

PC

-

SP -
(PC +
SP -
(PC +
src

1
n)H

2
n)H

Page: 188

When jump distance specifier (.length) is (.A)

 This instruction causes control to jump to a subroutine at the address indicated by src. If src is a

location in the memory, specify the address at which the low-order address is stored.

« If (W) is selected as the jump distance specifier (.length), control jumps to the subroutine at the start
address of the instruction plus the address indicated by src (added including the sign bits). If src is
a location in the memory, the required memory capacity is 2 bytes.

« If src is a location in the memory and (.A) is selected as the jump distance specifier (.length), the
required memory capacity is 3 bytes.

[ Selectable src ]

If (W) is selected as the jump distance specifier (.length)

dsp:20[A0] dsp:20[A1]

src
RO R1 R2 R3
A0 Al [AQ] [A1]
dsp:8[AO0] dsp:8[Al]  dsp:8[SB]  dsp:8[FB]
dsp:16[SB] absl6

If ((A) is selected as the jump distance specifier (.length)

src
[AO] [A1]
dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[SB] absl6
dsp:20[A0] dsp:20[A1]
R2R0 R3R1 A1AO0
[ Flag Change ]
Flag ull|OlB|S|Z|D|C
Change | — | — | — | — | — | — | —| —
[ Description Example ]
JSRILA A1AO0
JSRIL.W RO
[ Related Instructions ] JSR
Rev.2.00 Oct 17,2005 page 84 of 263 XENESAS

REJ09B0001-0200



Chapter 3 Functions 3.2 Functions

L D C Transfer to contro/ re_’g/;s‘z‘ef L D C
LoaD Control register

[ Syntax ] [ Instruction Code/Number of Cycles ]

LDC src,dest Page: 189

[ Operation ]
dest <« src

[ Function ]

» This instruction transfers srcto the control register indicated by dest. If src is a location in the
memory, the required memory capacity is 2 bytes.
« If the destination is INTBL or INTBH, make sure that bytes are transferred in succession.

« No interrupt requests are accepted immediately after this instruction.

[ Selectable src/dest ]

src dest
RO R1 R2 R3 |FB SB Spt ISP
A0 Al [AO] [A1] FLG INTBH INTBL

dsp:8[A0] dsp:8[Al] dsp:8[SB]  dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6
#IMM

*1 Operation is performed on the stack pointer indicated by the U flag.

[ Flag Change ]
Fag |lU| I |O|B|S|Z|D|C
Change| *2 | *2 | *2 | *2 | *2 | *2 | *2 | *2/| *2 The flag changes only when dest is FLG.

[ Description Example ]

LDC RO,SB
LDC AO,FB

[ Related Instructions ] POPC, PUSHC, STC, LDINTB

Rev.2.00 Oct 17,2005 page 85 of 263 RENESAS

REJ09B0001-0200



Chapter 3 Functions 3.2 Functions

LDCTX LD oot LDCTX

[ Syntax ] [ Instruction Code/Number of Cycles ]
LDCTX abs16,abs20 Page: 189
[ Function ]

 This instruction restores task context from the stack area.

» Set the RAM address that contains the task number in abs16 and the start address of table data in abs20.

» The required register information is specified from table data by the task number and the data in the
stack area is transferred to each register according to the specified register information. Then the SP
correction value is added to the stack pointer (SP). For this SP correction value, set the number of
bytes to be transferred.

« Information on transferred registers is configured as shown below. Logical 1 indicates a register to be
transferred and logical O indicates a register that is not transferred.

MSB LSB

FB|SB| Al| AO| R3| R2| R1| RO

<

Transferred sequentially
beginning with RO

* The table data is configured as shown below. The address indicated by abs20 is the base address of
the table. The data stored at an address twice the content of abs16 away from the base address
indicates register information, and the next address contains the stack pointer correction value.

abs20 ——» Sfa faeb?eddress Register information for task with task number 0. (See above diagram.) [
SP correction value for task with task number 0. (See above diagram.)
T Register information for task with task number 1. (See above diagram.)
Dlrgctlon " SP correction value for task with task number 1. (See above diagram.) abs16x2
which address i i
increases
|
Register information for task with task number n™. (See above diagram.)
SP correction value for task with task number n. (See above diagram.)

*1  n=0to 255
[ Flag Change ]
Fag |lU| 1 |O|B|S|Z|D]|C
Change| — | — | — | — | — | — | —| —

[ Description Example ]
LDCTX Ram,Rom_TBL

[ Related Instructions ] STCTX

Rev.2.00 Oct 17,2005 page 86 of 263 XENESAS
REJO9B0001-0200



Chapter 3 Functions 3.2 Functions

L D E Transfer from extended aata area L D E
LoaD from EXtra far data area
[ Syntax ] [ Instruction Code/Number of Cycles ]
LDE.size src,dest Page: 191
B,W

[ Operation ]
dest <« src

[ Function ]
» This instruction transfers src from the extended area to dest.

« If dest is AO or Al and the selected size specifier (.size) is (.B), src is zero-expanded to transfer data
in 16 bits.

[ Selectable src/dest ]

src dest
ROL/RO ROH/R1 R1L/R2 R1H/R3
AO0/AQ Al/A1 [AO] [A1]

dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6

dsp:20[A0Q] abs20

[A1AQ]
[ Flag Change ]
Flag ull|OolB|S|Zz|D|C
Change | — | — | — | = | O |O| —1| —
Conditions

S : The flag is set when the transfer results in MSB of des? = 1; otherwise cleared.
Z . The flag is set when the transfer results in dest = 0; otherwise cleared.

[ Description Example ]

LDE.W [A1A0],RO
LDE.B Rom_TBL,A0

[ Related Instructions ] STE, MOV, XCHG

Rev.2.00 Oct 17,2005 page 87 of 263 RENESAS
REJ09B0001-0200



Chapter 3 Functions 3.2 Functions

Transfer to INTB register
LDINTB LoaD INTB register LDINTB
[ Syntax ] [ Instruction Code/Number of Cycles ]
LDINTB src Page: 192

[ Operation ]
INTBHL < src

[ Function ]
« This instruction transfers src to INTB.

» The LDINTB instruction is a macro-instruction consisting of the following:

LDC #IMM, INTBH
LDC #IMM, INTBL

[ Selectable src ]

src
#IMM20
[ Flag Change ]

Fag lU| 1 |O|B|S|Z|D]|C

Change| — | — | — | — | — | — | —| —

[ Description Example ]
LDINTB #0FOOO0OH

[ Related Instructions ] LDC, STC, PUSHC, POPC

Rev.2.00 Oct 17,2005 page 88 of 263 XENESAS
REJO9B0001-0200



Chapter 3 Functions 3.2 Functions

Set interrupt enable leve/
I—DIPI— LoaD Interrupt Permission Level LDIPL
[ Syntax ] [ Instruction Code/Number of Cycles ]
LDIPL src Page: 193

[ Operation ]
IPL < src

[ Function ]
» This instruction transfers src to IPL.

[ Selectable src ]

Src

#IMM™

*1 The acceptable range of values is 0 < #IMM < 7

[ Flag Change ]
Fag ([lU| I |O|B|S|[Z|D]|C
Change| — | — | — | — | — | —| — | —

[ Description Example ]
LDIPL #2

Rev.2.00 Oct 17,2005 page 89 of 263 RENESAS
REJ09B0001-0200



Chapter 3 Functions 3.2 Functions

MOV ove, MOV

[ Syntax ] [ Instruction Code/Number of Cycles ]
MOV.size (:format) src,dest Page: 193
: G,Q,Z,S (Can be specified)
B,wW
[ Operation ]

dest <« src

[ Function ]
» This instruction transfers src to dest

« If dest is AO or Al and the selected size specifier (.size) is (.B), src is zero-expanded to transfer data
in 16 bits. If src is A0 or Al, the 8 low-order bits of A0 or Al are transferred.

[ Selectable src/dest ] (See next page for src/dest classified by format.)
src dest
ROL/RO ROH/R1 R1L/R2 R1H/R3 ROL/RO ROH/R1 R1L/R2 R1H/R3
AO0/AQ™ Al/A1" [AO] [A1] AO0/AQ™ A1/A1*  [AQ] [A1]

dsp:8[AO0] dsp:8[Al]  dsp:8[SB] dsp:8[FB] |dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1l] dsp:16[SB] absl6 dsp:16[A0] dsp:16[Al] dsp:16[SB] abs16

#IMM2
dsp:8[SP]* dsp:8[SP]?2"
*1 If (.B) is selected as the size specifier (.size), A0 or A1l cannot be chosen for s7c and dest simulta-

neously.

*2 If src is #IMM, dsp:8 [SP] cannot be chosen for dest.

*3 The operation is performed on the stack pointer indicated by the U flag. dsp:8 [SP] cannot be chosen
for src and dest simultaneously.

[ Flag Change ]

Fag |U| 1 |O|B|S|Z|D]|C
Change| — | — | — | — | O |O| —| —
Conditions

S : The flag is set when the transfer results in MSB of des? = 1; otherwise cleared.
Z . The flag is set when the transfer results in 0; otherwise cleared.

[ Description Example ]
MOV.B:S #0ABH,ROL
MOV.W #-1,R2

[ Related Instructions ] LDE, STE, XCHG

Rev.2.00 Oct 17,2005 page 90 of 263 XENESAS
REJO9B0001-0200



Chapter 3 Functions

[src/dest Classified by Format]

3.2 Functions

G format
src dest

ROL/RO ROH/R1 R1L/R2 R1H/R3 [ROL/RO ROH/R1 R1L/R2 R1H/R3
AO0/A0™ Al/A1" [AO] [A1] AO/AQ™ ALl/AL™? [AO] [A1]
dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] |dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1] dsp:16[SB] absl6 dsp:16[A0] dsp:16[A1l] dsp:16[SB] absl6

#IMM™2

dsp:8[SP]*® dsp:8[SP]%?
*1 If (.B) is selected as the size specifier (.size), A0 or Al cannot be chosen for sr¢ and dest simulta-

neously.

*2 If src is #IMM, dsp:8 [SP] cannot be chosen for dest.

*3 The operation is performed on the stack pointer indicated by the U flag. dsp:8 [SP] cannot be chosen
for src and dest simultaneously.
Q format
src dest
ROL/RO ROH/R1 R1L/R2 R1H/R3
A0/A0 A1/A1 [AQ] [A1]
dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] absl16
H#HIMM™
*4 The acceptable range of values is —8 < #IMM < +7.
S format
src dest
ROL™&7 ROH™"® dsp:8[SB]® dsp:8[FB]®| ROL™"® ROH™"®
abs16™ A0 AL
ROL™® ROH™® ROL™® ROH™"® dsp:8[SB]® dsp:8[FB]®
abs16™
ROL™ ROH™® dsp:8[SB]® dsp:8[FB]®
#IMM"™® abs16™ A0 A1
*5 Only (.B) can be selected as the size specifier (.size).
*6 The same register cannot be chosen for src and dest.
*7 If src is ROL, only Al can be selected for dest as the address register.
*8 If src is ROH, only AO can be selected for dest as the address register.
*9 (.B) or (.W) can be selected as the size specifier (.size).
Z format
src dest
ROL ROH dsp:8[SB] dsp:8[FB]
#0 abs16
Rev.2.00 Oct 17,2005 page 91 of 263 RENESAS

REJ09B0001-0200



Chapter 3 Functions 3.2 Functions

Transfer effective address
M OVA MOVe effective Address M OVA
[ Syntax ] [ Instruction Code/Number of Cycles ]
MOVA src,dest Page: 200

[ Operation ]
dest <« EVA(src)

[ Function ]

» This instruction transfers the affective address of src to dest.

[ Selectable src/dest ]

src dest
RO R1 R2 R3
AO Al

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6

[ Flag Change ]
Fag |lU| 1 |O|B|S|Z|D|C

Change| — | — | — | — | — | — | — | —

[ Description Example ]
MOVA Ram:16[SB],A0

[ Related Instructions ] PUSHA

Rev.2.00 Oct 17,2005 page 92 of 263 XENESAS
REJO9B0001-0200



Chapter 3 Functions 3.2 Functions

- Transfer 4-bit data .
MOV Dir MOVe nibble MOV Dir
[ Syntax ] [ Instruction Code/Number of Cycles ]
MOV Dir src,dest Page: 201

[ Operation ]

Dir Operation
HH H4:dest <«  Hd4:src
HL L4:dest <« H4:src
LH H4:dest <« L4:src
LL L4:dest <«  Ld:src
[ Function ]
« Be sure to choose ROL for either src or dest.
Dir Function
HH Transfers src’s 4 high-order bits to dest’s 4 high-order bits.
HL Transfers src’s 4 high-order bits to dest’s 4 low-order bits.
LH Transfers src’s 4 low-order bits to dest’s 4 high-order bits.
LL Transfers src’s 4 low-order bits to dest's 4 low-order bits.

[ Selectable src/dest ]

src dest
ROL ROL ROH R1L R1H
[AQ] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] abs16

ROL ROH R1L R1H ROL
[AQ] [Al]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] absl6

[ Flag Change ]

Flag |lU| 1 |O|B|S|Z|D]|C
Change| — | — | — | = | — | = | = | —

[ Description Example ]
MOVHH ROL,[AQ]
MOVHL ROL,[AQ]

Rev.2.00 Oct 17,2005 page 93 of 263 RENESAS
REJ09B0001-0200



Chapter 3 Functions 3.2 Functions

Signed multiply
MUL MULtiple MUL
[ Syntax ] [ Instruction Code/Number of Cycles ]

MUL.size src,dest Page: 203
: B,W

[ Operation ]
dest <« dest X src

[ Function ]

« This instruction multiplies sr¢ and dest including the sign bits and stores the result in dest.

« If (.B) is selected as the size specifier (.size), src and dest are treated as 8-bit data for the operation
and the result is stored in 16 bits. If AO or Al is specified as either src or dest, the operation is
performed using the 8 low-order bits of AO or Al.

« If (W) is selected as the size specifier (.size), src and dest are treated as 16-bit data for the operation
and the result is stored in 32 bits. If RO, R1, or AO is specified as dest, the result is stored in R2R0,
R3R1, or A1AO accordingly.

[ Selectable src/dest |

src dest
ROL/RO ROH/R1 R1L/R2 R1H/R3 |ROL/RO R1 R1L
AO/A0™ A1/A1" [AQ] [A1] AO/A0™ [AQ] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] |dsp:8[AQ] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1] dsp:16[SB] absl6 dsp:16[A0] dsp:16[A1] dsp:16[SB] absl6
#IMM

*1 If (.B) is selected as the size specifier (.size), A0 or A1l cannot be chosen for sr/c and dest simulta-
neously.

[ Flag Change ]
Fag |lU| I |O|B|S|Z|D]|C

Change| — | — | — | — | — | —| — | —

[ Description Example ]
MUL.B AO,ROL ; 8 low-order bits of ROL and A0 are multiplied.

MUL.W #3,R0
MUL.B ROL,R1L
MUL.W AO,Ram

[ Related Instructions ] DIV, DIVU, DIVX, MULU

Rev.2.00 Oct 17,2005 page 94 of 263 XENESAS
REJO9B0001-0200



Chapter 3 Functions 3.2 Functions

Unsigned multiply
MULU MULtiple Unsigned MUI—U
[ Syntax ] [ Instruction Code/Number of Cycles ]

MULU.size src,dest Page: 205
: B,W

[ Operation ]
dest <« dest X src

[ Function ]

« This instruction multiplies src¢ and dest without the sign bits and stores the result in dest

« If (.B) is selected as the size specifier (.size), src and dest are treated as 8-bit data for the operation
and the result is stored in 16 bits. If AO or Al is specified as either src or dest, the operation is
performed using the 8 low-order bits of AO or Al.

« If (W) is selected as the size specifier (.size), src and dest are treated as 16-bit data for the operation
and the result is stored in 32 bits. If RO, R1, or AO are specified as dest, the result is stored in R2R0,
R3R1, or A1AO accordingly.

[ Selectable src/dest ]

src dest
ROL/RO ROH/R1 R1L/R2 R1H/R3 |ROL/RO R1 R1L
AO/A0™ A1/A1" [AQ] [A1] AO0/A0™ [AQ] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] |dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1] dsp:16[SB] absl16 dsp:16[A0] dsp:16[A1] dsp:16[SB] absl6
#IMM

*1 If (.B) is selected as the size specifier (.size), A0 or Al cannot be chosen for src and dest simulta-
neously.

[ Flag Change ]

Fag |lU| I |O|B|S|Z|D]|C

Change| — | — | — | = | = | — | —| —

[ Description Example ]
MULU.B AO,ROL ; 8 low-order bits of ROL and AO are multiplied.
MULU.W  #3,R0O
MULU.B ROL,R1L
MULU.W  AO,Ram

[ Related Instructions ] DIV, DIVU, DIVX, MUL

Rev.2.00 Oct 17,2005 page 95 of 263 RENESAS
REJ09B0001-0200



Chapter 3 Functions 3.2 Functions

Complement of two
NEG NEGate NEG
[ Syntax ] [ Instruction Code/Number of Cycles ]

NEG.size dest Page: 207
: B,W

[ Operation ]
dest <« 0 - dest

[ Function ]
« This instruction takes the complement of two of dest and stores the result in gest.

[ Selectable dest ]

dest
ROL/RO ROH/R1 R1L/R2 R1H/R3
AO Al [AQ] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6

[ Flag Change ]

Fag |[U| 1 |O|B|S|Z|D|C
Change| — | — O | —=|O|O|—-1]0
Conditions

O : The flag is set when dest before the operation is —128 (.B) or —32768 (.W); otherwise cleared.
S The flag is set when the operation results in MSB = 1; otherwise cleared.

Z . The flag is set when the operation results in 0; otherwise cleared.

C The flag is set when the operation results in O; otherwise cleared.

[ Description Example ]

NEG.B ROL
NEG.W Al

[ Related Instructions ] NOT

Rev.2.00 Oct 17,2005 page 96 of 263 XENESAS
REJO9B0001-0200



Chapter 3 Functions 3.2 Functions

No operation
NOP No OPeration NOP
[ Syntax ] [ Instruction Code/Number of Cycles ]
NOP Page: 207

[ Operation ]
PC <« PC + 1

[ Function ]
 This instruction adds 1 to PC.

[ Flag Change ]
Fag |lU| I [O|B|S|Z|D|C
Change] — | — | — | — | — | — | —| —

[ Description Example ]
NOP

Rev.2.00 Oct 17,2005 page 97 of 263 RENESAS
REJ09B0001-0200



Chapter 3 Functions 3.2 Functions

N OT /m/eN/z‘Oa_/I{ bits N OT

[ Syntax ] [ Instruction Code/Number of Cycles ]
NOT.size (:format) dest Page: 208
‘ : G, S (Can be specified)

B,wW
[ Operation ]
dest <« dest

[ Function ]
» This instruction inverts gdest and stores the result in dest.

[ Selectable dest ]

dest
ROL"/RO ROH"/R1 R1L/R2 R1H/R3
AO Al [AQ] [A1]

dsp:8[A0] dsp:8[Al]  dsp:8[SB]* dsp:8[FB]*
dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6™"

*1 Can be selected in G and S formats.
In other cases, dest can be selected in G format.

[ Flag Change ]

Fag (lU| 1 |O|B|S|Z|D]|C
Change| — | — | — | —|O|O| —| —
Conditions

S : The flag is set when the operation results in MSB = 1; otherwise cleared.
Z : The flag is set when the operation results in 0; otherwise cleared.

[ Description Example ]
NOT.B ROL
NOT.W Al

[ Related Instructions ] NEG

Rev.2.00 Oct 17,2005 page 98 of 263 XENESAS
REJO9B0001-0200



Chapter 3 Functions 3.2 Functions

O R Log/c(;/:\{y OR O R

[ Syntax ] [ Instruction Code/Number of Cycles ]

OR.size (:format) src,dest Page: 209
‘ ' G, S (Can be specified)
B,wW

[ Operation ]
dest < src V dest

[ Function ]
 This instruction logically ORs dest and src and stores the result in dest
« If dest is AO or Al and the selected size specifier (.size) is (.B), src is zero-expanded to perform
operation in 16 bits. If sr/cis A0 or Al, operation is performed using the 8 low-order bits of A0 or Al.

[ Selectable src/dest ] (See next page for src/dest classified by format.)
src dest
ROL/RO ROH/R1 R1L/R2 R1H/R3 |ROL/RO ROH/R1 R1L/R2 R1H/R3
AO0/AQ™ A1/A1? [AQ] [A1] AO/A0™ A1/A1™" [A0] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] |dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1] dsp:16[SB] absl16 dsp:16[A0] dsp:16[A1] dsp:16[SB] absl6
#IMM

*1 If (.B) is selected as the size specifier (.size), A0 or Al cannot be chosen for s/c and dest simulta-
neously.

[ Flag Change ]

Fag ([lU| 1 |O|B|S|Z|D]|C
Change| — | — | — | — | O |O| —| —
Conditions

S : The flag is set when the operation results in MSB = 1; otherwise cleared.
Z : The flag is set when the operation results in 0; otherwise cleared.

[ Description Example ]

OR.B Ram:8[SB],ROL
OR.B:G AO0,ROL ; 8 low-order bits of A0 and ROL are ORed.
OR.B:G ROL,A0 ; ROL is zero-expanded and ORed with AQ.

OR.B:S #3,ROL

[ Related Instructions ] AND, XOR, TST

Rev.2.00 Oct 17,2005 page 99 of 263 RENESAS
REJ09B0001-0200



Chapter 3 Functions 3.2 Functions
I

[src/dest Classified by Format]

G format
src dest
ROL/RO ROH/R1 R1L/R2 R1H/R3 [ROL/RO ROH/R1 R1L/R2 R1H/R3
AO0/A0™ Al/A1? [AQ] [A1] AO0/A0™ A1/A1? [AQ] [A1]

dsp:8[A0] dsp:8[Al]  dsp:8[SB] dsp:8[FB] |dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6 dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6
#IMM

*1 If (.B) is selected as the size specifier (.size), A0 or Al cannot be chosen for src and dest simulta-

neously.
S format™
src dest
ROL ROH dsp:8[SB] dsp:8[FB]
#IMM abs16
ROL™ ROH™ dsp:8[SB]  dsp:8[FB] [ROL™ ROH™
abs16

*2 Only (.B) can be specified as the size specifier (.size).

*3 The same register cannot be chosen for sr¢c and dest

Rev.2.00 Oct 17,2005 page 100 of 263 XENESAS
REJO9B0001-0200



Chapter 3 Functions 3.2 Functions

Restore register/mermory
POP o POP

[ Syntax ] [ Instruction Code/Number of Cycles ]
POP.size (:format) dest Page: 211
‘ ' G, S (Can be specified)
B,wW
[ Operation ]
If the size specifier (.size) is (.B) If the size specifier (.size) is (W)
dest <« M(SP) dest <« M(SP)
SP ~ SP + 1 SP -~ SP + 2
[ Function ]

» This instruction restores dest from the stack area.

[ Selectable dest ]

dest
ROL™/RO ROH/R1 R1L/R2 R1H/R3
A0™ Al" [AO] [A1]

dsp:8[AO] dsp:8[Al]  dsp:8[SB]  dsp:8[FB]
dsp:16[A0] dsp:16[A1l] dsp:16[SB] absl6

*1 Can be selected in G and S formats.

In other cases, dest can be selected in G format.

[ Flag Change ]

Fag |lU| I |O|B|S|Z|D]|C
Change| — | — | — | — | — | — | — | —

[ Description Example ]

POP.B ROL
POP.W AO

[ Related Instructions ] PUSH, POPM, PUSHM

Rev.2.00 Oct 17,2005 page 101 of 263 RENESAS
REJ09B0001-0200



Chapter 3 Functions 3.2 Functions

Restore control register
POPC POP Control register POPC
[ Syntax ] [ Instruction Code/Number of Cycles ]
POPC dest Page: 213

[ Operation ]
dest <« M(SP)
SP? <« SP + 2

*1 When dest is SP or when the U flag = 0 and dest is ISP, 2 is not added to SP.

[ Function ]
« This instruction restores data from the stack area to the control register indicated by dest.
« When restoring an interrupt table register, always be sure to restore INTBH and INTBL in succession.

« No interrupt requests are accepted immediately after this instruction.

[ Selectable dest ]

dest
FB SB SP? ISP FLG INTBH INTBL

*2 Operation is performed on the stack pointer indi-
cated by the U flag.

[ Flag Change ]
Fag ([U| 1 |O|B|S|Z|D]|C
Change| *3 | *3 | *3 | *3 | *3 | *3 | *3 | *3 [ *3 The flag changes only when dest is FLG.

[ Description Example ]
POPC SB

[ Related Instructions ] PUSHC, LDC, STC, LDINTB

Rev.2.00 Oct17,2005 page 102 of 263 XENESAS

REJ09B0001-0200



Chapter 3 Functions 3.2 Functions

Restore multiple registers
POPM POP Multiple POPM
[ Syntax ] [ Instruction Code/Number of Cycles ]
POPM dest Page: 213

[ Operation ]
dest <« M(SP)
SP < SP + Nt X 2
*1 Number of registers to be restored

[ Function ]
« This instruction restores the registers selected by dest collectively from the stack area.

» Registers are restored from the stack area in the following order:

FB|SB|Al|AO| R3|R2|R1| RO

-
Restored sequentially beginning with RO

[ Selectable dest ]

dest™
RO R1 R2 R3 A0 A1 SB FB

*2 More than one dest can be chosen.

[ Flag Change ]
Fag |lU| Il |O|B|S|Z|D|C
Change| — | — | — | — | —|— | —| —

[ Description Example ]
POPM RO,R1,A0,SB,FB

[ Related Instructions ] POP, PUSH, PUSHM

Rev.2.00 Oct 17,2005 page 103 of 263 RENESAS
REJ09B0001-0200



Chapter 3 Functions 3.2 Functions

P U S H Save /eg/;s‘fef/msfggflj_l///mmed/afe agala P U S H

[ Syntax ] [ Instruction Code/Number of Cycles ]
PUSH.size (:format) src Page: 214
' G, S (Can be specified)
B,wW
[ Operation ]
If the size specifier (.size) is (.B) If the size specifier (.size) is (W)
SP ~ SP -1 SP -~ SP - 2
M(SP) <« src M(SP) < src
[ Function ]

* This instruction saves src to the stack area.

[ Selectable src ]

src
ROLYRO  ROH?/R1 R1L/R2 R1H/R3
A0™ A1 [AQ] [A1]
dsp:8[A0] dsp:8[Al]  dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6
#IMM

*1 Can be selected in G and S formats.

In other cases, dest can be selected in G format.

[ Flag Change ]
Fag ([U| 1 |O|B|S|Z|D]|C

Change| — | — | — | — | —|—|—| —

[ Description Example ]
PUSH.B #5
PUSHW  #100H
PUSH.B ROL
PUSHW A0

[ Related Instructions ] POP, POPM, PUSHM

Rev.2.00 Oct17,2005 page 104 of 263 XENESAS
REJO9B0001-0200



Chapter 3 Functions 3.2 Functions

Save effective address
PUSHA PUSH effective Address PUSHA
[ Syntax ] [ Instruction Code/Number of Cycles ]
PUSHA src Page: 216

[ Operation ]
SP ~ SP - 2
M(SP) « EVA(src)

[ Function ]
» This instruction saves the effective address of src to the stack area.

[ Selectable src ]

Src

dsp:8[AO0] dsp:8[Al] dsp:8[SB]  dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6

[ Flag Change ]
Flag ujlr|jojp|s|z|bj|C

Change| — | — | —m | — | — | — | — | —

[ Description Example ]
PUSHA Ram:8[FB]
PUSHA Ram:16[SB]

[ Related Instructions ] MOVA

Rev.2.00 Oct 17,2005 page 105 of 263 RENESAS

REJ09B0001-0200



Chapter 3 Functions 3.2 Functions

Save control register
PUSHC PUSH Control register PUSHC
[ Syntax ] [ Instruction Code/Number of Cycles ]
PUSHC src Page: 216

[ Operation ]
SP - SP - 2
M(SP) <« src

*1 When src is SP or when the U flag = 0 and src is ISP, SP is saved before 2 is subtracted.

[ Function ]
« This instruction saves the control register indicated by src to the stack area.

[ Selectable src ]

src
FB SB SP? ISP FLG INTBH INTBL
*2 Operation is performed on the stack pointer indicated by the U flag.

[ Flag Change]
Fag |lU| 1 |O|B|S|Z|D]|C

Change| — | — | — | — | — | — | — | —

[ Description Example ]
PUSHC SB

[ Related Instructions ] POPC, LDC, STC, LDINTB

Rev.2.00 Oct 17,2005 page 106 of 263 XENESAS

REJ09B0001-0200



Chapter 3 Functions 3.2 Functions

Save multiple registers
PUSHM PUSH Multiple PUSHM
[ Syntax ] [ Instruction Code/Number of Cycles ]
PUSHM src Page: 217

[ Operation ]
SP ~ SP - N* X 2
M(SP) « src
*1 Number of registers saved.

[ Function ]
« This instruction saves the registers selected by src collectively to the stack area.

» The registers are saved to the stack area in the following order:

RO|R1| R2| R3| AO|Al|SB|FB

<

Saved sequentially beginning with FB

[ Selectable src ]

src’
RO R1 R2 R3 A0 Al SB FB
*2 More than one sr¢ can be chosen.

[ Flag Change ]
Fag lU| 1 |O|B|S|Z|D|C

Change| — | — | — | — | — | —| — | —

[ Description Example ]
PUSHM RO,R1,A0,SB,FB

[ Related Instructions ] POP, PUSH, POPM

Rev.2.00 Oct 17,2005 page 107 of 263 RENESAS
REJ09B0001-0200



Chapter 3 Functions 3.2 Functions

R E I T Return from interrupt R E I T

REturn from InTerrupt
[ Syntax ]
REIT

[ Instruction Code/Number of Cycles ]
Page: 218

[ Operation ]

PCML - M(SP)

SP -~ SP + 2

PCH, FLG <« M(SP)

SP - SP + 2
[ Function ]

» This instruction restores the PC and FLG values that were saved when an interrupt request was
accepted and returns from the interrupt handler routine.

