

Reference Specification

MLCC radial lead type for Automotive in accordance with AEC-Q200 (RCE Series)

Product specifications in this catalog are as of Sep.2015, and are subject to change or obsolescence without notice.

Please consult the approval sheet before ordering. Please read rating and Cautions first.

⚠ CAUTION

1. OPERATING VOLTAGE

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range. When the voltage is started to apply to the circuit or it is stopped applying, the irregular voltage may be generated for a transit period because of resonance or switching. Be sure to use a capacitor within rated voltage containing these irregular voltage.

When DC-rated capacitors are to be used in input circuits from commercial power source (AC filter), be sure to use Safety Recognized Capacitors because various regulations on withstand voltage or impulse withstand established for each equipment should be taken into considerations.

Voltage	DC Voltage	DC+AC Voltage	AC Voltage	Pulse Voltage(1)	Pulse Voltage(2)
Positional Measurement	Vo-p	Vo-p	Vp-p	Vp-p	Vp-p

2. OPERATING TEMPERATURE AND SELF-GENERATED HEAT

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself.

When the capacitor is used in a high-frequency current, pulse current or the like, it may have the self-generated heat due to dielectric-loss. In case of Class 2 capacitors (Temp.Char.: F,X8L,X7R,X7S,X7T, Y5V), applied voltage should be the load such as self-generated heat is within 20 °C on the condition of atmosphere temperature 25 °C. Please contact us if self-generated heat is occurred with Class 1 capacitors (Temp.Char.: C0G,U2J,X8G). When measuring, use a thermocouple of small thermal capacity-K of ϕ 0.1mm and be in the condition where capacitor is not affected by radiant heat of other components and wind of surroundings. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability.

3. Fail-safe

Be sure to provide an appropriate fail-safe function on your product to prevent a second damage that may be caused by the abnormal function or the failure of our product.

4. OPERATING AND STORAGE ENVIRONMENT

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed 5 to 40 °C and 20 to 70%. Use capacitors within 6 months.

5. VIBRATION AND IMPACT

Do not expose a capacitor or its leads to excessive shock or vibration during use.

6. SOLDERING

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

7. BONDING AND RESIN MOLDING, RESIN COAT

In case of bonding, molding or coating this product, verify that these processes do not affect the quality of capacitor by testing the performance of a bonded or molded product in the intended equipment. In case of the amount of applications, dryness / hardening conditions of adhesives and molding resins containing organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc.) are unsuitable, the outer coating resin of a capacitor is damaged by the organic solvents and it may result, worst case, in a short circuit.

The variation in thickness of adhesive or molding resin may cause a outer coating resin cracking and/or ceramic element cracking of a capacitor in a temperature cycling.

8. TREATMENT AFTER BONDING AND RESIN MOLDING, RESIN COAT

When the outer coating is hot (over 100 °C) after soldering, it becomes soft and fragile. So please be careful not to give it mechanical stress.

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

9. LIMITATION OF APPLICATIONS

Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property.

1. Aircraft equipment 2. Aerospace equipment

3. Undersea equipment 4. Power plant control equipment

5. Medical equipment6. Transportation equipment (vehicles, trains, ships, etc.)7. Traffic signal equipment8. Disaster prevention / crime prevention equipment

9. Data-processing equipment exerting influence on public

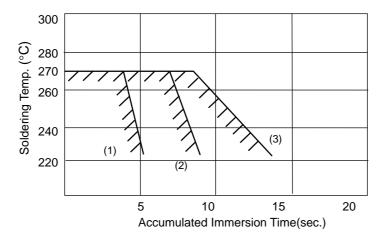
10. Application of similar complexity and/or reliability requirements to the applications listed in the above.

NOTICE

1. CLEANING (ULTRASONIC CLEANING)

To perform ultrasonic cleaning, observe the following conditions.

Rinse bath capacity: Output of 20 watts per liter or less.


Rinsing time: 5 min maximum.

Do not vibrate the PCB/PWB directly.

Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

2. Soldering and Mounting

1) Allowable Conditions for Soldering Temperature and Time Perform soldering within tolerance range (shaded portion).

Dimension code

(1) 0, 1, 2(F 2.5mm)

(2) 0, 1, 2(F 5.0mm), 3, 4, W

(3) 5, U

2) Insertion of the Lead Wire

- When soldering, insert the lead wire into the PCB without mechanically stressing the lead wire.
- Insert the lead wire into the PCB with a distance appropriate to the lead space.

3. CAPACITANCE CHANGE OF CAPACITORS

• Class 2 capacitors (Temp.Char.: F,X8L,X7R,X7S,X7T,Y5V)

Class 2 capacitors an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor leaves for a long time. Moreover, capacitance might change greatly depending on a surrounding temperature or an applied voltage. So, it is not likely to be able to use for the time constant circuit.

Please contact us if you need a detail information.

⚠ NOTE

- 1. Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.
- 2. You are requested not to use our product deviating from this specification.

EGLEDMNO01

1. Application

This product specification is applied to Radial Lead Type Monolithic Ceramic Capacitors RCE series used for Automotive in accordance with AEC-Q200 requirements.

