Real Time Computational Algorithms for Eddy Current
Based Damage Detection

H. T. Banks }, Michele L. Joyner {, Buzz Wincheski }, and William P.
Wainfree §

tCenter for Research in Scientific Computation, North Carolina State University, Raleigh, NC
27695
INASA Langley Research Center, Hampton, VA 23681



Real Time Comp. Alg. for Damage Detection 2

Abstract. In the field of nondestructive evaluation, new and improved techniques are constantly
being sought to facilitate the detection of hidden corrosion and flaws in structures such as airplanes
and pipelines. In this paper, we explore the feasibility of detecting such damages by application of
an eddy current based technique coupled with reduced order modeling.

We begin by developing a model for a specific eddy current method in which we make some
simplifying assumptions reducing the three-dimensional problem to a two-dimensional problem. (We
do this for proof-of-concept.) Theoretical results are then presented which establish the existence and
uniqueness of solutions as well as continuous dependence of the solutions on the parameters which
represent the damage. We further discuss theoretical issues concerning the least squares parameter
estimation problem used in identifying the geometry of the damage.

To solve the identification problem, an optimization algorithm is employed which requires solving
the forward problem numerous times. To implement these methods in a practical setting, the forward
algorithm must be solved with extremely fast and accurate solution methods. In constructing
these computational methods, we employ reduced order Proper Orthogonal Decomposition (POD)
techniques. This approach permits one to create a set of basis elements spanning a data set consisting
of either numerical simulations or experimental data. We discuss two different algorithms for forming
the POD approximations, a POD/Galerkin technique and a POD /Interpolation technique.

Finally, results of the inverse problem associated with damage detection are given using
both simulated data with relative noise added as well as experimental data obtained using a
giant magnetoresistive (GMR) sensor. The experimental results are based on successfully using
experimental data to form the POD basis elements (instead of numerical simulations), thus
illustrating the effectiveness of this method on a wide range of applications. In both instances
the methods are found to be efficient and robust. Moreover, the methods were fast; our findings
demonstrate a significant reduction in computational time.

1. Introduction

Nondestructive evaluation (NDE) is the process of examining a material or article without
impairing its future usefulness. NDE is sometimes referred to as nondestructive testing (NDT)
or nondestructive inspection (NDI), although there may be subtle differences in their definitions
depending on the author. For the purposes of this paper, however, we will use the terminology
interchangeably.

The process of examining a material using nondestructive evaluation techniques is not new but
is becoming increasingly important as technology continually advances. According to the American
Society of Nondestructive Testing, the term NDT includes many methods that can: (i) detect
internal or external imperfections, (ii) determine structure, composition, or material properties, or
(iii) measure geometric characteristics. Some typical structures or products inspected through the
use of NDE technology are components of airplanes, motor vehicles, pipelines, bridges, trains, and
power stations.

Nondestructive evaluation techniques can be broken down into seven main categories: (i)
visual inspection, (ii) liquid penetration inspection, (iii) radiography and radiation testing, (iv)
electromagnetic testing, (v) acoustic emission monitoring, (vi) magnetic methods, and (vii)
ultrasonic testing. Each of these categories is broad, containing within them several specific testing
techniques. The choice of an appropriate NDE technique depends on the specific application. We
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will not go into detail on the benefits and limitations of each method, but will instead refer the
reader to [8, 9, 18, 20, 38, 40] for a thorough discussion. In this paper, we will focus only on a
particular electromagnetic testing method, called the eddy current method.

Eddy currents are currents found in any conducting material which is subjected to a time-
varying magnetic field. They are useful for NDE purposes, because if a flaw is present within a
conducting material, the flow of the eddy currents will be disrupted in some manner. From this
disruption, and its effect on the magnetic flux density, one can often discern information about the
damage or defect within the material. A thorough analysis of eddy currents and their behavior can
be found in [44].

Since eddy currents are only found in a conducting material, the use of eddy current methods for
interrogation is limited; however, these methods have been proven extremely useful when examining
pipeline structures and aging aircrafts. There are many devices and eddy current techniques in use
today including the self-nulling eddy current probe [49] along with conformal mapping techniques
[50], the magneto-optic/eddy current imager [16, 45] in conjunction with eddy current imaging
(17, 19], the SQUID (Superconducting Quantum Interference Device) through the use of either
injected current methods or induced eddy current methods [11, 13, 22, 37, 39, 48] and the GMR
(Giant Magnetoresistive) sensor based on the self-nulling probe design [51, 52]. Each of these
instruments have unique features, making some instruments easier to use than others or more
practical depending on the circumstances. Some of the instruments provide images of the damage,
while others provide quantitative data. In this paper, we investigate computational methods for the
estimation of a damage or flaw within a material using quantitative data taken by an appropriate
instrument. In some cases, instruments providing images of the damage may give us valuable a
priort information about the defect, allowing us to obtain a more accurate estimate of the damage.

Damage detection is quite naturally formulated in the context of inverse problems; in the case
of electromagnetic probes these involve Maxwell’s equations at some level. Consequently one can
anticipate computational algorithms that are time and computer memory intensive. Motivated
by goals of on-line, real-time algorithms to be used in portable testing devices, one is led to
reduced order computational ideas. In an earlier paper [4] (see also [3]), we suggested techniques
based on Proper Orthogonal Decomposition (also called Principal Component Analysis) methods
and gave some initial computational results based on numerical simulations for one-dimensional
damages which suggested significant potential for such an approach. In this paper we continue our
investigations, providing theoretical foundations for the proposed approach along with a summary
of extensive tests using numerical simulations for one-dimensional and two-dimensional damages.
Moreover, we provide a summary of our efforts and results in using the reduced order algorithms
with data from subsurface damage experiments designed and carried out specifically to test the
efficacy of our proposed approach.

We first analyze a specific implementation of the eddy current method and develop a model
describing the behavior of the magnetic flux density as a relationship to the total current. As a
consequence, we will be able to obtain information about the damage from the relationship between
the disruption in the eddy current and the resulting magnetic flux density.
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2. Model Formulation

As discussed in the previous section, eddy currents are currents found in any conducting material
subjected to some time-varying magnetic field and can be induced in a variety of ways. In this
paper, we limit our discussion to only one implementation: we examine the process of inducing
eddy currents within a sample by placing a thin conducting sheet carrying a uniform current above
the sample. The current within the sheet produces a magnetic field perpendicular to it that in
turn produces eddy currents within the sample. The presence of a flaw within the sample causes a
disruption in the flow of the eddy currents and this disruption manifests itself in the magnetic flux
density which can be measured by a device placed above the conducting sheet. A schematic of the
inspection process is shown in Figure 1.

