

 $\begin{array}{c} \text{Application Specific Discretes} \\ \text{A.S.D.}^{\text{TM}} \end{array}$ 

# DUAL ASYMMETRICAL OVERVOLTAGE PROTECTION FOR TELECOM LINE

### MAIN APPICATIONS

Where asymmetrical protection against lightning strikes and other transient overvoltages is required :

The SSRP130B1 is a dual asymmetrical transient

voltage suppressor designed to protect a solid-state ring relay or SLICs with integrated ring

The asymmetrical protection configuration is necessary to allow the use of all different types of

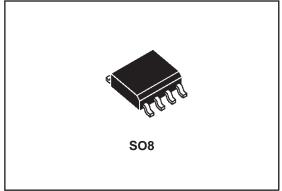
Dual bidirectional asymmetrical protection :

Peak pulse current :  $I_{PP} = 2 \times 25A (5 / 310 \,\mu s)$ 

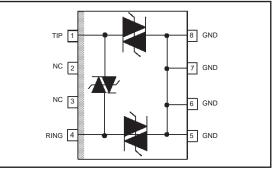
Solid-State relays

DESCRIPTION

ringing schemes.


Stand-off voltages : + 130V for positive voltages - 185V for negative voltages

■ Holding current: 150mA


**FEATURES** 

SLIC with integrated ring generator

generator from overvoltages.



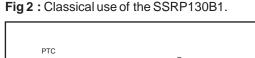
# FUNCTIONAL DIAGRAM



| COMPLIES WITH THE<br>FOLLOWING STANDARDS: | Peak Surge<br>Voltage<br>(V) | Voltage<br>Waveform<br>(μs) | Current<br>Waveform<br>(μs) | Admissible<br>Ipp<br>(A) | Necessary<br>Resistor<br>(Ω) |
|-------------------------------------------|------------------------------|-----------------------------|-----------------------------|--------------------------|------------------------------|
| ITU-T K20                                 | 1000                         | 10/700                      | 5/310                       | 25                       | -                            |
| VDE0433                                   | 2000                         | 10/700                      | 5/310                       | 25                       | 40                           |
| VDE0878                                   | 1500                         | 1.2/50                      | 1/20                        | 35                       | 3                            |
| IEC 1000-4-5                              | Level 2                      | 10/700<br>1.2/50            | 5/310<br>8/20               | 25<br>25                 | -                            |
| FCC Part 68                               | 1500<br>800                  | 10/160<br>10/560            | 10/160<br>10/560            | 29<br>21                 | 45<br>30                     |
| BELLCORE TR-NWT-001089                    | 2500<br>1000                 | 2/10<br>10/1000             | 2/10<br>10/1000             | 70<br>15                 | 30<br>57                     |

TM: ASD is trademarks of STMicroelectronics.

July 1998 - Ed: 4A


### **APPLICATION INFORMATION**

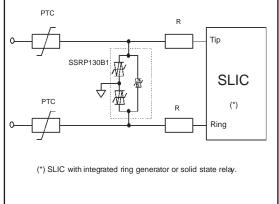



Fig1: Topology of the classical line card protection.

The classical line card requires protection before the ring relay and a second one for the SLIC (fig.1). The use of new SLICs with integrated ring generator or board based on solid state ring relay suppresses this second protection (Fig. 2). Then the only remaining stage, located between the line and the ring relay, has to optimize the protection. The classical symmetrical first stage protector becomes not sufficient to avoid any circuit destruction during surges.

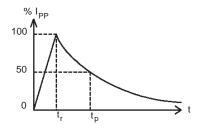
Fig 3 : SSRP130B1 electrical characteristics.





The SSRP130B1 device takes into account this fact and is based on asymmetrical voltage characteristics (Fig.3a). The ring signal being shifted back by the battery voltage, the SSRP130B1 negative breakover value Vbo- is greater than the positive one Vbo+. This point guarantees a protection operation very close to the peak of the normal operating voltage without any disturbance of the ring signal.

| a : Line to ground characteristics. | b : Line to line characteristics.        |
|-------------------------------------|------------------------------------------|
| Vbo-<br>Vbo+<br>Vbo+<br>V           | V <sub>BR</sub> -<br>V <sub>BR</sub> - V |

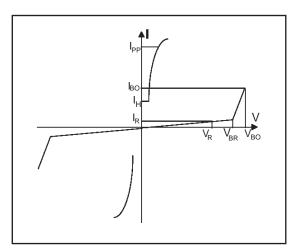

In addition with the 2 crowbar functions which perform the protection of both TIP and RING lines versus ground, a third cell assumes the differential mode protection of the SLIC. The breakdown voltage values of this third cell are the same for both positive and negative parts of the characteristics and are equivalent to the negative breakdown voltage value of the TIP and RING lines versus GND cells (Fig.3 b).