2. Rating

• Part number configuration

ex.) RCE	R7	2E	103	K	1	K1	H03	В
Series	Temperature Characteristic	Rated voltage	Capacitance	Capacitance tolerance	Dimension code	Lead code	Individual specification code	Packing style code

• Temperature characteristic

Code	Temp. Char.	Temp. Range	Cap. Change (Within%)	Standard Temp.	Operating Temp. Range
R7	X7R	-55 ∼ 125°C	+/-15	25°C	-55 ∼ 125°C

• Rated voltage

 in the contract of the contrac							
Code	Rated voltage						
2E	DC250V						
2J	DC630V						
3A	DC1000V						

Capacitance

The first two digits denote significant figures; the last digit denotes the multiplier of 10 in pF. ex.) In case of 103.

$$10 \times 10^3 = 10000 pF$$

• Capacitance tolerance

Code	Capacitance Tolerance
K	+/-10%
М	+/-20%

• Dimension code

Code	Dimensions (LxW) mm max.
1	4.0 x 3.5
2	5.5 x 4.0
3	5.5 x 5.0
4	7.5 x 5.5
5	7.5 x 7.5 *
U	7.7 x 12.5 *

^{*}DC630V, DC1000V: W+0.5mm

• Lead code

Code	Lead style	Lead spacing (mm)
B1	Straight type	5.0+/-0.8
E1	Straight taping type	5.0+0.6/-0.2
K1	Inside crimp type	5.0+/-0.8
M1	Inside crimp taping type	5.0+0.6/-0.2

Lead wire is solder coated CP wire.

• Individual specification code Murata's control code Please refer to [Part number list].

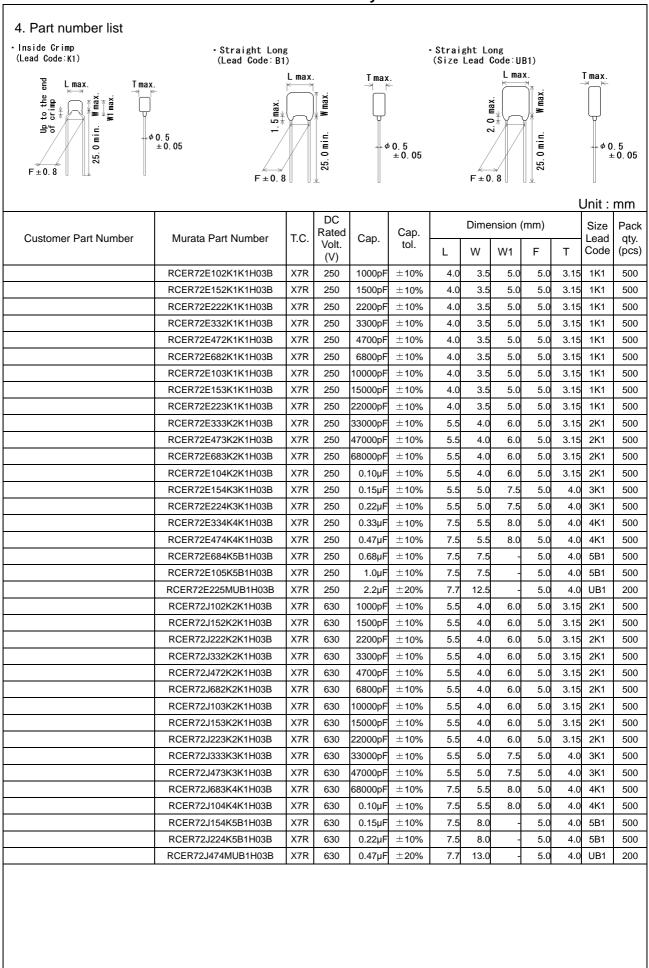
• Packing style code

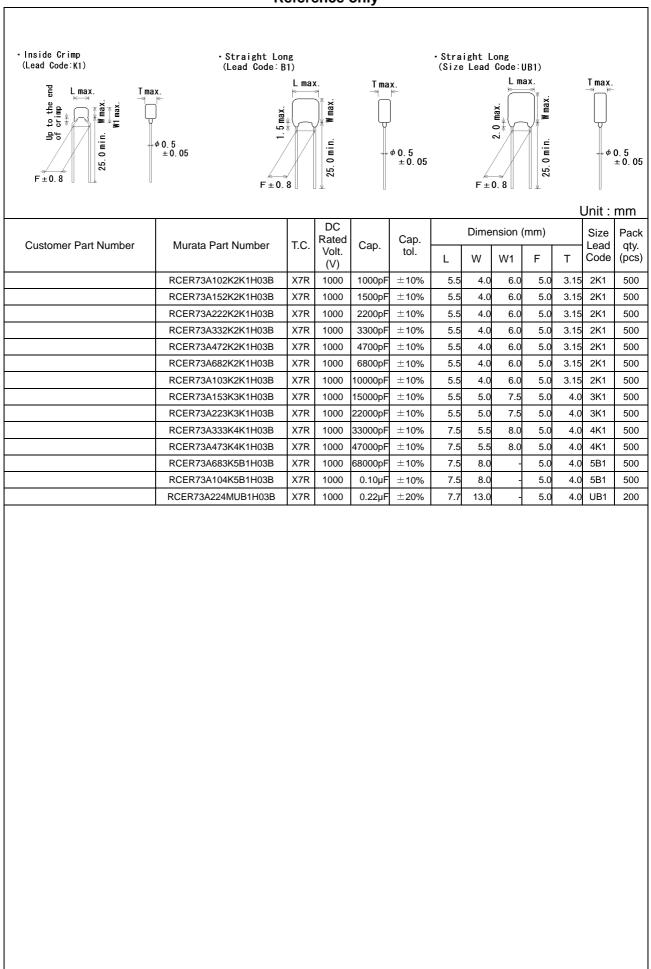
Code	Packing style
Α	Taping type of Ammo
В	Bulk type