By assuming uniformity in the direction of the current flow in the conducting sheet (labeled the
negative z direction, denoting the coordinate for the width of the sample in Figure 2), we are able to
reduce the three-dimensional setup described above to a two-dimensional problem in the xy plane,
where x denotes the coordinate of the length of the sample and y denotes the coordinate of the
thickness of the sample. We make this simplifying assumption for proof-of-concept, to illustrate the
feasibility of reconstructing the geometry of a damage. In addition, in order to disregard boundary
effects along the edges of the sample, we assume the sample and conducting sheet are infinitely long,
i.e., they are infinite in the z direction. If the conducting sheet and sample are not of infinite extent,
we have to take into account the discontinuities in the current flow at the boundaries. Furthermore,
the damage (which we shall refer to as a “crack”) is assumed to be rectangular in shape and centered
along the length of the sample (along the z direction) at x = 0.

Pjck-up coil of sensor

a s

Conducting Sheet

Sample Material Flaw

Figure 1. 3-D Schematic of Eddy Current Inspection Process

For computational purposes, we examine a finite “window” of the overall problem, which is
called the computational domain €2. In choosing the boundaries of the computational domain along
the length of the sample (z boundaries), we recall that the sample and conducting sheet are assumed
to be of infinite extent. Therefore, we can arbitrarily choose these boundaries by assigning evenly
symmetric boundary conditions to account for the infinite extent of the materials. However, since
the damage is centered along the length of the sample, we need to only consider half of the sample
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for computational purposes. The other half will behave in the same manner. Therefore, we choose
the left boundary to be located at the center of the crack in the x direction, labeled z = 0, with the
crack symmetric through the yz plane at x = 0, and the right boundary is chosen at z = 50mm. The
y boundaries, or top and bottom boundaries, are at y = —35mm and y = 35mm and are assumed
to be far enough away from the sample that the field is approximately zero at these boundaries.
Indeed, the magnetic flux density at a point is inversely proportional to the distance between the
source current and that point. Hence the field tends to zero as the distance from the source current
or conducting sheet increases. A schematic of the resulting two-dimensional problem is depicted in
Figure 2 where it is assumed that the sample (which is 20mm thick) is composed of aluminum and
the conducting sheet (which is 0.1mm thick) is made of copper. Thus the computational domain
which we will use for the purposes of developing the model can be explicitly defined by

Q={(z,9,2) € R : 0mm < x < 50mm, —35mm < y < 35mm}.

Conducting Sheet (Copper)

/ 50mm X
z — Sample (Aluminum)

B2

Figure 2. 2-D Schematic of Problem

We begin the development of the model by introducing a mathematical tool, called phasors,
which is typically used in the field of electromagnetic nondestructive evaluation whenever periodic
interrogating inputs are employed. As mentioned in the previous section, a conducting sheet (copper
in our example) carrying a uniform current is placed above the sample to induce eddy currents within
the sample. Without loss of generality, we assume the source current has the form

33 = J,cos(wt)k = J,Re(e™!)k

where J; is the magnitude of the source current. This current produces a magnetic field I:I(x, Y, 1)
described by Maxwell’s equations. As the magnetic field penetrates into the sample, a phase lag
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occurs due to the finite conductivity of the sample (aluminum in our example). In other words, the
magnetic field takes the form

H(z,y,t) = H(z, y)cos(wt + 0(z, y)), (1)
where I:I(:v, y) is a vector field quantity which keeps track of the magnitude and direction of H at
each point in space while 0(x,y) denotes the phase shift from the original cosine wave at the same
point in space (this term takes into account the depth of penetration). Since these are the quantities
of interest, we may use a vector phasor ([1, 10]), or a vector of complex numbers, H defined by

H(z,y,t) = Re(H(z,y)e"") = Im(H(z, y)e'“"*/?) (2)
which keeps track of only these quantities.

We then use Maxwell’s equations (they are the basis for all electromagnetic phenomena) in
phasor form as the basis for our derivation. Details on the derivation of Maxwell equations in
phasor form from Maxwell’s equations as derived from first principles (e.g., Coulomb’s law, the
Lorentz transformation and relativity theory - see [14]), can be found in [23]. We then have for the
basis of all the following derivations:

V-B=0, (3)

V-D=p, (4)

V x E = —iwB, (5)
and

VxH=J+iwD. (6)

We first make a couple of remarks regarding (3) - (6). To begin with, our system is considered to
be electrically neutral, i.e., the internal electric charge density p equals zero. Secondly, by examining
the conductivity, o, of aluminum and copper (o4 = 3.72 x 107S/m and 0., = 5.8 x 10°S/m
respectively) and by using Ohm’s law

J =0E, (7)
we can argue J =~ 107E. On the other hand, the constitutive law
D = ¢E, (8)

where € is the electric permittivity (e & €y & 55— x 1077 F/m), indicates D ~ 10~'°E. Therefore, for
the source frequencies we consider within the scope of this paper (f, = 60Hz - 2kHz), wD < 10 °E
where w = 27 f, is the angular frequency. Consequently, in the sample and conducting sheet
J >> wD which implies we could assume wD & 0 in both the sample and conducting sheet in
(6). In other words, the term wD is only significant in the air. Both the literature and the finite
element software employed in the computations (Ansoft Maxwell 2D Field Simulator) neglect the
displacement current density in the air as well [28, 29, 30, 31, 47]. In our initial computational efforts,
we formulated the problem both including as well as neglecting the displacement current density
and compared the corresponding solutions. Our findings agreed with the literature; there was no
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discernible change in the solution when the displacement current density was ignored. However, the
presence of this term does alter the theoretical results slightly (see Section 3) and for this reason,
we choose to include this term in the derivation of the model.

We use the Ansoft finite element solver ([1]) in our computational efforts; therefore, we continue
our derivation in the same manner as done in Ansoft by introducing a magnetic vector potential A.
Based upon (3) and vector null identities, B can be represented as the curl of a vector potential A
(called the magnetic vector potential),

B=V xA. 9)

Therefore, given the magnetic vector potential A, both the magnetic field H and magnetic flux
density B can be computed. Accordingly, we want to combine Maxwell’s equations to obtain
equations in conjunction with boundary conditions which completely determine the behavior of the
magnetic vector potential A in €.

Using the identity B =V x A in (5), we have

VXE=—-iw(VxA) or Vx(E+iwA)=0.