[ Flag Change]

Fag |lU| 1 |O|B|S|Z|D|C

. .
Change| *1 | *1 | *1 | *1 | *1 | *1 | *1 | *1 1 The flags are reset to the FLG state before the interrupt
request was accepted.

[ Description Example ]
REIT

Rev.2.00 Oct 17,2005 page 108 of 263 XENESAS
REJO9B0001-0200



Chapter 3 Functions 3.2 Functions

Calculate sum-of-products
RMPA Repeat MultiPle and Addition RMPA
[ Syntax ] [ Instruction Code/Number of Cycles ]
RMPA.size Page: 218

[ Operation ]*

Repeat
R2R0O(R0) 2 « R2RO(R0)? + M(AQ) X M(A1)
A0 ~ A0 + 21~
Al ~ Al + 2(1)+
R3 - R3 - 1
Until R3=0

*1 If R3 is set to 0, this instruction is ignored.
*2  Items in parentheses and followed by “?’( )2 apply when (.B) is selected as the size speci-
fier (.size).

[ Function ]

« This instruction performs sum-of-product calculations, with the multiplicand address indicated by A0, the multi-
plier address indicated by Al, and the count of operation indicated by R3. Calculations are performed including
the sign bits and the result is stored in R2R0 (R0)™.

« If an overflow occurs during operation, the O flag is set to terminate the operation. R2R0 (R0)™
contains the result of the addition performed last. A0, Al, and R3 are undefined.

» The content of AO or Al when the instruction is completed indicates the next address after the last-
read data.

« If an interrupt request is received during instruction execution, the interrupt is acknowledged after a sum-of-
product addition is completed (i.e., after the content of R3 is decremented by 1).

» Make sure that R2R0 (R0)™" is set to the initial value.

Items in parentheses and followed by “¥'( )" apply when (.B) is selected as the size specifier (.size).
[ Flag Change ]

Feg (lU| I |[O|[B|S|Z|D]|C
Change| — | — | O | —| —|—| —| —

Conditions
O : The flag is set when +2147483647 (.\W) or —2147483648 (.W), or +32767 (.B) or —32768 (.B) is
exceeded during operation; otherwise cleared.

[ Description Example ]
RMPA.B

Rev.2.00 Oct 17,2005 page 109 of 263 RENESAS
REJ09B0001-0200



Chapter 3 Functions 3.2 Functions

Rotate left with carry
ROLC ROtate to Left with Carry ROI—C
[ Syntax ] [ Instruction Code/Number of Cycles ]

ROLC.size dest Page: 218
: B,W

[ Operation ]

\_‘MSB dest sl [ ]

[ Function ]

« This instruction rotates dest one bit to the left including the C flag.

[ Selectable dest ]

dest
ROL/RO ROH/R1 R1L/R2 R1H/R3
A0 Al [AO] [A1]

dsp:8[AO] dsp:8[Al]  dsp:8[SB]  dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6

[ Flag Change ]

Fag |lU| 1 |O|B|S|Z|D]|C
Change| — | — | — | — | O |O|—1|0O
Conditions

S : The flag is set when the operation results in MSB = 1; otherwise cleared.
Z : The flag is set when the operation results in desz= 0; otherwise cleared.
C : The flag is set when the shifted-out bit is 1; otherwise cleared.

[ Description Example ]

ROLC.B ROL
ROLCW RO

[ Related Instructions ] RORC, ROT, SHA, SHL

Rev.2.00 Oct 17,2005 page 110 of 263 XENESAS

REJ09B0001-0200



Chapter 3 Functions 3.2 Functions

Rotate right with carry
RORC ROtate to Right with Carry RORC
[ Syntax ] [ Instruction Code/Number of Cycles ]

RORC.size dest Page: 219
: B,W

[ Operation ]

——|msB dest LsBl—— c |

[ Function ]

« This instruction rotates gest one bit to the right including the C flag.

[ Selectable dest ]

dest
ROL/RO ROH/R1 R1L/R2 R1H/R3
A0 Al [AQ] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB]  dsp:8[FB]
dsp:16[A0] dsp:16[A1l] dsp:16[SB] absl6

[ Flag Change ]

Fag |lU| |1 |O|B|S|Z|D]|C
Change| — | — | — | — | O |O|—-10
Conditions

S : The flag is set when the operation results in MSB = 1; otherwise cleared.
Z : The flag is set when the operation results in dest = 0; otherwise cleared.
C : The flag is set when the shifted-out bit is 1; otherwise cleared.

[ Description Example ]
RORC.B  ROL
RORC.W RO

[ Related Instructions ] ROLC, ROT, SHA, SHL

Rev.2.00 Oct 17,2005 page 111 of 263 RENESAS
REJ09B0001-0200



Chapter 3 Functions 3.2 Functions

ROT AOTate ROT

[ Syntax ] [ Instruction Code/Number of Cycles ]
ROT.size src,dest Page: 220
: B,W
[ Operation ] src<0
[
MSB dest LSB
src>0
[ Function ]

 This instruction rotates dest left or right the number of bits indicated by src. Bits overflowing from LSB
(MSB) are transferred to MSB (LSB) and the C flag.

» The direction of rotation is determined by the sign of src. If src is positive, bits are rotated left; if negative,
bits are rotated right.

« If src is an immediate value, the number of bits rotated is —8 to —1 or +1 to +8. Values less than -8, equal
to 0, or greater than +8 are not valid.

* If src is a register and (.B) is selected as the size specifier (.size), the number of bits rotated is —8 to +8.
Although a value of 0 may be set, no bits are rotated and no flags are changed. If a value less than —8 or
greater than +8 is set, the result of the rotation is undefined.

* If src is aregister and (.\W) is selected as the size specifier (.size), the number of bits rotated is —16 to +16.
Although a value of 0 may be set, no bits are rotated and no flags are changed. If a value less than —16 or
greater than +16 is set, the result of the rotation is undefined.

[ Selectable src/dest ]

src dest
R1H" ROL/RO ROH/R1? RI1L/R2 R1H/R3™
A0 Al [AQ] [A1]

dsp:8[AO] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] absl16
#IMM2

*1 If src is R1H, R1 or R1H cannot be chosen for gest.

*2 The acceptable range of values is -8 < #IMM < +8. However, 0 is invalid.

[ Flag Change ]

Flg lU| 1 |O|B|S|Z|D|C
Change| — | — | — | = | O | O |—=| O | *1 Ifthe number of bits rotated is 0, no flags are changed.
Conditions

S : The flag is set when the operation results in MSB = 1; otherwise cleared.
Z . The flag is set when the operation results in 0; otherwise cleared.
C : The flag is set when the bit shifted out last is 1; otherwise cleared.
[ Description Example ]
ROT.B #1,ROL ; Rotated left
ROT.B #-1,ROL ; Rotated right
ROT.W R1H,R2

[ Related Instructions ] ROLC, RORC, SHA, SHL

Rev.2.00 Oct17, 2005 page 112 of 263 XENESAS
REJO9B0001-0200



Chapter 3 Functions 3.2 Functions

Return from subroutine
RTS ReTurn from Subroutine RTS
[ Syntax ] [ Instruction Code/Number of Cycles ]
RTS

Page: 221

[ Operation ]
PCML <« M(SP)
SP -~ SP + 2
PCH <« M(SP)
SP ~ SP + 1

[ Function ]

* This instruction causes control to return from a subroutine.

[ Flag Change ]
Fag |lU| 1 |O|B|S|Z|D]|C

Change| — | — | — | — | — | —

[ Description Example ]
RTS

Rev.2.00 Oct 17,2005 page 113 of 263 RENESAS
REJ09B0001-0200



Chapter 3 Functions

3.2 Functions

SBB

[ Syntax ]
SBB.silze src,dest

Subtract with borrow
SuBtract with Borrow

[ Instruction Code/Number of Cycles ]

[ Operation ]
dest <« dest — src

[ Function ]

SBB

Page: 222

« This instruction subtracts sr¢ and the inverted value of the C flag from dest and stores the result in dest.

« If dest is AO or Al and the selected size specifier (.size) is (.B), src is zero-expanded to perform
operation in 16 bits. If src is A0 or Al, the operation is performed using the 8 low-order bits of AO or

Al.

[ Selectable src/dest ]

Src

dest

ROL/RO ROH/R1 R1L/R2
AO0/A0™ A1/AL1? [AQ]
dsp:8[A0] dsp:8[Al]  dsp:8[SB]
dsp:16[A0] dsp:16[Al] dsp:16[SB]

R1H/R3
[A1]
dsp:8[FB]
abs16
#IMM

ROL/RO ROH/R1 R1L/R2
AO/AQ™ Al/A1" [A0]
dsp:8[AO0] dsp:8[Al] dsp:8[SB]

dsp:16[A0] dsp:16[Al] dsp:16[SB] absl16

R1H/R3
[A1]
dsp:8[FB]

*1 If (.B) is selected as the size specifier (.size), A0 or Al cannot be chosen for sr/c and dest simulta-

neously.
[ Flag Change ]
Flag ([U| 1 |O|B|S|Z C
=10 —-]10]0O O
Conditions

O : Theflagis set when a signed operation results in a value exceeding +32767 (.\W) or —32768 (\W),
or +127 (.B) or —128 (.B); otherwise cleared.

S : The flag is set when the operation results in MSB = 1; otherwise cleared.

Z : The flag is set when the operation results in 0; otherwise cleared.

C : The flag is set when an unsigned operation results in any value equal to or greater than 0;
otherwise cleared.

[ Description Example ]
SBB.B #2,ROL
SBB.W AO,RO
SBB.B AO0,ROL
SBB.B ROL,AQ

[ Related Instructions ]

; 8 low-order bits of A0 and ROL are the objects of the operation.
; Zero-expanded value of ROL and AO are the objects of the operation.

ADC, ADCF, ADD, SUB

Rev.2.00 Oct 17,2005 page 114 of 263

REJ09B0001-0200

RENESAS



Chapter 3 Functions 3.2 Functions

Subtract and conditional jump
SBJ NZ SuBtract then Jump on Not Zero SB\] NZ
[ Syntax ] [ Instruction Code/Number of Cycles ]

SBJNZ.size src,dest,label Page: 224
: B,W

[ Operation ]
dest <« dest — src
if dest 0 then jump label

[ Function ]
« This instruction subtracts s7c from dest and stores the result in dest.
« If the operation results in any value other than 0, control jumps to label. If the operation results in 0,

the next instruction is executed.
» The op-code of this instruction is the same as that of ADJNZ.

[ Selectable src/dest/label ]

src dest label
ROL/RO ROH/R1 R1L/R2
R1H/R3 A0 Al PC?2-126 <label < PC?+129
#IMM™ [AQ] [Al] dsp:8[A0]

dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB]
abs16

*1 The acceptable range of values is -7 < #IMM < +8.

*2 PC indicates the start address of the instruction.

[ Flag Change ]
Fag (U] 1 |]O|B|S|Z|D]|C

Change| — | — | — | — | = | — | — | —

[ Description Example ]
SBINZ.W  #1,R0,label

[ Related Instructions ] ADJINZ

Rev.2.00 Oct 17,2005 page 115 of 263 RENESAS

REJ09B0001-0200



Chapter 3 Functions 3.2 Functions

Shitt arithimetic
SHA SHift Arithmetic SHA

[ Syntax ] [ Instruction Code/Number of Cycles ]
SHA.size src,dest Page: 225
: B,W,L
[ Operation ] ]
When src <0 - {msB dest tse]—{ c]
When src >0 [c}{wmsB dest LsBf—— 0
[ Function ]

« This instruction arithmetically shifts dest left or right the number of bits indicated by src. Bits overflow-
ing from LSB (MSB) are transferred to the C flag.

* If src is an immediate value , the number of bits shifted is —8 to —1 or +1 to +8. Values less than -8,
equal to 0, or greater than +8 are not valid.

* If sre is aregister and (.B) is selected as the size specifier (.size), the number of bits shifted is —8 to +8.
Although a value of 0 may be set, no bits are shifted and no flags are changed. If a value less than —
8 or greater than +8 is set, the result of the shift is undefined.

* If src is a register and (.\W) or (.L) is selected as the size specifier (.size), the number of bits shifted is
—16 to +16. Although a value of 0 may be set, no bits are shifted and no flags are changed. If a value
less than —16 or greater than +16 is set, the result of shift is undefined.

[ Selectable src/dest ]

src dest
R1H™ ROL/RO ROH/R1" RI1L/R2 R1H/R3™
A0 Al [AQ] [A1]

dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] absl16

H#IMM™
R2R0™ R3R1"

*1 If src is R1H, R1 or R1H cannot be chosen for dest
*2 The acceptable range of values is -8 < #IMM < +8. However, 0 is invalid.
*3 Only (.L) can be selected as the size specifier (.size). (.B) or (\W) can also be specified for adest.

[ Flag Change ]

Fag |[U| 1 |O|B|S|Z|D|C
Changel — | — | O | =1 O |0O|—=| 0O *1 Ifthe number of bits shifted is 0, no flags are changed.
Conditions

O : The flag is set when the operation results in MSB changing its state from 1 to 0 or from 0 to 1; otherwise
cleared. However, the flag does not change if (.L) is selected as the size specifier (.size).

S : The flag is set when the operation results in MSB = 1; otherwise cleared.

Z : Theflagis set when the operation results in 0; otherwise cleared. However, the flag value is undefined if (.L)
is selected as the size specifier (.size).

C : Theflag is set when the bit shifted out last is 1; otherwise cleared. However, the flag is indeterminate if (.L)
is selected as the size specifier (.size).

[ Description Example ]

SHA.B #3,ROL ; Arithmetically shifted left
SHA.B #-3,ROL ; Arithmetically shifted right
SHA.L R1H,R2R0

[ Related Instructions ] ROLC, RORC, ROT, SHL

Rev.2.00 Oct 17,2005 page 116 of 263 XENESAS
REJO9B0001-0200



Chapter 3 Functions

3.2 Functions

Shift logical
SHI— SHift Logical SHI—
[ Syntax ] [ Instruction Code/Number of Cycles ]
SHL.size src,dest Page: 228
: B,W,L
[ Operation ] 0 —msB dest Lse]—[ c]

When src <0

dest LSB |47 0

When src >0

[ Function ]

« This instruction logically shifts dest left or right the number of bits indicated by src. Bits overflowing
from LSB (MSB) are transferred to the C flag.

» The direction of shift is determined by the sign of src. If srcis positive, bits are shifted left; if negative,
bits are shifted right.

* If src is an immediate value, the number of bits shifted is —8 to —1 or +1 to +8. Values less than -8,
equal to 0, or greater than +8 are not valid.

* If src is aregister and (.B) is selected as the size specifier (.size), the number of bits shifted is —8 to +8.
Although a value of 0 may be set, no bits are shifted and no flags are changed. If a value less than —8
or greater than +8 is set, the result of the shift is undefined.

* If src is a register and (.\W) or (.L) is selected as the size specifier (.size), the number of bits shifted is
—16 to +16. Although a value of 0 may be set, no bits are shifted and no flags are changed. If a value
less than —16 or greater than +16 is set, the result of the shift is undefined.

[ Selectable src/dest ]

src dest
R1H" ROL/RO ROH/R1?"  RI1L/R2 R1H/R3™
A0 Al [AQ] [Al]
dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1l] dsp:16[SB] absl6

#IMM™

R2R0" R3R1%

*1 If src is R1H, R1 or R1H cannot be chosen for dest.

*2 The acceptable range of values is —8 < #IMM < +8. However, 0 is invalid.

*3 Only (.L) can be selected as the size specifier (.size). (.B) or (\W) can also be specified for dest.

[ Flag Change ]

Feg |lU| 1 |O|B|S|Z|D]|C
Change| — | — | = | = | O | O | = | O *1 Ifthe number of bits shifted is 0, no flags are changed.
Conditions

S : The flag is set when the operation results in MSB = 1; otherwise cleared.

Z . Theflag is set when the operation results in 0; otherwise cleared. However, the flag is undefined
if (.L) is selected as the size specifier (.size).

C : Theflag is set when the bit shifted out last is 1; otherwise cleared. However, the flag is undefined
if (.L) is selected as the size specifier (.size).

[ Description Example ]
SHL.B #3,ROL
SHL.B #-3,ROL
SHL.L R1H,R2R0O

[ Related Instructions ]

; Logically shifted left
; Logically shifted right

ROLC, RORC, ROT, SHA

Rev.2.00 Oct 17,2005 page 117 of 263 RENESAS

REJ09B0001-0200



Chapter 3 Functions 3.2 Functions

Transfer string backward
SMOVB String MOVe Backward SMOVB
[ Syntax ] [ Instruction Code/Number of Cycles ]

SMOVB.size Page: 230
[

[ Operation ]*

When size specifier (.size) is (.B) When size specifier (.size) is (\W)
Repeat Repeat
M(AL)« M(216 X R1H + A0) M(Al) <=  M(2*® X R1H + A0)
A0? < A0 - 1 A0? < A0 - 2
Al <« A1l - 1 Al < A1 - 2
R3 <« R3 - 1 R3 <« R3 -1
Until R3=0 Until R3=0

*1 If R3is set to 0O, this instruction is ignored.

*2  If AO underflows, the content of R1H is decremented by 1.

[ Function ]

 This instruction transfers a string from a 20-bit source address to a 16-bit destination address by
successively decrementing the address.

 Set the 4 high-order bits of the source address in R1H, the 16 low-order bits of the source address in
A0, the destination address in Al, and the transfer count in R3.

* When the instruction is completed, AO or Al contains the next address after the last-read data.

« If an interrupt request is received during instruction execution, the interrupt is acknowledged after one
data transfer is completed.

[ Flag Change]

Fag ([U| I |[O|B|S|Z|D]|C
Change| — | — | = | — | = | = | — | —

[ Description Example ]
SMOVB.B

[ Related Instructions ] SMOVF, SSTR

Rev.2.00 Oct17,2005 page 118 of 263 XENESAS
REJO9B0001-0200



Chapter 3 Functions 3.2 Functions

Transfer string forward
SMOVF String MOVe Forward SMOVF
[ Syntax ] [ Instruction Code/Number of Cycles ]

SMOVF.size Page: 231
: B,W

[ Operation ]*

When size specifier (.size) is (.B) When size specifier (.size) is (\W)
Repeat Repeat
M(ALl) <  M(2'® XR1H + A0) M(A1)<=  M(2*¥*X R1H + A0)
A0* <« A0 + 1 A0? < A0 + 2
Al <« A1 + 1 Al < Al + 2
R3 < R3 - 1 R3 <« R3 -1
Until R3=0 Until R3=0

*1 If R3is set to 0, this instruction is ignored.

*2 If AO overflows, the content of R1H is incremented by 1.

[ Function ]
 This instruction transfers a string from a 20-bit source address to a 16-bit destination address by
successively incrementing the address.
 Set the 4 high-order bits of the source address in R1H, the 16 low-order bits of the source address in
A0, the destination address in Al, and the transfer count in R3.
* When the instruction is completed, AO or Al contains the next address after the last-read data.

« If an interrupt request is received during instruction execution, the interrupt is acknowledged after one
data transfer is completed.

[ Flag Change ]
Fag |lU| 1 |O|B|S|Z|D]|C

Change| — | — | — | = | = | = | — | —

[ Description Example ]
SMOVF.W

[ Related Instructions ] SMOVB, SSTR

Rev.2.00 Oct 17,2005 page 119 of 263 RENESAS
REJ09B0001-0200



Chapter 3 Functions 3.2 Functions

Store string
SSTR String SToRe SSTR
[ Syntax ] [ Instruction Code/Number of Cycles ]

SSTR.size Page: 231
[

[ Operation ]*

When size specifier (.size) is (.B) When size specifier (.size) is (\W)
Repeat Repeat
M(Al)<=  ROL M(Al) < RO
Al - Al + 1 Al ~ Al +
R3 < R3 -1 R3 <« R3 -
Until R3 = 0 Until R3 = 0

*1 If R3is set to 0O, this instruction is ignored.

[ Function ]

 This instruction stores a string with the data to be stored indicated by RO, the transfer address indi-
cated by Al, and the transfer count indicated by R3.
* When the instruction is completed, AO or Al contains the next address after the last-written data.

« If an interrupt request is received during instruction execution, the interrupt is acknowledged after one
data transfer is completed.

[ Flag Change ]

Fag |U[ I |]O|B|S|Z|D]|C
Change| — | — | — | = | = | = | = | —

[ Description Example ]
SSTR.B

[ Related Instructions ] SMOVB, SMOVF

Rev.2.00 Oct 17,2005 page 120 of 263 XENESAS
REJO9B0001-0200



Chapter 3 Functions 3.2 Functions

ST C Transfer from control register ST C
STore from Control register

[ Syntax ] [ Instruction Code/Number of Cycles ]

STC src,dest Page: 232

[ Operation ]
dest <« src

[ Function ]
 This instruction transfers the content of the control register indicated by src to dest. If dest is a
location in the memory, specify the address in which to store the low-order address.
« If dest is a location in the memory and src is PC, the required memory capacity is 3 bytes. If s7¢ is not
PC, the required memory capacity is 2 bytes.

[ Selectable src/dest ]

src dest
FB SB Sp1 ISP RO R1 R2 R3
FLG INTBH INTBL A0 Al [AQ] [A1]
dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6

PC
[AO] [A1]

dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6

R2R0 R3R1 A1AO0

*1 The operation is performed on the stack pointer indicated by the U flag.

[ Flag Change ]

Fag |([U| I |O|B|S|Z|D|C
Change| — | — | — | = | — | = | = | —

[ Description Example ]
STC SB,RO
STC FB,AQ

[ Related Instructions ] POPC, PUSHC, LDC, LDINTB

Rev.2.00 Oct 17,2005 page 121 of 263 RENESAS
REJ09B0001-0200



Chapter 3 Functions 3.2 Functions

Save context
STCTX STore ConTeXt STCTX
[ Syntax ] [ Instruction Code/Number of Cycles ]
STCTX abs16,abs20 Page: 233

[ Operation ]

[ Function ]

 This instruction saves task context to the stack area.

 Set the RAM address that contains the task number in abs16 and the start address of table data in abs20.

« The required register information is specified from table data by the task number and the data in the stack area is
transferred to each register according to the specified register information. Then the SP correction value is subtracted
from the stack pointer (SP). For this SP correction value, set the number of bytes to be transferred.

« Information on transferred registers is configured as shown below. Logical 1 indicates a register to be
transferred and logical O indicates a register that is not to be transferred.

MSB LSB

FB|SB| A1| AO| R3|R2| R1| RO

>

Transferred sequentially beginning with FB

» The table data is configured as shown below. The address indicated by abs20 is the base address of
the table. The data stored at an address twice the content of abs16 away from the base address
indicates register information, and the next address contains the stack pointer correction value.

Base address — —

abs20 — of table Register information for task with task number 0. (See above diagram.)
SP correction value for task with task number 0. (See above diagram.)
. L Register information for task with task number 1. (See above diagram.)
D|rgct|on " SP correction value for task with task number 1. (See above dia abs16x 2
which address : gram.)
increases
J '
Register information for task with task number n. (See above diagram.)
SP correction value for task with task number n. (See above diagram.)

*1  n=0to 255
[ Flag Change ]

Fag ([U| 1 |]O|B|S|Z|D]|C
Change| — | — | = | = | = | = | = | —

[ Description Example ]
STCTX Ram,Rom_TBL

[ Related Instructions ] LDCTX

Rev.2.00 Oct17, 2005 page 122 of 263 XENESAS
REJO9B0001-0200



Chapter 3 Functions 3.2 Functions

ST E Transfer to extended data area ST E
STore to EXtra far data area
[ Syntax ] [ Instruction Code/Number of Cycles ]
STE.size src,dest Page: 233
' B,W

[ Operation ]
dest <« src

[ Function ]
» This instruction transfers src to dest in an extended area.

« If src is AO or Al and the selected size specifier (.size) is (.B), the operation is performed on the 8 low-
order bits of AO or Al. However, the flag changes depending on the AO or Al status (16 bits) before the

operation is performed.

[ Selectable src/dest ]

src dest

ROL/RO ROH/R1 R1L/R2 R1H/R3
AO0/AQ A1/A1 [AQ] [A1]
dsp:8[A0] dsp:8[Al] dsp:8[SB]  dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6

dsp:20[A0] abs20
[A1A0]

[ Flag Change ]

Fag |[U| 1 |O|B|S|Z|D|C
Change| — | — | — | — | O |O | —-| —
Conditions

S : The flag is set when the operation results in MSB = 1; otherwise cleared.
Z . The flag is set when the operation results in 0; otherwise cleared.

[ Description Example ]
STE.B ROL,[A1AOQ]
STE.W R0,10000H[AQ]

[ Related Instructions ] MOV, LDE, XCHG

Rev.2.00 Oct 17,2005 page 123 of 263 RENESAS
REJ09B0001-0200



Chapter 3 Functions 3.2 Functions

Conditional transfer
STNZ STore on Not Zero STNZ
[ Syntax ] [ Instruction Code/Number of Cycles ]
STNZ src,dest Page: 235

[ Operation ]
ifZ=0then dest <« src

[ Function ]
« This instruction transfers src to dest when the Z flag is 0.

[ Selectable src/dest ]

src dest
#IMM8 ROL ROH dsp:8[SB]  dsp:8[FB]
abs16
[ Flag Change ]
Fag ([U| 1 |]O|B|S|Z|D]|C

Change| — | — | — | = | = | — | —| —

[ Description Example ]
STNZ #5,Ram:8[SB]

[ Related Instructions ] STZ, STZX

Rev.2.00 Oct17, 2005 page 124 of 263 XENESAS
REJO9B0001-0200



Chapter 3 Functions 3.2 Functions

Conditional transfer
STZ STore on Zero STZ
[ Syntax ] [ Instruction Code/Number of Cycles ]
STZ src,dest Page: 235

[ Operation ]
if Z=1then dest <« src

[ Function ]
 This instruction transfers src to dest when the Z flag is 1.

[ Selectable src/dest ]

src dest
#IMM8 ROL ROH dsp:8[SB]  dsp:8[FB]
abs16
[ Flag Change ]
Fag ([U| I |O|B|S|Z|D]|C

Change| — | — | — | — | = | — | — | —

[ Description Example ]
STZ #5,Ram:8[SB]

[ Related Instructions ] STNZ, STZX

Rev.2.00 Oct 17,2005 page 125 of 263 RENESAS
REJ09B0001-0200



Chapter 3 Functions 3.2 Functions

Conditional transfer
STZX STore on Zero eXtention STZX
[ Syntax ] [ Instruction Code/Number of Cycles ]
STZX srcl,src2,dest Page: 236

[ Operation ]
If Z=1then
dest <« srcl
else

dest <« src2
[ Function ]

 This instruction transfers srcZ to dest when the Z flag is 1. When the Z flag is 0, it transfers src2 to
dest.

[ Selectable src/dest ]

src dest
#IMM8 ROL ROH dsp:8[SB] dsp:8[FB]
abs16
[ Flag Change]
Fag | U| I |O|B|S|Z|D]|C

Change| — | — | — | = | — | = | — | —

[ Description Example ]
STZX #1,#2,Ram:8[SB]

[ Related Instructions ] STZ, STNZ

Rev.2.00 Oct17,2005 page 126 of 263 XENESAS

REJ09B0001-0200



Chapter 3 Functions 3.2 Functions

Subtract without borrow
SUB SUBtract SUB
[ Syntax ] [ Instruction Code/Number of Cycles ]

SUB.size (:format) src,dest Page: 236
‘ ' G, S (Can be specified)
B,wW

[ Operation ]
dest <« dest — src

[ Function ]
» This instruction subtracts src from dest and stores the result in dest.

« If dest is AO or Al and the selected size specifier (.size) is (.B), src is zero-expanded to perform
operation in 16 bits. If src is AO or Al, operation is performed on the 8 low-order bits of AO or Al.

[ Selectable src/dest ] (See next page for src/dest classified by format.)
src dest
ROL/RO ROH/R1 R1L/R2 R1H/R3 [ROL/RO ROH/R1 R1L/R2 R1H/R3
AO0/A0™ A1/A1? [AQ] [A1] AO0/A0™ A1/A1" [AQ] [A1]

dsp:8[A0] dsp:8[Al]  dsp:8[SB] dsp:8[FB] |dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6 dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6
#IMM

*1 If (.B) is selected as the size specifier (.size), A0 or Al cannot be chosen for sr/c and dest simulta-
neously.

[ Flag Change ]

Fag |U| 1 |O|B|S|Z|D]|C
Change| — | — | O | —|O|O|—=1]0O
Conditions

O : The flag is set when a signed operation results in a value in exceeding +32767 (\.W) or —32768
(\W), or +127 (.B) or —128 (.B); otherwise cleared.

S : The flag is set when the operation results in MSB = 1; otherwise cleared.

Z : The flag is set when the operation results in 0; otherwise cleared.

C : The flag is set when an unsigned operation results in any value equal to or greater than 0;
otherwise cleared.

[ Description Example ]

SUB.B AO0,ROL ; 8 low-order bits of A0 and ROL are the objects of the operation.
SUB.B ROL,AOQ ; Zero-expanded value of ROL and AO are the objects of the operation.
SUB.B Ram:8[SB],ROL

SUBW  #2,A0]

[ Related Instructions ] ADC, ADCF, ADD, SBB

Rev.2.00 Oct 17,2005 page 127 of 263 RENESAS
REJ09B0001-0200



Chapter 3 Functions 3.2 Functions
I

[src/dest Classified by Format]

G format
src dest
ROL/RO ROH/R1 R1L/R2 R1H/R3 [ROL/RO ROH/R1 R1L/R2 R1H/R3
AO0/A0™ Al/A1? [AQ] [A1] AO0/A0™ A1/A1? [AQ] [A1]
dsp:8[A0] dsp:8[Al]  dsp:8[SB] dsp:8[FB] |dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6 dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6
#IMM

*1 If (.B) is selected as for the size specifier (.size), AO or Al cannot be chosen for sr¢c and dest simulta-

neously.
S format™
src dest
ROL ROH dsp:8[SB]  dsp:8[FB]
#IMM abs16
ROL™ ROH™ dsp:8[SB]  dsp:8[FB] |ROL™ ROH™
abs16

*2 Only (.B) can be selected as for the size specifier (.size).