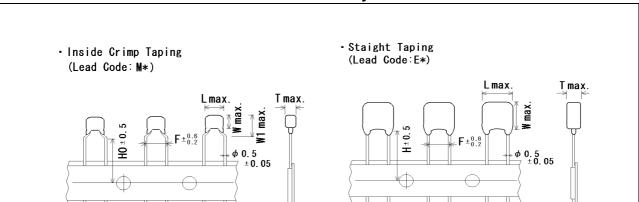
3. Marking

Temp. char. : Letter code : C (X7R char. Except dimension code : 1)

Capacitance : 3 digit numbers

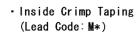

Capacitance tolerance : Code

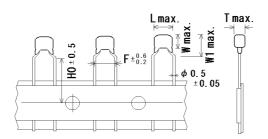

Rated voltage : Letter code : 4 (DC250V only. Except dimension code : 1)

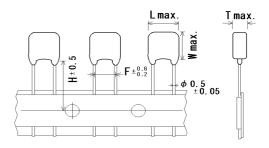

Letter code: 7 (DC630V only.) Letter code: A (DC1000V only.)

Company name code : Abbreviation : (Except dimension code : 1)

Ex.)			
Rated voltage Dimensions	DC250V	DC630V	DC1000V
1	103K		
2	6 473	M 153 K7C	(M)102 KAC
3,4	(M224 K4C)	G 104 K7C	6 333 KAC
5,U	474 K4C	6 474 M7C	& 104 KAC






Init	٠	m	m

											L	init : i	mm
Overland Bert Novelon	Museta Dart Nusskas	Τ.Ο	DC Rated	0	0		Di	mensi	on (mr	n)		Size	Pack
Customer Part Number	Murata Part Number	T.C. Rated volt. (V)	oit.	Cap. tol.	L	W	W1	F	Т	НО	Lead Code	qty. (pcs)	
	RCER72E102K1M1H03A	X7R	250	1000pF	±10%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	2000
	RCER72E152K1M1H03A	X7R	250	1500pF	±10%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	2000
	RCER72E222K1M1H03A	X7R	250	2200pF	±10%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	2000
	RCER72E332K1M1H03A	X7R	250	3300pF	±10%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	2000
	RCER72E472K1M1H03A	X7R	250	4700pF	±10%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	2000
	RCER72E682K1M1H03A	X7R	250	6800pF	±10%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	2000
	RCER72E103K1M1H03A	X7R	250	10000pF	±10%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	2000
	RCER72E153K1M1H03A	X7R	250	15000pF	±10%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	2000
	RCER72E223K1M1H03A	X7R	250	22000pF	±10%	4.0	3.5	5.0	5.0	3.15	16.0	1M1	2000
	RCER72E333K2M1H03A	X7R	250	33000pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCER72E473K2M1H03A	X7R	250	47000pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCER72E683K2M1H03A	X7R	250	68000pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCER72E104K2M1H03A	X7R	250	0.10µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCER72E154K3M1H03A	X7R	250	0.15µF	±10%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	2000
	RCER72E224K3M1H03A	X7R	250	0.22µF	±10%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	2000
	RCER72E334K4M1H03A	X7R	250	0.33µF	±10%	7.5	5.5	8.0	5.0	4.0	16.0	4M1	1500
	RCER72E474K4M1H03A	X7R	250	0.47µF	±10%	7.5	5.5	8.0	5.0	4.0	16.0	4M1	1500
	RCER72E684K5E1H03A	X7R	250	0.68µF	±10%	7.5	7.5	-	5.0	4.0	17.5	5E1	1500
	RCER72E105K5E1H03A	X7R	250	1.0µF	±10%	7.5	7.5	-	5.0	4.0	17.5	5E1	1500
	RCER72E225MUE1H03A	X7R	250	2.2µF	±20%	7.7	12.5	-	5.0	4.0	17.5	UE1	1500
	RCER72J102K2M1H03A	X7R	630	1000pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCER72J152K2M1H03A	X7R	630	1500pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCER72J222K2M1H03A	X7R	630	2200pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCER72J332K2M1H03A	X7R	630	3300pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCER72J472K2M1H03A	X7R	630	4700pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCER72J682K2M1H03A	X7R	630	6800pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCER72J103K2M1H03A	X7R	630	10000pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCER72J153K2M1H03A	X7R	630	15000pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCER72J223K2M1H03A	X7R	630	22000pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCER72J333K3M1H03A	X7R	630	33000pF	±10%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	2000
	RCER72J473K3M1H03A	X7R	630	47000pF	±10%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	2000
	RCER72J683K4M1H03A	X7R	630	68000pF	±10%	7.5	5.5	8.0	5.0	4.0	16.0	4M1	1500
	RCER72J104K4M1H03A	X7R	630	0.10µF	±10%	7.5	5.5	8.0	5.0	4.0	16.0	4M1	1500
	RCER72J154K5E1H03A	X7R	630	0.15µF	±10%	7.5	8.0	-	5.0	4.0	17.5	5E1	1500
	RCER72J224K5E1H03A	X7R	630	0.22µF	±10%	7.5	8.0	-	5.0	4.0	17.5	5E1	1500
	RCER72J474MUE1H03A	X7R	630	0.47µF	±20%	7.7	13.0	-	5.0	4.0	17.5	UE1	1500