Again, using vector null identities, V x (E + iwA) = 0 implies E + iwA can be written as the
gradient of a scalar potential, denoted by ¢. As a result,

E = —iwA - V¢ (10)
Finally, we can use (6) and (10) in conjunction with Ohm’s law (7), the constitutive law given
by (8) and the constitutive law H = %B (1 is the magnetic permeability in H/m), to obtain

V X (iv X A) = (0 + iwe)(—iwA — Vo) Vz,y € Q. (11)

In the above equality, the right side represents the total current density made up of the source
current density, eddy current density, and displacement current density. The source current density
J, is due to differences in electric potential; therefore, J, is represented by the term —oV¢. The
term —iwo A represents the eddy current density J. produced by a time-varying magnetic field.
Finally, the displacement current density J; due to time-varying electric fields is given by the term
iwe(—iwA — Vo).

Since (11) contains two unknowns, A and ¢, we need an additional equation to uniquely
determine solutions of the system. In some instances, one is allowed to choose a “gauge” which
often decouples the above equation; however, based upon the geometry in our test problem, V-A = 0
is naturally imposed. This follows since the only nonzero component of A is Az, the component
of A in the z direction (the direction of the current density J). Therefore, V- A = 2 = 0 by
uniformity in the z direction. Indeed, this is the Coulomb gauge [21, pp. 221-222].

Since the Coulomb gauge is naturally imposed, it provides no additional information in our
problem. It is therefore necessary to use an integral constraint to obtain a second equation relating
the magnetic vector potential A to the scalar potential ¢, or more precisely V¢. For the integral
constraint, we take the relationship

I= /SJt ‘nda = /S(o + iwe)(—iwA — Vo) - nda (12)
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where [ is the total measurable current flowing in a conducting surface (S) and J; is the total
current density within the conducting surface. Since we are only able to control the current flowing
in the conducting sheet, we use the equivalent equation in the conducting sheet

I = / J;-nda = / (0 + iwe)(—iwA — Vo) - nda (13)

where I is the total current flowing in the conducting sheet (cs). However, since (13) only provides
a relationship between A and V¢ in the conducting sheet, we still need either a relationship between
the potentials or a condition on one of the potentials in both the sample and air.

Using a few underlying assumptions, we can justify V¢ = 0 in the sample. We explore two
different arguments which in the end result in this conclusion. One approach is to examine the source
current density term caused by changes in potential across the material given by J;, = —oV¢. Since
we only apply a current, and hence effectively a potential, across the conducting sheet, the source
current density (due to changes in potential) only exists in the conducting sheet. Consequently,
Js = —0V¢ = 0 in the sample. Since the conductivity of aluminum o, does not equal zero, V¢
must be identically zero for all points (x,y) in the sample. A second alternative is to assume the
sample is a passive conductor modeling a short circuit (which is done in Ansoft). In general, a
passive conductor is a conductor which has no component of source current (as discussed above).
In other words, the only currents considered to be flowing in a passive conductor are eddy currents
and displacement currents (when considered). In addition, a short circuit conductor is treated as
a conducting ring which loops back on itself. In this case, using concepts of a closed circuit, the
change in potential across the loop is zero [1, 46], i.e.,

V=0 VY(z,y) € sample. (14)

The only other region left to consider is the air. When the displacement current density is
ignored, it is not necessary to require an additional constraint on V¢ in the air since (11) reduces
to

1
V x (;V X A) =0 VY(z,y) € air. (15)

However, we will make an intuitive argument for why V¢ should be taken to be zero in the air as
well. We use an argument similar to that one used for the sample. The source current density, as
discussed previously, is only present in the conducting sheet and hence not in the air. However,
by examining the equations alone, this does not give us any knew information. It simply states
that J; = —oV¢ must equal zero in the air which is already true since o is identically zero in
this region. On the other hand, we can intuitively argue that the source current density is due to
changes in potential, and, therefore, if no source current density is present in a region, there should
be no change in potential in that region as well. Using this reasoning, we take V¢ = 0 in the air.
Although not explicitly stated in the technical notes for Ansoft Maxwell 2D Field Simulator ([1]), the
software effectively uses V¢ = 0 in the air when estimating the displacement current density given
the approximate finite element solution A determined by (13) and (14). (In the actual calculations
produced by the Ansoft software, displacement current density is ignored totally.)
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Therefore, combining all the above we have two coupled equations (11) and (13) and the
additional condition V¢ = 0 for points (z,y) in the sample and air. Using these equations, the
magnetic vector potential A can be uniquely determined if appropriate boundary conditions on A
are specified.

Recall that we assume evenly symmetric z boundaries due to the symmetry of the crack and
the infinite extent of the materials. In other words on the x boundaries, we assume the fields on
both sides of the boundary oscillate in the same direction. To account for the even symmetry, we
assign Neumann boundary conditions to these boundaries. In a similar manner, we assume the y
boundaries are “sufficiently far” away from the sample and scanning area to not effect the overall
measurements. We mentioned previously that as one moves farther away from the sample and
conducting sheet, the magnetic vector potential A tends to zero. Thus, on the y boundaries, we
assign Dirichlet boundary conditions to indicate the boundary is “sufficiently far” away from the
materials so that A = 0. Therefore, the magnetic vector potential A is determined according to

Vx (o x AG)) = (0(00) +ivelo ) (iwA ) - V6) e (16)
I, = / J; - nda = / (o(z,y) + iwe(z, y))(—iwA(z,y) — Vo) - nda (17)

and
Vo=0 z,y€Q\cs (18)

with

A(z,-35) = 0 = A(z,35)
VA-n|(07y) = 0 = VA-n\(507y).

3. Well-Posedness

In the previous section we developed a model for the magnetic vector potential A given a source
current I.;. The boundary value problem is given in terms of two unknowns A and ¢ satisfying (16)
and (17) with the additional condition given by (18) which, as we shall see, uniquely determines the
solution when coupled with appropriate boundary conditions. However, we can reduce the above
system into a single integro-differential equation by noting (see [23] for details) that the term V¢ is
piecewise constant across all regions. Therefore, V¢ can be written in terms of A in (17). Hence we
can combine all the equations as done in [23] to obtain the equivalent form of the boundary value

problem
~ (T + TR 4 o) (o(e.) + el ) A (o,1) + K1) =0 (19
where V¢ = K(z,y) is defined by

LR s T R
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Given this form of the equation, together with the boundary conditions, we consider the
existence and uniqueness of a weak solution on a general domain given by

Q= {(x,y,z) € R3 * Tmin S x S Tmaz > Ymin S Yy S ymax}

for which our test problem is a specific example. Then, let H = Ly(Q2) and V = {¢ €
HY(Q)|9(2, Ymin) = 0 = (2, Ymas)} Where we use the standard Sobolev space notation, H'(Q) =
{ € I2(Q) : Vo € L*(Q)}. Note that we interpret pointwise evaluation of functions (along
the boundary and elsewhere) in terms of a trace operator ([15]) for which we suppress notation
throughout this paper . We denote by (¢,¢) = fﬂ ¢da the standard inner product in H and
(6, )y = [V - Vida the (H'-equivalent) inner product in V.