*3 The same registers cannot be chosen for sr/¢c and dest.

Rev.2.00 Oct 17,2005 page 128 of 263
REJ09B0001-0200

RENESAS



Chapter 3 Functions 3.2 Functions

7est
TST TesT TST
[ Syntax ] [ Instruction Code/Number of Cycles ]

TST.size src,dest Page: 239
: B,W

[ Operation ]
dest A src

[ Function ]
« Each flag in the flag register changes state depending on the result of a logical AND of src and dest.

« If dest is AO or Al and the selected size specifier (.size) is (.B), src is zero-expanded to perform
operation in 16 bits. If src is AO or A1, the operation is performed on the 8 low-order bits of AO or Al.

[ Selectable src/dest ]

src dest
ROL/RO ROH/R1 R1L/R2 R1H/R3 |ROL/RO ROH/R1 R1L/R2 R1H/R3
AO0/A0™ Al/A1™ [AO] [A1] AO0/A0™ Al/A1? [AO] [A1]

dsp:8[A0] dsp:8[Al]  dsp:8[SB] dsp:8[FB] |dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6 dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6
#IMM

*1 If (.B) is selected as the size specifier (.size), A0 or Al cannot be chosen for sr/c and dest simulta-
neously.

[ Flag Change ]

Fag (U| I |O|B|S|Z|D|C
Change| — | — | — | = | O|O| —| —
Conditions

S : The flag is set when the operation results in MSB = 1; otherwise cleared.
Z : The flag is set when the operation results in 0; otherwise cleared.

[ Description Example ]
TST.B #3,ROL
TST.B AO0,ROL ; 8 low-order bits of AQ and ROL are the objects of the operation.

TST.B ROL,AO0 ; Zero-expanded value of ROL and A0 are the objects of the operation.

[ Related Instructions ] AND, OR, XOR

Rev.2.00 Oct 17,2005 page 129 of 263 RENESAS
REJ09B0001-0200



Chapter 3 Functions 3.2 Functions

U N D Interrupt for undefined instruction U N D
UNDefined instruction

[ Syntax ] [ Instruction Code/Number of Cycles ]

UND Page: 241

[ Operation ]

SP ~ SP - 2
M(SP) <~ (PC + 1H,FLG
SP ~ SP - 2
M(SP) - (PC + 1)mL
PC <~  M(FFFDCis)
[ Function ]

 This instruction generates an undefined instruction interrupt.

» The undefined instruction interrupt is nonmaskable.

[ Flag Change]

Flag |[U| 1 |O|B|S|Z|D]|C| * The flags are saved to the stack area before the UND
Change| O |O| = | —=|—=|—=]|0O]| — instruction is executed. After the interrupt, the flag status
" becomes as shown at left.
Conditions

U : Theflag is cleared.
| : Theflag is cleared.
D : Theflagis cleared.

[ Description Example ]
UND

Rev.2.00 Oct 17,2005 page 130 of 263 XENESAS
REJO9B0001-0200



Chapter 3 Functions 3.2 Functions

Wair
WAIT WAIT WAIT
[ Syntax ] [ Instruction Code/Number of Cycles ]
WAIT Page: 241

[ Operation ]

[ Function ]

« This instruction halts program execution. Program execution is restarted when an interrupt of a higher
priority level than IPL is acknowledged or a reset is generated.

[ Flag Change ]

Fag ([U| 1 |]O|B|S|Z|D]|C
Change| — | — | — | — | — | — | — | —

[ Description Example ]

WAIT

Rev.2.00 Oct 17,2005 page 131 of 263 RENESAS
REJ09B0001-0200



Chapter 3 Functions 3.2 Functions

Exchange
XCH G eXCHanGe XCH G
[ Syntax ] [ Instruction Code/Number of Cycles ]

XCHG.size src,dest Page: 242
: B,W

[ Operation ]
dest <— src

[ Function ]
« This instruction exchanges the contents of src and dest.

« If dest is AO or Al and the selected size specifier (.size) is (.B), the content of src is zero-expanded to
16 bits and placed in AO or A1, and the 8 low-order bits of AO or Al are placed in src

[ Selectable src/dest ]

src dest
ROL/RO ROH/R1 R1L/R2 R1H/R3 |ROL/RO ROH/R1 R1L/R2 R1H/R3
AO/AOQ Al/A1l [AQ] [A1]

dsp:8[AO] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] absl16

[ Flag Change ]
Fag |lU| 1 |O|B|S|Z|D]|C

Change| — | — | — | — | —= | — | — | —

[ Description Example ]
XCHG.B ROL,AQ ; 8 low-order bits of A0 and the zero-expanded value of ROL are exchanged.
XCHG.W RO0,Al
XCHG.B ROL,[AQ]

[ Related Instructions ] MOV, LDE, STE

Rev.2.00 Oct17,2005 page 132 of 263 XENESAS
REJO9B0001-0200



Chapter 3 Functions 3.2 Functions

Exclusive OR
XOR eXclusive OR XOR
[ Syntax ] [ Instruction Code/Number of Cycles ]

XOR:.size src,dest Page: 243
: B,W

[ Operation ]
dest <« dest V src

[ Function ]
» This instruction exclusive ORs src and dest and stores the result in gdest.

« If dest is A0 or Al and the selected size specifier (.size) is (.B), src is zero-expanded to perform
operation in 16 bits. If src is AO or Al, the operation is performed on the 8 low-order bits of AO or Al.

[ Selectable src/dest ]

src dest
ROL/RO ROH/R1 R1L/R2 R1H/R3 |ROL/RO ROH/R1 R1L/R2 R1H/R3
AO0/A0™ Al/A1™ [AO] [A1] AO0/A0™ Al/A1? [AO] [A1]

dsp:8[A0] dsp:8[Al]  dsp:8[SB] dsp:8[FB] |dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6 dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6
#IMM

*1 If (.B) is selected as the size specifier (.size), A0 or Al cannot be chosen for sr/c and dest simulta-
neously.

[ Flag Change ]

Fag |[U| 1 |O|B|S|Z|D|C
Change| — | — | — | — | O|O|—| —
Conditions

S : The flag is set when the operation results in MSB = 1; otherwise cleared.
Z : The flag is set when the operation results in 0; otherwise cleared.

[ Description Example ]
XOR.B AO,ROL ; 8 low-order bits of AO and ROL are exclusive ORed.
XOR.B ROL,A0 ; ROL is zero-expanded and exclusive ORed with AQ.
XOR.B #3,ROL
XOR.W A0,Al

[ Related Instructions ] AND, OR, TST

Rev.2.00 Oct 17,2005 page 133 of 263 RENESAS
REJ09B0001-0200



Chapter 3 Functions 3.2 Functions

This page intentionally left blank.

Rev.2.00 Oct 17,2005 page 134 of 263 XENESAS
REJO9B0001-0200



Chapter 4

Instruction Codes/Number of Cycles

4.1 Guide to This Chapter
4.2 Instruction Codes/Number of Cycles



Chapter 4 Instruction Codes 41 Guide to This Chapter

4.1 Guide to This Chapter

This chapter lists the instruction code and number of cycles for each op-code.

An example illustrating how to read this chapter is shown below.

Chapter 4 Instruction Code 4.2 Instruction Codes/Number of Cycles

(1) e
@ Q@ LDIM

b7 b0 b7 b0
0(11>111011010 IMM4
|\ ] | | I | I | | I |

()
(@) [ Number of Bytes/Number of Cycles ]
Bytes/Cycles 2/2
oy
2— @ Me:G #IMM, dest
b7 b0 b7 b0 dest code
(3)7* OI:(I1>1 0|1|OS|ZE1|1|O|0 |DE|ST| |_|_|C_j|§E§|_|_’ \-m
|, dspl6/absie [fl,,, #MM1G
size | SIZE dest DEST dest DEST
B | O :
51 ROL/RO 0000 dsp:8[AN] dsp:8[A0] [1000
) RN ROH/R1 0001 dsp:8[Al] [1001
R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] [1010
R1H/R3 0011 dsp:8[FB] [1011
A A0 0100 dsp:16[An] dsp:16[A0] (1100
Al 0101 dsp:16[A1] |1101
[An] [AQ] 0110 |dsp:16[SB]  |dsp:16[SB] [1110
[Al] 0111 |absl6 abs16 1111
@) Nummeytes/Number of Cycles ]
dest— | Rn | an |[an] |dsp:8[an]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB] | abs16
Bytes/Cycles| 372 | 3/2 | 3/3 4/3 4/3 5/3 5/3 5/3
Rev.2.00 Oct 17,2005 page 136 of 263 XENESAS

REJ09B0001-0200



Chapter 4 Instruction Codes 41 Guide to This Chapter

(1) Mnemonic
Shows the mnemonic explained in the page.

(2) Syntax
Shows an instruction syntax using symbols.

(3) Instruction code
Shows instruction code. Portions in parentheses ( ) may be omitted depending on the selected src/dest.
Contents at addresses following

Content at start address Content at (start address (start address of instruction + 2)

of instruction of instruction+1) (See the figure below.)
NN o

b7 b7 b0 dest code
Ollllll 0I:I.IO<SIZE I:I.IOI0 I@EIS?I \

N [ dspisiabsie || Amme ]

Correspondence
Correspondence
Correspondence
size | SIZE dest DES dest EST
B ROL/RO 0000 dsp:8[AQ
w1 dsp:8[An] p:8[A0] [1000
: R ROH/R1 0001 dsp:8[Al] |1001
R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] |1010
R1H/R3 0011 dsp:8[FB] |1011
A .
An 0 0100 dsp:16[An] dsp:16[A0] {1100
Al 0101 dsp:16[A1] {1101
[An] [AO] 0110 |dsp:16[SB] dsp:16[SB] {1110
[A1] 0111 |absl6 abs16 1111
Contents at addresses following (start address of instruction + 2) are arranged as follows:
+0 +1 +2
b7 b0
dsp8 )
#ISI\aMB 8 bits
b7 b0 b7 b0
dspl6
abs16 Low-order 8 bits High-order 8 bits
#IMM16
abso0 D7 b0 b7 b0 b7 ‘ b0
dsp20 Low-order 8 bits Middle-order 8 bits | 0000 |High-order
#IMM20 4 bits

(4) Table of cycles

Shows the number of cycles required to execute the instruction and the number of bytes in the instruction.
The number of cycles may increase due to software wait states, etc.

The number of bytes in the instruction is indicated on the left side of the slash and the number of
execution cycles is indicated on the right side.

Rev.2.00 Oct 17,2005 page 137 of 263 RENESAS
REJ09B0001-0200



Chapter 4 Instruction Codes/Number of Cycles 4.2 Instruction Codes/Number of Cycles

ABS

(1) ABS.size dest

dest code
b7 b0 b7 b0
0|1|1|1 0|1|18IZE1|1|1|1 |DE|ST| -m
|, dsp16/absis |
size | SIZE | dest DEST dest DEST
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An] -
W 1 Rn ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:B[SB/FB] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
A0 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(A [AQ] 01 10 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111 ]absl6 abs16 1111
[ Number of Bytes/Number of Cycles ]
dest Rn An [An] | dsp:8[An] |dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| abs16
Bytes/Cycles | 2/3 2/3 2/5 3/5 3/5 4/5 4/5 4/5
(1) ADC.size #IMM, dest
b7 b0 b7 b0 dest code
011 1/0 1 1|sE0 1 1 0| DEST dsp8
| 11 IdISPIlIGIIanSIlIGI 11 | | 111 Il#lll\l/ll IJIGI |-}
size | SIZE | dest DEST dest DEST
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An] -
W 1 Rn ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:8[SB/FE] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
A0 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(AT [AQ] 0110 |dsp:16[SB] dsp:16[SB] 1110
[Al] 0111]absi6 abs16 1111
[ Number of Bytes/Number of Cycles ]
dest Rn An [An] | dsp:8[An] |dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| abs16
Bytes/Cycles | 3/2 3/2 3/4 4/4 4/4 5/4 5/4 5/4

« If the size specifier (.size) is (.\W), the number of bytes indicated is increased by 1.

Rev.2.00 Oct 17,2005 page 138 of 263 XENESAS
REJO9B0001-0200



Chapter 4

Instruction Codes/Number of Cycles

4.2 Instruction Codes/Number of Cycles
(2) ADC.size src, dest
h7 b0 b7 bo src code dest code
10,1 1]0 0, 0px] sRc, | pest, | [L.dsP8.]
[, Ospi6/absie | [ \[,, dspi6labsi6 |
size | SIZE | src/dest SRC/DEST src/dest SRC/DEST
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An] -
W 1 Rn ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:B[SBIFE] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
AO 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(A [AQ] 0110 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111 ]absl6 abs16 1111
[ Number of Bytes/Number of Cycles ]
src dest Rn An [An] | dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| absl6
Rn 2/2 2/2 2/3 3/3 3/3 4/3 4/3 4/3
An 2/2 2/2 2/3 3/3 3/3 4/3 4/3 4/3
[An] 2/3 2/3 2/4 3/4 3/4 4/4 4/4 4/4
dsp:8[An] 33 | 3/3 3/4 4/4 414 5/4 5/4 5/4
dsp:8[SB/FB]] 3/3 3/3 3/4 4/4 4/4 5/4 5/4 5/4
dsp:16[An] 4/3 4/3 4/4 5/4 5/4 6/4 6/4 6/4
dsp:16[SB] 4/3 4/3 4/4 5/4 5/4 6/4 6/4 6/4
abs16 4/3 4/3 4/4 5/4 5/4 6/4 6/4 6/4
Rev.2.00 Oct17,2005 page 139 of 263 RENESAS

REJ09B0001-0200



Chapter 4

Instruction Codes/Number of Cycles

4.2 Instruction Codes/Number of Cycles
(1) ADCF.size dest
b7 b0 b7 bO dest code
0111 1, 1|sEj1 1,1 0| DEST, dsp8
., dsp16/absi6 , |
size | SIZE | dest DEST dest DEST
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An] -
W 1 Rn ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
AO 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(A [AQ] 011 0|dsp:16[SB] dsp:16[SB] 1110
[A1] 0111 ]absl6 abs16 1111
[ Number of Bytes/Number of Cycles ]
dest Rn An [An] |dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| absl6
Bytes/Cycles | 2/1 2/1 2/3 3/3 3/3 4/3 4/3 4/3
(1) ADD.size:G  #IMM, dest
b7 b0 b7 b0 dest code
0,11 1]0,1 1pEfo 1,0,0| DEST, dsp8
.. dsp6/abs16 | [ [  #IMM16 |
size | SIZE | dest DEST dest DEST
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An] -
W 1 RN ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
A0 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(AT [AQ] 0110 |dsp:16[SB] dsp:16[SB] 1110
[Al] 0111]absi6 abs16 1111
[ Number of Bytes/Number of Cycles ]
dest Rn An [An] | dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| absl16
Bytes/Cycles | 3/2 3/2 3/4 4/4 4/4 5/4 5/4 5/4

« If the size specifier (.size) is (.\W), the number of bytes indicated is increased by 1.

Rev.2.00 Oct 17,2005 page 140 of 263
REJ09B0001-0200

RENESAS




Chapter 4

Instruction Codes/Number of Cycles

REJ09B0001-0200

4.2 Instruction Codes/Number of Cycles
(2) ADD.size:Q #IMM, dest
b7 b0 b7 bo dest code
110 0[1 0 ofsE] IMM4 DEST | [ L.9sp8.]
., dsp16/absie
size | SIZE | #IMM | IMM4 | #IMM | IMM4
.B 0 0 0000] -8 1000
W 1 +1 0001} -7 1001
+2 0010} -6 1010
+3 0011} -5 1011
+4 0100] -4 1100
+5 0101} -3 1101
+6 0110} -2 1110
+7 0111] -1 1111
dest DEST dest DEST
ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An]
an ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
A0 0100 dsp:16[A0 1100
An dsp:16[An] p:16[A0]
Al 0101 dsp:16[A1] 1101
(An] [AO] 01 10|dsp:16[SB] dsp:16[SB] 1110
[Al] 0111]absi6 absl16 1111
[ Number of Bytes/Number of Cycles ]
dest Rn An [An] |dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB] | absl16
Bytes/Cycles | 2/1 2/1 2/3 3/3 3/3 4/3 4/3 4/3
Rev.2.00 Oct17,2005 page 141 of 263 RENESAS



Chapter 4 Instruction Codes/Number of Cycles 4.2 Instruction Codes/Number of Cycles

(3) ADD.B:S #IMM8, dest
b7 b0 dest code
1,00 olo| pEsT | [#mwvs | ([ dsps |
|IIIII§pSIJI-6IIIIII
dest DEST
ROH 011
Rn
ROL 100
dsp:g[se/Fg] |9SP-8[SEl 101
dsp:8[FB] 110
abs16 abs16 111
[ Number of Bytes/Number of Cycles ]
dest Rn dsp:8[SB/FB] abs16
Bytes/Cycles 2/1 3/3 4/3
Rev.2.00 Oct17, 2005 page 142 of 263 XENESAS

REJ09B0001-0200



Chapter 4 Instruction Codes/Number of Cycles 4.2 Instruction Codes/Number of Cycles

(4) ADD.size:G  src, dest
b7 bo b7 bo src code dest code
101 0]0 0 0[sE] SRC DEST dsp8
., Ospi6labsi6 | [\ [, dspi6/absie |
size | SIZE | src/dest SRC/DEST src/dest SRC/DEST
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An] -
W 1 an ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
AO 0100 dsp:16[A0 1100
An dsp:16[An] p:16[A0]
Al 0101 dsp:16[A1] 1101
(An] [AO] 0110 |dsp:16[SB] dsp:16[SB] 1110
[Al] 0111 ]absl6 abs16 1111
[ Number of Bytes/Number of Cycles ]
src dest Rn An [An] | dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| absl6
Rn 2/2 2/2 2/3 3/3 3/3 4/3 4/3 4/3
An 2/2 2/2 2/3 3/3 3/3 4/3 4/3 4/3
[An] 2/3 2/3 2/4 3/4 3/4 4/4 4/4 4/4
dsp:8[An] 33 | 3/3 3/4 414 414 5/4 5/4 5/4
dsp:8[SB/FB]| 3/3 3/3 3/4 4/4 4/4 5/4 5/4 5/4
dsp:16[An] 4/3 4/3 4/4 5/4 5/4 6/4 6/4 6/4
dsp:16[SB] 4/3 4/3 4/4 5/4 5/4 6/4 6/4 6/4
abs16 4/3 4/3 4/4 5/4 5/4 6/4 6/4 6/4
Rev.2.00 Oct17,2005 page 143 of 263 RENESAS

REJ09B0001-0200



Chapter 4 Instruction Codes/Number of Cycles 4.2 Instruction Codes/Number of Cycles

(5) ADD.B:S src, ROL/ROH
b7 b0 src code
0 0 1 0]0 |pETSRC dsp8
|IIIIIaIbISIJI-6IIIIII
src SRC dest DEST
Rn ROL/ROH 0 O ROL 0
dsp:8[SB/FB] dsp:8[SB] 0 1 ROH 1
dsp:8[FB] 1 0
abs16 abs16 1 1
[ Number of Bytes/Number of Cycles ]
Sre Rn dsp:8[SB/FB] abs16
Bytes/Cycles 1/2 2/3 3/3
(6) ADD.size:G #IMM, SP
b7 b0 b7 b0
011 1|1 1 OfSE|L 1 1 01 0 11 #MM8
|IIII#I¢!MM]-I6IIIII
size | SIZE |
B 0
W 1

[ Number of Bytes/Number of Cycles ]

Bytes/Cycles 3/2

« If the size specifier (.size) is (.\W), the number of bytes indicated is increased by 1.

Rev.2.00 Oct17, 2005 page 144 of 263 XENESAS
REJO9B0001-0200



Chapter 4 Instruction Codes/Number of Cycles 4.2 Instruction Codes/Number of Cycles

ADD

(7) ADD.size:Q  #IMM, SP
b7 b0 b7 b0

011 1/1 10 1f1 0 11 IMM4.
» The instruction code is the same regardless of whether (.B) or (.\W) is selected as the size specifier (.size).

#IMM IMM4 #IMM IMM4
0 oooof -8 1000

+1 o001y -7 1001

+2 oo010] -6 1010

+3 0011] -5 1011

+4 o0100] 4 1100

+5 0101] -3 1101

+6 o110 -2 1110

+7 01111 1 1111

[ Number of Bytes/Number of Cycles ]

Bytes/Cycles 2/1

Rev.2.00 Oct17,2005 page 145 of 263 RENESAS
REJO9B0001-0200



Chapter 4 Instruction Codes/Number of Cycles 4.2 Instruction Codes/Number of Cycles

ADJNZ

(1) ADINZ.size  #IMM, dest, label

b7 b0 b7 bO dest code label code
111 1]1,0 0] Mma) DEST dsps
., Osp16/absi6 |

dsp8 (label code) = address indicated by label — (start address of instruction + 2)

.size | SIZE #IMM IMM4 #IMM IMM4
.B 0 0 0000} -8 1000
W 1 +1 0001} -7 1001
+2 0010} -6 1010
+3 0011y -5 1011
+4 0100] 4 1100
+5 0101} -3 1101
+6 01104 -2 1110
+7 0111} 1 1111

dest DEST dest DEST

ROL/RO 0000 dsp:8[A0] 1000

dsp:8[An] -

Rn ROH/R1 0001 dsp:8[A1] 1001

R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] 1010

R1H/R3 0011 dsp:8[FB] 1011

An A0 0100 dsp-16[AN] dsp:16[A0] 1100

Al 0101 dsp:16[A1] 1101

(AT [AQ] 0110 |dsp:16[SB] dsp:16[SB] 1110

[Al] 0111]absi6 abs16 1111

[ Number of Bytes/Number of Cycles ]
dest Rn An [An] | dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| absl6
Bytes/Cycles | 3/3 3/3 3/5 4/5 4/5 5/5 5/5 5/5

« If the program branches to a label, the number of cycles indicated is increased by 4.

Rev.2.00 Oct17,2005 page 146 of 263 XENESAS
REJO9B0001-0200



Chapter 4

Instruction Codes/Number of Cycles

4.2 Instruction Codes/Number of Cycles
(1) AND.size:G  #IMM, dest
b7 b0 b7 b0 dest code
011 1/0 1 1[s&f0 0 1 0| DEST dsp8
.. dspib/absie | [ [, #IMM16, .
size | SIZE | dest DEST dest DEST
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An] -
W 1 Rn ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:B[SBIFE] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
AO 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(A [AQ] 0110 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111 ]absl6 abs16 1111
[ Number of Bytes/Number of Cycles ]
dest Rn An [An] | dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| absl6
Bytes/Cycles | 3/2 3/2 3/4 4/4 4/4 5/4 5/4 5/4
« |If the size specifier (.size) is (W), the number of bytes indicated is increased by 1.
(2) AND.B:S #IMM8, dest
b7 b0 dest code
100 1|0| DEST | [#Mmms ]| [| dsps |
| | | | | 111111 111 111
|IllllialeI]I-6llllll|
dest DEST
ROH
RN 011
ROL 100
dsp:g[se/Fa] | 9SP-8ISEl 101
dsp:8[FB] 110
abs16 abs16 11 1
[ Number of Bytes/Number of Cycles ]
dest Rn dsp:8[SB/FB] abs16
Bytes/Cycles 2/1 3/3 4/3
Rev.2.00 Oct17,2005 page 147 of 263 RENESAS

REJ09B0001-0200



Chapter 4 Instruction Codes/Number of Cycles 4.2 Instruction Codes/Number of Cycles

(3) AND.size:G  src, dest
b7 b0 b7 b0 src code dest code
100 1/0 0 O[SE] SRC, DEST dsps
|, dspi6labsie | [\ |, dsp16/absi6 |
size | SIZE | src/dest SRC/DEST src/dest SRC/DEST
B 0 ROL/RO 0000 dsp:8[AQ] 1000
dsp:8[An] -
A 1 Rn ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:8[SBIFB] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
A0 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(An [AO] 0110 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111 ]absl6 abs16 1111
[ Number of Bytes/Number of Cycles ]
src destlf Rn | An | [An] |dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| absl6
Rn 212 | 2/2 2/3 3/3 3/3 4/3 4/3 4/3
An 212 | 2/2 2/3 3/3 3/3 43 4/3 4/3
[An] 213 | 2/3 214 3/4 3/4 4/4 4/4 4/4
dsp:8[An] 33 | 313 3/4 414 4/4 5/4 5/4 5/4
dsp:8[SB/FB]| 3/3 | 3/3 3/4 4/4 4/4 5/4 5/4 5/4
dsp:16[An] 4/13 | 4/3 414 5/4 5/4 6/4 6/4 6/4
dsp:16[SB] 4/3 | 4/3 4/4 5/4 5/4 6/4 6/4 6/4
abs16 4/3 | 4/3 414 5/4 5/4 6/4 6/4 6/4
Rev.2.00 Oct 17,2005 page 148 of 263 XENESAS

REJ09B0001-0200



Chapter 4

Instruction Codes/Number of Cycles

4.2

Instruction Codes/Number of Cycles

REJ09B0001-0200

(4) AND.B:S src, ROL/ROH
b7 b0 src code
OI O.O. 1| O |DEST SRIC dsES
| 11 11 I?Ib§]I-6II 111 |
src SRC dest DEST
Rn ROL/ROH 0 O ROL 0
dsp:g[sB/FB] | 9SP-8[SB] 0 1 ROH 1
dsp:8[FB] 1 0
abs16 abs16 1 1
[ Number of Bytes/Number of Cycles ]
src RN dsp:8[SB/FB] abs16
Bytes/Cycles 1/2 2/3 3/3
Rev.2.00 Oct17,2005 page 149 of 263 RENESAS



Chapter 4 Instruction Codes/Number of Cycles 4.2 Instruction Codes/Number of Cycles

BAND

(1) BAND  src

b7 b0 b7 b0 src code
0.1.1.1 1|1|1|0 O|1|O|O ISF\I’CI dSB8
[, 95016, ]
src SRC src SRC

bit,RO 0000 _ base:8[A0] 1000
bit R bit,R1 0001 |P28AN McesAll (1001
bit,R2 0 0 1 0| bit,base:8 bit,base:8[SB] (1010
bit,R3 0011][SB/FB] bit,base:8[FB] (1011
bit AN bit,AO 0100 base-16[AN] base:16[A0] [1100
’ bit, Al 0101 base:16[A1] (1101
[An] [AQ] 0 1 1 0 | bit,base:16[SB]| bit,base:16[SB]{1 1 1 0
[Al] 011 1 |]bit,base:16 bit,base:16 1111

[ Number of Bytes/Number of Cycles ]

src bit.Rn | bitAn | [An] base:8 | bit,base:8| base:16 |bit,base:16 bit base:16
[An] [SB/FB] [An] [SB]
Bytes/Cycles 3/3 3/3 217 37 3/4 a/7 4/4 4/4
(1) BCLR:G dest
07 b0 b7 bo dest code
0I 1|1|1 1|1|1|0 1|0|O|0 .DE.ST. dSES
|IIIII(IjSIp]I-6IIIIII|
dest DEST dest DEST
bit,RO 000O base:8[A base:8[A0] 1000
iR bit,R1 0001 |P2 AN McesAll (1001
’ bit,R2 0 0 1 0 | bit,base:8 bit,base:8[SB] |1 010
bit,R3 0011|[SB/FB] bit,base:8[FB] (1011
bit A bit, A0 0100 base-16[An] base:16[A0] (1100
AN - ase: n
! bit AL 0101 base:16[Al] |1101
(An] [AO] 0 1 1 0 |bit,base:16[SB]| bit,base:16[SB](1 1 1 0
[A1] 011 1 |bitbase:16 bit,base:16 1111
[ Number of Bytes/Number of Cycles ]
dest bitRn | bitAn | [An] base:8 | bit,base:8| base:16 |bit,base:16 bit base:16
[An] [SB/FB] [An] [SB]
Bytes/Cycles 3/2 3/2 2/6 3/6 3/3 4/6 4/3 4/3
Rev.2.00 Oct 17,2005 page 150 of 263 XENESAS

REJ09B0001-0200



Chapter 4

Instruction Codes/Number of Cycles

(2) BCLR:S bit, base:11[SB]

b7

b0

dest code

0100

0

BIT
| |

dsES

[ Number of Bytes/Number of Cycles ]

Bytes/Cycles

2/3

Rev.2.00 Oct 17,2005 page 151 of 263

REJ09B0001-0200

RENESAS

4.2

Instruction Codes/Number of Cycles

BCLR



Chapter 4 Instruction Codes/Number of Cycles 4.2 Instruction Codes/Number of Cycles

BMCnd

(1)) BMCnd dest

b7 b b7 bo dest code
01 1 1]1 1 1 0fo 0 1 0] DEST CND
... dsp16 |
dest DEST dest DEST
bit,RO 0000 _ base:8[A0] 1000
bit R bit,R1 0001 |P28AN McesAll (1001
bit,R2 0 0 1 0| bit,base:8 bit,base:8[SB] (1010
bit,R3 00 11|[SBIFB] bit,base:8[FB] [101 1
it An bit,AO 0100 base: 16[An] base:16[A0] |1100
bit, Al 0101 base:16[A1] [1101
[An] [AQ] 0 1 1 0 | bit,base:16[SB]| bit,base:16[SB]{1 1 1 0
[Al] 011 1 |]bit,base:16 bit,base:16 1111
cnd CND cnd CND
GEUC| 0 0000O0O0O JLTUNC|1 1111000
GTU 000000O0OTO0T1 |LEU 11111001
EQZ |00000010 |NENZ |2 1111010
N 00000011 |Pz 11111011
LE 00000100 |oGT 11111100
o) 00000101 |NO 11111101
GE 00000110 LT 11111110

[ Number of Bytes/Number of Cycles ]

base:8 | bit,base:8| base:16 i : )
dest bitRn | bitAn | [an] | CoSe® | Pitbase:s) base:l6 bitbase:16) L\ o6
[An] | [SBIFB] [An] [SB]
Bytes/Cycles 4/6 4/6 3/10 4/10 a/7 5/10 5/7 5/7
Rev.2.00 Oct 17,2005 page 152 of 263 XENESAS

REJ09B0001-0200



Chapter 4

Instruction Codes/Number of Cycles

(2)BMCnd C

b7 b0 b7 b0
0111110 1|1 10 1] CND,
cnd | CND cnd | CND |

GEU/C (0000 |PZ 0111

GTU |0o001]|LE 1000

EQZ |oo010]O 1001

N 0011|GE 1010

LTUNC [0100 |GT 1100

LEU 0101 |NO 1101

NENZ [o110|LT 1110

[ Number of Bytes/Number of Cycles ]

Bytes/Cycles

2/1

4.2

Instruction Codes/Number of Cycles

« If the condition is true, the number of cycles indicated is increased by 1.