# **ABSOLUTE MAXIMUM RATINGS** (T<sub>amb</sub> = 25°C)

| Symbol                             | Parameter                                                           | Value                                     | Unit                         |    |
|------------------------------------|---------------------------------------------------------------------|-------------------------------------------|------------------------------|----|
| Ipp                                | Peak pulse current (see note 1)                                     | 10/1000 μs<br>5/310μs<br>1/20μs<br>2/10μs | 2x15<br>2x25<br>2x35<br>2x70 | A  |
| Ітѕм                               | Non repetitive surge peak on-state current<br>(F=50Hz)              | tp = 0.2 s<br>tp = 5 s<br>tp = 900 s      | 7.5<br>4.0<br>1.5            | A  |
| T <sub>op</sub>                    | Operating temperature range                                         |                                           | 0 to + 70                    | ℃  |
| T <sub>stg</sub><br>T <sub>j</sub> | Storage temperature range<br>Maximum operating junction temperature | - 55 to + 150<br>+ 150                    | ပိုလိ                        |    |
| TL                                 | Maximum lead temperature for soldering during 10                    | S                                         | 260                          | °C |

#### Note 1 : Pulse waveform :

| 10/1000µs | t <sub>r</sub> =10µs | t <sub>p</sub> =1000μs |
|-----------|----------------------|------------------------|
| 5/310µs   | t <sub>r</sub> =5µs  | t <sub>p</sub> =310μs  |
| 1/20µs    | t <sub>r</sub> =1µs  | t <sub>p</sub> =20µs   |
| 2/10µs    | t <sub>r</sub> =2µs  | t <sub>p</sub> =10μs   |




# THERMAL RESISTANCE

| Symbol    | Parameter           | Value | Unit |
|-----------|---------------------|-------|------|
| Rth (j-a) | Junction to ambient | 170   | °C/W |

# ELECTRICAL CHARACTERISTICS (Tamb = 25°C)

| Symbol          | Parameter                            |
|-----------------|--------------------------------------|
| VR              | Stand-off voltage                    |
| IR              | Leakage current at stand-off voltage |
| V <sub>BR</sub> | Breakdown voltage                    |
| VBO             | Breakovervoltage                     |
| Iн              | Holding current                      |
| Іво             | Breakover current                    |
| IPP             | Peak pulse current                   |
| С               | Capacitance                          |



| 57  |
|-----|
| _/_ |

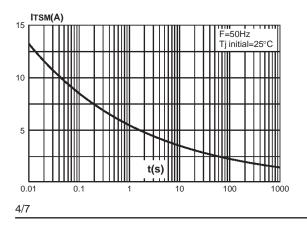
3/7

| Symbol          | Parameter                     | Test conditions (note 1)                                   | Min        | Мах                      | Unit |
|-----------------|-------------------------------|------------------------------------------------------------|------------|--------------------------|------|
| V <sub>BO</sub> | Breakover voltage<br>(note 2) | Positive voltage<br>50Hz<br>10/700μs<br>1.2/50μs<br>2/10μs |            | 200<br>175<br>180<br>250 | V    |
|                 |                               | Negative voltage<br>50Hz<br>10/700μs<br>1.2/50μs<br>2/10μs |            | 280<br>235<br>240<br>340 |      |
| I <sub>BO</sub> | Breakover current             | Positive voltage<br>Negative voltage                       | 110<br>110 |                          | mA   |
| Ін              | Holding current               | Positive polarity<br>Negative polarity                     | 150<br>150 |                          | mA   |
| I <sub>R</sub>  | Leakage current<br>(note 3)   | V <sub>R</sub> = +130 V<br>V <sub>R</sub> = - 185 V        |            | 10<br>10                 | μΑ   |
| С               | Capacitance                   | $F = 100 \text{kHz}, V = 100 \text{mV}, V_R = 0 \text{V}$  |            | 100                      | pF   |

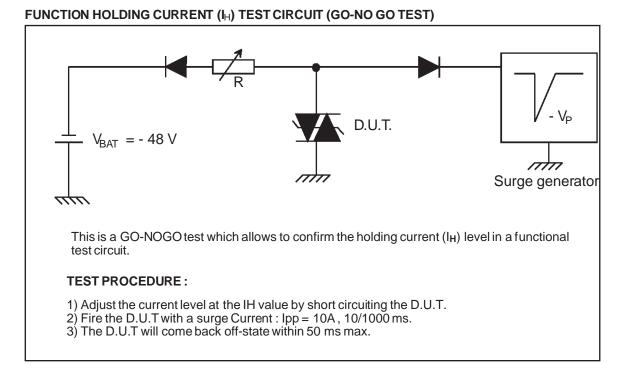
# ELECTRICAL CHARACTERISTICS between TIP and GND, RING and GND (Tamb=25°C)