Then using integration by parts together with natural boundary conditions and imposed
conditions on test functions ¢ € V, the variational form of (19) is given by

0A O 0A Oy , . . _
(G504 G 50 ) + liwmlo + i), ) + Qulo + iwe)K, ) = 1)
or more precisely
(VA V) + (3iA,0) + s [ Ada [ Gda= [ fida (22)
where (8, = iwpu(o + iwe), o = ——iw“w(ﬁ’jiwéw), and f = —“X‘f:s.

3.1. Existence and Uniqueness

We consider the existence and uniqueness of the solution A to (22) (as well as to its equivalent
formulation when the displacement current density is neglected) in the context of a Gelfand triple
setting V — H ~ H* — V*. We have that the embedding V' — H is dense and continuous with

|y < klply  forally € V. (23)
where the norm in V' will be denoted by |- |y and | - | will denote the norm in H for the rest of this
section.
We define a sesquilinear form £:V x V — C by
L(6%) = (V6,V6) + (516, ) + 5 [ oda [ o (24)
Then (22) can be written as
L0 = [ fida (25)

We intend to prove L is V-continuous and for certain frequencies is V-elliptic. We will then
invoke the Lax-Milgram theorem to prove the existence and uniqueness of the weak solution A to
(22).

Lemma 3.1 L is V-continuous, i.e., there exists some constant ¢, such that

1L(6,9) < calolv]vlv (26)
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Proof: Using the triangle inequality, Cauchy-Schwartz inequality, properties of L!, Holder’s
inequality and (23), we have

L6, 0)] = [V, V) + (6:16,9) + B2 [, éda [, ¥dal

(e, V)v |+ [(B1d, V)| + |82 ., bda [, vbda]
Bl Y]y + [BileclllY] + |Be| [, 10lda [, [+|da
1Dlv Y]y + |B1loo| @l [Y| + B2l [@]L1 () [¥] L1 ()
Blv[¥lv + [Bilooldll¥| + 111 Bal ]|
(1+5|B1]oo + E2[112] Ba|) O |v [ [v

Cl|¢|V|¢‘Va

where ¢; = 1+ k?|B1|o0 + K%[1)%| 2]

AN A A IA N

Lemma 3.2 There exists F = F(u,€,Q) such that for fy < F(u, € Q), there exists a constant
co > 0 such that L satisfies

1L(6, )| = c2lg3- (27)
Proof: By (24) and the definition of 3; and S,

ReL($,0) = (Vo, V) — w?(ued, p) + hencen [, ¢da [ bda
= (V(b, V¢> _ w2<M€(/5, ¢> w? ucuecu | fcs qﬁda\?

Therefore,
ReL($, ®) Vo, V) — w?*(ued, ¢)

V$, V) — w?|ue|oo|df”.
Denoting ¢ = maz(|Ymin|, [Ymaz|), we have |y| < a for (z,7) € Q. Hence for ¢ € V,

6> = [31-ddda
T [ - gy
—Ja ya¢¢d“ - Ja ya"’qﬁda + fmm y¢¢‘§:?fd$
<yay,¢> (Y, 52)
28,8} + (v, 29)
2a|8||V¢|
Bl + 207 Vol

=161% + 2a7/9l3.

>
>

VARV VAN

Thus,
2a

(122 1o < 2o
4y
which gives us

2
6% — (1 - @) 62 > (1 207)|612
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We want to choose 0 <y < 5= such that

2a
1- o = w?| €| oo
or B 50
7T A0 el

Note that the condition v > 0 is met if w is chosen so that

1
< .
V€]

In order to satisfy the condition v < ;—a, an initial source frequency must be chosen such that

1 —a?

| 14€] 00

1 [1—a?
21\ |peloo

where w = 27 f, and we tacitly assume a? < 1. Let F = F(u, ¢, Q 27”/ e , then for f, < F,

or

ReL(4,¢) > 6] — w?|ue|o|d> > co|o[2

with co =1 — 2a7y > 0.

We note that for our test problem, p ~ py = 47 x 1077, € &~ ¢y ~ % x 1077 and the term a
discussed in the proof is given by a = 3.5 x 1072, Hence, F ~ 4.77 MHz. All of our computational
results employ source frequencies f; < 2kHz. Furthermore, frequencies much larger than these are
not appropriate for this type of eddy current problem. We make one final remark about the bound
F on source frequencies f;. We note that £ is of the form ((B + kI)¢, ¥)v+ v; therefore, a sharper
bound on the source frequencies might be calculated by considering the spectrum of B and allowing
those frequencies up to the point at which & becomes an eigenvalue of B. Since the bound F we
have calculated is adequate for analysis including all calculations we consider in this paper, we do
not choose to pursue this idea here.

A consequence of the Lax-Milgram theorem, as discussed in [53, pp. 271-275], gives an existence

and uniqueness theorem for solutions:
Theorem 3.1 Let V — H — V* be a Gelfand triple. Let L:V xV — C satisfy:

(AI) |‘C’(¢a¢)| < Cl|¢|V|¢|V fOT all QS,'(/J € V;
(A2) |L(6,8)| > ca|fi for all g € V.
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Then there exists an operator L :' V — V* given by

L(b¥) = (Lo, Oy, dbeEV (28)

such that L : V — V* is a linear topological isomorphism between the spaces V and V*, and for the
norms we have

1
Ll <e, [L7Y<— (29)
C2
Put otherwise, the weak equation
Lop=f, feV" (30)

interpreted as

L(g,¥) =(f,4) forallyp €V,

possesses for each f € V* a unique solution ¢ € V, and this solution depends continuously on f.

Theorem 3.1 and Lemmas 3.1 and 3.2 readily give

Theorem 3.2 There exists F = F(u, ¢, Q) such that for fs < F(u, €, Q), there exists a unique weak
solution A to (22).

We make a note that when the displacement current density is neglected, we obtain similar
results to those above about without any restrictions on the source current density. In other words,
given the variational form (found when ignoring the displacement current density)

(VA,V4) + (uA ) + o [ Ada [ Gda,= [ foda (31)

—_ WhcyTcu
A

CS8

with coeflicients Bl = jwpo and 52 = we obtain the following theorem.

Theorem 3.3 There ezists a unique weak solution A to (31).

3.2. Continuous Dependence on Parameters

In this section, we give theoretical results showing the solution A to (22) depends continuously on
the parameters representing the damage which will also give us a basis for convergence results in
the next section.

