Danallal D D A BANKT CD C

±1.0%

±0.5%

±0.5%

90.5%

57.6 ~ 67.2V

9.6 ~ 56V

Features:

- AC input 180 ~ 264VAC
- · AC input active surge current limiting
- High efficiency up to 90%
- Built-in active PFC function, PF>0.95
- Protections: Short circuit / Overload / Over voltage / Over temperature / Fan alarm
- Forced air cooling by built-in DC with fan speed control function
- Output voltage can be trimmed between 20~110% of the rated output voltage
- High power density 15.6W/inch³
- · Current sharing up to 3 units
- Alarm signal output (relay contact and TTL signal)
- · Built-in 12V/0.1A auxiliary output for remote control
- Built-in remote ON-OFF control
- · Built-in remote sense function
- 3 years warranty

SPECIFICATION			Parallel (FC)	c TLUS Related Approximation CDCE
MODEL		RSP-3000-12	RSP-3000-24	RSP-3000-48
	DC VOLTAGE	12V	24V	48V
	RATED CURRENT	200A	125A	62.5A
	CURRENT RANGE	0 ~ 200A	0 ~ 125A	0 ~ 62.5A
	RATED POWER	2400W	3000W	3000W
	RIPPLE & NOISE (max.) Note.2	150mVp-p	150mVp-p	200mVp-p
OUTPUT	VOLTAGE ADJ. RANGE	10.8 ~ 13.2V	22 ~ 28V	43 ~ 56V

90%

28.8 ~ 33.6V

4.8 ~ 28V

curve)

	VOLTAGE TOLERANCE Note.3	±1.0%	±1.0%	
	LINE REGULATION	±0.5%	±0.5%	
	LOAD REGULATION	±0.5%	±0.5%	
		SETUP, RISE TIME	1000ms, 80ms at full load	
		HOLD LIB TIME (Typ.)	10ms at full load	

	VOLTAGE RANGE	180 ~ 264VAC 254 ~ 370VDC
	FREQUENCY RANGE	47 ~ 63Hz
	POWER FACTOR (Typ.)	0.95/230VAC at full load

VOLTAGE RANGE

INPUT

EFFICIENCY (Typ.)	86%	
AC CURRENT (Typ.)	20A/180VAC	16A/230VAC

AC CORRENT (Typ.)	204/100740	10/1/2
INRUSH CURRENT (Typ.)	60A/230VAC	

LEAKAGE CURRENT	<2.0mA / 240VAC
	100 ~ 112% rated output power

	OVERLOAD	User adjustable continuous constant current limiting or constant current limiting with delay shutdown after 5 seconds, re-power on to recover		
		13.8 ~ 16.8\/	28.8 ~ 33.6\/	57.6 ~ 67.2\/

PROTECTION	OVERMOLTAGE	13.0 ~ 10.0 V	20.0 ~ 33.0 V	31.0~01.20	
	PROTECTION	OVER VOLTAGE	Protection type: Shut down o/p voltage, re-power on to recover		
			90°C±5°C (12V), 110°C±5°C (24V), 105°C±	5°C (48V) (TSW1: detect on heatsink of po	wer transistor)

OVER TEMPERATURE	90°C±5°C (12V), 85°C±5°C (24V), 75°C±5°C (48\	/) (TSW2 : detect on heatsink of o/p di	iode)
	Protection type: Shut down o/p voltage, recovers	automatically after temperature goes	down

AUXILIARY POWER(AUX)	12V@0.1A(Only for Remote ON/OFF control)
DEMOTE ON/OFF CONTROL	Please see the Function Manual

FUNCTION	ALARM SIGNAL OUTPUT	Please see the Function Manual
	OUTPUT VOLTAGE TRIM	2.4 ~ 13.2V

	CURRENT SHARING	Please see the Function Manual
	WORKING TEMP.	-20 ~ +70°C (Refer to output load derating
	WORKING HUMIDITY	20~90% RH non-condensing

WORKING HUMIDITY ENVIRONMENT STORAGE TEMP., HUMIDITY -40 ~ +85°C, 10 ~ 95% RH TEMP. COEFFICIENT ±0.05%/°C (0 ~ 50°C)