BMCnd

BNAND

(1) BNAND src
b7 bo b7 bo src code
01111 110f0 101 SRC dsp8
|IIIIIIdIsp?-I6IIIII|
src SRC src SRC
bit,RO 0000 e BIA base:8[A0] 1000
R bit,R1 0001 | 8AN McesAll (1001
' bit,R2 0 0 1 0 | bit,base:8 bit,base:8[SB] {1010
bit,R3 00 11]|[SBIFB] bit,base:8[FB] (101 1
bit A bit,AO 0100 pase: 16[AN] base:16[A0] (1100
AN n ase: n
' bit AL 0101 base16[Al] |1101
(An] [AQ] 0 1 1 0 |bit,base:16[SB]| bit,pase:16[SB]|1 11 0
[Al] 01 11]bitbase:16 bit,base:16 1111
[ Number of Bytes/Number of Cycles ]
ore bitRn | bitAn | [An] base:8 | bit,base:8 | base:16 |bit,base:16 bit base:16
[An] [SB/FB] [An] [SB]
Bytes/Cycles 3/3 | 33 217 317 3/4 4/7 4/4 4/4
Rev.2.00 Oct17,2005 page 153 of 263 RENESAS

REJ09B0001-0200



Chapter 4 Instruction Codes/Number of Cycles 4.2 Instruction Codes/Number of Cycles

BNOR

(1) BNOR  src

b7 b0 b7 b0 src code
0|1|1|1 1|1|1|0 0|1|1|1 .SR.C. dSE8
[, 95016, ]
src SRC src SRC

bit,RO 0000 _ base:8[A0] 1000
bit R bit,R1 0001 |P28AN McesAll (1001
bit,R2 0 0 1 0| bit,base:8 bit,base:8[SB] (1010
bit,R3 0011][SB/FB] bit,base:8[FB] (1011
bit AN bit,AQ 0100 base-L6[An] base:16[A0] [1100
’ bit, Al 0101 base:16[A1] (1101
[An] [AQ] 0 1 1 0 | bit,base:16[SB]| bit,base:16[SB]{1 1 1 0
[Al] 011 1 |]bit,base:16 bit,base:16 1111

[ Number of Bytes/Number of Cycles ]

sre bit.Rn | bitAn | [An] base:8 | bit,base:8| base:16 |bit,base:16 bit base:16
[An] [SB/FB] [An] [SB]
Bytes/Cycles 3/3 3/3 217 37 3/4 417 4/4 4/4

BNOT

(1) BNOT:G dest

b7 b0 b7 b0 dest code
011 1/1 1101 01 0] DEST |, dsps |
l....dsp16 |

dest DEST dest DEST
bit,RO 000O _ base:8[A0] 1000
bit R bit,R1 0001 |P2 AN McesAll (1001
bit,R2 0 0 1 0| bit,base:8 bit,base:8[SB] (1010
bit,R3 001 1|[SBIFB] bit,base:8[FB] |10 1 1
- bit,AO 0100 base-L6[AT] base:16[A0] |1100
’ bit,A1 0101 base:16[A1] (1101
An] [AO] 0 1 1 0 |bit,base:16[SB]| bit,base:16[SB][1 1 1 0
[A1] 011 1 |bitbase:16 bit,base:16 1111

[ Number of Bytes/Number of Cycles ]

dest bit.RN | bitAn | [An] base:8 | bit,base:8| base:16 | bit,base:16 bit base:16
[An] [SB/FB] [An] [SB]
Bytes/Cycles 3/2 3/2 2/6 3/6 3/3 4/6 4/3 4/3
Rev.2.00 Oct17,2005 page 154 of 263 XENESAS

REJ09B0001-0200



Chapter 4 Instruction Codes/Number of Cycles 4.2 Instruction Codes/Number of Cycles

BNOT
(2) BNOT:S bit, base:11[SB]

b7 po destcode

0|1|0.1 0 IBITI dsp8

[ Number of Bytes/Number of Cycles ]
Bytes/Cycles 2/3

BNTST

(1) BNTST src

b7 bo b7 bo src code
O|1|1|1 1|1|1|O 0|O|1|1 ISF\I’CI dSES
[, 95016, ]
src SRC src SRC

bit,RO 0000 _ base:8[A0] 1000
bit R bit,R1 0001 | 8AN McesAll (1001
bit,R2 0 0 1 0] bit,base:8 bit,base:8[SB] ({1010
bit,R3 0011][SB/FB] bit,base:8[FB] (1011
it An bit, AO 0100 base:16[An] base:16[A0] (1100
' bit,A1 0101 base:16[A1] [(1101
ANl [AO] 0 1 1 0 |bit,pase:16[SB]| bit,base:16[SB][1 1 1 0
[Al] 01 11]bitbase:16 bit,base:16 1111

[ Number of Bytes/Number of Cycles ]

src bitRn | bitAn| [an) | Pase:8 |Pitbase:8| base:l6 \bitbase:l6| . oco g
[An] [SB/FB] [An] [SB]
Bytes/Cycles | 3/3 | 313 | 2/7 3/7 3/4 417 4/4 414
Rev.2.00 Oct 17,2005 page 155 of 263 RENESAS

REJ09B0001-0200



Chapter 4 Instruction Codes/Number of Cycles 4.2 Instruction Codes/Number of Cycles

BNXOR

(1) BNXOR src

b7 b0 b7 b0 src code
0|1|1|1 1|1|1|0 1|1|0|1 ISF\I’CI dSE8
[, 95016, ]
src SRC src SRC

bit,RO 0000 _ base:8[A0] 1000
bit R bit,R1 0001 |P28AN McesAll (1001
bit,R2 0 0 1 0| bit,base:8 bit,base:8[SB] (1010
bit,R3 0011][SB/FB] bit,base:8[FB] (1011
bit AN bit,AQ 0100 base-16[An] base:16[A0] [1100
’ bit, Al 0101 base:16[A1] (1101
[An] [AQ] 0 1 1 0 | bit,base:16[SB]| bit,base:16[SB]{1 1 1 0
[Al] 011 1 |]bit,base:16 bit,base:16 1111

[ Number of Bytes/Number of Cycles ]

sre bit.Rn | bitAn | [An] base:8 | bit,base:8| base:16 |bit,base:16 bit base:16
[An] [SB/FB] [An] [SB]
Bytes/Cycles 3/3 3/3 217 3/7 3/4 af7 4/4 4/4

BOR

(1) BOR src

b7 b0 b7 b0 src code
0|1|1|1 1|1|1|0 O|1|1|0 ISF\I’CI dSE8
[, 9506, ]
src SRC src SRC

bit,RO 000O _ base:8[A0] 1000
bit R bit,R1 0001 |P2 AN McesAll (1001
bit,R2 0 0 1 0| bit,base:8 bit,base:8[SB] (1010
bit,R3 0011|[SB/FB] bit,base:8[FB] (1011
, bit,AO 0100 base:16[A0] (1100
bit,An biLAL 0101 |PsebAN  seTeA 1101
(A [AO] 0 1 1 0 |bit,base:16[SB]| bit,pase:16[SB][1 1 1 0
[A1] 011 1 |bitbase:16 bit,base:16 1111

[ Number of Bytes/Number of Cycles ]

: i : 1 i 1
ore bitRn | bitAn | [An] base:8 | bit,base:8| base:16 |bit,base:16 bit base:16
[An] [SB/FB] [An] [SB]
Bytes/Cycles 3/3 3/3 217 3/7 3/4 a7 4/4 4/4
Rev.2.00 Oct 17,2005 page 156 of 263 XENESAS

REJ09B0001-0200



Chapter 4 Instruction Codes/Number of Cycles 4.2 Instruction Codes/Number of Cycles

BRK

(1) BRK
b7 b0
0|O|0|0 0|0|0|0

[ Number of Bytes/Number of Cycles ]

Bytes/Cycles 1/27

« If the target address of the BRK interrupt is specified using the interrupt table register (INTB), the
number of cycles shown in the table increases by two. In this case, set FFi16 in addresses FFFE416
through FFFE716.

BSET

(1) BSET:G dest

b7 b0 b7 b0 dest code
0|1|1|1 1|1|1|0 1|0|O|1 |DE|ST| dsE8
[....9016,, |

dest DEST dest DEST
bit,RO 0000 _ base:8[A0] 1000
bit R bit,R1 0001 | 8AN McesAll (1001
bit,R2 0 0 1 0] bit,base:8 bit,base:8[SB] ({1010
bit,R3 0011][SB/FB] bit,base:8[FB] (1011
it An bit, AO 0100 base:16[An] base:16[A0] (1100
' bit,A1 0101 base:16[A1] [(1101
ANl [AO] 0 1 1 0 |bit,pase:16[SB]| bit,base:16[SB][1 1 1 0
[Al] 01 11]bitbase:16 bit,base:16 1111

[ Number of Bytes/Number of Cycles ]

dest bitRn | bitAn | [An] base:8 | bit,base:8 | base:16 |bit,base:16 bit base:16
[An] | [SB/FB] [An] [SB]
Bytes/Cycles | 3/2 | 32 | 2/6 3/6 313 416 413 413
Rev.2.00 Oct 17,2005 page 157 of 263 RENESAS

REJ09B0001-0200



Chapter 4 Instruction Codes/Number of Cycles 4.2 Instruction Codes/Number of Cycles

BSET
(2) BSET:S bit, base:11[SB]
b7 po destcode

0|1|0|0 1 IBITI dsp8

[ Number of Bytes/Number of Cycles ]

Bytes/Cycles 2/3

BTST

(1) BTST:G src

b7 b0 b7 b0 src code
0|1|1.1 1|1|1|0 1|0|1|1 .SR.C. dsES
[, 95016, ]
src SRC src SRC
bit,RO 0000 base:8[AN] base:8[A0] 1000
bitRN bit,R1 0001 | base:8[A1l] 1001
bit,R2 0 0 1 0| bit,base:8 bit,base:8[SB] (1010
bit,R3 0011|[SB/FB] bit,base:8[FB] (1011
, bit, A0 0100 base:16[A0] (1100
bit,An biLAL 0101 |PsebAN  seTeA 1101
(An] [AO] 0 1 1 0 |bit,base:16[SB]| bit,base:16[SB](1 1 1 0
[A1] 011 1 |bitbase:16 bit,base:16 1111

[ Number of Bytes/Number of Cycles ]

ore bitRn | bitAn | [An] base:8 | bit,base:8| base:16 |bit,base:16 bit base:16
[An] [SB/FB] [An] [SB]
Bytes/Cycles 3/2 3/2 2/6 3/6 3/3 4/6 4/3 4/3
Rev.2.00 Oct 17,2005 page 158 of 263 XENESAS

REJ09B0001-0200



Chapter 4 Instruction Codes/Number of Cycles 4.2 Instruction Codes/Number of Cycles
(2) BTST:S bit, base:11[SB]
b7 bo Srccode
010 11| BIT dsps8
[ Number of Bytes/Number of Cycles ]
Bytes/Cycles 2/3
(1) BTSTC dest dest code
b7 b0 b7 bo
dsp8
011 1{1 11 0J0 00O DEST
| | | | | | | | | | | |
|IIIIIQ$FI)JI-6IIIIII
dest DEST dest DEST
bit,RO 0000 e BIA base:8[A0] 1000
R bit,R1 0001 | 8AN McesAll (1001
' bit,R2 0 0 1 0 | bit,base:8 bit,base:8[SB] {1010
bit,R3 001 1][SB/FB] bit,base:8[FB] {101 1
bit A bit,AQ 0100 base: 16[AN] base:16[A0] (1100
yAN - ase: n
' bit AL 0101 base16[Al] |1101
(An] [A0] 0 1 1 0 |bit,base:16[SB]| bit,base:16[SB]|1 1 1 0
[Al] 01 11]bitbase:16 bit,base:16 1111
[ Number of Bytes/Number of Cycles ]
: i : 1 i 1
dest bitRn | bitAn | [an | P3S€:8 |bitbase:8 | base:l6 bitbase:d6| n oo 16
[An] [SB/FB] [An] [SB]
Bytes/Cycles 3/3 | 3/3 217 317 3/4 417 4/4 4/4
Rev.2.00 Oct17,2005 page 159 of 263 RENESAS

REJ09B0001-0200



Chapter 4 Instruction Codes/Number of Cycles 4.2 Instruction Codes/Number of Cycles

BTSTS

(1) BTSTS  dest

b7 b0 b7 b0 dest code
0|1|1|1 1|1|1|0 0|0|0|1 |DE.ST. dsE8
[, 95016, ]

dest DEST dest DEST
bit,RO 0000 _ base:8[A0] 1000
bit R bit,R1 0001 |P28AN McesAll (1001
bit,R2 0 0 1 0| bit,base:8 bit,base:8[SB] (1010
bit,R3 0011][SB/FB] bit,base:8[FB] (1011
bit An bit,AO 0100 base-L6[An] base:16[A0] [1100
bit,Al 0101 base:16[Al] 1101
[An] [AQ] 0 1 1 0 | bit,base:16[SB]| bit,base:16[SB]{1 1 1 0
[Al] 011 1 |]bit,base:16 bit,base:16 1111

[ Number of Bytes/Number of Cycles ]

dest bitRn | bitAn | [An] base:8 | bit,base:8| base:16 |bit,base:16 bit base:16
[An] [SB/FB] [An] [SB]
Bytes/Cycles 3/3 3/3 217 3/7 3/4 a7 4/4 4/4

BXOR

(1) BXOR  src

b7 b0 b7 b0 src code
0|1|1.1 1|1|1|0 1|1|0|0 .SR.C. dsES
[, 95016, ]
src SRC src SRC

bit,RO 000O _ base:8[A0] 1000
bit R bit,R1 0001 |P2 AN McesAll (1001
bit,R2 0 0 1 0| bit,base:8 bit,base:8[SB] (1010
bit,R3 0011|[SB/FB] bit,base:8[FB] (1011
it An bit, A0 0100 base-16[An] base:16[A0] (1100
’ bit,A1 0101 base:16[A1] (1101
(An] [AO] 0 1 1 0 |bit,base:16[SB]| bit,base:16[SB](1 1 1 0
[A1] 011 1 |bitbase:16 bit,base:16 1111

[ Number of Bytes/Number of Cycles ]

: i : 1 i 1
sre bit.Rn | bitAn | [An] base:8 |bit,base:8 | base:16 |bit,base:16 bit base:16
[An] [SB/FB] [An] [SB]
Bytes/Cycles 3/3 3/3 217 3/7 3/4 417 4/4 4/4
Rev.2.00 Oct 17,2005 page 160 of 263 XENESAS

REJ09B0001-0200



Chapter 4 Instruction Codes/Number of Cycles 4.2 Instruction Codes/Number of Cycles

CMP

(1) CMP.size:G  #IMM, dest

b7 b0 b7 bo dest code
011 1/0 1 1[SEf1 0 0 0| DEST dsp8
|, dspi6labsie | [ [,  #MM16
size | SIZE | dest DEST dest DEST
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An] -
W 1 Rn ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
A0 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(A [AQ] 0110 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111 ]absl6 abs16 1111
[ Number of Bytes/Number of Cycles ]
dest Rn An [An] | dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB] abs16
Bytes/Cycles | 3/2 3/2 3/4 4/4 4/4 5/4 5/4 514

« If the size specifier (.size) is (.W), the number of bytes indicated is increased by 1.

Rev.2.00 Oct 17,2005 page 161 of 263 RENESAS
REJ09B0001-0200



Chapter 4

Instruction Codes/Number of Cycles

4.2 Instruction Codes/Number of Cycles
(2) CMP.size:Q  #IMM, dest
b7 b0 b7 b0 dest code
11 0 1{0 O O|SIE IMM4 DEST
| | | | | | | | | | | I—'—EEBE'—'J
., dsp16/abs16
size | SIZE | #IMM | IMM4 [ #IMM | IMM4
.B 0 0 0000} -8 1000
W 1 +1 o001 -7 1001
+2 0010} -6 1010
+3 0011} -5 1011
+4 0100f -4 1100
+5 0101] -3 1101
+6 01104 -2 1110
+7 0111} -1 1111
dest DEST dest DEST
ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An]
Rn ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:B[SBIFE] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
AO 0100 dsp:16[A0 1100
An dsp:16[An] p:16[A0]
Al 0101 dsp:16[A1] 1101
(An] [AO] 01 10|dsp:16[SB] dsp:16[SB] 1110
[Al] 0111]absi6 abs16 1111
[ Number of Bytes/Number of Cycles ]
dest Rn An [An] |dsp:8[An] |dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB] | abs16
Bytes/Cycles | 2/1 2/1 2/3 3/3 3/3 4/3 4/3 4/3
Rev.2.00 Oct17,2005 page 162 of 263 RENESAS

REJ09B0001-0200



(3) CMP.B:S #IMMS8, dest

Chapter 4

Instruction Codes/Number of Cycles

4.2

b7 b0 dest code
#IMM8
111 00| DEST
dest DEST
ROH 011
Rn
ROL 100
dsp:g[se/Fg] |4SP-8[SEl 101
dsp:8[FB] 110
abs16 abs16 111
[ Number of Bytes/Number of Cycles ]
dest Rn dsp:8[SB/FB] abs16
Bytes/Cycles 2/1 3/3 4/3
Rev.2.00 Oct17,2005 page 163 of 263 RENESAS

REJ09B0001-0200

Instruction Codes/Number of Cycles

CMP



Chapter 4 Instruction Codes/Number of Cycles 4.2 Instruction Codes/Number of Cycles

(4) CMP.size:G  src, dest
b7 b0 b7 b0 src code dest code
110 0/0 0 O[SE[] SRC, DEST dsp8
., dsp16/absi6 | [\ [, dspi6labsie |
'Size | SIZE | src/dest SRC/DEST src/dest SRC/DEST
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An] -
W 1 Rn ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
A0 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(A [AQ] 011 0|dsp:16[SB] dsp:16[SB] 1110
[A1] 0111 ]absl6 abs16 1111
[ Number of Bytes/Number of Cycles ]
src dest Rn An [An] | dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| absl6
Rn 2/2 2/2 2/3 3/3 3/3 4/3 4/3 4/3
An 2/2 2/2 2/3 3/3 3/3 4/3 4/3 4/3
[An] 2/3 2/3 2/4 3/4 3/4 4/4 4/4 4/4
dsp:8[An] 33 | 33 3/4 414 4/4 5/4 5/4 5/4
dsp:8[SB/FB]} 3/3 3/3 3/4 4/4 4/4 5/4 5/4 5/4
dsp:16[An] 4/3 4/3 4/4 5/4 5/4 6/4 6/4 6/4
dsp:16[SB] 4/3 4/3 4/4 5/4 5/4 6/4 6/4 6/4
abs16 4/3 4/3 4/4 5/4 5/4 6/4 6/4 6/4
Rev.2.00 Oct17,2005 page 164 of 263 XENESAS

REJ09B0001-0200



Chapter 4 Instruction Codes/Number of Cycles 4.2 Instruction Codes/Number of Cycles

(5) CMP.B:S src, ROL/ROH
b7 bo src code
0 0,1 1]1ESRC |, dsp8,|
| 11 11 IiapSI]I-BII 11 11 |
src SRC dest DEST
Rn ROL/ROH 0 O ROL 0
dsp:8[SB/FB] |9SP-8[SB] 0 1 ROH 1
dsp:8[FB] 1 0
abs16 absl16 1 1
[ Number of Bytes/Number of Cycles ]
src Rn dsp:8[SB/FB] abs16
Bytes/Cycles 1/2 2/3 3/3

DADC

(1) DADC.B #IMM8, ROL
b7 b0 b7 b0
O|1|1|1 1|1|O|O 1|1|1|0 1|1|1|0 #IMM8

[ Number of Bytes/Number of Cycles ]

Bytes/Cycles 3/5

Rev.2.00 Oct 17,2005 page 165 of 263 RENESAS
REJ09B0001-0200



Chapter 4 Instruction Codes/Number of Cycles

4.2 Instruction Codes/Number of Cycles

DADC

(2) DADC.W #IMM16, RO
b7 b0 b7
011 1[1 1011110

1110
|

[ Number of Bytes/Number of Cycles ]

Bytes/Cycles 4/5

DADC
(3) DADC.B ROH, ROL

b7

b0 b7

b0

0111
| |

1100
| |

1 110
| |

0110
| —|

[ Number of Bytes/Number of Cycles ]

Bytes/Cycles

2/5

Rev.2.00 Oct 17,2005 page 166 of 263

REJ09B0001-0200

RENESAS



Chapter 4

Instruction Codes/Number of Cycles

(4) DADC.W R1, RO

b7

b0 b7

b0

0111
|

110
[

1 1|1|1|0

0110

[ Number of Bytes/Number of Cycles ]

Bytes/Cycles

2/5

(1) DADD.B #IMM8, ROL

b7

b0 b7

b0

0111
|

1|1|0|O 1|1|1|0

1100
|

[ Number of Bytes/Number of Cycles ]

Bytes/Cycles

3/5

Rev.2.00 Oct 17,2005 page 167 of 263
REJ09B0001-0200

#IMM8

RENESAS

4.2 Instruction Codes/Number of Cycles

DADC

DADD




Chapter 4 Instruction Codes/Number of Cycles

4.2 Instruction Codes/Number of Cycles

DADD

(2) DADD.W #IMM16, RO
b7 b0 b7
0111|110 1|1 110

1100
|

[ Number of Bytes/Number of Cycles ]
4/5

Bytes/Cycles

DADD
(3) DADD.B  ROH, ROL

b7

b0 b7

b0

0111
|

1100
|

1110
|

0|1|0|0

[ Number of Bytes/Number of Cycles ]

Bytes/Cycles

2/5

Rev.2.00 Oct 17,2005 page 168 of 263 XENESAS

REJ09B0001-0200



[ Number of Bytes/Number of Cycles ]

Chapter 4 Instruction Codes/Number of Cycles
(4) DADD.W R1, RO
b7 b0 b7 b0
011111011 1100100
[ Number of Bytes/Number of Cycles ]
Bytes/Cycles 2/5
(1) DEC.B  dest
b7 b0 dest code
10 1 0|1]| DEST dsp8
|Illlliatl)SI]I-6llllll|
dest DEST
ROH 011
Rn
ROL 100
dsp:8[sa/Fp] | 9SP-8[SEl 101
dsp:8[FB] 110
abs16 abs16 111

dest Rn dsp:8[SB/FB] abs16
Bytes/Cycles 1/1 2/3 3/3
Rev.2.00 Oct17,2005 page 169 of 263 RENESAS

REJ09B0001-0200

Instruction Codes/Number of Cycles

DADD

DEC



Chapter 4 Instruction Codes/Number of Cycles 4.2 Instruction Codes/Number of Cycles

DEC

(2) DEC.W dest
b7 b0
111 1Es)0 1 0

dest DEST
AO 0
Al 1

[ Number of Bytes/Number of Cycles ]
Bytes/Cycles 1/1

DIV

(1) DIV.size #IMM

b7 b0 b7 b0
0|1|1|1 1|1|0 SlZEl.l.l.O 0.0 Io I1 #IMMS8
T
Size | SIZE |
.B 0
A 1

[ Number of Bytes/Number of Cycles ]

Bytes/Cycles 3/22

« |If the size specifier (.size) is (.\W), the number of bytes and cycles indicated are increased by 1 and 6,
respectively.

e The number of cycles may decrease if an overflow occurs or depending on the value of the divisor or
dividend.

Rev.2.00 Oct 17,2005 page 170 of 263 XENESAS
REJO9B0001-0200



Chapter 4 Instruction Codes/Number of Cycles 4.2 Instruction Codes/Number of Cycles

(2) DIV.size src
b7 bo b7 bo src code
O|1|1.1 O|1|1 S|ZE1|1|0|1 ISF\I’CI d5E8
., dsp16/absi6 , |
size | SIZE | src SRC src SRC
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An] -
W 1 Rn ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:B[SBIFE] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
AO 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(A [AQ] 0110 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111 ]absl6 abs16 1111
[ Number of Bytes/Number of Cycles ]
src Rn An [An] | dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| absl6

Bytes/Cycles | 2/22 | 2/22 | 2/24 3/24 3/24 4/24 4/24 4/24

« If the size specifier (.size) is (.\W), the number of cycles indicated is increased by 6.
« The number of cycles may decrease if an overflow occurs or depending on the value of the divisor or

dividend. D IVU

(1) DIVU.size #IMM

b7 b0 b7 b0
0.1.1.1 1.1.OS|ZE1.1.1.0 O.O.O.O #IMM8
L
Size | SIZE |
.B 0
W 1

[ Number of Bytes/Number of Cycles ]

Bytes/Cycles 3/18

* The number of cycles may decrease if an overflow occurs or depending on the value of the divisor or
dividend.

« If the size specifier (.size) is (W), the number of bytes and cycles indicated are increased by 1 and 7,
respectively.

Rev.2.00 Oct 17,2005 page 171 of 263 RENESAS
REJ09B0001-0200



Chapter 4 Instruction Codes/Number of Cycles 4.2 Instruction Codes/Number of Cycles

(2) DIVU.size src
b7 bo b7 bo src code
0|1|1.1 O|1|18IZE1|1|0|0 ISF\I’CI dSE8
., dsp16/absi6 , |
size | SIZE | src SRC src SRC
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An] -
W 1 Rn ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:B[SBIFE] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
AO 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(A [AQ] 01 10 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111 ]absl6 abs16 1111
[ Number of Bytes/Number of Cycles ]
src Rn An [An] |dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| abs16
Bytes/Cycles | 2/18 | 2/18 | 2/20 3/20 3/20 4/20 4/20 4/20

« If the size specifier (.size) is (.\W), the number of cycles indicated is increased by 7.
e The number of cycles may decrease if an overflow occurs or depending on the value of the divisor or
dividend.

DIVX

(1) DIVX.size #IMM
b7 b0 b7 b0

0|1|1|1 1.1.OS|ZE1.1.1.0 0|0|1|1 #IMM8
L. fMMie
size | SIZE |
B 0
W 1
[ Number of Bytes/Number of Cycles ]
Bytes/Cycles 3/22
e The number of cycles may decrease if an overflow occurs or depending on the value of the divisor or
dividend.

« |If the size specifier (.size) is (.\W), the number of bytes and cycles indicated are increased by 1 and 6,
respectively.

Rev.2.00 Oct17, 2005 page 172 of 263 XENESAS
REJO9B0001-0200



Chapter 4 Instruction Codes/Number of Cycles 4.2 Instruction Codes/Number of Cycles

(2) DIVX.size src
b7 bo b7 bo src code
O|1|1.1 OI1|18IZE1IO .0.1 .SR.C. d5E8
., dsp16/absi6 , |
size | SIZE | src SRC src SRC
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An] -
W 1 Rn ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:B[SBIFE] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
AO 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(A [AQ] 0110 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111 ]absl6 abs16 1111
[ Number of Bytes/Number of Cycles ]
src Rn An [An] | dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| absl6
Bytes/Cycles | 2/22 | 2/22 | 2/24 3/24 3/24 4/24 4/24 4/24

« If the size specifier (.size) is (.W), the number of cycles indicated is increased by 6.
« The number of cycles may decrease if an overflow occurs or depending on the value of the divisor or

dividend. DSB B

(1) DSBB.B  #IMM8, ROL
b7 b0 b7 b0
Ollllll 1|1|0|O 1|1|1|O 1|1 |1 |1 #IMM8

[ Number of Bytes/Number of Cycles ]
Bytes/Cycles 3/4

Rev.2.00 Oct 17,2005 page 173 of 263 RENESAS
REJ09B0001-0200



Chapter 4 Instruction Codes/Number of Cycles

4.2 Instruction Codes/Number of Cycles

DSBB

(2) DSBB.W #IMM16, RO
b7 b0 b7
011 1/1 10 1|1 110

1111
|

[ Number of Bytes/Number of Cycles ]

Bytes/Cycles 4/4

DSBB
(3) DSBB.B ROH, ROL

b7

b0 b7

b0

0111
| |

1100
| |

1 110
| |

0111
| —|

[ Number of Bytes/Number of Cycles ]

Bytes/Cycles

2/4

Rev.2.00 Oct 17,2005 page 174 of 263

REJ09B0001-0200

RENESAS



Chapter 4

(4) DSBB.W
b7

Instruction Codes/Number of Cycles

R1, RO

b0 b7

b0

0111
|

1|1|0|1 1|1|1|0

0|1 I1 I1

[ Number of Bytes/Number of Cycles ]

Bytes/Cycles

2/4

(1) DSUB.B  #IMM8, ROL

b7

b0 b7

b0

0111
| |

1|1|0|O 1|1|1|0

1101
|

[ Number of Bytes/Number of Cycles ]

Bytes/Cycles

3/4

Rev.2.00 Oct 17,2005 page 175 of 263
REJ09B0001-0200

#IMM8

RENESAS

4.2 Instruction Codes/Number of Cycles

DSBB

DSUB




Chapter 4 Instruction Codes/Number of Cycles

4.2 Instruction Codes/Number of Cycles

DSUB

(2) DSUB.W #IMM16, RO
b7 b0 b7
011 1[1 10 1|1 110

1101
|

[ Number of Bytes/Number of Cycles ]

Bytes/Cycles 4/4

DSUB
(3) DSUB.B  ROH, ROL

b7

b0 b7

b0

0111
| |

1|1|0|0

1 110
| |

0|1|0|1

[ Number of Bytes/Number of Cycles ]

Bytes/Cycles

2/4

Rev.2.00 Oct 17,2005 page 176 of 263 XENESAS

REJ09B0001-0200



Chapter 4 Instruction Codes/Number of Cycles 4.2 Instruction Codes/Number of Cycles

DSUB

(4) DSUB.W R1, RO
b7 b0 b7 b0
Ollllll 1|1|0|1 1|1|1|O 0|1|0|1

[ Number of Bytes/Number of Cycles ]
Bytes/Cycles 2/4

ENTER

(1) ENTER  #IMM8

b7 b0 b7 b
0.1.1.1 1|1|0|0 1|1|1|1 0.0.1.0 #IMM8
[ Number of Bytes/Number of Cycles ]
Bytes/Cycles 3/4
Rev.2.00 Oct 17,2005 page 177 of 263 RENESAS

REJ09B0001-0200



Chapter 4 Instruction Codes/Number of Cycles 4.2 Instruction Codes/Number of Cycles

EXITD

(1) EXITD
b7 b0 b7 b0
0|1|1|1 1|1|0|1 1|1|1|1 0|0|1|0

[ Number of Bytes/Number of Cycles ]

Bytes/Cycles 2/9

EXTS

(1) EXTS.B dest

b7 b0 b7 b0 dest code
011 1[1 1000110 DEST |, dsps |
|, dsp16/absi6 |
dest DEST dest DEST
ROL oooof dsp:8[A0] 1000
o 0001 |dsPeAn dsp:8[AL] 1001
R1L 0010f oo dsp:8[SB] 1010
0011 dsp:8[FB] 1011
0100 dsp:16[A0 1100
dsp:16[An] p-16[A0]
0101 dsp:16[A1] 1101
A [AO] 0110|dsp:16[SB] |dsp:16[SB] |1110
[A1] 0111 |absl6 abs16 1111

» Items marked --- cannot be selected.