We begin by considering a general representation of a damage and define a parameter to
represent this damage. Although we only consider rectangular damages centered along the length
of the sample in our computational efforts, we will allow for any four sided polygon or quadrilateral
in the theory. We will then relate our specific problem to the more general theory considered here.

Any quadrilateral can be represented by its four corners.  Therefore, we let q =
[(z1,v1), (T2, ¥2), (T3,Y3), (T4, y4)] be a vector in R* x R? or equivalently R® which represents the
quadrilateral. We denote by Q,.q the set of admissible parameters q where it is assumed Qg is a
compact subset of R®. We note that it is possible to pick Quq to be compact since the damage is
restricted to being within a sample of finite length and thickness. We also allow for the case in
which no damage is present and represent this case by “collapsing” the quadrilateral into a single
point (with zero area), i.e, we define q as a vector of identical points.
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Then for any two damages given by parameters q and q in Qud, let
Cz(qa a=|la-aqll= [(33“1 - «’131)2 + (th — ?/1)2 + o+ (T — «’134)2 + (9a — ?/4)2] (32)

to be the standard Euclidean norm in R®. We denote by 6Q (Figure 3) the points in Q which are
either in the damage represented by q or q but which are not in both. In other words, let (14

1/2

represent the points (z,y) in €2 within the damage given by q and €4 the points (z,y) in © within
the damage given by q. Then dQ = Q4 U Qg — Q4 N Q4. The area of 6Q is directly related to
the distance between parameters q and q. Indeed, J(q, q) — 0 if and only if Z; — z1, 1 — v,
ceey Ty —> Ty, Ys — Ya, 1.€., the four corners of the two damages approach one another. Therefore,
CZ((], q) — 0 implies 6$) — 0 and hence the area of 6Q — 0.

Conductin% Sheet

damage ¢

damage g

Sample

Figure 3. The Area Represented by 6

To relate this terminology to the computational examples we present in the rest of this paper,
the only damages we consider computationally are those rectangular in shape and centered along
the length of the axis. We only take into account half of the damage such that the left boundary
of the portion we consider is located at x = 0 in the zy plane. Therefore, the only variation in the
damage is in its length [, thickness h and depth d.

We let q be a parameter representing only these variations, i.e., q is a vector in some compact
subset (Qqq of either R', R%, or R®. For example, if we wish to only estimate the length of the
damage, we assume the depth and thickness are fixed and hence q = ¢ = [ is in a compact subset
of R'. However, if we wish to estimate parameters such as length and thickness while keeping the
depth of the damage fixed, q = (I, h) and hence Q.q is a subset of R%. If we allow all parameters to
vary, q = (I, h,d) € Q.q C R3. Therefore, given q (along with any fixed parameters) we have [, h,
and d for which we can define q = [(0, —d), (I, —d), (I, —d—h), (0, —d — h)] to be the vector of corner
points for the damage. This yields a formulation of the damage in terms of q that is equivalent to
the formulation in terms of q given with metric d. Thus, if the solution depends continuously on
q, the solution will also depend continuously on the parameters we estimate given by q.

Let V(6Q)) = H'(6Q) with the pseudo norm |¢|f/(m) = [, VéVéda. Then given the
terminology above, we first prove the sesquilinear form £ depends continuously on q and use
this result to obtain the continuous dependence of A on q. We note that whether we include
or neglect the displacement current density results in either frequency dependent or independent
results, respectively. We only present the remaining theory with the displacement current density
included.
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Lemma 3.3 There exists a positive constant K independent of the parameters q,q such that for
all q,q € Qua, the sesquilinear form L£(q)(-,-) satisfies

1£(a)(¢, ¥) — L(@) (6, V)| < KBy 0¥y (33)
for all ¢, € V where | - |V(m) — 0 when J(q, q) — 0.

Proof: By definition of the sesquilinear form £ in (24)

L(8)(6, %) — £(@)(6,9)| = [(Vo, Vi) + (51 (@), ) + b / oda / Pda
—(V, V) — (B1(@)6, ) — B / éda / Tdal

or simply
1£(a) (e, ¥) — L(a) (0, )] = [((Bu(@) — B1(@)), V).
Using the definition of f;, the Cauchy-Schwartz inequality and (23), we have

[((Bi(@) — Bi(@)) o, )] [(Bu(@) — Bi(a))9l¥|

iwl|(1(@) (0 () + iwe(@)) — p(@)(o(a) + iwe(q)))o||¢]
W|ptat(Oar + iweq) — iw#0€0\|¢|p(m)\¢|

k2w par (0 + iwear) — 1w io€ol|Ply sy ¥V

VAN | IR VANRPVAN

where 6 is defined above. Therefore, if we let K = k2w|par (0o + tweq) — twigeo|, we have
((Bu(@) — B1(@))d, ¥)| < K[|y 50yt (34)

Theorem 3.4 Assume the admissible parameter set Quq is a compact subset of R®. Then there
exists F = F(u, €,Q) such that for source frequencies fs < F(u,€,Q), @ = A(Q) is continuous from
Qad toV.

Proof: Let " — § € Quq and let A(q"), A(q) be the corresponding solutions of (25). That is,

L(@")(AG"),¢) = (f,4h) forpeV (35)
L(a)(A@),y) =(f¢) foryeV. (36)
Subtracting (36) from (35), we have

£@)(Aq") - Al@), v) = —[£(a") - L@)](A@), ¥).

L£(9")(A(q") — A(a), A(") — A(a)) = —[£(a") — L(a)](A(a), A(G") — A(q))-
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Thus, using (33) we have

1£(q")(A(q") — A(@), A(@") — A(@))] [£(a") - L(@)](A(a), A(@") — A(q))|

< KIJA@)|v@om A@™) — A(@)|v

Then we can use the above equality and (27) where we note that ¢y can be established independent
of q" by following the proof of Lemma 3.2 in which |ué€|,, can be taken independent of ¢". Thus,
defining K = % independent of q”, we obtain

|A@") — A(@)|v < K|A(@)|van)

where the right side goes to 0 as q" — q.