10 ~ 500Hz, 2G 10min./1cycle, 60min. each along X, Y, Z axes VIBRATION SAFETY STANDARDS UL60950-1, TUV EN60950-1 approved

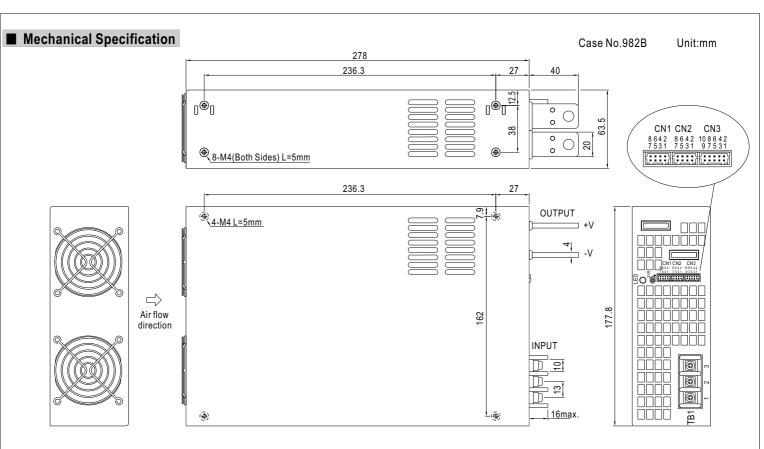
WITHSTAND VOLTAGE I/P-O/P:3KVAC I/P-FG:1.5KVAC O/P-FG:0.5KVAC **SAFETY &** ISOLATION RESISTANCE I/P-O/P, I/P-FG, O/P-FG:100M Ohms / 500VDC / 25°C / 70% RH

EMC	EMI CONDUCTION & RADIATION	Compliance to EN55022 (CISPR22)
(Note 4)	HARMONIC CURRENT	Compliance to EN61000-3-2,-3
	EMS IMMUNITY	Compliance to EN61000-4-2,3,4,5,6,8,11; ENV50204, EN55024, light industry level, criteria A

	MTBF	104.5K hrs min. MIL-HDBK-217F (25°C)
OTHERS	DIMENSION	278*177.8*63.5mm (L*W*H)

PACKING

NOTE


1. All parameters NOT specially mentioned are measured at 230VAC input, rated load and 25℃ of ambient temperature.

- 2. Ripple & noise are measured at 20MHz of bandwidth by using a 12" twisted pair-wire terminated with a 0.1uf & 47uf parallel capacitor.
- 3. Tolerance : includes set up tolerance, line regulation and load regulation.

4Kg; 4pcs/16Kg/1.89CUFT

4. The power supply is considered a component which will be installed into a final equipment. The final equipment must be re-confirmed that it still meets EMC directives. For guidance on how to perform these EMC tests, please refer to "EMI testing of component power supplies." (as available on http://www.meanwell.com)

AC Input Terminal Pin No. Assignment

Pin No.	Assignment		
1	AC/L		
2	AC/N		
3	FG ±		

Control Pin No. Assignment(CN1,CN2): HRS DF11-8DP-2DS or equivalent

Pin No.	Assignment	Pin No.	Assignment	Mating Housing	Terminal
1	RCG	5,7	-S		
2	RC	6	CS(Current Share)	HRS DF11-8DS	HRS DF11-**SC
3	PV	8	+S	or equivalent	or equivalent
4	PS				

RCG: Remote ON/OFF Ground RC: Remote ON/OFF

:Output Voltage External Control

PS: Reference Voltage Terminal

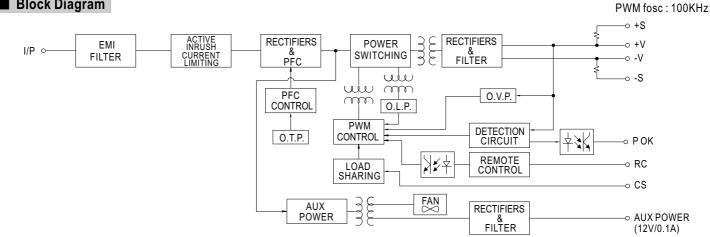
-S:-Remote Sensing CS: Load Share

+S: +Remote Sensing

Control Pin No. Assignment(CN3): HRS DF11-10DP-2DS or equivalent

				,						
	Pin No.	Assignment	Mating Housing	Terminal						
	1	P OK GND	4	P OK2	7	AUXG	10	OL-SD	UD0 DE44 40D0	LIDO DE44 **00
İ	2	P OK	5	RCG	8	AUX			HRS DF11-10DS or equivalent	or equivalent
	3	P OK GND2	6	RC	9	OLP			or oquivaloni	or oquivalent