Staight Taping (Lead Code:E*)

Customer Part Number	Murata Part Number	T.C.	DC Rated	Con	Con tol	Dimension (mm)					Size	Pack	
Customer Part Number	Murata Part Number	1.0.	volt. (V)	Cap.	Cap. tol.	L	W	W1	F	Т	НО	Lead Code	qty. (pcs)
	RCER73A102K2M1H03A	X7R	1000	1000pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCER73A152K2M1H03A	X7R	1000	1500pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCER73A222K2M1H03A	X7R	1000	2200pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCER73A332K2M1H03A	X7R	1000	3300pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCER73A472K2M1H03A	X7R	1000	4700pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCER73A682K2M1H03A	X7R	1000	6800pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCER73A103K2M1H03A	X7R	1000	10000pF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	2000
	RCER73A153K3M1H03A	X7R	1000	15000pF	±10%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	2000
	RCER73A223K3M1H03A	X7R	1000	22000pF	±10%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	2000
	RCER73A333K4M1H03A	X7R	1000	33000pF	±10%	7.5	5.5	8.0	5.0	4.0	16.0	4M1	1500
	RCER73A473K4M1H03A	X7R	1000	47000pF	±10%	7.5	5.5	8.0	5.0	4.0	16.0	4M1	1500
	RCER73A683K5E1H03A	X7R	1000	68000pF	±10%	7.5	8.0	-	5.0	4.0	17.5	5E1	1500
	RCER73A104K5E1H03A	X7R	1000	0.10µF	±10%	7.5	8.0	-	5.0	4.0	17.5	5E1	1500
	RCER73A224MUE1H03A	X7R	1000	0.22µF	±20%	7.7	13.0	-	5.0	4.0	17.5	UE1	1500

