

SEMITOP[®] 3

IGBT Module

SK30GD128

Preliminary Data

Features

- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- High short circuit capability
- SPT = Soft-Punch-Through technology
- V_{CE.sat} with positive coefficient

Typical Applications

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

Remarks

• V_F = chip level value

Absolut	e Maximum Ratings	Τ _s	= 25 °C, unless otherwise	specified
Symbol	I Conditions		Values	Units
IGBT				•
V _{CES}	T _j = 25 °C		1200	V
I _C	T _j = 125 °C	T _s = 25 °C	35	А
		T _s = 80 °C	25	А
I _{CRM}	I _{CRM} = 2 x I _{Cnom}		50	А
V _{GES}			± 20	V
t _{psc}	V_{CC} = 600 V; $V_{GE} \le 20$ V; VCES < 1200 V	T _j = 125 °C	10	μs
Inverse	Diode			•
I _F	T _j = 150 °C	T _s = 25 °C	37	А
		T _s = 80 °C	25	А
I _{FRM}	I _{FRM} = 2 x I _{Fnom}			А
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	180	А
Module	·			
I _{t(RMS)}				А
T _{vj}			-40 +150	°C
T _{stg}			-40 +125	°C
V _{isol}	AC, 1 min.		2500	V

Characteristics T _s =			25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units	
IGBT							
V _{GE(th)}	$V_{GE} = V_{CE}, I_C = 1 \text{ mA}$		4,5	5,5	6,5	V	
I _{CES}	V_{GE} = 1200 V, V_{CE} = V_{CES}	T _j = 25 °C			0,1	mA	
		T _j = 125 °C		0,1		mA	
I _{GES}	V_{CE} = 0 V, V_{GE} = 20 V	T _j = 125 °C			200	nA	
V _{CE0}		T _j = 25 °C		1,15		V	
		T _j = 125 °C		1		V	
r _{CE}	V _{GE} = 15 V	T _j = 25°C		24		mΩ	
		T _j = 125°C		44		mΩ	
V _{CE(sat)}	I _{Cnom} = 25 A, V _{GE} = 15 V			1,9		V	
		T _j = 125°C _{chiplev.}		2,1		V	
C _{ies}				1,9		nF	
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz		0,16		nF	
C _{res}				0,09		nF	
Q _G	V _{GE} =020V			296		nC	
t _{d(on)}				55		ns	
t _r	R_{Gon} = 15 Ω	V _{CC} = 600V		26		ns	
Eon	_	I _{Cnom} = 30A		2,8		mJ	
t _{d(off)}	R_{Goff} = 15 Ω	T _j = 125 °C		284		ns	
t _f		V _{GE} =±15V		40		ns	
E _{off}				2,19		mJ	
R _{th(j-s)}	per IGBT				1	K/W	

GD

SEMITOP[®] 3

IGBT Module

SK30GD128

Preliminary Data

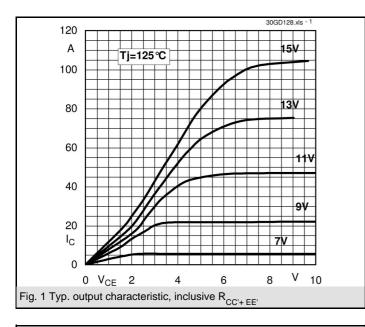
Features

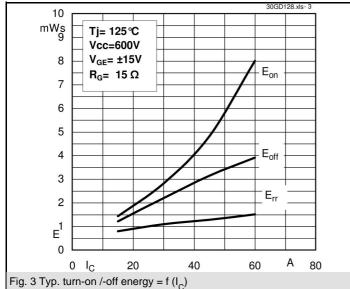
- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- High short circuit capability
- SPT = Soft-Punch-Through technology
- V_{CE,sat} with positive coefficient

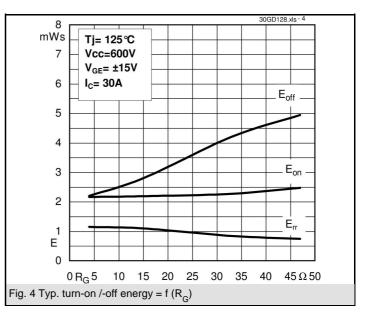
Typical Applications

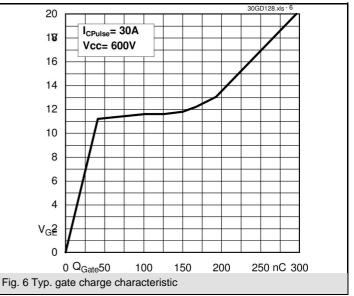
- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

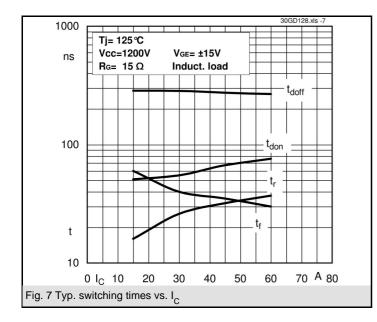
Remarks


V_F = chip level value


Characteristics							
Symbol	Conditions		min.	typ.	max.	Units	
Inverse Diode							
$V_F = V_{EC}$	I _{Fnom} = 25 A; V _{GE} = 0 V	T _j = 25 °C _{chiplev.}		2		V	
		T _j = 125 °C _{chiplev.}		1,8		V	
V _{F0}		T _j = 125 °C		1	1,2	V	
r _F		T _j = 125 °C		32	44	mΩ	
I _{RRM}	I _{Fnom} = 22 A	T _i = 125 °C		25		А	
Q _{rr}	di/dt = -500 A/µs	,		4,5		μC	
E _{rr}	V _{CC} = 600V			1		mJ	
R _{th(j-s)D}	per diode				1,2	K/W	
M _s	to heat sink M1				2	Nm	
w				19		g	


This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.


This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.


GD