[ Number of Bytes/Number of Cycles ]

dest Rn [An] dsp:8[An] | dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB] | absl16
Bytes/Cycles 2/3 2/5 3/5 3/5 4/5 4/5 4/5
Rev.2.00 Oct17,2005 page 178 of 263 XENESAS

REJ09B0001-0200



Chapter 4

(2) EXTS.W
b7

Instruction Codes/Number of Cycles

RO
bo b7

b0

0111
|

1|1|0|O 1|1|1|1

0 011
|

Bytes/Cycles

2/3

(1) ECLR

b7

dest
b0 b7

[ Number of Bytes/Number of Cycles ]

b0

1110
| |

1 011
| —|

0

DEST

01 01
|

@)
m
()]

dest

Rl |lOjlO|O|O
Rk |O|lO|rR|F|O|O
R|O(R|O|R|O|FR|O]H

C|T|O|WmW|n|N|O

[ Number of Bytes/Number of Cycles ]

Bytes/Cycles

2/2

Rev.2.00 Oct 17,2005 page 179 of 263
REJ09B0001-0200

RENESAS

4.2

Instruction Codes/Number of Cycles

EXTS

FCLR




Chapter 4 Instruction Codes/Number of Cycles 4.2 Instruction Codes/Number of Cycles

FSET

(1) FSET dest
b7 bo b7 bo

1|1|1|0 1|0|1|1 0 DIES:I' 0|1|0|0
dest DEST
C 000
D 001
z 010
S 011
B 100
(0] 101
I 110
U 111

[ Number of Bytes/Number of Cycles ]

Bytes/Cycles 2/2

INC

(1) INC.B dest

07 bo dest code
101 00| DEST dsp8
|IIIII§pSIJI-6IIIIII
dest DEST
ROH 011
Rn
ROL 1 00
dsp:8[sa/Fp] | 9SP-8[SEl 101
dsp:8[FB] 110
abs16 abs16 111

[ Number of Bytes/Number of Cycles ]

dest Rn dsp:8[SB/FB] abs16
Bytes/Cycles 1/1 2/3 3/3
Rev.2.00 Oct 17,2005 page 180 of 263 RENESAS

REJ09B0001-0200



Chapter 4

Instruction Codes/Number of Cycles

(2) INC.W  dest
b7 b0
1|0|1|1 DESTOI1IO
dest DEST
A0 0
Al 1

[ Number of Bytes/Number of Cycles ]

Bytes/Cycles 1/1

(1) INT #IMM

b7 b0
1|1|1|0 1|0|1|1 L1 #IMM

[ Number of Bytes/Number of Cycles ]

Bytes/Cycles

2/19

Rev.2.00 Oct 17,2005 page 181 of 263

REJ09B0001-0200

RENESAS

4.2

Instruction Codes/Number of Cycles

INC

INT



Chapter 4 Instruction Codes/Number of Cycles 4.2 Instruction Codes/Number of Cycles

INTO

(1) INTO
b7 b0
1|1|1|1 0|1|1|0

[ Number of Bytes/Number of Cycles ]

Bytes/Cycles 1/1

 If the O flag = 1, the number of cycles indicated is increased by 19.

JCnd

(1) JdCnd label

b7 po label code

0|1|1|0 1| CND dsp8

| |
dsp8 = address indicated by label — (start address of instruction + 1)

cnd | CND cnd | CND |
GEU/C [0 0 OJLTUINC |1 0 O
GTU |0 0 1|LEU 101
EQ/z |0 1 O|NENZ [1 1 0
N 01 1|Pz 111

[ Number of Bytes/Number of Cycles ]

Bytes/Cycles 2/2
« If the program branches to a label, the number of cycles indicated is increased by 2.

Rev.2.00 Oct 17,2005 page 182 of 263 XENESAS
REJO9B0001-0200



Chapter 4 Instruction Codes/Number of Cycles 4.2 Instruction Codes/Number of Cycles

JCnd
(2) JCnd label
b7 bo b7 pbo label code
dsp8
O|1|1.1 1|1|0|1 1|1|0|0 ICI\IIDI S

dsp8 = address indicated by label — (start address of instruction + 2)

cnd | CND cnd | CND |
LE 1000|GT 1100
o 1001|NO 1101
GE 1010]LT 1110

[ Number of Bytes/Number of Cycles ]

Bytes/Cycles 3/2
« If the program branches to a label, the number of cycles indicated is increased by 2.

JMP

(1) IMP.S  label
b7 b0
0 . 1 . 1 IO 0 dsp

dsp = address indicated by label — (start address of instruction + 2)

[ Number of Bytes/Number of Cycles ]

Bytes/Cycles 1/5

Rev.2.00 Oct 17,2005 page 183 of 263 RENESAS
REJ09B0001-0200



Chapter 4 Instruction Codes/Number of Cycles 4.2 Instruction Codes/Number of Cycles

JMP
(2) JMP.B  label

b7 po label code
dsp8
1|1|1|1 1|1|1|0 P

dsp8 = address indicated by label — (start address of instruction + 1)

[ Number of Bytes/Number of Cycles ]

Bytes/Cycles 2/4

JMP

(3) IMP.W label

07 bo label code
111 10100 [, dp16 ]|

dspl6 = address indicated by label — (start address of instruction + 1)

[ Number of Bytes/Number of Cycles ]
Bytes/Cycles 3/4

Rev.2.00 Oct17,2005 page 184 of 263 XENESAS
REJO9B0001-0200



Chapter 4 Instruction Codes/Number of Cycles 4.2 Instruction Codes/Number of Cycles
(4) IMP.A label
b7 bo label code
1|1|1|1 1|1|0|O |IIIIIIIIIIIIIIIIIII
[ Number of Bytes/Number of Cycles ]
Bytes/Cycles 4/4
(1) IMPLLW  src
b7 bo b7 bo src code
011 1[1 10 1]0 01 0[] SRC |, dsp8 |
., dsp16/abs16 |
|IIIIIIIqSIFI)2I(I)IIIIIII|
src SRC src SRC
RO 0000 oI dsp:8[AQ] 1000
o R1 0001 |9sPlAn dsp:8[AL] 1001
R2 0010 dsp:8[SBIFB] dsp:8[SB] 1010
R3 0011 dsp:8[FB] 1011
A0 0100 dsp:20[A0] 1100
An dsp:20[An]
Al 0101 dsp:20[A1] 1101
(An] [AO] 01 10|dsp:16[SB] dsp:16[SB] 1110
[A1] 0111]absl6 abs16 1111
[ Number of Bytes/Number of Cycles ]
src Rn An [An] | dsp:8[An]|dsp:8[SB/FB]| dsp:20[An] | dsp:16[SB] | absl16
Bytes/Cycles | 2/7 | 2/7 | 2/11 3/11 3/11 5/11 4/11 4/11
Rev.2.00 Oct17,2005 page 185 of 263 RENESAS

REJ09B0001-0200



Chapter 4 Instruction Codes/Number of Cycles 4.2 Instruction Codes/Number of Cycles
(2) IMPILA  src
b7 bo b7 b0 src code
011 1[1 10 1fo 00 0] SrRC | dsp8_|
., dspi6/abse |
|IIIIIIIdI§FI)2IOIIIIIIII|
src SRC src SRC
R2R0O 0000 dsp:8[AQ] 1000
dsp:8[An] -
RN R3R1 0001 dsp:8[A1] 1001
0010 dsp:8[SBIFE] dsp:8[SB] 1010
0011 dsp:8[FB] 1011
0100 dsp:20[A0 1100
An ALAO dsp:20[An] p:20[A0]
0101 dsp:20[A1] 1101
(A [AO] 0110 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111]absl6 abs16 1111
« Items marked --- cannot be selected.
[ Number of Bytes/Number of Cycles ]
src Rn An [An] |dsp:8[An]|dsp:8[SB/FB]| dsp:20[An] | dsp:16[SB]| absl16
Bytes/Cycles | 2/6 2/6 2/10 3/10 3/10 5/10 4/10 4/10
Rev.2.00 Oct 17,2005 page 186 of 263 XENESAS

REJ09B0001-0200




C

hapter 4

(1) JISR.W

b7

Instruction Codes/Number of Cycles

label
bo

label code

1111
|

0101
|

dspl16 = address indicated by label — (start address of instruction + 1)

dsplB

[ Number of Bytes/Number of Cycles ]

Bytes/Cycles 3/8

(2) JSR.A  label

b7 b0 label code
1|1I1I1 1|1|0|1 |IIIIIII??§%QIIIIIII

[ Number of Bytes/Number of Cycles ]

Bytes/Cycles

4/9

Rev.2.00 Oct 17,2005 page 187 of 263

REJ09B0001-0200

RENESAS

Instruction Codes/Number of Cycles

JSR

JSR



Chapter 4 Instruction Codes/Number of Cycles 4.2 Instruction Codes/Number of Cycles

JSRI

(1) JSRIL.W  src

b7 b0 b7 b0 src code
011 1/1 10 1J0o 01 1| SRC dsps
|, Osp16/absi6 |
|Illllllg§plzl(l)lllllll|
src SRC src SRC
RO 0000 R dsp:8[AQ] 1000
o R1 000 1|dsPeAN dsp:8[AL] 1001
R2 0010 dsp-8[SB/FE] dsp:8[SB] 1010
R3 0011 dsp:8[FB] 1011
A0 0100 dsp:20[A0 1100
An dsp:20[An] p:20[A0]
Al 0101 dsp:20[A1] 1101
(An] [AO] 011 0 |dsp:16[SB] dsp:16[SB] 1110
[Al] 0111]absi6 abs16 1111
[ Number of Bytes/Number of Cycles ]
src Rn An [An] |dsp:8[An]|dsp:8[SB/FB]| dsp:20[An] | dsp:16[SB]| absl16
Bytes/Cycles | 2/11 | 2/11 | 2/15 3/15 3/15 5/15 4/15 4/15
(2) JSRILA  src
b7 bo b7 b0 src code
011 1[1 10 1]0 00 1] SRC | dsp8_ |
., Osp16/absi6 |
|Illllllg§plzl(l)lllllll|
src SRC src SRC
R2R0 0000 dsp:8[AQ] 1000
dsp:8[An] -
an R3R1 0001 dsp:8[A1] 1001
0010 dsp8[SBIFE] dsp:8[SB] 1010
0011 dsp:8[FB] 1011
A1AO 0100 dsp:20[A0] 1100
An dsp:20[An]
0101 dsp:20[A1] 1101
[An] [AQ] 0110 |]dsp:16[SB] dsp:16[SB] 1110
[A1] 0111 |absl6 abs16 1111

» |tems marked --- cannot be selected.

[ Number of Bytes/Number of Cycles ]

src Rn An [An] |dsp:8[An]|dsp:8[SB/FB]| dsp:20[An] | dsp:16[SB]| absl16
Bytes/Cycles | 2/11 | 2/11 | 2/15 3/15 3/15 5/15 4/15 4/15
Rev.2.00 Oct 17,2005 page 188 of 263 XENESAS

REJ09B0001-0200



Chapter 4 Instruction Codes/Number of Cycles 4.2 Instruction Codes/Number of Cycles

LDC

(1) LDC #IMM16, dest
b7 b0 b7 b0
111010 1 1Jo| DEST [0 0 O Of |, #MMIE

@)
m
()]

OolrRr|lOo|rRr|O|Fr|O] H

dest

INTBL
INTBH
FLG
ISP
SP

SB

FB 111
« Items marked --- cannot be selected.

RP|IRP|IPIOO|O|O
RP|O|O|FR|FL|O|O

[ Number of Bytes/Number of Cycles ]

Bytes/Cycles 4/2
(2) LDC src, dest
b7 bo b7 bo src code
011 1|1 0 1 01| DEST SRC dsp8
., dsp16/absie |
src SRC src SRC dest DEST
RO 0000 dsp:8[AQ] 1000} |- 000
dsp:8[An]
R R1 0001 dsp:8[A1] |1001] |INTBL 001
1 .

R2 0010 dsp:8[SB/FB] dsp:8[SB] 1010] |INTBH 010
R3 0011 dsp:8[FB] [1011] |FLG 011
A0 0100 :16[A 1100} ISP 100

An dsp:16[An] dsp:16[A0] S
Al 0101 dsp:16[A1] |1101] |sP 101

(An [AO] 0110 |dsp:16[SB] |dsp:16[SB] |1110| |sSB 110
[A1] 0111 |absl6 abs16 1111] |FB 111

« Items marked --- cannot
be selected.
[ Number of Bytes/Number of Cycles ]
src Rn An [An] |dsp:8[An] |dsp:8[SB/FB]| dsp:16[An] | dsp:16[SB]| abs16
Bytes/Cycles 2/1 2/1 2/3 3/3 3/3 4/3 4/3 4/3

Rev.2.00 Oct 17,2005 page 189 of 263 RENESAS
REJ09B0001-0200



Chapter 4 Instruction Codes/Number of Cycles 4.2 Instruction Codes/Number of Cycles

LDCTX

(1) LDCTX absl6, abs20
b7 b0 b7 b0
011 1[1 1001 11100 00 of [, a6 | | abs20

[ Number of Bytes/Number of Cycles ]

Bytes/Cycles | 7/11+2Xm
* m denotes the number of transfers to be performed.

Rev.2.00 Oct 17,2005 page 190 of 263 XENESAS
REJO9B0001-0200



Chapter 4 Instruction Codes/Number of Cycles 4.2 Instruction Codes/Number of Cycles

LDE

(1) LDE.size abs20, dest

b7 bo b7 bo dest code src code
dsp8 abs20
011 1[0 1 ofs#]1 0 0 0| DEST sp Lo...,,3020
.. dsp16/absi6 , |
'size | SIZE | dest DEST dest DEST
B | 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An] -
W | 1 &N ROH/R1 0001 dsp:8[A1] 1001
RI1L/R2 0010|,  ersarg | IsPEISEl 1010
R1H/R3 0011 dsp:8[FB] 1011
AO 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] [1101
(An] [AO] 0110]|dsp:16[SB] |dsp:16[SB] (1110
[A1] 0111 ]absl6 abs16 1111

[ Number of Bytes/Number of Cycles ]

dest Rn An [An] | dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| absl6
Bytes/Cycles | 5/4 5/4 5/5 6/5 6/5 7/5 715 7/5
(2) LDE.size dsp:20[AO0], dest
b7 bo b7 bo dest code src code
Ollllll OI1IOS|ZE1IOIOI1 IDEISTI |_I_IC_1I§E§I_I_’ |Illllll(iislrl)2|9|||llll|
., dsp16/absi6 , |
size | SIZE | dest DEST dest DEST
.B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An] -
W 1 RN ROH/R1 0001 dsp:8[A1l] 1001
R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
A0 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(An] [AQ] 011 0|]dsp:16[SB] dsp:16[SB] 1110
[Al] 0111]absi6 abs16 1111

[ Number of Bytes/Number of Cycles ]

dest Rn An [An] |dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB] | abs16
Bytes/Cycles | 5/4 | 5/4 | 5/5 6/5 6/5 7/5 715 715
Rev.2.00 Oct17,2005 page 191 of 263 RENESAS

REJ09B0001-0200



Chapter 4 Instruction Codes/Number of Cycles 4.2 Instruction Codes/Number of Cycles

(3) LDE.size [A1AQ], dest
b7 b0 b7 b0 dest code
0|1|1.1 0|1|OS|ZE1|0|1|0 |DE|ST| dSE8
., dsp16/absi6 , |
size | SIZE | dest DEST dest DEST
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An]
W 1 Rn ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
A0 0100 dsp:16[A0] 1100
An dsp:16[An]
Al 0101 dsp:16[A1] 1101
(An] [AO] 01 10|dsp:16[SB] dsp:16[SB] 1110
[Al] 0111]absi6 abs16 1111
[ Number of Bytes/Number of Cycles ]
dest Rn An [An] |dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| absl6
Bytes/Cycles | 2/4 2/4 2/5 3/5 3/5 4/5 4/5 4/5

LDINTB

(1) LDINTB  #IMM

b7 b0 b7 b0
111 0[10 1 1J0o, 0,1 0[0 000
0,000 #vmvML fo 00 0[0 0 00
111 0[10 1 1]0 00 1[0000
L L L L I#IlvllMZI L L L L

* #IMM1 indicates the 4 high-order bits of #IMM.
#IMM2 indicates the 16 low-order bits of #IMM.

[ Number of Bytes/Number of Cycles ]

Bytes/Cycles 8/4

Rev.2.00 Oct17,2005 page 192 of 263 XENESAS
REJO9B0001-0200



Chapter 4

Instruction Codes/Number of Cycles

4.2 Instruction Codes/Number of Cycles
(1) LDIPL #IMM
b7 b0 b7 b
0|1|1|1 1|1|0|1 1|0|1|0 0 #III\/IMI
[ Number of Bytes/Number of Cycles ]
Bytes/Cycles 2/2
(1) MOV.size:G  #IMM, dest
b7 bo b7 bo dest code
01 1 1]o 1 offt 10 0] DEST dsps
| 11 IdISPIJ-IG{aIt?SI]-IGI 11 | | 111 I#!MM]-IQ 1111
.size | SIZE dest DEST dest DEST
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An] -
W 1 RN ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
A0 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(AT [AQ] 0110 |dsp:16[SB] dsp:16[SB] 1110
[Al] 0111]absi6 abs16 1111
[ Number of Bytes/Number of Cycles ]
dest Rn An [An] | dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| absl6
Bytes/Cycles | 3/2 3/2 3/3 4/3 4/3 5/3 5/3 5/3

« |If the size specifier (.size) is (W), the number of bytes indicated is increased by 1.

Rev.2.00 Oct 17,2005 page 193 of 263

REJ09B0001-0200

RENESAS



Chapter 4 Instruction Codes/Number of Cycles 4.2 Instruction Codes/Number of Cycles

(2) MOV.size:Q #IMM, dest
b7 b0 b7 b0 dest code
1|1|0|1 1|O|O SIZE |IM'|VI4| |DE|ST| dSES
., dsp16labs16
size | SIZE | #IMM | IMM4 [ #IMM | IMM4
.B 0 0 0000] -8 1000
W 1 +1 0001} -7 1001
+2 0010] -6 1010
+3 0011} -5 1011
+4 0100] -4 1100
+5 0101} -3 1101
+6 0110} -2 1110
+7 0111] -1 1111
dest DEST dest DEST
ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An]
Rn ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:B[SBIFE] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
AO 0100 dsp:16[A0 1100
An dsp:16[An] p:16[A0]
Al 0101 dsp:16[A1] 1101
(An] [AO] 01 10|dsp:16[SB] dsp:16[SB] 1110
[Al] 0111]absi6 abs16 1111
[ Number of Bytes/Number of Cycles ]
dest Rn An [An] |dsp:8[An] |dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| abs16
Bytes/Cycles | 2/1 2/1 2/2 3/2 3/2 4/2 4/2 4/2

Rev.2.00 Oct17,2005 page 194 of 263 XENESAS
REJO9B0001-0200



Chapter 4

Instruction Codes/Number of Cycles

4.2

Instruction Codes/Number of Cycles

(3) MOV.B:S #IMM8, dest
b7 b0 dest code
0 0|0 | DEST #MM8
|IIIII?Ib§]I-6IIIIII
dest DEST
ROH 011
Rn
ROL 100
dsp:8[se/Fe] | 9SP-8[SE] 101
dsp:8[FB] 110
abs16 abs16 111
[ Number of Bytes/Number of Cycles ]
dest Rn dsp:8[SB/FB] abs16
Bytes/Cycles 2/1 3/2 4/2
Rev.2.00 Oct17,2005 page 195 of 263 RENESAS

REJ09B0001-0200



Chapter 4 Instruction Codes/Number of Cycles 4.2 Instruction Codes/Number of Cycles

(4) MOV.size:S  #IMM, dest
b7 b0
1S 1 OESTO 1 0 #IMM8
|IIII#”%M%QIIII
Ssize | SIZE | dest DEST
B 1 A0 0
W 0 Al 1

[ Number of Bytes/Number of Cycles ]

Bytes/Cycles 2/1
« If the size specifier (.size) is (W), the number of bytes and cycles indicated are increased by 1 each.

(5) MOV.B:Z #0, dest
07 bo dest code
101 10| DEST dsp8
|Illllgp§%§lllll
dest DEST
ROH 011
Rn
ROL 1 00
dsp:8[sa/Fp] | 9SP-8[SEl 101
dsp:8[FB] 110
abs16 abs16 111

[ Number of Bytes/Number of Cycles ]

dest Rn dsp:8[SB/FB] abs16
Bytes/Cycles 1/1 2/2 3/2
Rev.2.00 Oct 17,2005 page 196 of 263 RENESAS

REJ09B0001-0200



Chapter 4 Instruction Codes/Number of Cycles 4.2 Instruction Codes/Number of Cycles

(6) MOV.size:G  src, dest
b7 bo b7 bo src code dest code
01 1 1[0 o 1]sE] SRC DEST. dsp8
., dsp16/absi6 | [\ [, dspi6labsi6 |
size | SIZE | src/dest SRC/DEST src/dest SRC/DEST
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An] -
W | 1 &N ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp-8[SBIFE] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
A0 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(A [AO] 0110]|dsp:16[SB] | dsp:16[SB] 1110
[A1] 0111 ]absl6 abs16 1111
[ Number of Bytes/Number of Cycles ]
src destl Rn | An | [An] |dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| absi6
RN 22 | 22 | 212 312 312 4/2 4/2 4/2
An 22 | 212 | 212 312 312 412 4/2 412
[An] 23 | 213 | 23 313 313 4/3 4/3 4/3
dsp:8[An] 33 | 33 | 33 4/3 4/3 5/3 5/3 5/3
dsp:8[SB/FB]| 3/3 | 313 | 33 4/3 4/3 5/3 5/3 5/3
dsp:16[An] 43 | 43 | 43 5/3 5/3 6/3 6/3 6/3
dsp:16[SB] 43 | 43 | 43 5/3 5/3 6/3 6/3 6/3
abs16 43 | 43 | 43 5/3 5/3 6/3 6/3 6/3
Rev.2.00 Oct 17,2005 page 197 of 263 RENESAS

REJ09B0001-0200



Chapter 4 Instruction Codes/Number of Cycles 4.2 Instruction Codes/Number of Cycles

(7) MOV.B:S src, dest
b7 b0 src code
0I 0I 1I 1| O |DEST SRIC dsES
|IIIII?p§JI-6IIIIII|
Src SRC dest DEST
Rn ROL/ROH 0 O A0 0
: Al 1
dsp:8[SB/FB] | 9SP-8[SB] 0 1
dsp:8[FB] 1 0
abs16 abs16 1 1
[ Number of Bytes/Number of Cycles ]
src Rn dsp:8[SB/FB] abs16
Bytes/Cycles 1/2 2/3 3/3
(8) MOV.B:S ROL/ROH, dest
07 bo dest code
0.0.0.0 0 [SRC DEIST dsp8
|IIIII?pSIJI-6IIIIII|
src SRC dest DEST
'ROL 0 :
dsp:8[sB/F] | SP-8SEl 0 1
ROH 1 dsp:8[FB] 1 0
abs16 abs16 1 1
[ Number of Bytes/Number of Cycles ]
dest dsp:8[SB/FB] abs16
Bytes/Cycles 2/2 3/2
Rev.2.00 Oct 17,2005 page 198 of 263 XENESAS

REJ09B0001-0200



Chapter 4

Instruction Codes/Number of Cycles

REJ09B0001-0200

4.2 Instruction Codes/Number of Cycles
(9) MOV.B:S src, ROL/ROH
b7 b0 src code
OIOIOIO 1DESTSI|?C dsES
| 1111 |?t|)§]|-6|| 1111 |
src SRC dest DEST
Rn ROL/ROH 0 O ROL 0
: ROH 1
dsp:g[sB/FB] | 9SP-8[SB] 0 1 0
dsp:8[FB] 1 0
abs16 abs16 1 1
[ Number of Bytes/Number of Cycles ]
src Rn dsp:8[SB/FB] abs16
Bytes/Cycles 1/2 2/3 3/3
(10) MOV.size:G dsp:8[SP], dest
b7 b0 b7 ) dest code src code
dsp8
011 1[0 1 OfsE[1 0 1 1| DEST | dsps_|
., dsp16/absie |
.size | SIZE dest DEST dest DEST
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An] -
W 1 RN ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
A0 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(AT [AQ] 0110 |dsp:16[SB] dsp:16[SB] 1110
[Al] 0111]absi6 abs16 1111
[ Number of Bytes/Number of Cycles ]
dest Rn An [An] | dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| absl6
Bytes/Cycles 3/2 3/2 3/3 4/3 4/3 5/3 5/3 5/3
Rev.2.00 Oct17,2005 page 199 of 263 RENESAS



Chapter 4

Instruction Codes/Number of Cycles

4.2 Instruction Codes/Number of Cycles
(11) MOV.size:G src, dsp:8[SP]
b7 bo b7 bo src code dest code
011 1Jo 1 ofxEfo 0o 1 1] SRC dsp8
., dsp16/absi6 , |
size | SIZE | src SRC src SRC
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An] -
W 1 Rn ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:B[SBIFE] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
AO 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(A [AQ] 01 10 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111 ]absl6 abs16 1111
[ Number of Bytes/Number of Cycles ]
dest Rn An [An] |dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| absl6
Bytes/Cycles | 3/3 3/3 3/4 4/4 4/4 5/4 5/4 5/4
(1) MOVA  src, dest
b7 bo b7 bo src code
1|1|1|O 1|O|1|10 DIESIT ISBCI dSE8
|IIIIIqSIFI)]I-6IIIIII|
src SRC dest | DEST
dsp:8IA dsp:8[AQ] 1000 RO 00O
sp:8[An] dsp:8[AL] 1001 RL |0 0 1
dsp:8[SB/FB] dsp:8[SB] 1010 R2 010
dsp:8[FB] 1011 R3 011
dsp:16[A0 1100 100
dsp:16[An] p:16[A0] A0
dsp:16[A1] 1101 Al 101
dsp:16[SB] dsp:16[SB] 1110
abs16 abs16 1111
[ Number of Bytes/Number of Cycles ]
src dsp:8[An] |dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB] abs16
Bytes/Cycles 3/2 3/2 4/2 4/2 4/2
Rev.2.00 Oct 17,2005 page 200 of 263 XENESAS

REJ09B0001-0200




Chapter 4 Instruction Codes/Number of Cycles 4.2 Instruction Codes/Number of Cycles

MOV Dir

(1) MOVDir ROL, dest

b7 b0 b7 bo dest code
0.1.1.1 1|1|0|O 1|O DIIR |DE|ST| dSEB
|, dsp16/absi6 |
Dir DIR
LL 00
LH 10
HL 01
HH 11
dest DEST dest DEST
0000 o8I dsp:8[AQ] 1000
o ROH 000 1|9sPlAn dsp:8[AL] 1001
R1L 0010 dsp-B[SB/FE] dsp:8[SB] 1010
R1H 0011 dsp:8[FB] 1011
--- 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
0101 dsp:16[A1] 1101
(An] [AO] 0110 |dsp:16[SB] dsp:16[SB] 1110
[Al] 0111]absi6 abs16 1111

» Items marked --- cannot be selected.

[ Number of Bytes/Number of Cycles ]

dest Rn [An] dsp:8[An] | dsp:8[SB/FB]| dsp:16[An] | dsp:16[SB]| absl6
MOVHH, 214 25 3/5 3/5 415 415 4/5
MOVLL
MOVHL, 217 2/8 3/8 3/8 4/8 4/8 4/8
MOVLH
Rev.2.00 Oct 17,2005 page 201 of 263 RENESAS

REJ09B0001-0200



Chapter 4 Instruction Codes/Number of Cycles

4.2 Instruction Codes/Number of Cycles
MOV Dir
(2) MOVDir src, ROL
b7 bo b7 bo dest code
O|1|1|1 1|1|0|O 0.0 DIIR |SF\TC| d5E8
|, dsp16/absi6
Dir DIR
LL 00
LH 10
HL 01
HH 11
src SRC src SRC
ROL 0000 dsp:8[A0] 1000
dsp:8[An] -
Rn ROH 0001 dsp:8[A1] 1001
R1L 0010 dsp:8[SB/FB] dsp:8[SB] 1010
R1H 0011 dsp:8[FB] 1011
--- 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
0101 dsp:16[A1] 1101
(AT [AQ] 011 0|dsp:16[SB] dsp:16[SB] 1110
n
[Al] 0111]absi6 abs16 1111
» Items marked --- cannot be selected.
[ Number of Bytes/Number of Cycles ]
src Rn [An] dsp:8[An] | dsp:8[SB/FB]| dsp:16[An] | dsp:16[SB]| absl6
MOVHH, 2/3 2/5 3/5 3/5 4/5 4/5 4/5
MOVLL
MOVHL, 206 28 3/8 3/8 4/8 4/8 4/8
MOVLH
Rev.2.00 Oct 17,2005 page 202 of 263 XENESAS

REJ09B0001-0200




Chapter 4 Instruction Codes/Number of Cycles 4.2 Instruction Codes/Number of Cycles

MUL

(1) MUL.size #IMM, dest

b7 b0 b7 bo dest code
0,11 1|1 1 0[sEjo 1 0 1| DEST, dsp8
|, dspi6labsie | [ [,  #MM16
size | SIZE | dest DEST dest DEST
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An] -
W 1 Rn --- |R1 0001 dsp:8[A1] 1001
R1L/--- 0010 dsp:8[SB/FB] dsp:8[SB] 1010
0011 dsp:8[FB] 1011
A0 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
0101 dsp:16[A1] 1101
(A [AQ] 0110 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111 ]absl6 abs16 1111
* |tems marked --- cannot be selected.
[ Number of Bytes/Number of Cycles ]
dest Rn An [An] | dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB] abs16
Bytes/Cycles | 3/4 3/4 3/5 4/5 4/5 5/5 5/5 5/5

« If destis Rn or An and the size specifier (.size) is (\W), the number of bytes and cycles indicated are
increased by 1 each.