) .	AEC-Q200 Test Item		Specification	AEC-Q200 Test Method					
<u> </u>	Pre-and Post Electrical Tes	and Post-Stress trical Test							
2	High Temperature Exposure (Storage)		The measured and observed characteristics should satisfy the specifications in the following table.	Sit the capacitor for 1,000 \pm 12h at 150 \pm 3°C. Let sit for 24 \pm room temperature, then measure.					or 24±2h
			No defects or abnormalities within ±12.5%						
		D.F.	0.04 max.	1					
		I.R.	More than 1,000M Ω or 10 M Ω · μ F						
3	Temperature Cycling		(Whichever is smaller) The measured and observed characteristics should satisfy the specifications in the following table.					to the four heat r 24±2 h at *roo	
		Appearance	No defects or abnormalities		neasur				
		Capacitance	within ±12.5%	1 г	Step	1	2	3	4
		Change	0.05 may	↓ [7	Temp.	-55+0/-3	Room	125+3/-0	Room
		D.F. I.R.	0.05 max. 1,000MΩ or 10MΩ·μF min. (Whichever is smaller)	1	(°C) Time (min.)	15±3	Temp.	15±3	Temp.
				•Pretr Perfo then I	eatmer rm the l	heat treatme r 24±2 h at '	room condi		
4	Moisture Res	sistance	The measured and observed characteristics should satisfy the specifications in the following table.	Apply the 24h heat (25 to 65°C) and humidity (80 to 98%) treatment shown below, 10 consecutive times.					98%)
		Appearance	No defects or abnormalities				m condition,	then measure.	
		Capacitance Change	within ±12.5%	Tempe (°C)	erature	Humidity		Humidity 80~9	8% Humi
		D.F.	0.05 max.	70		90~98%	V 1 1 1 1 1 1	90~98% V	90~9
		I.R.	1000MΩ or 10MΩ·μF min.	65	H	`\ 	$\frac{1}{1}$	 / 	
			(Whichever is smaller)	60		 	 \ 	// 	
				55 050	Ш	//		Λ	
				esto 45 40 40 35		\mathcal{A}	$\sqcup \setminus \sqcup$	/	
				940	\vdash	+++	++++	 	acksquare
				₩ 835	+++	H	 	++++	\longrightarrow
				±30	 	$^{\prime ++++}$	 	++++	\square
				25	+	++++		+	+++
				20	╁	+++	+10 - 2 °C	++++	+++
				15	+	++++	- 2 - 0	++++	+++
				10	Initial	measurement		++++	
				5	F i i				
				0					
				-5 -10			One suels	24 haura	
					0 1	2 3 4 5 6 7	One cycle	13 14 15 16 17 18 19	20 21 22 23
5	Biased Humidity		The measured and observed characteristics should satisfy the specifications in the following table.				nd DC1.3+0	0.2/-0 V (add 10 or 1,000±12h.	00kΩ res
		Appearance	No defects or abnormalities					om condition, th	en meas
			within ±12.5%					than 50mA.	
		Change			Ü	J			
		D.F.	0.05 max.						
		I.R.	1000MΩ or 10MΩ·μF min.						
^	0	:6 -	(Whichever is smaller)	ļ			1 222 121		
6	Operational L	_ire	The measured and observed characteristics should satisfy the specifications in the following table.					at 125±3°C. then measure.	
		Appearance	No defects or abnormalities					than 50mA.	
			within ±12.5%	•Pretr	eatmer	nt			
		Change						st temperature	-
		D.F.	0.04 max.	Remo	ve and	let sit for 24	t±2 h at *roc	m condition.	
		I.R.	1,000M Ω or 10M Ω ·μF min.		Rate	d Voltage	Te	st Voltage	
			(Whichever is smaller)			C250V		the rated volta	200
						C630V C1000V		the rated volta the rated volta	
									.3~
7	External Visu		No defects or abnormalities		l insped				
8	Physical Dim	ension	Within the specified dimensions			rs and micro	meters.		
9	Marking		To be easily legible.		l insped				
			5 to 35°C, Relative humidity:45 to 75%, Atmosphere p	ressure	-:86 to	106kPa			

ESRCE03B

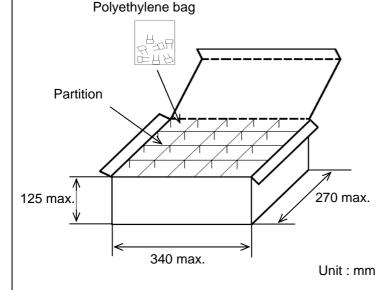
lo.	AEC-Q200 Test Item		Specification	AEC-Q200 Test Method		thod		
10	* * * * * * * * * * * * * * * * * * * *		No defects or abnormalities	Per MIL-ST	Per MIL-STD-202 Method 215			
	to Solvents		Within the specified tolerance	Solvent 1	1 part (by vo	olume) of isoprop	yl alcohol	
		D.F.	0.025 max.			olume) of miner	al spirits	
		I.R.	More than 10,000MΩ or 100 MΩ·μF		Solvent 2 : Terpene defluxer			
			(Whichever is smaller)	Solvent 3		volume) of wate		
				1part (by volume) of propylene glycol monomethyl ether 1 part (by volume) of monoethanolamine				
11	Mechanical Appearance		No defects or abnormalities	Three shoc	Three shocks in each direction should be applied alor			
	Shock	Capacitance	Within the specified tolerance				pecimen (18 shoc	
		D.F.	0.025 max.		•		ine and should ha	
		D.1.	o.ozo max.		•		velocity change:	
12	Vibration	Appearance	No defects or abnormalities	The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 2,000Hz.				
_	7.0.0.0		Within the specified tolerance					
		D.F.	0.025 max.					
		D.1.	0.020 max.	,		•	and return to 10	
						oproximately 20 i		
				should be applied for 12 items in each 3 mutually perpendicu directions (total of 36 times).				
13	Resistance to		The measured and observed characteristics should	,		,	solder 1.5 to 2mm	
	Soldering Heat		satisfy the specifications in the following table.		the main body at 260±5°C for 10±1 s. The specified items			
	ı -	ppearance	No defects or abnormalities	_	measured after 24±2 h. Pretreatment			
	l —	apacitance	within ±7.5%					
		hange	Within 27.070	Perform the	Perform the heat treatment at 150+0/-10°C for 60±5 m		C for 60±5 min a	
	Dielectric		No defects	then let sit f	or 24±2 h at	room condition.		
		trength	110 001000					
		Between						
	,	erminals)						
14	Thermal Sho		The measured and observed characteristics should	Perform the	300 cycles a	ccording to the ty	vo heat treatment	
•	Appearance		satisfy the specifications in the following table.	Perform the 300 cycles according to the two heat treatments lin the following table (Maximum transfer time is 20s.). Let sit				
			No defects or abnormalities	-	24±2 h at *room condition, then measure.		,	
		apacitance	within ±12.5%		Step	1 1	2	
		hange	Within 212.070		Temp.	'		
					(°C)	-55+0/-3	125+3/-0	
	l —).F.	0.05 max.	_	Time			
		R.	1,000MΩ or 10MΩ·μF min.		(min.)	15±3	15±3	
			(Whichever is smaller)	Pretreatment Perform the heat treatment at 150+0/-10°C for 60±5 min and				
				then let sit f	or 24±2 h at	room condition.		
15	ESD A	ppearance	No defects or abnormalities	Per AEC-Q	200-002			
		apacitance	Within the specified tolerance					
).F.	0.025 max.	1				
	l ī.	R.	More than 10,000MΩ or 100 MΩ·μF					
			(Whichever is smaller)					
6	Solderability		Lead wire should be soldered with uniform coating or	Should be	Should be placed into steam aging for 8h±15 mi		n±15 min.	
10			the axial direction over 95% of the circumferential					
			direction.	The terminal of capacitor is dipped into a solution of ethanol (JIS K 8101) and rosin (JIS K 5902) (25% rosin in weight propotion). Immerse in solder solution for 2±0.5 seconds. In both cases the depth of dipping is up to about 1.5 to 2mm from the case of th				
			direction.					
						Temp. of so	•	
						older(Sn-3.0Aa-0	.5Cu)	
				245±5°C Lead Free Solder(Sn-3.0Ag-0.5Cu) 235±5°C H60A or H63A Eutectic Solder				
				233±3 C	HOUA UI HOS	A LUICUIU SUIUE		