### ELECTRICAL CHARACTERISTICS between TIP and RING (Tamb=25°C)

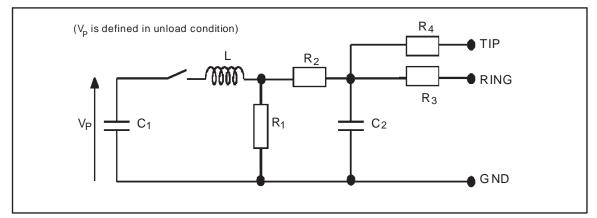
| Symbol         | Parameter                   | Test conditions                                           | Min | Max      | Unit |
|----------------|-----------------------------|-----------------------------------------------------------|-----|----------|------|
| I <sub>R</sub> | Leakage current<br>(note 3) | V <sub>R</sub> = +185 V<br>V <sub>R</sub> = - 185 V       |     | 10<br>10 | μA   |
| С              | Capacitance                 | $F = 100 \text{kHz}, V = 100 \text{mV}, V_R = 0 \text{V}$ |     | 100      | рF   |


 Note 1 :
 Positive voltage means between T and G, or between R and G

 Negative voltage means between G and T, or between G and T

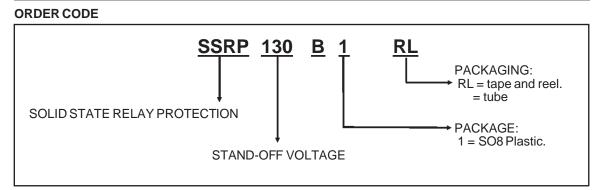

 Note 2 :
 See test circuit for VBO parameters

 Note 3 :
 I<sub>R</sub> measured at V<sub>R</sub> guarantees V<sub>BR</sub> > V<sub>R</sub>


Fig. 4 : Surge peak current versus overload duration (maximum values).



57

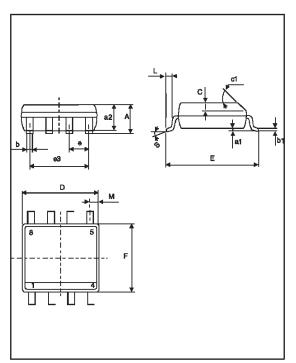



# TEST CIRCUIT FOR VBO parameters:



| Pulse | <b>e (</b> μ <b>s)</b> | Vp   | <b>C</b> <sub>1</sub> | <b>C</b> <sub>2</sub> | L                    | <b>R</b> 1          | <b>R</b> <sub>2</sub> | R <sub>3</sub>      | <b>R</b> 4          | IPP | Rp                  |
|-------|------------------------|------|-----------------------|-----------------------|----------------------|---------------------|-----------------------|---------------------|---------------------|-----|---------------------|
| tr    | tp                     | (V)  | <b>(μF)</b>           | (nF)                  | <b>(</b> μ <b>H)</b> | <b>(</b> Ω <b>)</b> | <b>(</b> Ω <b>)</b>   | <b>(</b> Ω <b>)</b> | <b>(</b> Ω <b>)</b> | (A) | <b>(</b> Ω <b>)</b> |
| 10    | 700                    | 1000 | 20                    | 200                   | 0                    | 50                  | 15                    | 25                  | 25                  | 25  | 0                   |
| 1.2   | 50                     | 1500 | 1                     | 33                    | 0                    | 76                  | 13                    | 25                  | 25                  | 30  | 10                  |
| 2     | 10                     | 2500 | 10                    | 0                     | 1.1                  | 1.3                 | 0                     | 3                   | 3                   | 38  | 62                  |

| <b>/</b> | 57 |
|----------|----|
|----------|----|




## MARKING

| Types     | Package | Marking |
|-----------|---------|---------|
| SSRP130B1 | SO8     | SSR130  |

# PACKAGE MECHANICAL DATA.

SO8 Plastic



# **Packaging :** Products supplied in antistatic tubes or tape and reel.

Weight: 0.08g

6/7

# MARKING : Logo, Date Code, Part Number.

| REF. | DIMENSIONS  |      |      |        |       |       |
|------|-------------|------|------|--------|-------|-------|
|      | Millimetres |      |      | Inches |       |       |
|      | Min.        | Тур. | Max. | Min.   | Тур.  | Max.  |
| Α    |             |      | 1.75 |        |       | 0.069 |
| a1   | 0.1         |      | 0.25 | 0.004  |       | 0.010 |
| a2   |             |      | 1.65 |        |       | 0.065 |
| b    | 0.35        |      | 0.48 | 0.014  |       | 0.019 |
| b1   | 0.19        |      | 0.25 | 0.007  |       | 0.010 |
| С    |             | 0.50 |      |        | 0.020 |       |
| c1   | 45° (typ)   |      |      |        |       |       |
| D    | 4.8         |      | 5.0  | 0.189  |       | 0.197 |
| E    | 5.8         |      | 6.2  | 0.228  |       | 0.244 |
| е    |             | 1.27 |      |        | 0.050 |       |
| e3   |             | 3.81 |      |        | 0.150 |       |
| F    | 3.8         |      | 4.0  | 0.15   |       | 0.157 |
| L    | 0.4         |      | 1.27 | 0.016  |       | 0.050 |
| М    |             |      | 0.6  |        |       | 0.024 |
| S    | 8° (max)    |      |      |        |       |       |



Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 1998 STMicroelectronics - Printed in Italy - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands -Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.



7/7