P OK GND: Power OK Ground

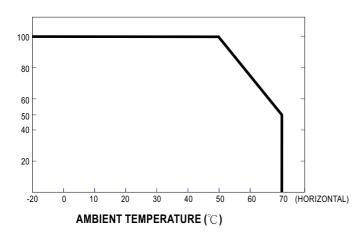

RCG: Remote ON/OFF Ground

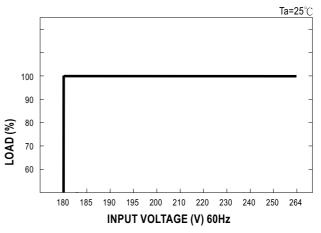
AUX: Auxiliary Output

P OK: Power OK Signal (Relay Contact) P OK2: Power OK Signal (TTL Signal)

RC: Remote ON/OFF AUXG: Auxiliary Ground OLP: OLP/OL-SD:OLP mode select

■ Block Diagram


PFC fosc: 88KHz



■ Derating Curve

(%) **GVO**

■ Static Characteristics

■ Function Manual

1.Remote ON/OFF

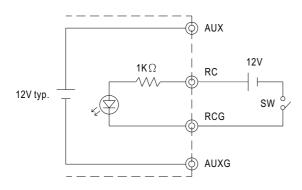

- (1)Remote ON/OFF control becomes available by applying voltage in CN1 & CN2 & CN3.
- (2) Table 1.1 shows the specification of Remote ON/OFF function.
- (3)Fig.1.2 shows the example to connect Remote ON/OFF control function.

Table 1.1 Specification of Remote ON/OFF

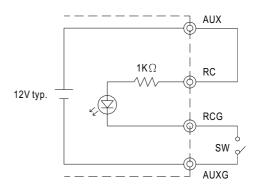
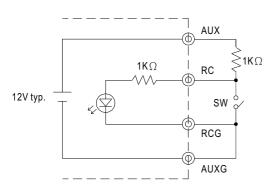

	Connec	tion Method	Fig. 1.2(A)	Fig. 1.2(B)	Fig. 1.2(C)
	SW Logic	Output on	SW Open	SW Open	SW Close
		Output off	SW Close	SW Close	SW Open

Fig.1.2 Examples of connecting remote ON/OFF


(A)Using external voltage source

(B)Using internal 12V auxiliary output

(C)Using internal 12V auxiliary output

2.Alarm Signal Output

- (1)Alarm signal is sent out through "P OK" & "P OK GND" and P OK2 & P OK GND2 pins.
- (2)An external voltage source is required for this function.
- (3) Table 2.1 explain the alarm function built-in the power supply.

Function	Description	Output of alarm(P OK, Relay Contact)	Output of alarm(P OK2, TTL Signal)
P OK	The signal is "Low" when the power supply is above 80% of the rated output voltage-Power OK	Low (0.5V max at 500mA)	Low (0.5V max at 10mA)
	The signal turns to be "High" when the power supply is under 80% of the rated output voltage-Power Fail	High or open (External applied voltage, 500mA max.)	High or open (External applied voltage, 10mA max.)

Table 2.1 Explanation of alarm

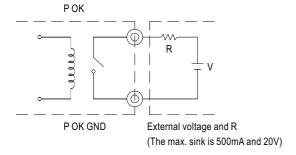


Fig. 2.2 Internal circuit of P OK (Relay, total is 10W)

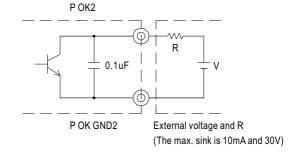
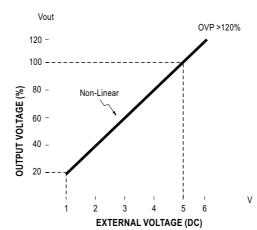


Fig. 2.3 Internal circuit of P OK2 (Open collector method)


3. Output Voltage TRIM

(1) Connecting an external DC source between PV and-S on CN1 or CN2 that is shown in Fig. 3.1.