ESRCE03B

0.		AEC-Q200 Test Item		Specifications		AEC-Q200 Test Method			
17	Electrical Apperance		No defects or abnormalities		Visual inspection.				
	Characte- rization	Capacitance D.F.	Within the specified tolerance 0.025 max.		The capacitance/D.F. should be measured at 25°C at the frequency and voltage shown in the table.				
						Frequency	Voltage]	
						1±0.1kHz	1±0.2V(rms)		
		I.R.	Between Terminals	10,000MΩ or 100MΩ·μF min. (Whichever is smaller)	The insulation resistance should be measured (DC250V±25V in case of rated voltage : DC25 2 min. of charging.				
		Dielectric Strength	Between Terminals	No defects or abnormalities	The capacitor should not be damaged when voltage inTable is applied between the terminations for 1 to 5 seconds. (Charge/Discharge current ≤ 50mA.)				
					F	Rated Voltage	Test Voltage		
						DC250V	200% of the rated v	oltage	
						DC630V	150% of the rated v	oltage	
						DC1000V	120% of the rated v	oltage	
			Body Insulation	No defects or abnormalities	diameter s 2mm from the rated v for 1 to 5 s	o that each term the balls, and 20 oltage in case of	a container with metal b inal, short-circuit is kep 00% of the rated DC vol rated voltage : DC1000 a capacitor terminals an ≤ 50mA.)	t approxin Itage(1309 V) is impre	
18	Terminal Strength	Tensile Strength	Termination not to be broken or loosened		to each lea	d in the radial d	acitor body, apply the for rection of the capacitor se applied for 10±1 second	until reac	
						F			
	Bending Strength		Termination	not to be broken or loosened	be bent 90 then return	o at the point of ed to the original	egress in one direction I position and bent 90°	. Each wir in the opp	
19	Capacitance Temperature Characteristics		Within ±15	%	The capac		bend per 2 to 3 second nould be measured afte		
						Step	Temperature(°C)		
						1	25±2		
						2	-55±3		
						3 4	25±2 125±3		
						5	25±2		
					25°C value should be •Pretreatm Perform th then let sit	over the tempe within the specifi ent	at 150+0/-10°C for 60- nom condition.	the table	

ESRCE03B

6. Packing specification

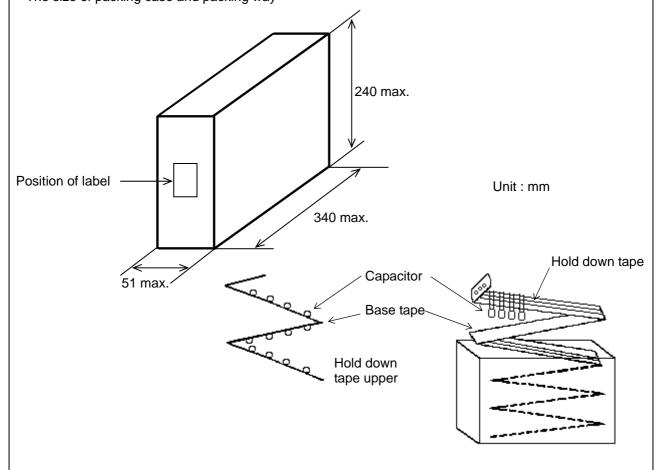

•Bulk type (Packing style code : B)

The size of packing case and packing way

The number of packing = *1 Packing quantity *2 n

*1 : Please refer to [Part number list].