« |If destis neither Rn nor An and the size specifier (.size) is (\W), the number of bytes and cycles
indicated are increased by 1 and 2, respectively.

Rev.2.00 Oct 17,2005 page 203 of 263 RENESAS
REJ09B0001-0200



Chapter 4 Instruction Codes/Number of Cycles 4.2 Instruction Codes/Number of Cycles
(2) MUL.size src, dest
b7 b0 b7 bo src code dest code
01 1 1[1 0 ofsE] SRC DEST dsp8
., dspibiabsie | [\ |, dspl6/absi6 |
size | SIZE | src SRC src SRC
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An] -
W 1 RN ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
A0 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(A [AQ] 011 0|dsp:16[SB] dsp:16[SB] 1110
[A1] 0111 ]absl6 abs16 1111
dest DEST dest DEST
ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An]
Rn - |R1 0001 dsp:8[A1] 1001
R1L/--- 0010 dsp:B[SBIFE] dsp:8[SB] 1010
0011 dsp:8[FB] 1011
AO 0100 dsp:16[A0 1100
An dsp:16[An] sp-16[A0]
0101 dsp:16[A1] 1101
(An] [AO] 01 10|dsp:16[SB] dsp:16[SB] 1110
[Al] 0111]absl6 abs16 1111
» Items marked --- cannot be selected.
[ Number of Bytes/Number of Cycles ]
src sty Rn | An | [An] |dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| abs16
Rn 2/4 2/4 2/5 3/5 3/5 4/5 4/5 4/5
An 2/4 2/5 2/5 3/5 3/5 4/5 4/5 4/5
[An] 2/6 2/6 2/6 3/6 3/6 4/6 4/6 4/6
dsp:8[An] 3/6 3/6 3/6 4/6 4/6 5/6 5/6 5/6
dsp:8[SB/FB]| 3/6 | 3/6 3/6 416 416 5/6 5/6 5/6
dsp:16[An] 4/6 4/6 4/6 5/6 5/6 6/6 6/6 6/6
dsp:16[SB] 416 | 416 416 5/6 5/6 6/6 6/6 6/6
abs16 4/6 4/6 4/6 5/6 5/6 6/6 6/6 6/6

 If srcis An and dest is Rn and the size specifier (.size) is (.\W), the number of cycles indicated is increased by 1.
« If srcis not An and dest is Rn or An and the size specifier (.size) is (.\W), the number of cycles indicated is

increased by 1.

« If destis neither Rn nor An and the size specifier (.size) is (.\W), the number of cycles indicated is increased by 2.

Rev.2.00 Oct 17,2005 page 204 of 263
REJ09B0001-0200

RENESAS



Chapter 4 Instruction Codes/Number of Cycles 4.2 Instruction Codes/Number of Cycles

MULU

(1) MULU.size #IMM, dest

b7 b0 b7 b0 dest code
01 1 1[1 1 ofsw[o 1 0 o DEST dsps
|, Ospi6labsis [/ [, #MMi6 |
size | SIZE | dest DEST dest DEST
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An] -
W 1 Rn --- |R1 0001 dsp:8[A1] 1001
R1L/--- 0010 dsp:8[SB/FB] dsp:8[SB] 1010
0011 dsp:8[FB] 1011
AO 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
0101 dsp:16[A1] 1101
(A [AQ] 0110 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111 ]absl6 abs16 1111
¢ Items marked --- cannot be selected.
[ Numbera of Bytes/Number of Cycles ]
dest Rn An [An] | dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| absl6
Bytes/Cycles | 3/4 3/4 3/5 4/5 4/5 5/5 5/5 5/5

« If destis Rn or An and the size specifier (.size) is (\W), the number of bytes and cycles indicated are
increased by 1 each.

« If destis neither Rn nor An and the size specifier (.size) is (\W), the number of bytes and cycles
indicated are increased by 1 and 2, respectively.

Rev.2.00 Oct 17,2005 page 205 of 263 RENESAS
REJ09B0001-0200



Chapter 4

Instruction Codes/Number of Cycles

4.2 Instruction Codes/Number of Cycles
(2) MULU.size src, dest
b7 b0 b7 ) src code dest code
0,11 1[0 0 o[sE] SRC DEST dsp8
|, Ospi6/absie | [\ [, dsp16labsi6, |
size | SIZE | src SRC src SRC
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An] -
W 1 Rn ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:B[SBIFE] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
AO 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(A [AQ] 011 0|dsp:16[SB] dsp:16[SB] 1110
[A1] 0111 ]absl6 abs16 1111
dest DEST dest DEST
ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An]
Rn - |R1 0001 dsp:8[A1] 1001
R1L/--- 0010 dsp:B[SBIFE] dsp:8[SB] 1010
0011 dsp:8[FB] 1011
AO 0100 dsp:16[A0 1100
An dsp:16[An] sp-16[A0]
0101 dsp:16[A1] 1101
(An] [AO] 01 10|dsp:16[SB] dsp:16[SB] 1110
[Al] 0111]absi6 abs16 1111
* Items marked --- cannot be selected.
[ Number of Bytes/Number of Cycles ]
src destl 2n | An | [An] |dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| abs16
RN 2/4 2/4 2/5 3/5 3/5 4/5 4/5 4/5
An 2/4 2/5 2/5 3/5 3/5 4/5 4/5 4/5
[An] 2/6 2/6 2/6 3/6 3/6 4/6 4/6 4/6
dsp:8[An] 3/6 3/6 3/6 4/6 4/6 5/6 5/6 5/6
dsp:8[SB/FB]] 3/6 3/6 3/6 4/6 4/6 5/6 5/6 5/6
dsp:16[An] 4/6 4/6 4/6 5/6 5/6 6/6 6/6 6/6
dsp:16[SB] 4/6 4/6 4/6 5/6 5/6 6/6 6/6 6/6
abs16 4/6 4/6 4/6 5/6 5/6 6/6 6/6 6/6

« If srcis An and dest is Rn and the size specifier (.size) is (.\W), the number of cycles indicated is increased by 1.
« If srcis not An and dest is Rn or An and the size specifier (.size) is (.\W), the number of cycles indicated is

increased by 1.

« If destis neither Rn nor An and the size specifier (.size) is (.\W), the number of cycles indicated is increased by 2.

Rev.2.00 Oct 17,2005 page 206 of 263
REJ09B0001-0200

RENESAS



Chapter 4 Instruction Codes/Number of Cycles

4.2 Instruction Codes/Number of Cycles
(1) NEG.size dest
b7 b0 b7 b0 dest code
O|1|1|1 O|1|0 SIZEO|1|0|1 .DE|ST| d5E8
., dsp16/absie |
size | SIZE | dest DEST dest DEST
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An] -
W 1 RN ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:B[SBIFE] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
AO 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(A [AQ] 0110 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111 ]absl6 abs16 1111
[ Number of Bytes/Number of Cycles ]
dest Rn An [An] |dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB] | abs16
Bytes/Cycles | 2/1 2/1 2/3 3/3 3/3 4/3 4/3 4/3
(1) NOP
b7 b0
0I OI 0I 0 0I 1I O.O
[ Number of Bytes/Number of Cycles ]
Bytes/Cycles 1/1
Rev.2.00 Oct 17,2005 page 207 of 263 RENESAS

REJ09B0001-0200



Chapter 4 Instruction Codes/Number of Cycles

4.2 Instruction Codes/Number of Cycles
(1) NOT.size:G  dest
b7 b0 b7 bo dest code
011 1/0 1 Oo[SFJ0 1 1 1 DEST dsp8
| | | | | | | | | | |
., dsp16/absi6 |
size | SIZE | dest DEST dest DEST
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An] -
W 1 Rn ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:B[SBIFE] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
A0 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(A [AQ] 011 0|dsp:16[SB] dsp:16[SB] 1110
[A1] 0111 ]absl6 abs16 1111
[ Number of Bytes/Number of Cycles ]
dest Rn An [An] | dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| absl6
Bytes/Cycles | 2/1 2/1 2/3 3/3 3/3 4/3 4/3 4/3
(2) NOT.B:S dest
07 bo dest code
101 1|1| DEST dsp8
|IlllliapSI]I-6llllll|
dest DEST
ROH
R 011
ROL 100
dsp:8[sa/Fp] | 9SP-8[SEl 101
dsp:8[FB] 110
abs16 abs16 111
[ Number of Bytes/Number of Cycles ]
dest Rn dsp:8[SB/FB] abs16
Bytes/Cycles 1/1 2/3 3/3
Rev.2.00 Oct 17,2005 page 208 of 263 XENESAS

REJ09B0001-0200



Chapter 4

Instruction Codes/Number of Cycles

(2) OR.B:S #IMMS8, dest

[ Number of Bytes/Number of Cycles ]

b7 bo dest code
10 0 1] 1] DesT |[AMv8] |, dsps_ |
dest DEST

ROH 0 1 1
Rn

ROL 100
dsp:8[se/Fg] |94SP-8[SEl 101

dsp:8[FB] 110
abs16 abs16 111

dest Rn dsp:8[SB/FB] abs16
Bytes/Cycles 2/1 3/3 4/3
Rev.2.00 Oct17,2005 page 209 of 263 RENESAS

REJ09B0001-0200

4.2 Instruction Codes/Number of Cycles
(1) OR.size:G #IMM, dest
b7 b0 b7 b0 dest code
0 11 1]0 1 1[s&[o 0 1 1] DEST dsps
[ dsp1biabsi6 | [ |,  #MM16
size | SIZE | dest DEST dest DEST
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An] -
W 1 Rn ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:B[SBIFE] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
AO 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(A [AQ] 0110 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111 ]absl6 abs16 1111
[ Number of Bytes/Number of Cycles ]
dest Rn An [An] | dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| absl6
Bytes/Cycles | 3/2 3/2 3/4 4/4 4/4 5/4 5/4 5/4
« |If the size specifier (.size) is (W), the number of bytes indicated is increased by 1.




Chapter 4 Instruction Codes/Number of Cycles 4.2 Instruction Codes/Number of Cycles
(3) OR.size:G src, dest
b7 b0 b7 bo src code dest code
T 00 1]1 0 o] SRC DEST dsp8
| | | | | | | | | |
., dsp16/abs16 | [ \[,, dspi6labsie |
'Size | SIZE | src/dest SRC/DEST src/dest SRC/DEST
B 0 ROL/RO 0000 dsp:8[AQ] 1000
dsp:8[An] -
W 1 Rn ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:8[SBIFE] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
A0 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(An [AO] 0110 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111 ]absl6 abs16 1111
[ Number of Bytes/Number of Cycles ]
src destl Rn | An | [An] |dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| abs16
Rn 212 | 2/2 2/3 3/3 3/3 4/3 4/3 4/3
An 212 | 2/2 2/3 3/3 3/3 4/3 4/3 4/3
[An] 213 | 2/3 214 3/4 3/4 4/4 4/4 4/4
dsp:8[An] 3/3 | 33 3/4 4/4 4/4 5/4 5/4 5/4
dsp:8[SB/FB]| 3/3 | 3/3 3/4 4/4 4/4 5/4 5/4 5/4
dsp:16[An] 4/13 | 4/3 4/4 5/4 5/4 6/4 6/4 6/4
dsp:16[SB] 4/3 | 4/3 4/4 5/4 5/4 6/4 6/4 6/4
abs16 4/3 | 4/3 4/4 5/4 5/4 6/4 6/4 6/4
Rev.2.00 Oct17,2005 page 210 of 263 XENESAS

REJ09B0001-0200




Chapter 4

Instruction Codes/Number of Cycles

4.2 Instruction Codes/Number of Cycles
(4) OR.B:S src, ROL/ROH
h7 bo dest code
dsp8
olololl 1DESTSI|?C Sp
| 11 11 IialeI]I-BII 11 11 |
src SRC dest DEST
Rn ROL/ROH 0 O ROL 0
: ROH 1
dsp:g[sB/FB] | 9SP-8[SB] 0 1 0
dsp:8[FB] 1 0
abs16 abs16 1 1
[ Number of Bytes/Number of Cycles ]
src RN dsp:8[SB/FB] abs16
Bytes/Cycles 1/2 2/3 3/3
(1) POP.size:G  dest
b7 bo b7 bo dest code
O|1|1|1 O|1|OS|ZE1|1|O|1 .DE|ST| d5E8
|, dsp16/absi6 |
.size | SIZE dest DEST dest DEST
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An] -
W 1 RN ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
A0 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(AT [AQ] 0110 |dsp:16[SB] dsp:16[SB] 1110
[Al] 0111]absi6 abs16 1111
[ Number of Bytes/Number of Cycles ]
dest Rn An [An] | dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| absl6
Bytes/Cycles | 2/3 2/3 2/4 3/4 3/4 4/4 4/4 4/4
Rev.2.00 Oct17,2005 page 211 of 263 RENESAS

REJ09B0001-0200



Chapter 4

Instruction Codes/Number of Cycles

POP
(2) POP.B:S dest
b7 b0
1|O|0|1 DEST 0|1|0
dest DEST
ROL 0
ROH 1

[ Number of Bytes/Number of Cycles ]

Bytes/Cycles 1/3
POP
(3) POP.W:S dest
b7 b0
1I 1I 0I 1 | DEST 0I 1I 0
dest DEST
A0 0
Al 1

[ Number of Bytes/Number of Cycles ]

Bytes/Cycles

1/3

Rev.2.00 Oct 17,2005 page 212 of 263

REJ09B0001-0200

Instruction Codes/Number of Cycles

RENESAS



Chapter 4 Instruction Codes/Number of Cycles 4.2 Instruction Codes/Number of Cycles

POPC

(1) POPC  dest
b7 bo b7 bo

1|1|1|0 1|0|1|10 D.ES.T 0.0.1.1
dest DEST dest DEST |

000 |ISP 100

INTBL 001]|SP 101

INTBH 010]|SB 110

FLG 011]FB 111

» ltems marked --- cannot be selected.

[ Number of Bytes/Number of Cycles ]
Bytes/Cycles 2/3

POPM

(1) POPM  dest
b7 b0

DEST
1|1|1|O 1|1|O|1

dest
FB|SB|Al1| AO| R3| R2| R1| RO
. DEST?,
« The bit for a selected register is 1.
The bit for a non-selected register is 0.

[ Number of Bytes/Number of Cycles ]

Bytes/Cycles 2/3
« If two or more registers need to be restored, the number of required cycles is 2 x m (m: number of

registers to be restored).

Rev.2.00 Oct 17,2005 page 213 of 263 RENESAS
REJ09B0001-0200



Chapter 4

Instruction Codes/Number of Cycles

4.2 Instruction Codes/Number of Cycles
(1) PUSH.size:G #IMM
b7 b0 b7 b0
01 1 1{1 1 OfS%EjJ1 12 12 0|0 0 1 O #IMM8
| | | | | | | | | | |
|IIII#I¢!MM]-I6IIIII
size | SIZE |
.B 0
W 1

[ Number of Bytes/Number of Cycles ]

Bytes/Cycles

3/2

« If the size specifier (.size) is (.\W), the number of bytes indicated is increased by 1.

(2) PUSH.size:G src
b7 b0 b7 bo src code
011 1/0 1 0|0 1 00| SRC dsp8
., dsp16/absi6 |
'Size | SIZE | src SRC src SRC
.B 0 ROL/RO 0000 dsp:8[AQ] 1000
dsp:8[An] -
W 1 Rn ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
A0 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(AT [AQ] 0110 |dsp:16[SB] dsp:16[SB] 1110
[Al] 0111]absi6 abs16 1111
[ Number of Bytes/Number of Cycles ]
src Rn An [An] | dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| absl6
Bytes/Cycles | 2/2 2/2 2/4 3/4 3/4 4/4 4/4 4/4
Rev.2.00 Oct17, 2005 page 214 of 263 XENESAS

REJ09B0001-0200



Chapter 4

Instruction Codes/Number of Cycles

(3) PUSH.B:S src
b7 b0
1I O.O. 0| SRC 0I 1.0
src SRC
ROL 0
ROH 1

[ Number of Bytes/Number of Cycles ]

Bytes/Cycles

1/2

(4) PUSH.W:

b7

S

Src
o]0}

1100
|

SRC

0|1|0

Src

SRC

A0

Al

[ Number of Bytes/Number of Cycles ]

Bytes/Cycles

1/2

Rev.2.00 Oct 17,2005 page 215 of 263

REJ09B0001-0200

RENESAS

Instruction Codes/Number of Cycles

PUSH

PUSH



Chapter 4 Instruction Codes/Number of Cycles

4.2 Instruction Codes/Number of Cycles
(1) PUSHA src
b7 b0 b7 bo src code
0|1|1|1 1|1|0|1 1|0|0|1 .SR.C. dsp8
|, dsp16/absi6 |
src SRC
dsp:8IA dsp:8[A0Q] 1000
sp-8[An] dsp:8[AL] 1001
dsp:8[SB/FB] dsp:8[SB] 1010
dsp:8[FB] 1011
dsp:16[A0 1100
dsp:16[An] p:16[A0]
dsp:16[A1] 1101
dsp:16[SB] dsp:16[SB] 1110
abs16 abs16 1111
[ Number of Bytes/Number of Cycles ]
src dsp:8[An] |dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB] | abs:16
Bytes/Cycles 3/2 3/2 4/2 4/2 4/2
(1) PUSHC src
b7 b0 b7 b
111010 11J0 SRC |0 0 1 0
src SRC src SRC
000 |ISP 100
INTBL 001 |SP 101
INTBH 010]|SB 110
FLG 011 |FB 111
» Items marked --- cannot be selected.
[ Number of Bytes/Number of Cycles ]
Bytes/Cycles 2/2
Rev.2.00 Oct 17,2005 page 216 of 263 XENESAS

REJ09B0001-0200



Chapter 4

Instruction Codes/Number of Cycles

(1) PUSHM src
b7 b0
11101100 SRC
Src
RO|R1|R2 | R3| AO| A1|SB|FB
. SRC™ |

« The bit for a selected register is 1.
The bit for a non-selected register is 0.

[ Number of Bytes/Number of Cycles ]

Bytes/Cycles

2/2Xm

* m denotes the number of registers to be saved.

(1) REIT

b7

o]0}

1111
| |

1 011
| —|

[ Number of Bytes/Number of Cycles ]

Bytes/Cycles

1/6

Rev.2.00 Oct 17,2005 page 217 of 263

REJ09B0001-0200

RENESAS

Instruction Codes/Number of Cycles

PUSHM

REIT



Chapter 4 Instruction Codes/Number of Cycles

4.2 Instruction Codes/Number of Cycles

RMPA

(1) RMPA.size
b7
0111110

b0 b7
SIZE 1|1|1|1

b0
0|0|0|1

.Size | SIZE
.B 0
W 1

[ Number of Bytes/Number of Cycles ]

Bytes/Cycles | 2/4+7X'm

* m denotes the number of operations to be performed.
« If the size specifier (.size) is (W), the number of cycles is (6+9X m).

ROLC

(1) ROLC.size dest
b7 b0 b7 b0 dest code
011 1/0 1 181 0 1 0 DEST dsp8
|, dsp16/absi6 |
'Size | SIZE | dest DEST dest DEST
.B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An] -
W 1 Rn ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:8[SB/FE] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
A0 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(An] [AQ] 0110 |dsp:16[SB] dsp:16[SB] 1110
[Al] 0111]absi6 abs16 1111
[ Number of Bytes/Number of Cycles ]
dest Rn An [An] | dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB] abs16
Bytes/Cycles | 2/1 | 2/1 2/3 3/3 3/3 4/3 4/3 4/3
Rev.2.00 Oct17,2005 page 218 of 263 XENESAS

REJ09B0001-0200



Chapter 4 Instruction Codes/Number of Cycles

4.2 Instruction Codes/Number of Cycles
(1) RORC.size dest
b7 b0 b7 b0 dest code
0|1|1|1 0|1|18|ZE1|0|1|1 |DE|ST| dSES
., dsp16labsis |
size | SIZE | dest DEST dest DEST
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An] -
W 1 Rn ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
AO 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(A [AQ] 0110 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111 ]absl6 abs16 1111
[ Number of Bytes/Number of Cycles ]

dest Rn An [An] | dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| absl6

Bytes/Cycles | 2/1 2/1 2/3 3/3 3/3 4/3 4/3 4/3

Rev.2.00 Oct17,2005 page 219 of 263 RENESAS

REJ09B0001-0200



Chapter 4 Instruction Codes/Number of Cycles 4.2 Instruction Codes/Number of Cycles

ROT

(1) ROT.size #IMM, dest
b7 b0 b7 b0 dest code

111 0|0 O O]SIE IMM4 DEST dsp8
[ L L L LL‘-'—B'—'—"’
., Osp16/absi6
size | SIZE | #IMM | IMM4 [ #IMM | IMM4
.B 0 +1 0000} 1 1000
W 1 +2 0001 -2 1001
+3 0010f -3 1010
+4 0011 4 1011
+5 0100} -5 1100
+6 0101] -6 1101
+7 01104 -7 1110
+8 0111] -8 1111
dest DEST dest DEST
ROL/RO 0000 dsp:8[AQ] 1000
dsp:8[An]
RN ROH/R1 0001 dsp:8[A1l] 1001
R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
AO 0100 dsp:16[A0 1100
An dsp:16[An] p:16[A0]
Al 0101 dsp:16[A1] 1101
(An] [AO] 01 10|dsp:16[SB] dsp:16[SB] 1110
[Al] 0111]absi6 abs16 1111
[ Number of Bytes/Number of Cycles ]
dest Rn An [An] | dsp:8[An] |dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB] | absl16
Bytes/Cycles |2/1+m | 2/1+m | 2/2+m | 3/2+m 3/2+m 4/2+m 4/2+m 4/2+m
« m denotes the number of bits to be rotated.
Rev.2.00 Oct 17,2005 page 220 of 263 XENESAS

REJ09B0001-0200



Chapter 4 Instruction Codes/Number of Cycles 4.2 Instruction Codes/Number of Cycles

(2) ROT.size R1H, dest
b7 b0 b7 b0 dest code
0|1|1.1 0|1|OS|ZEO|1|1|O |DE|ST| dSES
., dsp16/absi6 , |
size | SIZE | dest DEST dest DEST
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An] -
W 1 Rn ROH/--- 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:B[SBIFE] dsp:8[SB] 1010
--- IR3 0011 dsp:8[FB] 1011
AO 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(An [AO] 0110 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111 ]absl6 abs16 1111
« Items marked --- cannot be selected.
[ Number of Bytes/Number of Cycles ]
dest Rn An [An] | dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| absl6
Bytes/Cycles |2/2+m|2/2+m | 2/3+m | 3/3+m 3/3+m 4/3+m 4/3+m 4/3+m

* m denotes the number of bits to be rotated.

RTS

(1) RTS
b7 b0
1|1|1|1 O|0|1|1

[ Number of Bytes/Number of Cycles ]
Bytes/Cycles 1/6

Rev.2.00 Oct 17,2005 page 221 of 263 RENESAS
REJ09B0001-0200



Chapter 4

Instruction Codes/Number of Cycles

4.2 Instruction Codes/Number of Cycles
(1) SBB.size #IMM, dest
b7 b0 b7 bo dest code
011 1Jo 1 1pEfo 1 1 1] DEST, dsp8
|, Ospi6labsi6 [/ [, #MM16 |
size | SIZE | dest DEST dest DEST
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An] -
W 1 Rn ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
AO 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(A [AQ] 01 10 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111 ]absl6 abs16 1111
[ Number of Bytes/Number of Cycles ]
dest Rn An [An] |dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| absl6
Bytes/Cycles | 3/2 3/2 3/4 4/4 4/4 5/4 5/4 5/4

« If the size specifier (.size) is (.\W), the number of bytes indicated is increased by 1.

Rev.2.00 Oct 17,2005 page 222 of 263
REJ09B0001-0200

RENESAS




Chapter 4 Instruction Codes/Number of Cycles 4.2 Instruction Codes/Number of Cycles

(2) SBB.size src, dest
b7 bo b7 bo src code dest code
dsp8 dsp8
101 1]1 0 0E[] SRC DEST | sp
|, Ospi6labsis | [\ [, dspi6/absie |
size | SIZE | src/dest SRC/DEST src/dest SRC/DEST
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An] -
W 1 Rn ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
AO 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(A [AQ] 0110 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111 ]absl6 abs16 1111
[ Number of Bytes/Number of Cycles ]
src dest Rn An [An] | dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| absl6
Rn 2/2 2/2 2/3 3/3 3/3 4/3 4/3 4/3
An 2/2 2/2 2/3 3/3 3/3 4/3 4/3 4/3
[An] 2/3 2/3 2/4 3/4 3/4 4/4 4/4 4/4
dsp:8[An] 33 | 3/3 3/4 4/4 414 5/4 5/4 5/4
dsp:8[SB/FB]| 3/3 3/3 3/4 4/4 4/4 5/4 5/4 5/4
dsp:16[An] 4/3 4/3 4/4 5/4 5/4 6/4 6/4 6/4
dsp:16[SB] 4/3 4/3 4/4 5/4 5/4 6/4 6/4 6/4
abs16 4/3 4/3 4/4 5/4 5/4 6/4 6/4 6/4
Rev.2.00 Oct17,2005 page 223 of 263 RENESAS

REJ09B0001-0200



Chapter 4 Instruction Codes/Number of Cycles 4.2 Instruction Codes/Number of Cycles

SBJINZ

(1) SBIJNZ.size  #IMM, dest, label

b7 b0 b7 bo dest code label code
11 1 1)1 0 0[SE IMM4 DEST _ dsp8
|, dsp16/absi6 |

dsp8 (label code) = address indicated by label — (start address of instruction + 2)

.size | SIZE #IMM IMM4 #IMM IMM4
.B 0 0 0000] +8 1000
W 1 -1 0001} +7 1001
-2 0010] +6 1010
-3 0011} +5 1011
-4 0100] +4 1100
-5 0101} +3 1101
—6 0110f +2 1110
-7 0111} +1 1111

dest DEST dest DEST

ROL/RO 0000 dsp:8[A0] 1000

dsp:8[An] -

Rn ROH/R1 0001 dsp:8[A1] 1001

R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] 1010

R1H/R3 0011 dsp:8[FB] 1011

An A0 0100 dsp-16[AN] dsp:16[A0] 1100

Al 0101 dsp:16[A1] 1101

(AT [AQ] 0110 |dsp:16[SB] dsp:16[SB] 1110

[Al] 0111]absi6 abs16 1111

[ Number of Bytes/Number of Cycles ]
dest Rn An [An] |dsp:8[An] |dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| abs16
Bytes/Cycles | 3/3 3/3 3/5 4/5 4/5 5/5 5/5 5/5

« If the program branches to a label, the number of cycles indicated is increased by 4.

Rev.2.00 Oct17, 2005 page 224 of 263 XENESAS
REJO9B0001-0200



Chapter 4

Instruction Codes/Number of Cycles

REJ09B0001-0200

4.2 Instruction Codes/Number of Cycles
(1) SHA.size #IMM, dest
b7 b0 b7 b0 dest code
dsp8
1|1|1|1 OIOIOSIZE |IMI|V|4| |DE|ST| P
., Osp16labsis .
size | SIZE | #IMM | IMM4 [ #IMM | IMM4
.B 0 +1 0000} 1 1000
W 1 +2 0001 -2 1001
+3 0010f -3 1010
+4 0011 4 1011
+5 0100} -5 1100
+6 0101] -6 1101
+7 01104 -7 1110
+8 0111] -8 1111
dest DEST dest DEST
ROL/RO 0000 dsp:8[A0Q] 1000
dsp:8[An]
Rn ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:B[SBIFE] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
AO 0100 dsp:16[A0 1100
An dsp:16[An] p:16[A0]
Al 0101 dsp:16[A1] 1101
(An] [AO] 01 10|dsp:16[SB] dsp:16[SB] 1110
[Al] 0111]absi6 abs16 1111
[ Number of Bytes/Number of Cycles ]
dest Rn An [An] |dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| abs16
Bytes/Cycles | 2/1+m|2/1+m | 2/2+m | 3/2+m 3/2+m 4/2+m 4/2+m 4/2+m
* m denotes the number of bits to be shifted.
Rev.2.00 Oct17,2005 page 225 of 263 RENESAS



Chapter 4 Instruction Codes/Number of Cycles 4.2 Instruction Codes/Number of Cycles

(2) SHA.size R1H, dest
b7 b0 b7 b0 dest code
0|1|1.1 0|1|OS|ZE1|1|1|1 |DE|ST| dsB8
|, dsp16/absi6 |
size | SIZE | dest DEST dest DEST
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An] -
W 1 Rn ROH/--- 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:B[SBIFE] dsp:8[SB] 1010
--- IR3 0011 dsp:8[FB] 1011
AO 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(A [AQ] 011 0|dsp:16[SB] dsp:16[SB] 1110
[A1] 0111 ]absl6 abs16 1111
* Items marked --- cannot be selected.
[ Number of Bytes/Number of Cycles ]
dest Rn An [An] |dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| absl6
Bytes/Cycles | 2/2+m|2/2+m| 2/3+m | 3/3+m 3/3+m 4/3+m 4/3+m 4/3+m
« m denotes the number of bits to be shifted.
(3) SHA.L #IMM, dest
b7 b0 b7 b
1|1|1|0 1|0|1|1 1|0|10EST IIM!\/I4I
#IMM IMM4 #IMM IMM4 dest DEST
+1 0000} 1 1000 R2R0O 0
+2 0001y -2 1001 R3R1 1
+3 0010} -3 1010
+4 0011] -4 1011
+5 0100} -5 1100
+6 0101) -6 1101
+7 0110} -7 1110
+8 0111) -8 1111

[ Number of Bytes/Number of Cycles ]

Bytes/Cycles 2/3+m

* m denotes the number of bits to be shifted.