3.3. Convergence Results

One possible estimation problem of interest consists of minimizing over some set (),4 of admissible
parameters the least squares functional

J@ =13 Ay, @) - 497 (7

i=1 j=1
where {/Al”} are assumed to be some sampled data available at points (z;,y;),7 = 1,...,n,
j = 1,...,m. In practice, the computations for the minimizing problem are carried out using

an approximate system. Here we will consider Galerkin type approximations in context of the
variational formulation (22). Let H™ be a sequence of finite dimensional subspaces of H. We
denote by PV the orthogonal projection of H onto HY. Then the parameter estimation problem
can be formulated by seeking a q € (Q,¢ which minimizes

V(@) = 3 33 1A () — AV (38)
i=1 j=1

The parameter estimation problem given above assumes we have sampled data A” along a grid
of points (z;,y,), 2 =1,...,n, j =1, ..., m although it is not physically possible to obtain such data.
Typically potentials, for example A, are only used for computational purposes. They allow one to
overcome some of the difficulties which arise computationally when using field variables, the biggest
complication being the number of equations which must be solved when using field variables [30].

The field B or H, however, is the only measurable quantity.
Therefore we also explore an alternative problem which we use in much of our computational

and experimental investigations. It involves cost functionals using observations of the magnetic flux
density B=V x A = (24, 24 () = (By, B,,0). In this case, (37) and (38) are replaced by

dy> oz’
T = 5 303 1Byl vy ) - BYP (39)
=1 j=1
and ]
(@) = 5 D3 1BY (i) - BYP (40)

i=1 j=1
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respectively, for £k =1 or 2.

However, in actual experimental situations, the sensor detects magnetic flux density across
the entire surface area of the sensor and then outputs this data as data for a specific point. This
necessarily involves averaging of the data over the area in some fashion. Therefore we can assume

k |Q ‘/ (z,y;9 (41)
ij

where q* represents exact parameter values corresponding to the damage within the sample from
which the data was obtained and €2;; is a neighborhood of (z;,y;). Hence we instead consider cost

functionals of the form
1 X | i L
- §ZZ|CJBk(q) ~ BJ? (42)
i=1 j=1

and

(@)= 5 D" IC7BY (o) - BYP (43)

i=1 j=1

as well as the corresponding cost functionals in terms of A where

CBy(q | |/ By(z,y; q)da.
ij m

Thus, using the notation and results developed in this section, we obtain the following result.
Theorem 3.5 Suppose

(B1) The finite dimensional subspaces HY satisfy HY C V.
(B2) For each v € V,|PNyp — 9|y — 0 as N — co.

Let @V be arbitrary in Qaa such that @ — q in Quq. Then there exists F = F(u, €, Q) such that
for source frequencies f, < F(u,¢,Q), we have AN (") — A(q) € V as N — oo, where A(q) is the
solution to (25).

Proof: We have
£(@")(AN@"),»") = (f,v") for pN € HY (44)
L(a)(A(a), ¥) =(f,¥) foryp e V. (45)

We also can write
[AM@") - A@lv < [4%(@") - PYA@]v +[PYA(@) - A@)]v-
Hence from (B2) it suffices to prove
1AN@) = PYA@))ly =0 for@¥ = §€ Quy as N — .
Taking ¢ = 9" in (45) and subtracting from (44), we obtain

L@")(AY(@"),»") - L(@)(A@),y™) =0
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for ™ € HY. Furthermore, by adding and subtracting £(q")(PY A(a),v") and £(a")(A(a), ")
and simplifying, we have

L@@")(AM(@") - P A(a), ") + L(@")(PYA(@) - A@), ")

+£(@") - L(@)(A@), ") =0.
Choosing ¥ = AN = AN (g") — PV A(q), we find that

L@ (AN, A"y + £(@")(PYA(aq) — A(a), AY) + [£(a") — £(@)](A(a), A") =o.
Therefore,
1£(@Y)(AY, AM)| = - L(@V)(PYA(q) — A(@), AY) — [£(@Y) — L(@)](A(a), AY)].

However, using the triangle inequality, (26), (33), and the Cauchy-Schwartz inequality, we can
bound the right side of the above by

| = £(@")(PYA(@) — A(@), AY) = [£(a") - L@](A@), AV)| <

(ea] PYA(@) = A(@)lv + KIA(@) |v(sam)) AN v
where c; is the constant in Lemma 3.1 and K is the constant in Lemma 3.3. We can conclude using
(27) that

c B B K - N
AN}y < c—:\PNA(Q) —A(Q)|v + g\A(QNV(mN)\A(Q)\V-

Thus, given any @Y — q € Qqq, it follows from (B2) that AN = AN (gV)— PN A(q) — 0 as N — oo,
giving us the desired results.

We note that the results above guarantee convergence of both AY(q) to A(q) in V and
BY(q) — B(q) in () and hence provides a complete theory for the inverse problem considered
(see the general framework given in Chapter 5 of [5]).

4. Computational Method

Our ultimate goal is to determine the feasibility of using a portable sensing device in conjunction
with inverse problem techniques to characterize the geometry of a hidden, i.e., subsurface, damage
within a sample. To achieve this goal, we must develop fast and efficient forward computational
methods to be used possibly numerous times in the inverse problem formulated in the next
two sections. To this end, we examine reduced order Karhunen-Loeve or Proper Orthogonal
Decomposition (POD) techniques.

The POD technique is an attractive order reduction method, because basis elements are formed
in an “optimal” way which span a data set consisting of either numerical simulations or experimental
data. Since the POD basis is formed so that each basis element captures important aspects of the
data set, only a small number of POD basis elements are needed in general to describe the solution
[36]. Consequently, if the POD method is successful, implementation should result in a decrease of
computational time.
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We summarize the use of the POD method in the context of the least squares inverse problems
described in detail in Sections 5 and 6 and first introduced in [3, 4] for these problems. For further
details on the general POD method, we refer the reader to [2, 6, 7, 12, 24, 26, 27, 32, 33, 34, 35, 36]
and the extensive list of references contained therein.

The first step in forming the POD basis is to collect “snapshots” or solutions across time,
space or a varied parameter. In our case, we let q be the vector parameter characterizing physical
properties of the damage; i.e., as discussed in Section 3.2, q determines the geometry of the damage
including the length, thickness, depth, etc. of the damage. For an ensemble of damages {q; j-\’:sl,
we obtain corresponding solutions, {A(q;) ;V:SD of (16) with (17) and (18), for magnetic vector
potentials which we call our “snapshots”. Alternatively, from the solution set {A(qj)};-v:sl, we can
obtain the magnetic fluxes {B(q;) ;-V:SI and instead use these as our “snapshots” if we wish to treat
magnetic fluxes as our basic state variable. (In [3] we compare results using one field versus the other
as the basic state variable. The conclusions are summarized in Section 5.) For our explanation, we
will consider snapshots on A = (0,0, A3) and hence our explanation will be for the scalar case. For
the vector case, we would simply proceed componentwise [2, 12, 36]. Without loss of generality, we
will denote the vector A by its scalar nonzero component A, i.e., the A3 component of A.