*2 : Standard n = 20 (bag)

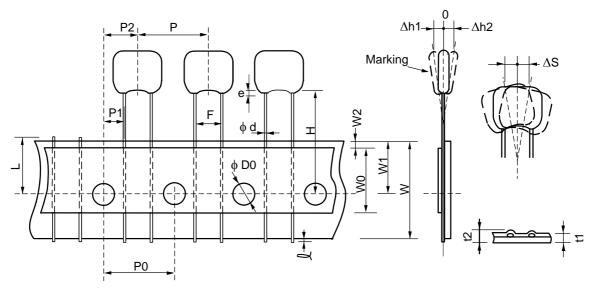


Note)

The outer package and the number of outer packing be changed by the order getting amount.

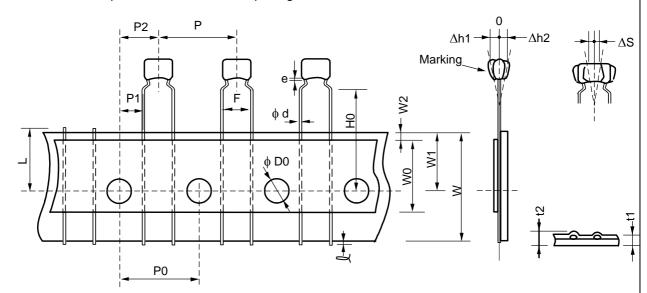
- •Ammo pack taping type (Packing style code : A)
 - · A crease is made every 25 pitches, and the tape with capacitors is packed zigzag into a case.
 - · When body of the capacitor is piled on other body under it.

The size of packing case and packing way


EKBCRPE01

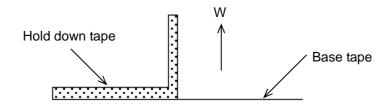
7. Taping specification

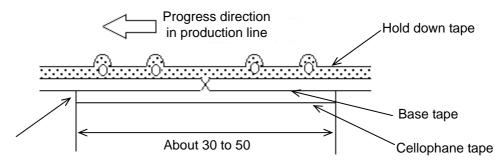
7-1. Dimension of capacitors on tape


Straight taping type < Lead code : E1 >

Pitch of component 12.7mm / Lead spacing 5.0mm

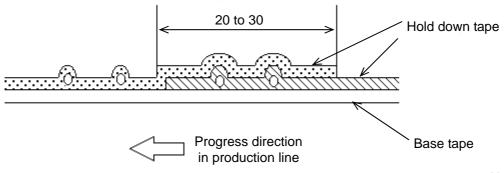
Item	Code	Dimensions	Remarks
Pitch of component	Р	12.7+/-1.0	
Pitch of sprocket hole		12.7+/-0.2	
Lead spacing	F	5.0+0.6/-0.2	
Length from hole center to component center	P2	6.35+/-1.3	Deviation of annual discretion
Length from hole center to lead	P1	3.85+/-0.7	Deviation of progress direction
Deviation along tape, left or right defect	ΔS	0+/-2.0	They include deviation by lead bend .
Carrier tape width	W	18.0+/-0.5	
Position of sprocket hole	W1	9.0+0/-0.5	Deviation of tape width direction
For straight lead type	Н	17.5+/-0.5	
Protrusion length	l	0.5 max.	
Diameter of sprocket hole	D0	4.0+/-0.1	
Lead diameter	φd	0.50+/-0.05	
Total tape thickness	t1	0.6+/-0.3	
Total thickness of tape and lead wire	t2	1.5 max.	They include hold down tape thickness.
	∆h1	2.0 max. (Dimension code : U)	
Deviation across tape	∆h2	1.0 max. (exce	pt as above)
Portion to cut in case of defect	L	11.0+0/-1.0	
Hold down tape width	W0	9.5 min.	
Hold down tape position	W2	1.5+/-1.5	
Coating extension on lead	е	2.0 max. (Dime 1.5 max. (exce	·


Inside crimp taping type < Lead code : M1 > Pitch of component 12.7mm / Lead spacing 5.0mm


Item	Code	Dimensions	Remarks
Pitch of component	Р	12.7+/-1.0	
Pitch of sprocket hole	P0	12.7+/-0.2	
Lead spacing	F	5.0+0.6/-0.2	
Length from hole center to component center	P2	6.35+/-1.3	Deviation of any man disastics
Length from hole center to lead		3.85+/-0.7	Deviation of progress direction
Deviation along tape, left or right defect	ΔS	0+/-2.0	They include deviation by lead bend .
Carrier tape width	W	18.0+/-0.5	
Position of sprocket hole	W1	9.0+0/-0.5	Deviation of tape width direction
Lead distance between reference and bottom plane	Н0	16.0+/-0.5	
Protrusion length	l	0.5 max.	
Diameter of sprocket hole	D0	4.0+/-0.1	
Lead diameter	φd	0.50+/-0.05	
Total tape thickness		0.6+/-0.3	The arrive should be all decree to a subjective and
Total thickness of tape and lead wire	t2	1.5 max.	They include hold down tape thickness.
	∆h1	2.0 max. (Dimension code : W)	
Deviation across tape	∆h2	1.0 max. (exce	pt as above)
Portion to cut in case of defect	L	11.0+0/-1.0	
Hold down tape width	W0	9.5 min.	
Hold down tape position	W2	1.5+/-1.5	
Coating extension on lead	е	Up to the end of c	rimp

7-2. Splicing way of tape

1) Adhesive force of tape is over 3N at test condition as below.