Rev.2.00 Oct 17,2005 page 226 of 263 XENESAS
REJO9B0001-0200



Chapter 4

Instruction Codes/Number of Cycles

(4) SHA.L R1H, dest
b7 b0 b7 b0
1|1|1|0 1|0|1|1 0|0|1DESTO|0|0|1
dest DEST
R2R0 0
R3R1 1

[ Number of Bytes/Number of Cycles ]

Bytes/Cycles

2/4+m

+ m denotes the number of bits to be shifted.

Rev.2.00 Oct 17,2005 page 227 of 263

REJ09B0001-0200

RENESAS

4.2

Instruction Codes/Number of Cycles

SHA



Chapter 4 Instruction Codes/Number of Cycles 4.2 Instruction Codes/Number of Cycles

SHL

(1) SHL.size #IMM, dest

b7 b0 b7 b0 dest code
1|1|1|0 1|0|0 SIZE |IMI|V|4| |DE.ST. dsB8
., dsp16/absi6
size | SIZE | #IMM | IMM4 | #IMM | IMM4
.B 0 +1 00001 1 1000
W 1 +2 0001} -2 1001
+3 0010] -3 1010
+4 0011| 4 1011
+5 0100] -5 1100
+6 0101} -6 1101
+7 0110 -7 1110
+8 0111] -8 1111
dest DEST dest DEST
ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An]
Rn ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:B[SBIFE] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
AO 0100 dsp:16[A0 1100
An dsp:16[An] p:16[A0]
Al 0101 dsp:16[A1] 1101
(An] [AO] 01 10|dsp:16[SB] dsp:16[SB] 1110
[Al] 0111]absi6 abs16 1111
[ Number of Bytes/Number of Cycles ]
dest Rn An [An] | dsp:8[An] |dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| absl16
Bytes/Cycles |2/1+m | 2/1+m | 2/2+m | 3/2+m 3/2+m 4/2+m 4/2+m 4/2+m
* m denotes the number of bits to be shifted.
Rev.2.00 Oct17,2005 page 228 of 263 XENESAS

REJ09B0001-0200



Chapter 4 Instruction Codes/Number of Cycles 4.2 Instruction Codes/Number of Cycles
(2) SHL.size R1H, dest
b7 b0 b7 b0 dest code
0|1|1|1 0|1|OS|ZE1|1|1|0 |DE|ST| dSES
., dsp16/absi6 , |
size | SIZE | dest DEST dest DEST
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An] -
W 1 Rn ROH/--- 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:B[SBIFE] dsp:8[SB] 1010
--- IR3 0011 dsp:8[FB] 1011
AO 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(A [AQ] 0110 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111 ]absl6 abs16 1111
e Items marked --- cannot be selected.
[ Number of Bytes/Number of Cycles ]
dest Rn An [An] | dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| absl6
Bytes/Cycles |2/2+m | 2/2+m | 2/3+m | 3/3+m 3/3+m 4/3+m 4/3+m 4/3+m
* m denotes the number of bits to be shifted.
(3) SHL.L #IMM, dest
b7 b0 b7 b
1I 1|1|0 1|0|1|1 1IO|0DEST .IM|M4|
#IMM IMM4 #IMM IMM4 dest DEST
+1 0000 -1 1000 R2R0O 0
+2 o001y -2 1001 R3R1 1
+3 0010] -3 1010
+4 0011 4 1011
+5 0100] -5 1100
+6 0101y -6 1101
+7 0110 -7 1110
+8 0111] -8 1111
[ Number of Bytes/Number of Cycles ]
Bytes/Cycles 2/3+m
« m denotes the number of bits to be shifted.
Rev.2.00 Oct17,2005 page 229 of 263 RENESAS

REJ09B0001-0200



Chapter 4 Instruction Codes/Number of Cycles

4.2 Instruction Codes/Number of Cycles

SHL
(4) SHL.L R1H, dest
b7 b0 b7 b0
1|1|1|0 1|0|1|1 OIOIODESTOIOIOII
dest DEST
R2R0 0
R3R1 1

[ Number of Bytes/Number of Cycles ]

Bytes/Cycles 2/4+m

* m denotes the number of bits to be shifted.

SMOVB

(1) SMOVB .size
b7
011111

b0 b7
SIZE 1|1|1|0

b0
1|0|0|1

0

Size | SIZE |
.B 0
W 1

[ Number of Bytes/Number of Cycles ]
Bytes/Cycles 2/5+5X'm
* m denotes the number of transfers to be performed.

Rev.2.00 Oct 17,2005 page 230 of 263 XENESAS

REJ09B0001-0200



Chapter 4

(1) SMOVF.size

Instruction Codes/Number of Cycles

b7 b0 b7 b0
0|1|1|1 1|1|O SIZE 1|1|1|0 1.0.0.0
Size | SIZE |

.B 0

W 1

[ Number of Bytes/Number of Cycles ]

Bytes/Cycles

2/5+5X'm

* m denotes the number of transfers to be performed.

(1) SSTR.size

[ Number of Bytes/Number of Cycles ]

Bytes/Cycles

2/3+2X'm

b7 b0 b7 b0
0.1.1.1 1|1|O SIZE 1|1|1|0 1.0.1.0
Size | SIZE |

.B 0

W 1

* m denotes the number of transfers to be performed.

Rev.2.00 Oct 17,2005 page 231 of 263

REJ09B0001-0200

RENESAS

Instruction Codes/Number of Cycles

SMOVF

SSTR



Chapter 4 Instruction Codes/Number of Cycles 4.2 Instruction Codes/Number of Cycles

STC

(1) STC src, dest

b7 b0 b7 b0 dest Code

dsp8

0.1.1.1 1|0|1|11 ?RCI: .DE.ST. P
|, dsp16/absi6 |
src SR dest DEST dest DEST
00O RO 0000 dsp:8[AQ] 1000
dsp:8[An]

INTBL 001 RN R1 0001 dsp:8[A1] 1001

0010 :
INTBH 010 R2 dsp:8[SB/FB] dsp:8[SB] 1010
FLG 011 R3 0011 dsp:8[FB] 1011
ISP 100 A0 0100 dsp:16[A0 1100

An dsp:16[An] SP-16[A0]

SP 101 Al 0101 dsp:16[A1] [1101
SB 110 (An] [AQ] 0110 )dsp:16[SB] |dsp:16[SB] [1110
FB 111 [A1] 0111 |abs16 abs16 1111

» Items marked --- cannot be selected.

[ Number of Bytes/Number of Cycles ]

dest Rn An [An] | dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| absl6
Bytes/Cycles | 2/1 2/1 2/2 3/2 3/2 4/2 4/2 4/2
(2) STC PC, dest
b7 b0 b7 b0 dest Code
011 1/1100]J1 10 0] DEST |, dsps |
., Osp16/absi6 |
dest DEST dest DEST
R2R0 0000 dsp:8[A0] 1000
dsp:8[An] -
an R3R1 0001 dsp:8[A1] 1001
0010 dsp:8[SB/FE] dsp:8[SB] 1010
0011 dsp:8[FB] 1011
A1A0 0100 dsp:16[A0 1100
An dsp:16[An] p:16[A0]
0101 dsp:16[A1] 1101
(An] [AQ] 0110 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111 |absl6 abs16 1111

+ Items marked --- cannot be selected.

[ Number of Bytes/Number of Cycles ]

dest Rn An [An] |dsp:8[An] |dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| abs16
Bytes/Cycles | 2/2 2/2 2/3 3/3 3/3 4/3 4/3 4/3
Rev.2.00 Oct 17,2005 page 232 of 263 XENESAS

REJ09B0001-0200



Chapter 4

Instruction Codes/Number of Cycles

REJ09B0001-0200

4.2 Instruction Codes/Number of Cycles
(1) STCTX absl6, abs20
b7 b0 b7 b
011 1[1 1011111000 o0f[, abs16 | [, abs20 |
[ Number of Bytes/Number of Cycles ]
Bytes/Cycles | 7/11+2Xm
* m denotes the number of transfers to be performed.
(1) STE.size src, abs20
b7 bo b7 bo src code dest code
0.1.1.1 O|1IOSIZEOIOIOIO ISF\I’CI dsp8 |.........§.........|
., dsp16/absi6 , |
size | SIZE src SRC Src SRC
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An] -
W 1 an ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
A0 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(An] [AO] 0110 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111]absi6 abs16 1111
[ Number of Bytes/Number of Cycles ]
src Rn An [An] |dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB] | abs16
Bytes/Cycles | 5/3 5/3 5/4 6/4 6/4 714 714 714
Rev.2.00 Oct17,2005 page 233 of 263 RENESAS



Chapter 4

Instruction Codes/Number of Cycles

4.2 Instruction Codes/Number of Cycles
(2) STE.size src, dsp:20[AQ]
b7 b0 b7 bo src code dest code
0 1 1 1[0 1 ofsE]jo 0 0 1] SRC dsps8 L. 95920
., dsp16/absi6 , |
size | SIZE | src SRC src SRC
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An] -
W 1 Rn ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:B[SBIFE] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
AO 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(A [AQ] 01 10 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111 ]absl6 abs16 1111
[ Number of Bytes/Number of Cycles ]
src Rn An [An] | dsp:8[An]|dsp:8[SB/FB]| dsp:16[An] | dsp:16[SB]| abs16
Bytes/Cycles | 5/3 5/3 5/4 6/4 6/4 714 7/4 7/4
(3) STE.size src, [A1AOQ]
b7 bo b7 bo src code
011 1]/0 1 OFSE[0 0 1 0| SRC dsp8
., dsp16/absi6 , |
size | SIZE | src SRC src SRC
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An] -
W 1 Rn ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
A0 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(AT [AQ] 0110 |dsp:16[SB] dsp:16[SB] 1110
[Al] 0111]absi6 abs16 1111
[ Number of Bytes/Number of Cycles ]
src Rn An [An] | dsp:8[An] | dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| absl6
Bytes/Cycles | 2/3 2/3 2/4 3/4 3/4 4/4 4/4 4/4
Rev.2.00 Oct 17,2005 page 234 of 263 XENESAS

REJ09B0001-0200



Chapter 4 Instruction Codes/Number of Cycles Instruction Codes/Number of Cycles
(1) STNZ #IMMS8, dest
b7 bo dest code
1 1 0 10| DEST | [#mwms | ([ dsps |
|IlllliaPSI]I-6llllll
dest DEST
ROH
Rn 011
ROL 100
dsp:8[se/FB] | 9SP8[SEl 101
dsp:8[FB] 110
abs16 abs16 111
[ Number of Bytes/Number of Cycles ]
dest RN dsp:8[SB/FB] abs16
Bytes/Cycles 2/1 3/2 4/2

 If the Z flag = 0, the number of cycles indicated is increased by 1.

(1) STZ #IMMS, dest
b7 bo dest code
1.1 0 0[1] DEST | [#Mms] ([ dsps |
|IIIIIIPSI]I-6IIIIII
dest DEST

ROH
RN 011

ROL 100
dsp:8[sa/Fp] | 9SP-8[SEl 101

dsp:8[FB] 110
abs16 abs16 11 1

[ Number of Bytes/Number of Cycles ]

dest

Rn

dsp:8[SB/FB]

abs16

Bytes/Cycles 2/1

3/2

4/2

« Ifthe Z flag = 1, the number of cycles indicated is increased by 1.

Rev.2.00 Oct 17,2005 page 235 of 263

REJ09B0001-0200

RENESAS

STZ



Chapter 4 Instruction Codes/Number of Cycles 4.2 Instruction Codes/Number of Cycles

STZX

(1) STZX #IMM81, #IMM82, dest

b7 b0 dest code
1 1 0 1]1] DEST | [#mmai] ([ dsps, ]
|IIIII?Ib§JI-6IIIIII|
dest DEST

ROH
Rn 011

ROL 100
dsp:8[se/Fg] | 9SP-8[SE] 101

dsp:8[FB] 110
abs16 abs16 11 1

[ Number of Bytes/Number of Cycles ]

dest Rn dsp:8[SB/FB] abs16
Bytes/Cycles 3/2 4/3 5/3

SUB

(1) SUB.size:G  #IMM, dest

b7 b0 b7 b0 dest code
011 1[0 1 1[s&[o 1 0 1] DEST, dsps
[, dspi6fabs16 | ][, #IMM16 |
size | SIZE | dest DEST dest DEST
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An] -
W 1 RN ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp-8[SBIFB] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
A0 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(A [AO] 0110 |dsp:16[SB] dsp:16[SB] 1110
[Al] 0111]absi6 abs16 1111
[ Number of Bytes/Number of Cycles ]
dest Rn An [An] |dsp:8[An] |dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| abs16
Bytes/Cycles | 3/2 3/2 3/4 4/4 4/4 5/4 5/4 5/4

« If the size specifier (.size) is (.\W), the number of bytes indicated is increased by 1.

Rev.2.00 Oct 17,2005 page 236 of 263 XENESAS
REJO9B0001-0200



Chapter 4

Instruction Codes/Number of Cycles

4.2

REJ09B0001-0200

Instruction Codes/Number of Cycles

(2) SUB.B:S #IMM8, dest
b7 b0 dest code
#IMM8
100 0[1] DEST
|IllllialeI]I-6llllll|
dest DEST
ROH 011
Rn
ROL 100
dsp:8[se/Fe] | 9SP-8[SE] 101
dsp:8[FB] 110
abs16 abs16 111
[ Number of Bytes/Number of Cycles ]
dest Rn dsp:8[SB/FB] abs16
Bytes/Cycles 2/1 3/3 4/3
Rev.2.00 Oct17,2005 page 237 of 263 RENESAS



Chapter 4 Instruction Codes/Number of Cycles 4.2 Instruction Codes/Number of Cycles

(3) SUB.size:G  src, dest
b7 b0 b7 bo src code dest code
101 0[1 0 ofsE[] SrC DEST dsp8
., dsp16/absi6 | [\ [, dspi6labsie |
size | SIZE | src/dest SRC/DEST src/dest SRC/DEST
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An] -
W 1 Rn ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:8[SBIFB] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
A0 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(An [AO] 0110 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111 ]absl6 abs16 1111
[ Number of Bytes/Number of Cycles ]
src destl rn | An | [An] |dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| absl6
Rn 22 | 22 2/3 3/3 3/3 4/3 4/3 4/3
An 22 | 22 2/3 3/3 3/3 4/3 4/3 4/3
[An] 2/13 | 23 2/4 3/4 3/4 4/4 4/4 4/4
dsp:8[An] 313 | 3/3 3/4 4/4 4/4 5/4 5/4 5/4
dsp:8[SB/FB]| 3/3 | 3/3 3/4 4/4 4/4 5/4 5/4 5/4
dsp:16[An] 4/13 | 4/3 414 5/4 5/4 6/4 6/4 6/4
dsp:16[SB] 4/3 | 4/3 4/4 5/4 5/4 6/4 6/4 6/4
abs16 4/3 | 4/3 4/4 5/4 5/4 6/4 6/4 6/4
Rev.2.00 Oct 17,2005 page 238 of 263 XENESAS

REJ09B0001-0200



Chapter 4 Instruction Codes/Number of Cycles 4.2 Instruction Codes/Number of Cycles

(4) SUB.B:S src, ROL/ROH
b7 bo dest code
0 0 1 0|10l SRC dsp8
| 11 11 I?Ib§]I-6II 111 |
src SRC dest DEST
Rn ROL/ROH 0 O ROL 0
dsp:8[sB/FB] | 9SP-8[SBI 0 1 ROH 1
dsp:8[FB] 1 0
abs16 abs16 1 1
[ Number of Bytes/Number of Cycles ]
src Rn dsp:8[SB/FB] abs16
Bytes/Cycles 1/2 2/3 3/3
(1) TST.size #IMM, dest
b7 b0 b7 bo dest code
011 1[0 1 1/s&]o 0 0 0| DEST dsp8
.. dsp16labsie [ [ [, #iMM16
size | SIZE | dest DEST dest DEST
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An] -
W 1 Rn ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
A0 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(AT [AQ] 0110 |dsp:16[SB] dsp:16[SB] 1110
[Al] 0111]absi6 abs16 1111
[ Number of Bytes/Number of Cycles ]
dest Rn An [An] |dsp:8[An] |dsp:8[SB/FB]| dsp:16[An] | dsp:16[SB] | abs16
Bytes/Cycles | 3/2 | 3/2 3/4 4/4 4/4 5/4 5/4 5/4

« |If the size specifier (.size) is (W), the number of bytes indicated is increased by 1.

Rev.2.00 Oct 17,2005 page 239 of 263 RENESAS
REJ09B0001-0200



Chapter 4

Instruction Codes/Number of Cycles

4.2 Instruction Codes/Number of Cycles
(2) TST.size src, dest
b7 b0 b7 b0 src code dest code
100 0/0 0 OfsE[ SRC DEST. dsp8
|, dspi6/absie | [\ [, dsp16labsi6, |
size | SIZE | src/dest SRC/DEST src/dest SRC/DEST
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An] -
W 1 Rn ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
AO 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(A [AQ] 011 0|dsp:16[SB] dsp:16[SB] 1110
[A1] 0111 ]absl6 abs16 1111
[ Number of Bytes/Number of Cycles ]
src dest] Rn | An | [An] |dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| absl6
Rn 2/2 2/2 2/3 3/3 3/3 4/3 4/3 4/3
An 2/2 2/2 2/3 3/3 3/3 4/3 4/3 4/3
[An] 2/3 2/3 2/4 3/4 3/4 4/4 4/4 4/4
dsp:8[An] 33 | 33 3/4 4/4 4/4 5/4 5/4 5/4
dsp:8[SB/FB]| 3/3 3/3 3/4 4/4 4/4 5/4 5/4 5/4
dsp:16[An] 4/3 4/3 4/4 5/4 5/4 6/4 6/4 6/4
dsp:16[SB] 4/3 4/3 4/4 5/4 5/4 6/4 6/4 6/4
abs16 4/3 4/3 4/4 5/4 5/4 6/4 6/4 6/4
Rev.2.00 Oct 17,2005 page 240 of 263 XENESAS

REJ09B0001-0200




Chapter 4

(1) UND

b7

Instruction Codes/Number of Cycles

o]0}

1111
|

1111
|

[ Number of Bytes/Number of Cycles ]

4.2

Instruction Codes/Number of Cycles

UND

Bytes/Cycles 1/20
(1) WAIT
b7 b0 b7 b
0|1|1|1 1|1|0|1 1|1|1|1 0|0|1|1
[ Number of Bytes/Number of Cycles ]
Bytes/Cycles 2/3
Rev.2.00 Oct17,2005 page 241 of 263 RENESAS

REJ09B0001-0200



Chapter 4 Instruction Codes/Number of Cycles 4.2 Instruction Codes/Number of Cycles

XCHG

(1) XCHG.size src, dest

b7 b0 b7 bO dest code
0 1 1 1|1 0 1|30 O|SRC DEST dsp8
| | | | | | | | | |
., Osp16/absi6
size | SIZE | src SRC
.B 0 ROL/RO 0 0
W 1 ROH/R1 | 0 1
R1L/R2 10
R1IH/R3 | 1 1
dest DEST dest DEST
ROL/RO 0000 dsp:8[AQ] 1000
dsp:8[An] -
RN ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
A0 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(An] [AQ] 011 0|]dsp:16[SB] dsp:16[SB] 1110
[Al] 0111]absi6 abs16 1111
[ Number of Bytes/Number of Cycles ]
dest Rn An [An] | dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| absl6
Bytes/Cycles | 2/4 2/4 2/5 3/5 3/5 4/5 4/5 4/5

Rev.2.00 Oct17, 2005 page 242 of 263 XENESAS
REJO9B0001-0200



Chapter 4

Instruction Codes/Number of Cycles

4.2 Instruction Codes/Number of Cycles
(1) XOR.size #IMM, dest
b7 b0 b7 b0 dest code
01 1 1[0 1 1]s&[o o o 1] DEST dsps
|, Ospi6labsis [/ [, #MM16 |
size | SIZE | dest DEST dest DEST
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An] -
W 1 Rn ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
AO 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(A [AQ] 0110 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111 ]absl6 abs16 1111
[ Number of Bytes/Number of Cycles ]
dest Rn An [An] |dsp:8[An]|dsp:8[SB/FB]| dsp:16[An] | dsp:16[SB]| absl6
Bytes/Cycles | 3/2 32 3/4 4/4 4/4 5/4 5/4 5/4

« |If the size specifier (.size) is (W), the number of bytes indicated is increased by 1.

Rev.2.00 Oct 17,2005 page 243 of 263

REJ09B0001-0200

RENESAS




Chapter 4

Instruction Codes/Number of Cycles

4.2 Instruction Codes/Number of Cycles
(2) XOR.size src, dest
b7 b0 b7 bo src code dest code
100 0[1 0 o[sE] SRC DEST dsp8
[, dspi6/absie | [\ [, dsp16labsi6, |
size | SIZE | src/dest SRC/DEST src/dest SRC/DEST
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An] -
W 1 Rn ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
A0 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(A [AO] 0110 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111 ]absl6 abs16 1111
[ Number of Bytes/Number of Cycles ]
src dest] Rn | An | [An] |dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| abs16
Rn 2/2 2/2 2/3 3/3 3/3 4/3 4/3 4/3
An 2/2 2/2 2/3 3/3 3/3 4/3 4/3 4/3
[An] 2/3 2/3 2/4 3/4 3/4 4/4 4/4 4/4
dsp:8[An] 33 | 33 3/4 4/4 4/4 5/4 5/4 5/4
dsp:8[SB/FB]] 3/3 3/3 3/4 4/4 4/4 5/4 5/4 5/4
dsp:16[An] 4/3 4/3 4/4 5/4 5/4 6/4 6/4 6/4
dsp:16[SB] 4/3 4/3 4/4 5/4 5/4 6/4 6/4 6/4
absl16 4/3 4/3 4/4 5/4 5/4 6/4 6/4 6/4
Rev.2.00 Oct17, 2005 page 244 of 263 XENESAS

REJ09B0001-0200




5.1
5.2
5.3
5.4
5.5
5.6
5.7

Chapter 5

Interrupts

Outline of Interrupts

Interrupt Control

Interrupt Sequence

Returning from Interrupt Routines
Interrupt Priority

Multiple Interrupts

Notes on Interrupts



Chapter 5 Interrupts 5.1 Outline of Interrupts

5.1 Outline of Interrupts

When an interrupt request is acknowledged, control branches to the interrupt routine that is set in an inter-
rupt vector table. Each interrupt vector table must have had the start address of its corresponding interrupt
routine set. For details about interrupt vector tables, refer to section 1.10, “Vector Tables”.

5.1.1 Types of Interrupts
Figure 5.1.1 lists the types of interrupts. Table 5.1.1 lists the source of interrupts (nonmaskable) and the
fixed vector tables.

~
Undefined instruction (UND instruction)
Software Overflow (INTO instruction)

[1 (nonmaskable interrupt) BRK instruction

A

] INT instruction
[] NS
Int t - 4
nterru
P E Watchdog timer
] . 2 Oscillation stop detection
Special Single-step?
E W (nonmaskable interrupt) | Address match
Hardware —] ~

E Peripheral 1/0?
(maskable interrupt)

Notes 1. Peripheral function interrupts are generated by the peripheral functions built into the
microcomputer system.
2: This is a dedicated interrupt for development support tools. Do not use this interrupt.

Figure 5.1.1 Classification of Interrupts

*Maskable interrupt: This type of interrupt can be controlled by using the | flag to enable (or
disable) the interrupts or by changing the interrupt priority level.

Nonmaskable interrupt: This type of interrupt cannot be controlled by using the | flag to enable (or disable)
the interrupts or by changing the interrupt priority level.

Rev.2.00 Oct17, 2005 page 246 of 263 RENESAS
REJ09B0001-0200



Chapter 5

Interrupts

5.1 Outline of Interrupts

Table 5.1.1 Interrupt Sources (Nonmaskable) and Fixed Vector Tables

Interrupt Source

Vector Table Addresses
Address (L) to Address (H)

Description

Undefined Instruction

OFFDC16 to OFFDF16

Interrupt generated by the UND instruction.

Overflow

OFFEO16 to OFFE316

Interrupt generated by the INTO instruction.

BRK Instruction

OFFEA416 to OFFE716

Executed beginning from address indicated by vector in
variable vector table if OFFE716 address contents are
FFie.

Address Match

OFFES816 to OFFEB16

Can be controlled by an interrupt enable bit.

Single Step! OFFEC16 to OFFEF16 | Do not use this interrupt.
Watchdog TimersOscil- |  OFFFO016 to OFFF316

lation Stop Detection

(Reserved) OFFF416 to OFFF716

(Reserved) OFFF816 to OFFFB16

Reset OFFFCz16 to OFFFF16

Note 1: This is a dedicated interrupt used by development support tools. Do not use this interrupt.

5.1.2 Software Interrupts
Software interrupts are generated by an instruction that generates an interrupt request when executed.
Software interrupts are nonmaskable.
e Undefined-instruction interrupt

This interrupt occurs when the UND instruction is executed.

e Overflow interrupt

This interrupt occurs if the INTO instruction is executed when the O flag is set to 1 (arithmetic result is

overflow).

The instructions that cause the O flag to change are as follows: ABS, ADC, ADCF, ADD, CMP, DIV,
DIVU, DIVX, NEG, RMPA, SBB, SHA, SUB.

e BRK interrupt

This interrupt occurs when the BRK instruction is executed.
o INT instruction interrupt
This interrupt occurs when the INT instruction is executed. The software interrupt numbers which can be
specified by the INT instruction are 0 to 63. Note that software interrupt numbers 4 to 31 are assigned to
peripheral function interrupts. This means that it is possible to execute the same interrupt routines used
by peripheral function interrupts by executing the INT instruction.

For software interrupt numbers 0 to 31, the U flag is saved when the INT instruction is executed and the
U flag is cleared to 0 to choose the interrupt stack pointer (ISP) before executing the interrupt sequence.
The U flag before the interrupt occurred is restored when control returns from the interrupt routine. For

software interrupt numbers 32 to 63, when the instruction is executed, the U flag does not change and the
SP selected at the time is used.

Rev.2.00 Oct 17,2005 page 247 of 263

REJ09B0001-0200

RENESAS



Chapter 5 Interrupts 5.1 Outline of Interrupt

5.1.3 Hardware Interrupts
There are two types in hardware interrupts: special interrupts and peripheral function interrupts.
e Special interrupts
Special interrupts are nonmaskable.
(1) Watchdog timer interrupt

This interrupt is caused by the watchdog timer. Initialize the watchdog timer after the watchdog timer
interrupt is generated. For details about the watchdog timer, refer to the R8C’s hardware manual.

(2) Oscillation stop detection interrupt
This interrupt is caused by the oscillation stop detection function. For details about the oscillation stop
detection function, refer to the R8C’s hardware manual.

(3) Single-step interrupt
This interrupt is used exclusively by development support tools. Do not use this interrupt.

(4) Address-match interrupt
When the AIERO or AIERL1 bit in the AIER register is set to 1 (address-match interrupt enabled), the

address-match interrupt is generated just before executing the instruction of the address indicated by
the corresponding RMADO to RMADL register.

e Peripheral function interrupts

These interrupts are generated by the peripheral functions built into the microcomputer. Peripheral func-
tion interrupts are maskable.

The types of built-in peripheral functions vary with each R8C model, as do the interrupt sources. For
details about peripheral function interrupts, refer to the R8C’s hardware manual.

Rev.2.00 Oct17, 2005 page 248 of 263 RENESAS
REJ09B0001-0200



Chapter 5 Interrupts 5.2 Interrupt Control

5.2 Interrupt Control

This section explains how to enable/disable maskable interrupts and set acknowledge priority. The expla-
nation here does not apply to non-maskable interrupts.

Maskable interrupts are enabled and disabled by using the | flag, IPL, and bits ILVL2 to ILVLO in each
interrupt control register. Whether or not an interrupt is requested is indicated by the IR bit in each interrupt
control register.

For details about the memory allocation and the configuration of interrupt control registers, refer to the
R8C'’s hardware manual.

5.2.1 | Flag
The | flag is used to disable/enable maskable interrupts. When the | flag is set to 1 (enabled), all
maskable interrupts are enabled; when the | flag is cleared to 0 (disabled), they are disabled.
When the | flag is changed, the altered flag status is reflected in determining whether or not to accept an
interrupt request with the following timing:
« If the flag is changed by an REIT instruction, the changed status takes effect beginning with the
REIT instruction.
« If the flag is changed by an FCLR, FSET, POPC, or LDC instruction, the changed status takes
effect beginning with the next instruction.

When changed by REIT instruction

Determination whether or not to
Interrupt request generated accept interrupt request
— Te

Previous
instruction

(If I flag is changed from 0 to 1 by REIT instruction)

r
REIT Interrupt sequence g

When changed by FCLR, FSET, POPC, or LDC instruction
Determination whether or not to

Interrupt request generated accept interrupt request
{} —p The
_______________ /
Previous . .
instruction FSET | Next instruction |Interrupt sequence g
______________ v

(If I flag is changed from 0 to 1 by FSET instruction)

Figure 5.2.1 Timing with Which Changes of | Flag are Reflected in Interrupt Handling

5.2.2 IR Bit

The IR bitis set to 1 (interrupt requested) when an interrupt request is generated. The IR bit is cleared to
0 (interrupt not requested) after the interrupt request is acknowledged and the program branches to the
corresponding interrupt vector.