We seek basis elements of the form

@ =3 Vi()A(a) (40)

where the coefficients V;(j) are chosen such that each POD basis element ®;, i = 1,2,..., Ny,
maximizes

N,
1 s
N Z : |<A(q.7)’ ®i>L2(Q’C) |2
S le

subject to (®;, ;) r2(o,r) = ||®;]|> = 1. Standard arguments guarantee that the coefficients V;()
can be found by solving the eigenvalue problem

CV =)V

where the “covariance” matrix C' is defined by

1

[C]ZJ = E<A(qz)7 A(qj»Lz(Q:E)'

The matrix C is a Hermitian positive semi-definite matrix, and thus it possesses a complete
set, of orthogonal eigenvectors with corresponding nonnegative real eigenvalues. We order the
eigenvalues along with their corresponding eigenvectors such that the eigenvalues are in decreasing
order,

A > X > o> Ay, > 0.

We furthermore normalize the eigenvectors corresponding to the rule
N

ViV =
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Then the i POD basis element is defined by (46) where V;(j) represents the j** component of
the i eigenvector of C. It can also be shown that {®;}* are orthonormal in L?(2,C) and

span{®;}Ye, = span{A(qj)};yzsl. Indeed, given any A(q;), we have

where
ar(a;) = (A(qj), Pr)r2.0)-

We point out that if any of the \;’s are zero, say A; = 0 for : = K + 1, ..., N, then even though the
corresponding V; are orthogonal (and of course linearly independent), we will have span{®;}X =
span{®;} X+ . In this case we will only generate K < Nj linearly independent POD basis elements.
A discussion of the relation between POD basis element formation and the popular singular value
decomposition (SVD) methods in linear algebraic methods is given in [32].

To determine the reduced number N of POD basis elements required to accurately portray the

ensemble of “snapshots” {A(q;)}Y,, we consider

=1

N N
NN (47)
j=1 j=1

which represents the percentage of “energy” in span{A(q,) ;-V:SI that is captured in span{i)j};\’:l.
The reduced basis consists of only the first N elements ®;, i = 1, ..., N, where N is chosen according
to the percentage “energy” desired. We intuitively argue that the “energy” we are referring to is
related to the total electrostatic energy. Simply stated, the matrix C' contains terms of the form

/AZda:/ |Al’da.
Q Q

which can be written in terms of the electric field E according to (10), F = —iwA — V¢. Therefore,

/\A|2da:01/ |E + V¢|*da.
Q Q

where C; = —5. Since V¢ is piecewise constant (proved in [23]), the terms in the matrix C are a
perturbation of terms associated with electrostatic energy given by

1
WE = —6()/ |E|2dV
2 |4

Thus we conclude that when we snapshot on the magnetic vector potential, the ratio in (47) is a
measure of the electrostatic energy stored across € (see [14]).
Employing only the first N POD basis elements, we obtain the approximation A" (q;) for A(q;)

such that
N

Algy) = AV(qj) = ) on(ay) P
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To approximate AY(q) where q is a given parameter not in the set {qj}éy:sl, we must extend the
approximation formula to obtain
N
AN(q@) =) on(q) P (48)
k=1

Two possible ways of computing ax(q) are by using a POD/Galerkin method or a
POD/Interpolation method. The traditional way to find ax(q) is to use a POD/Galerkin method;
however, there are many advantages in choosing a POD/Interpolation method. We next examine
both methods and compare the advantages and disadvantages of each.

The first approach we consider, the POD/Galerkin approach is essentially an application of
Galerkin’s method to the integro-differential equation (19) in conjunction with the reduced order
POD method. The POD/Galerkin method uses the approximation given in (48) in the variational
form of the integro-differential equation where the test functions are chosen to be the reduced order
POD basis elements {®;}~ . The system then reduces to a linear system which we can solve for
the coefficients ax(q), £ =1, ..., N.

In our computational efforts reported on here we follow the literature ([28, 29, 30, 31, 47])
and neglect the displacement current in the numerical implementation. Therefore, we will use the
variational form

10A 8w 10A 81/1 . itdO'cu /— Ics /_
—Z - A — Ad da = da. 49
(G5 30+ 5 50 + o) = 557 [ ada [ Gaa= = [ o (49)
Substituting (48) into (49) and letting ¢ = ®;, [ =1, ..., N, we obtain the system
. iwacu 7T _ Ics
(K +iwM — A bb ) o= Acsb (50)

for a = [y, ay, ..., ay]T where

([ 1,00,0% 00,08
Kl = </Qﬁ( o oz dy Oy )da>’

[M]lk:/oék@da,
Q

) = /m

Recall u =~ g and therefore, changes in the parameter vector q only change the conductivity o and

and

therefore only effects the matrix M. Consequently, in the inverse problem, for each “new guess” of
q, only the matrix M must be recalculated with each iterative step. This reduces the time required
for each forward estimation and hence the total time for the entire inverse problem.

Another approach to forming the POD approximation is to use POD /Interpolation to calculate
the coefficients. This method relies entirely on the values of the coefficients a;(q) for q in the set
{q; j-V:sl. Unlike the POD/Galerkin method, it does not take into account the boundary value
problem which A satisfies.
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Various interpolation methods may be chosen to evaluate a(q) such as linear interpolation,
cubic spline interpolation or nearest neighbor interpolation. However, in the simulations presented
here, the built-in Matlab interpolation functions interp! or interp2, one-dimensional interpolation
and two-dimensional interpolation respectively, were used. The linear interpolation method was
chosen for the one-parameter simulated case and cubic spline interpolation was chosen for all other
estimation problems. We chose these methods because initial trials suggested this would be the
best method to choose in order to achieve the most accurate results in the inverse problem. For
a more detailed discussion on these interpolation techniques, we will refer the reader to [42, pp.
348-353] and [43, pp. 93-106].

A detailed discussion, including graphical illustrations, of the accuracy of the POD
approximations compared to Ansoft finite element approximations using each method can be found
in [23] when approximating one parameter (length of damage). Here we summarize those results.
When applying the POD/Galerkin method, using only N = 3 POD basis elements, we were able to
fairly accurately approximate the finite element solution which uses over 7000 finite elements in its
approximation. However, as the value of NV increases, the approximation continually worsens as the
conditioning of the linear system being solved deteriorates. When N = 3 basis elements are used,
the condition number is approximately 80; however, the condition number jumps to approximately
360 when using N = 4 elements. Moreover, the condition number is over 12,000 when all of the POD
basis elements (N = 21) are used in the approximation. The relative error in the approximation
also indicates that the best approximation is found when N = 3 and continually worsens for larger
values of N; therefore, the optimal value of N to use in this optimization problem appears to be
N = 3.