- 2) Splicing of tape
 - a) When base tape is spliced
 - •Base tape shall be spliced by cellophane tape. (Total tape thickness shall be less than 1.05mm.)

No lifting for the direction of progressing

Unit: mm

- b) When hold down tape is spliced
 - •Hold down tape shall be spliced with overlapping. (Total tape thickness shall be less than 1.05mm.)

- c) When both tape are spliced
 - •Base tape and hold down tape shall be spliced with splicing tape.

EU RoHS and Halogen Free

This products of the following crresponds to EU RoHS and Halogen Free

(1) RoHS

EU RoHs 2011/65/EC compliance

maximum concentration values tolerated by weight in homogeneous materials

- •1000 ppm maximum Lead
- •1000 ppm maximum Mercury
- •100 ppm maximum Cadmium
- •1000 ppm maximum Hexavalent chromium
- •1000 ppm maximum Polybrominated biphenyls (PBB)
- •1000 ppm maximum Polybrominated diphenyl ethers (PBDE)

(2) Halogen-Free

The International Electrochemical Commission's (IEC) Definition of Halogen-Free (IEC 61249-2-21) compliance

- •900 ppm maximum chlorine
- •900 ppm maximum bromine
- •1500 ppm maximum total chlorine and bromine

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Murata:

RCER72E102K1K1H03E	B RCER72E102K1M1H03	<u>A RCER72E103K1K1H03B</u> <u>RCER72E103K1M1H03A</u>
RCER72E104K2K1H03B	RCER72E104K2M1H03A	RCER72E105K5B1H03B RCER72E105K5E1H03A
RCER72E152K1K1H03B	RCER72E152K1M1H03A	RCER72E153K1K1H03B RCER72E153K1M1H03A
RCER72E154K3K1H03B	RCER72E154K3M1H03A	RCER72E222K1K1H03B RCER72E222K1M1H03A
RCER72E223K1K1H03B	RCER72E223K1M1H03A	RCER72E224K3K1H03B RCER72E224K3M1H03A
RCER72E225MUB1H03B	RCER72E225MUE1H03/	<u>A RCER72E332K1K1H03B</u> <u>RCER72E332K1M1H03A</u>
RCER72E333K2K1H03B	RCER72E333K2M1H03A	RCER72E334K4K1H03B RCER72E334K4M1H03A
RCER72E472K1K1H03B	RCER72E472K1M1H03A	RCER72E473K2K1H03B RCER72E473K2M1H03A
RCER72E474K4K1H03B	RCER72E474K4M1H03A	RCER72E682K1K1H03B RCER72E682K1M1H03A
RCER72E683K2K1H03B	RCER72E683K2M1H03A	RCER72E684K5B1H03B RCER72E684K5E1H03A
RCER72J102K2K1H03B	RCER72J102K2M1H03A	RCER72J103K2K1H03B RCER72J103K2M1H03A
RCER72J104K4K1H03B	RCER72J104K4M1H03A	RCER72J152K2K1H03B RCER72J152K2M1H03A
RCER72J153K2K1H03B	RCER72J153K2M1H03A	RCER72J154K5B1H03B RCER72J154K5E1H03A
RCER72J222K2K1H03B	RCER72J222K2M1H03A	RCER72J223K2K1H03B RCER72J223K2M1H03A
RCER72J224K5B1H03B	RCER72J224K5E1H03A	RCER72J332K2K1H03B RCER72J332K2M1H03A
RCER72J333K3K1H03B	RCER72J333K3M1H03A	RCER72J472K2K1H03B RCER72J472K2M1H03A
RCER72J473K3K1H03B	RCER72J473K3M1H03A	RCER72J474MUB1H03B RCER72J474MUE1H03A
RCER72J682K2K1H03B	RCER72J682K2M1H03A	RCER72J683K4K1H03B RCER72J683K4M1H03A
RCER73A102K2K1H03B	RCER73A102K2M1H03A	RCER73A103K2K1H03B RCER73A103K2M1H03A
RCER73A104K5B1H03B	RCER73A104K5E1H03A	RCER73A152K2K1H03B RCER73A152K2M1H03A
RCER73A153K3K1H03B	RCER73A153K3M1H03A	RCER73A222K2K1H03B RCER73A222K2M1H03A
RCER73A223K3K1H03B	RCER73A223K3M1H03A	RCER73A224MUB1H03B RCER73A224MUE1H03A
RCER73A332K2K1H03B	RCER73A332K2M1H03A	RCER73A333K4K1H03B RCER73A333K4M1H03A
RCER73A472K2K1H03B	RCER73A472K2M1H03A	RCER73A473K4K1H03B RCER73A473K4M1H03A
RCER73A682K2K1H03B	RCER73A682K2M1H03A	RCER73A683K5B1H03B RCER73A683K5E1H03A