The IR bit can be cleared to 0 by a program. Do not set it to 1.

Rev.2.00 Oct 17,2005 page 249 of 263 RENESAS
REJ09B0001-0200



Chapter 5 Interrupts

5.2 Interrupt Control

5.2.3 ILVL2to ILVLO bis, IPL
Interrupt priority levels can be set using bits ILVL2 to ILVLO.
Table 5.2.1 shows how interrupt priority levels are set. Table 5.2.2 shows interrupt enable levels in

relation to IPL.

The following lists the conditions under which an interrupt request is acknowledged:

| flag
* IR bit

=1
=1

* Interrupt priority level > IPL

The | flag, bits ILVL2 to ILVLO, and IPL are independent of each other, and they do not affect each other.

Table 5.2.1 Interrupt Priority Levels

Table 5.2.2 Interrupt Priority Levels Enabled by IPL

ILVL2—ILVLO Interrliztl GIjlnonty Priority IPL Enabled |Ir;t\f:erlr:pt priority
0002 Level O (interrupt disabled)] ~——— 0002 Interrupt levels 1 and above are enabled.
0012 Level 1 Low 0012 Interrupt levels 2 and above are enabled.
0102 Level 2 0102 Interrupt levels 3 and above are enabled.
0112 Level 3 0112 Interrupt levels 4 and above are enabled.
1002 Level 4 1002 Interrupt levels 5 and above are enabled.
1012 Level 5 1012 Interrupt levels 6 and above are enabled.
1102 Level 6 1102 Interrupt levels 7 and above are enabled.
1112 Level 7 High 1112 All maskable interrupts are disabled.

When the IPL or the interrupt priority level of an interrupt is changed, the altered level is reflected in

interrupt handling with the following timing:

« If the IPL is changed by an REIT instruction, the new level takes effect beginning with the instruction
that is executed two clock cycles after the last clock cycle of the REIT instruction.

« If the IPL is changed by a POPC, LDC, or LDIPL instruction, the new level takes effect beginning with
the instruction that is executed three clock cycles after the last clock cycle of the instruction used.

« If the interrupt priority level of a particular interrupt is changed by an instruction such as MOV, the
new level takes effect beginning with the instruction that is executed two or three clock cycles after the
last clock cycle of the instruction used.

Rev.2.00 Oct 17,2005 page 250 of 263

REJ09B0001-0200

RENESAS



Chapter 5 Interrupts 5.2 Interrupt Control

5.2.4 Changing Interrupt Control Registers
(1) Individual interrupt control registers can only be modified while no interrupt requests corresponding
to that register are generated. If interrupt requests managed by the interrupt control register are
likely to occur, disable interrupts before changing the contents of the interrupt control register.

(2) When modifying an interrupt control register after disabling interrupts, care must be taken when
selecting the instructions to be used.

Changing Bits Other Than IR Bit

If an interrupt request corresponding to the register is generated while executing the instruction, the IR

bit may not be set to 1 (interrupt requested), with the result that the interrupt request is ignored. To get

around this problem, use the following instructions to modify the register: AND, OR, BCLR, BSET.

Changing IR Bit

Even when the IR bit is cleared to 0 (interrupt not requested), it may not actually be cleared to 0 depend-

ing on the instruction used. Therefore, use the MOV instruction to set the IR bit to 0.

(3) When disabling interrupts using the | flag, refer to the following sample programs. (Refer to (2) above
regarding changing interrupt control registers in the sample programs.)

Sample programs 1 to 3 are to prevent the | flag from being set to 1 (interrupt enabled) before writing to
the interrupt control registers depending on the state of the internal bus or the instruction queue buffer.

Example 1: Use NOP instruction to prevent | flag being set to 1
before interrupt control register is changed

INT_SWITCHL1:
FCLR | ; Disable interrupts
AND.B #00H, 0056H ; Set TXIC register to 0016
NOP
NOP
FSET | ; Enable interrupts

Example 2: Use dummy read to delay FSET instruction
INT_SWITCH2:
FCLR | ; Disable interrupts
AND.B #00H, 0056H ; Set TXIC register to 0016
MOV.W MEM, RO ; Dummy read
FSET | ; Enable interrupts

Example 3: Use POPC instruction to change | flag

INT_SWITCH3:
PUSHC FLG
FCLR | ; Disable interrupts
AND.B #00H, 0056H ; Set TXIC register to 0016
POPC FLG ; Enable interrupts
Rev.2.00 Oct 17,2005 page 251 of 263 RENESAS

REJ09B0001-0200



Chapter 5 Interrupts 5.3 Interrupt Sequence

5.3 Interrupt Sequence

The interrupt sequence — the operations performed from the instant an interrupt is accepted to the instant

the interrupt routine is executed — is described here.

If an interrupt occurs during execution of an instruction, the processor determines its priority when the

execution of the instruction is completed and transfers control to the interrupt sequence from the next cycle.

If an interrupt occurs during execution of the SMOVB, SMOVF, SSTR, or RMPA instruction, the processor

temporarily suspends the instruction being executed and transfers control to the interrupt sequence.

In the interrupt sequence, the processor carries out the operations listed below. Figure 5.3.1 shows the

interrupt sequence execution time.

(1) The CPU obtains the interrupt information (the interrupt number and interrupt request level) by reading
address 0000016. Then, the IR bit corresponding to the interrupt is set to 0 (interrupt not requested
issued).

(2) The FLG register is saved as it was immediately before the start of the interrupt sequence in a tempo-
rary register! within the CPU.

(3) The I flag, the D flag, and the U flag in the FLG register are set as follows:

* The | flag is cleared to O (interrupts disabled)

« The D flag is cleared to 0 (single-step interrupt disabled)

*The U flag is cleared to 0 (ISP specified)

However, the U flag status does not change when the INT instruction for software interrupt numbers 32 to
63 is executed.

(4) The contents of the temporary register! are saved within the CPU in the stack area.

(5) The PC is saved in the stack area.

(6) The interrupt priority level of the accepted instruction is set in IPL.

(7) The first address of the interrupt routine set to the interrupt vector is set in the PC.

After the interrupt sequence is completed, the processor resumes executing instructions from the starting
address of the interrupt routine.

Note 1: This register cannot be accessed by the user.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Address '
Address bus oot X Undefined Y'sp2 (sp1 Yspa ) se3 Y vec Y vecsr Y veca Y Pc
nterrupt - SP-2 SP-1 SP-4 SP-3 VEC VEC+1 VEC+2
Data bus x infgrma[?on X Undefined X contents >< contents XConlemSX contents Xcontems X contents X contents X
RD |_|—\< Undefined y

WR

L L

Note: Undefined parts differ according to the states of the queue buffer.
If the queue buffer is in a state where an instruction can be accepted, a read
cycle is generated.

Figure 5.3.1 Interrupt Sequence Executing Time

Rev.2.00 Oct17, 2005 page 252 of 263 RENESAS
REJ09B0001-0200



Chapter 5 Interrupts 5.3 Interrupt Sequence

5.3.1 Interrupt Response Time
Figure 5.3.2 shows the interrupt response time. The interrupt response time is the period from when an
interrupt request is generated until the first instruction of the interrupt routine is executed. This period
consists of the time ((a) in Figure 5.3.1) from when the interrupt request is generated to when the
instruction then under way is completed and the time (20 cycles (b)) in which the interrupt sequence is
executed.

Interrupt request generated Interrupt request acknowledged

4} 4} —» Time
/ /

Instruction in interrupt 3

Instruction Interrupt sequence .
routine

4 (@) 20 cycles (b) /
- > -

Interrupt response time

(a) Time from when interrupt request is generated to when the instruction then under execution is
completed. Time (&) varies with the instruction being executed. The DIVX instruction requires a
maximum time of 30 cycles (cycle number: no wait states, divisor is stored in a register).

(b) The address-match interrupt and the single-step interrupt are each 21 cycles.

Figure 5.3.2 Interrupt Response Time

5.3.2 Changes of IPL when Interrupt Request Acknowledged
When an interrupt request of a maskable interrupt is acknowledged, the interrupt priority level of the
acknowledged interrupt is set in IPL.
When a software interrupt request or a special interrupt request is acknowledged, the value shown in
Table 5.3.1 is set in IPL. Table 5.3.1 shows the value of IPL when software interrupts and special
interrupt requests are acknowledged.

Table 5.3.1 Value of IPL when Software Interrupt and Special Interrupt Request Acknowledged

Interrupt Sources Without Interrupt Priority Levels Value that is set to IPL

Watchdog timer, oscillation stop detection 7

Software, address-match, single-step Not changed
Rev.2.00 Oct 17,2005 page 253 of 263 :{ENESAS

REJ09B0001-0200



Chapter 5 Interrupts

5.3 Interrupt Sequence

5.3.3 Saving Register Contents
In an interrupt sequence, the contents of the FLG register and the PC are saved to the stack area.
The order in which these are saved is as follows. First, the 4 high-order bits of the PC and 4 high-order
bits (IPL) and 8 low-order bits of the FLG register, a total of 16 bits, are saved to the stack area. Next,
the 16 low-order bits of the PC are saved. Figure 5.3.3 shows the stack status before an interrupt

request is acknowledged.

If there are any other registers to be saved, use a program to save them at the beginning of the interrupt
routine. The PUSHM instruction can be used to save all registers, except SP, by a single instruction.

Stack area Stack area
MSB LSB MSB LSB
Address Address
[SP]

m—4 m-4 PCL ~4— New SP value
m-3 m-3 PCM
m-2 > m-2 FLGL
m-1 m-1 FLGH PCH

[SP]
m  (Content of previous stack SP value before m  [Content of previous stack

interrupt request is
m+1 |[Content of previous stack acknowledged m+1 |Content of previous stack
Stack status before interrupt request is Stack status after interrupt request is acknowledged
acknowledged

Figure 5.3.3 Stack Status Before and After an Interrupt Request is Acknowledged

The register save operations performed as part of an interrupt sequence are executed in four parts 8 bits

at a time. Figure 5.3.4 shows the operations when saving register contents.

Note 1: When the INT instruction for software interrupt numbers 32 to 63 is executed, SP is indicated by
the U flag. It is indicated by ISP in all other cases.

[SP]-5
[SP]-4
[SP1-3
[SP]-2
[SPl-1

[SP]

Address Stack area Sequence in which order

Note 1: [SP] denotes the initial value of the stack pointer (SP) when an
interrupt request is acknowledged. After the microcomputer
finishes saving register contents, the SP content is [SP] minus 4.

registers are saved

PCL t—(3)
PCm ~~—(4) . .
Saved separately, 8 bits at a time
FLGL - (1)
FLGH PCH |—(2)

Finished saving registers
in four parts.

Figure 5.3.4 Operations when Saving Register Contents

Rev.2.00 Oct 17,2005 page 254 of 263
REJ09B0001-0200

RENESAS



Chapter 5 Interrupts 5.4 Returning from Interrupt Routines

5.4 Returning from Interrupt Routines

When the REIT instruction is executed at the end of the interrupt routine, the contents of the FLG register
and PC that have been saved to the stack area immediately preceding the interrupt sequence are automati-
cally restored. Then control returns to the routine that was under execution before the interrupt request was
acknowledged.

If any registers were saved in the interrupt routine using a program, be sure to restore them using an
instruction (e.g., the POPM instruction) before executing the REIT instruction.

Rev.2.00 Oct 17,2005 page 255 of 263 RENESAS
REJ09B0001-0200



Chapter 5 Interrupts

5.5 Interrupt Priority

5.5 Interrupt Priority

If two or more interrupt requests occur while a single instruction is being executed, the interrupt request that

has higher priority is acknowledged.

The priority level of maskable interrupts (peripheral functions) can be selected arbitrarily by setting bits
ILVL2 to ILVLO. If multiple maskable interrupts are assigned the same priority level, the priority that is set in

hardware determines which is acknowledged.

Special interrupts such as the watchdog timer interrupt have their priority levels set in hardware. Figure

5.5.1 lists the interrupt priority levels of hardware interrupts.

Software interrupts are not affected by interrupt priority. They always cause control to branch to an interrupt

routine when the relevant instruction is executed.

Reset

Watchdog timer
Oscillation stop detection

Peripheral function

Single-step

Address match

High

Low

Figure 5.5.1 Interrupt Priority Levels of Hardware Interrupts

Rev.2.00 Oct17, 2005 page 256 of 263 RENESAS
REJ09B0001-0200



Chapter 5 Interrupts 5.6 Multiple interrupts

5.6 Multiple Interrupts

The internal bit states when control has branched to an interrupt routine are as follows:
« The interrupt enable flag (I flag) is cleared to O (interrupts disabled).
« The interrupt request bit for the acknowledged interrupt is cleared to 0.
» The processor interrupt priority level (IPL) equals the interrupt priority level of the acknowledged interrupt.

By setting the interrupt enable flag (I flag) to 1 in the interrupt routine, interrupts can be reenabled so that an
interrupt request that has higher priority than the processor interrupt priority level (IPL) can be acknowl-
edged. Figure 5.6.1 shows how multiple interrupts are handled.

Interrupt requests that have not been acknowledged due to low interrupt priority level are kept pending.
When the IPL is restored by an REIT instruction and the interrupt priority is determined based on the IPL
contents, the pending interrupt request is acknowledged if the following condition is met:

Interrupt priority level of > Restored processor interrupt
pending interrupt request priority level (IPL)
Rev.2.00 Oct 17,2005 page 257 of 263 :{ENESAS

REJ09B0001-0200



Chapter 5

Interrupts

5.6 Multiple interrupts

Interrupt request
generated

Nesting

_— >

Time

Reset

Interrupt 1

Ul

Interrupt priority level = 3

Interrupt 2

D

Interrupt priority level = 5

Interrupt 3

D

Interrupt priority level = 2

.

Main routine

Multiple interrupts

Not acknowledged because
of low interrupt priority

Main routine instructions
are not executed.

. Interrupt enable flag

: Processor interrupt priority level
. Automatically executed.

: Set in software.

Figure 5.6.1 Multiple Interrupts

Rev.2.00 Oct 17,2005 page 258 of 263
REJ09B0001-0200

RENESAS



h r Interr
Chapter 5 terrupts 5.7 Notes on Interrupts

5.7 Note on Interrupts

5.7.1 Reading Address 0000016
Avoid reading address 0000016 in a program. When a maskable interrupt request is accepted, the CPU
reads interrupt information (interrupt number and interrupt request priority level) from address 0000016
during the interrupt sequence. At this time, the IR bit for the accepted interrupt is cleared to O.
If address 00000z1s is read in a program, the IR bit for the interrupt which has the highest priority among
the enabled interrupts is set to 0. This may cause the interrupt to be canceled or an unexpected interrupt
to be generated.

5.7.2 SP Setting
Set a value in SP before accepting an interrupt. SP is set to 000016 after reset. Therefore, if an interrupt
is accepted before setting a value in SP, the program may go out of control.

5.7.3 Changing Interrupt Control Register
(1) Individual interrupt control registers can only be modified while no interrupt requests corresponding
to that register are generated. If interrupt requests managed by an interrupt control register are likely
to occur, disable interrupts before changing the contents of the interrupt control register.

(2) When modifying an interrupt control register after disabling interrupts, care must be taken when
selecting the instructions to be used.

Changing Bits Other Than IR Bit

If an interrupt request corresponding to the register is generated while executing the instruction, the IR

bit may not be set to 1 (interrupt requested), with the result that the interrupt request is ignored. To get

around this problem, use the following instructions to modify the register: AND, OR, BCLR, BSET.

When Changing IR Bit

Even when the IR bit is cleared to O (interrupt not requested), it may not actually be cleared to 0 depend-

ing on the instruction used. Therefore, use the MOV instruction to set the IR bit to 0.

(3) When disabling interrupts using the | flag, refer to the following sample programs. (Refer to (2) above
regarding changing interrupt control registers in the sample programs.)

Sample programs 1 to 3 are to prevent the | flag from being set to 1 (interrupt enabled) before writing to
the interrupt control registers depending on the state of the internal bus or the instruction queue buffer.

Rev.2.00 Oct 17,2005 page 259 of 263 RENESAS
REJ09B0001-0200



Chapter 5 Interrupts

Example 1: Use NOP instruction to prevent | flag being set to 1
before interrupt control register is changed

INT_SWITCHL1:
FCLR | ; Disable interrupts
AND.B #00H, 0056H ; Set TXIC register to 0016
NOP
NOP
FSET | ; Enable interrupts

Example 2: Use dummy read to delay FSET instruction
INT_SWITCHZ2:
FCLR | ; Disable interrupts
AND.B #00H, 0056H ; Set TXIC register to 0016
MOV.W MEM, RO ; Dummy read
FSET | ; Enable interrupts

Example 3: Use POPC instruction to change | flag

INT_SWITCHS3:
PUSHC FLG
FCLR | ; Disable interrupts
AND.B #00H, 0056H ; Set TXIC register to 0016
POPC FLG ; Enable interrupts
Rev.2.00 Oct 17, 2005 page 260 of 263 RENESAS

REJ09B0001-0200



Chapter 6
Calculating the Number of Cycles

6.1 Instruction Queue Buffer



Chapter 6 Calculating the Number of Cycles 6.1 Instruction Queue Buffer

6.1 Instruction Queue Buffer

R8C/Tiny Series microcomputers have 4-stage (4-byte) instruction queue buffers. If the instruction queue
buffer has free space when the CPU can use the bus, instruction codes are taken into the instruction queue
buffer. This is referred to as “prefetching”. The CPU reads (fetches) the instruction codes from the instruc-
tion queue buffer as it executes a program.

The explanation of the number of cycles in chapter 4 assumes that all the necessary instruction codes are
placed in the instruction queue buffer, and that 8-bit data is read or written to the memory without software
wait states. In the following cases, more cycles may be needed than the number of cycles indicated in this
manual:

« If not all of the instruction codes needed by the CPU have been placed in the instruction queue buffer.
Instruction codes are read in until all of the instruction codes required for program execution are avail-
able. Furthermore, the number of read cycles increases in the following case:

(1) The number of read cycles increases to match the number of wait cycles incurred when reading
instruction codes from an area in which software wait cycles exist.

* When reading or writing data to an area in which software wait cycles exist.

The number of read or write cycles increases to match the number of wait cycles incurred.

* When reading or writing 16-bit data from/to the SFR or the internal memory.

The memory is accessed twice to read or write one 16-bit data item. Therefore, the number of read or
write cycles increases by one for each 16-bit data item read or written.

Note that if prefetch and data access occur at the same time, data access has priority. Also, if more than
three bytes of instruction codes exist in the instruction queue buffer, the CPU assumes there is no free

space and, therefore, does not prefetch instruction code.

Figure 6.1.1 shows an example of starting a read instruction (without software wait).

Rev.2.00 Oct17,2005 page 262 of 263 XENESAS
REJO9B0001-0200



Chapter 6 Calculating the Number of Cycles 6.1 Instruction Queue Buffer

Unlor secution ( JMP TEST_11 X MOV.W X JMP TEST_12 )
Fetch code 73F1 4 64
(1 T T [ [ fea] [ Jow[ T T[] [ T T T ]
Content at jump address_ is Content at jump address is prefetched
prefetched at the same time Fetch Fetch Fetch at the same time the instruction queue Sample programs
the instruction queue buffer etc et etcl buffer is cleared. Address  Code Instruction
is cleared. \ 0C062 64 JMP  TEST_11
0C063 04 NOP
04 [0a Joa [ 78] 73 [[73 0o [ 00 [/o0\[ 64 [6a [(64 )] 04 [ 04 [ 04 78 [ 73 | 73 | ocoss 04 NOP
Instruction 04 04 04 F1 40 4 04 04 04 04 04 FF FF | 0C065 04 NOP
queue buffer F1 \\ J 4 \ 0/ 04 0C066 04 NOP
04 04 04 00 64 64 04 04 | 04 04 00 | ocoe7 04 NOP
04 0C068 TEST_11:
0C068 73F10040 MOV.W 04000h, R1
Jump address Low-order address from High-order address from 82323 g: "]\"‘gi TEST_12
which to read data which to read data 0COBE 04 NOP

BCLK

0CO6F 04 NOP
0C070 04 NOP
0C071 04 NOP
oco72 TEST_12:
Address bus 0C065 0C068)0C069 | 0CO6A | 0C06B | 0CO6C | 0CO6D} 04000 | 04001 } OCO6E 0CO6F 0C072 | 0C073 | 0C074

Content at address 400016 Content at address 400116

¥

_ P P P P P P DR — DR P P P P P
® —Wum—m

WR

P : Indicates a prefetch (reading from memory into the instruction queue buffer).
DR : Indicates a data read.
DW : Indicates a data write.

l:l : Indicates the locations of the instruction queue buffer that are clear.

Figure 6.1.1 Starting a Read Instruction (without Software Wait States)

Rev.2.00 Oct 17,2005 page 263 of 263 RENESAS
REJ09B0001-0200



Q&A

Information in Q&A form to help the user make the most of the R8C/Tiny Series is provided in this section.
In general, one question and its corresponding answer are given on one page; the upper section is used for
the question, the lower for the answer.

Functions closely connected with the issue being discussed are indicated in the upper-right corner.

Q&A-1



CPU

Q

How do | distinguish between the static base register (SB) and the frame base register (FB)?

A

SB and FB function in the same manner, so you can use them as you like when in programming in
assembly language. If you write a program in C, use FB as a stack frame base register.

Q&A-2



Interrupt

Q

Is it possible to change the contents of the interrupt table register (INTB) while a program is being
executed?

A

Yes. But there is a possibility of program runaway if an interrupt request occurs while changing the
contents of INTB. It is therefore not recommended to frequently change the contents of INTB while
a program is being executed.

Q&A-3



CPU

Q

What is the difference between the user stack pointer (USP) and the interrupt stack pointer (ISP)?
What are their roles?

USP is used when using the OS. When several tasks are run, the OS secures stack areas to save
the contents of registers for individual tasks. Also, stack areas have to be secured, task by task, to
be used for handling interrupts that occur while tasks are being executed. If you use USP and ISP
in such an instance, the stack for interrupts can be shared by these tasks. This allows efficient use
of stack areas.

Q&A-4



CPU

Q

What happens to the instruction code if | use a bit instruction in absolute addressing ?

This explanation takes BSET bit, base:16 as an example.

This instruction is a 4-byte instruction. The 2 higher-order bytes of the instruction code indicate the
operation code, and the 2 lower-order bytes make up the addressing mode to expresse bit,base:16.
The relation between the 2 lower-order bytes and bit,base:16 is as follows:

2 lower-order bytes = base:16 X 8 + hit

For example, in the case of BSET 2,0AH (setting bit 2 of address 000A16 to 1), the 2 lower-order
bytes become A X 8 + 2 = 52H.

In the case of BSET 18,8H (setting the 18th bit from bit 0 of address 000816 to 1), the 2 lower-order
bytes become 8 X 8 + 18 = 52H, which is equivalent to BSET 2,AH.

The maximum value of base:16 X 8 + bit, FFFFH, indicates bit 7 of address 1FFF16. This is the
maximum bit you can specify when using a bit instruction in absolute addressing.

Q&A-5



CPU

Q

What is the difference between the DIV instruction and the DIVX instruction?

The DIV instruction and the DIVX instruction are both instructions for signed division, but the sign of
the remainder is different.

The sign of the remainder left after the DIV instruction is the same as that of the dividend, but the
sign of the remainder of the DIVX instruction is the same as that of the divisor.

In general, the following relation among quotient, divisor, dividend, and remainder holds:

dividend = divisor X quotient + remainder

Since the sign of the remainder is different between these instructions, the quotient obtained either
by dividing a positive integer by a negative integer or by dividing a negative integer by a positive
integer using the DIV instruction is different from that obtained using the DIVX instruction.

For example, dividing 10 by —3 using the DIV instruction yields —3 and leaves a remainder of +1,
while doing the same using the DIVX instruction yields —4 and leaves a remainder of —2.

Dividing —10 by +3 using the DIV instruction yields —3 and leaves a remainder of —1, while doing the
same using the DIVX instruction yields —4 and leaves a remainder of +2.

Q&A-6



Glossary

Technical terms used in this software manual are explained in this section. They apply to in this manual
only.

Glossary-1



Term

Meaning Related word

borrow

carry

context

decimal addition

displacement

effective address

extension area

LSB

To move a digit to the next lower position. carry

To move a digit to the next higher position. borrow

Registers that a program uses.

Addition using decimal values.

The difference between the initial position and a later

position.

The address actually used after modification.

For the R8C/Tiny Series, the area

from 1000016 through FFFFF1s6.

Abbreviation for Least Significant Bit MSB
The bit occupying the lowest-order position in a data item.

Glossary-2



Term

Meaning Related word

macro instruction

MSB

operand

operation

operation code

overflow

pack

SFR area

An instruction, written in a source language, to be
expressed in a number of machine instructions when
compiled into a machine code program.

Abbreviation for Most Significant Bit. LSB
The bit occupying the highest-order position in a
data item.

A part of instruction code that indicates the object of  operation code
an operation.

A generic term for move, comparison, bit processing,
shift, rotation, arithmetic, logic, and branch.

A part of an instruction code that indicates what sort  operand
of operation the instruction performs.

To exceed the maximum expressible value as a result
of an operation.

To join data items. unpack
Used to mean to form two 4-bit data items into one 8-

bit data item, to form two 8-bit data items into one 16-

bit data item, etc.

Abbreviation for Special Function Register area. An
area in which control bits for the on-chip peripheral
circuits of the microcomputer and control registers are
located.

Glossary-3



Term

Meaning Related word

shift out

sign bit

sign extension

stack frame

string

unpack

Zero extension

To move the content of a register either to the right or
left until fully overflowed.

A bit that indicates either a positive or a negative (the
highest-order bit).

To extend a data length in which the higher-order bits
to be extended are made to have the same sign as the
sign bit. For example, sign-extending FF16 results in
FFFF16, and sign-extending OF16 results in 000F16.

An automatic conversion area used by C language
functions.

A sequence of characters.

To restore combined items or packed informationto  pack
its original form. Used to mean to separate 8-bit

information into two parts — 4 lower-order bits and 4
higher-order bits, to separate 16-bit information into

two parts — 8 lower-order bits and 8 higher-order bits,

and the like.

To extend a data length by turning higher-order bits to
0's. For example, zero-extending FF16 to 16 bits
results in 00FF16.

Glossary-4



Table of Symbols

The symbols used in this software manual are explained in the following table. They apply to this manual
only.

Symbol-1



Symbol Meaning
- Transposition from the right side to the left side
—— Interchange between the right side and the left side
+ Addition
- Subtraction
X Multiplication
- Division
AN Logical conjunction
\ Logical disjunction
A4 Exclusive disjunction
B Logical negation
dspl6 16-bit displacement
dsp20 20-bit displacement
dsp8 8-bit displacement
EVA( ) An effective address indicated by what is enclosed in ( )
EXT( ) Sign extension
(H) Higher-order byte of a register or memory
H4: 4 higher-order bits of an 8-bit register or 8-bit memory
[ Absolute value
L) Lower-order byte of a register or memory
L4: 4 lower-order bits of an 8-bit register or 8-bit memory
LSB Least Significant Bit
M( ) Content of memory indicated by what is enclosed in ( )
(M) Middle-order byte of a register or memory
MSB Most Significant Bit
PCH Higher-order byte of the program counter
PCML Middle-order byte and lower-order byte of the program counter
FLGH 4 higher-order bits of the flag register
FLGL 8 lower-order bits of the flag register

Symbol-2




A0 and Al e 5
A1AQ eee 5

Address register ese 5
Address space e 3

Addressing mode ees 22

B

B flag e 6
Byte (8-bit) data e 16

C
Cflag e 6
Carry flag s 6
Cycles e 138

D

D flag e 6

Data arrangement in memory ees 17

Data arrangement in Register ess 16

Data register eee 4

Data type e 10

Debug flag e 6
Description example ees 37

dest eee 18

FB e 5
Fixed vector table ess 19
Flag change ess 37
Flag register eee 5

FLG e 5

Index

Index-1

Frame base register e 5

Function eee 37

Interrupt table register ese 5
| flag = 6

Instruction code ees 138
Instruction Format eee 18
Instruction format specifier ess 35
INTB eee 5

Integer e 10

Interrupt enable flag e 6
Interrupt stack pointer ese 5
Interrupt vector table e 19
IPL ees 7

ISP ees 5

L

Long word (32-bit) data e 16

M

Maskable interrupt eee 246
Memory bit ees 12

Mnemonic eee 35, 38

N
Nibble (4-bit) data e 16
Nonmaskable interrupt e 246
@)

Oflag e« 6
Operand s 35, 38



Operation e 37 ]
Overflow flag e 6 Uflag s 6

p User stack pointer ses 5
oG e 5 USP eee 5
Processor interrupt priority level ese 7 V

Program counter ess 5 Variable vector table s 20

R W

RO, R1, R2,and R3 e+« 4 Word (16-bit) data e+ 16

ROH, R1H eee 4

ROL, R1L ee* 4 yA
R2R0 e 4 Z flag = 6
R3R1 e 4 Zero flag e 6

Register bank e 8

Register bank select flag sss 6
Register bit eee 12

Related instruction eee 37

Reset eee 9O

Sflag e 6

SB e 5

Selectable src / dest (label) e 37
Sign flag e+ 6

Size specifier eee 35

Software interrupt number ees 20
SIc eee 18

Stack pointer e 5

Stack pointer select flag s 6
Static base register se¢ 5

String e 15

Syntax eee 35, 38

Index-2



REVISION HISTORY

R8C/Tiny Series Software Manual

Rev. Date Description
Page Summary
1.00 {Jun 19, 2003 - First edition issued
2.00 |Oct 17, 2005| All pages | Featuring improved English
2 “1.1.2 Speed Performance” revised




R8C/Tiny Series SOFTWARE MANUAL

Publication Data : Rev.1.00 Jun 19, 2003
Rev.2.00 Oct 17, 2005

Published by : Sales Strategic Planning Div.
Renesas Technology Corp.

© 2005. Renesas Technology Corp., All rights reserved. Printed in Japan.



R8C/Tiny Series
Software Manual

RENESAS

Renesas Electronics Corporation
1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan REJO9B0001-0200Z