(2)Adjustment of output voltage is possible between 20~110%(Typ.) of the rated output which is shown in Fig. 3.2. Reducing output current is required when the output voltage is trimmed up.

Fig. 3.1 Add on 1~6V external voltage

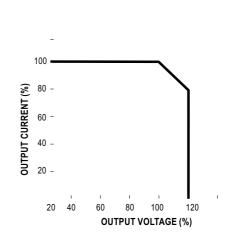
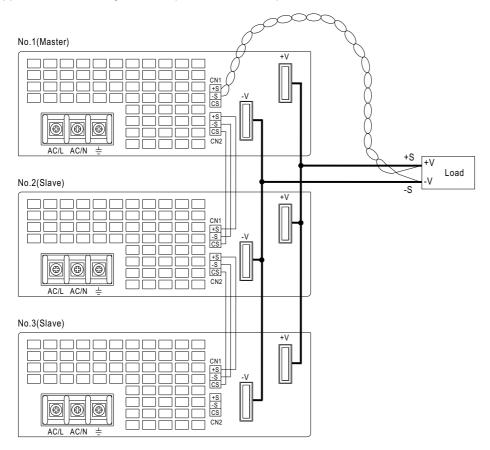



Fig. 3.2 Output voltage trimming

4. Current Sharing

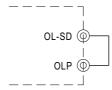
- $(1) Parallel \ operation \ is \ available \ by \ connecting \ the \ units \ shown \ as \ below$
 - (+S,-S and CS are connected mutually in parallel):
- (2) The voltage difference among each output should be minimized that less than ±2% is required.
- (3)The total output current must not exceed the value determined by the following equation. (Output current at parallel operation)=(The rated current per unit) x (Number of unit) x 0.9
- (4) In parallel operation 3 units is the maximum, please consult the manufacturer for other applications.
- (5) When remote sensing is used in parallel operation, the sensing wire must be connected only to the master unit.
- (6) Wires of remote sensing should be kept at least 10 cm from input wires.

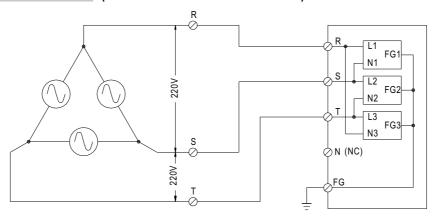
- (7) When in parallel operation, the minimum output load should be greater than 2% of total output load. (Min. Load >3% rated current per unitxnumber of unit)
- (8) Under parallel operation, the "output voltage trim" function is not available.

5.Select O.L.P mode

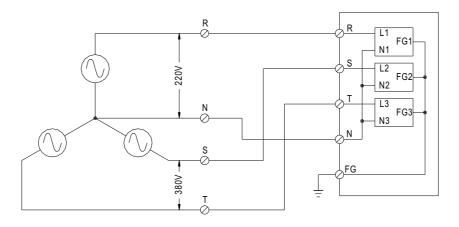
- (1)Remove the shorting connector on CN3 that is shown in Fig 5.1, the O.L.P. mode will be "continuous constant current limiting".
- (2)Insert the shorting connector on CN3 that is shown in Fig 5.2, the O.L.P. mode will be "constant current limiting with delay shutdown after 5 seconds, re-power on to recover.

Fig. 5.1 Remove the CN3
OLP Mode: constant current limiting

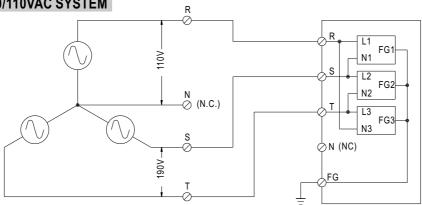



Fig. 5.2 Insert the CN3

OLP Mode: constant current limiting with delay shutdown after 5 seconds



6.Three Phase Connect


■ FIG. A: 3 ϕ 3W 220VAC SYSTEM (STANDARD MODEL FOR STOCK)

\blacksquare FIG. B: 3 ϕ 4W 220/380VAC SYSTEM

\blacksquare FIG. C: 3 ϕ 4W 190/110VAC SYSTEM