The POD/Interpolation method does a considerably better job at approximating the finite
element solution with only 2-3 basis elements. With N = 2 basis elements, there is still some visible
error in the approximation, but the approximation and finite element simulation are approximately
the same, with less than a 1% relative error.

From the examples described above, there are cases in which the POD /Interpolation method
clearly produces more accurate results. We cannot make this generalization in all cases; nonetheless,
one distinct advantage of the POD /Interpolation method is that it does not rely on the equations
describing the system. This can be very useful in some experimental applications in which data is
available but it is not easy to precisely model the physical process corresponding to the data. In this
case, if there is correlation in the data, the POD method may be a viable approximation method in
which an appropriate option for determining the coefficients would be a POD/Interpolation method.

5. Simulated Results

In this section we present computational results for the least squares inverse problem based on
the methodology developed in Section 4. We are concerned with identifying the geometry of a
crack, i.e., estimating parameters such as the length, thickness, and depth of a crack within a
sample. To determine the feasibility of this task and to illustrate the use of the reduced order
methodology, we first estimate a single parameter keeping the other two parameters fixed. We
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estimate length, thickness and depth separately, and then carry out a two-dimensional parameter
estimation, estimating both length and depth simultaneously.

In [3] and [4], we performed several trials in which we assumed we had access to various types of
data, such as the A field or the B field at various points (x;,y;) in Q. We compared and contrasted
the accuracy to which we could estimate the length [ of the damage based on whether the A field or
B field was used and whether we considered the field along a single line, multiple lines or within the
entire region (which is not physically possible and was only tested for hypothetical comparisons).
From the results in these references, we concluded that extremely accurate results were obtained
only when the y component B; of the magnetic flux density was used in the cost criterion, i.e.,

when we used
n

m

Ta) = %ZZ [10°BY (1,7, ) — 10° B ) ? (51)
where 10® is a scaling factor accounting for the low order of magnitude of the field (B; is on the
order of 1078Wb/m), BY(q) is the reduced order POD approximation to the magnetic flux density
given by BY =V x A¥, and B is “data” from a sample we wish to characterize. (In this section,
B is obtained from finite element simulations with q = q* to which randomly generated noise has
been added in the usual manner (see [4] or [23]). Furthermore, performing multi-line scans or using
full region data improved the results only marginally and hence did not warrant the extra effort
and time in collecting more extensive data sets. Consequently the results presented in this section
involve only the least squares difference in the B, field given by (51) along a single line located
1mm above the conducting sheet.

We discussed above two different methods used in forming the reduced order POD
approximation: the POD/Galerkin method and POD/Interpolation method. As mentioned
previously the POD/Interpolation method did much better at approximating the finite element
solution; therefore, we only present here the inverse problem results obtained using that method.
We refer the interested reader to [23] for a summary of and comparison with results using the
POD/Galerkin method.

5.1. Estimating One Parameter

In the one-parameter estimation problem, we estimated three different lengths (I* = 1.3mm,
I* = 2.5mm and I* = 5mm), one thickness (h* = 1.3mm) and three different depths (d* = 3mm,
d* = 8mm and d* = 11mm) while keeping all other parameters fixed. In estimating the length
of the damage, we generated an ensemble of damages keeping the thickness fixed at 2mm with
various crack lengths {lj};-vzsl at a fixed depth of 9mm. We varied the lengths from Omm to 4mm
in increments of 0.2mm resulting in N; = 21 different damages and use the commercial software
Ansoft Maxwell 2D Field Simulator to generate snapshots {A(l;) ;-stl. Similarly, in estimating the
thickness of the damage, we kept the length fixed at 2mm and depth fixed at 9mm and varied the
thickness from Omm to 4mm in increments of 0.2mm. Finally, in estimating the depth, we kept
the length of the damage fixed at 1.5mm and thickness fixed at 0.5mm. We took snapshots on A
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for damages with depths ranging from 0.25mm to 19.25mm in increments of 0.5mm (N, = 39 total
snapshots). Since we added random error to the data to mimic normal random measurement error
found in experimental data, we generated ten different sets of random error which was added to the
data and averaged the results across the ten trials to obtain an average result along with a standard
deviation across the ten trials. (See [23] for full details.) Using the optimization Nelder-Mead
([25, 41]), we obtained the results in Table 1.

Table 1. Results Estimating a Single Parameter Keeping All Other Parameters Fixed at a 10%
Relative Noise Level

q No. POD | True q* | Avg. Est. | St. Dev.
(in mm) in data q

length 4 1.3 1.2977 0.0057

4 2.5 2.4981 0.0020

4 5.0 4.9771 0.0066

thickness 9 1.3 1.3056 0.0054

depth ) 3.0 3.0349 0.0115

5 8.0 8.0631 0.0109

) 11.0 10.9184 0.0107

We note that in each case, we considered parameters not included in those upon which we
snapshot. Furthermore, we consider one case in which the parameter value was outside the
interval upon which we took snapshots. In other words, when estimating length [* = 5mm,
the POD/Interpolation method could not be used. We instead considered POD/Extrapolation.
Nonetheless in all the results presented, the method was shown to be quite accurate with low
standard deviations in all cases. We also note that although we have reported on three estimated
depths in which we obtained extremely accurate estimates, in some of the cases tested, the results
were not quite as accurate. For all the depths tested ranging from d* = 1mm to d* = 8mm
we obtained accurate results. For depths past 8mm, there was no readily identifiable criterion to
predict a priori which depths could be estimated. Some estimates of d* in the range 9mm to 20mm
were good and some estimates would be considered only fair to poor. Full details can be found in
[23]. Nonetheless, the results indicate the viability of this method in single parameter estimation
problems.

5.2. Estimating Two Geometric Parameters

In Section 6 we discuss a need to modify the assumptions made in the original test problem to
more accurately describe the behavior of experimental data obtained. In short, the computational
domain was expanded beyond the edges of the sample and snapshots were taken of the magnetic
flux density data only on a single line above the conducting sheet (instead of the whole region). For
the computational trials in the 1-D case, we took snapshots of the magnetic vector potential for the
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entire computational domain even though in the inverse problems we only used those data points
along a single line. Furthermore, in dealing with experimental data we considered data across the
entire length of the sample, instead of just half the sample as done in 1-D computational examples
previously. We also implemented these changes in the two-parameter estimation problems.

Otherwise, we proceed as in the previous estimation problems by first generating an ensemble
of damages. We consider damages with depths ranging from 1mm to 11mm in increments of 2mm
in combination with lengths from 0.5¢m to 3.5¢m in increments of lem (we now consider longer
damages similar to those in the next section involving experimental data). We keep the thickness
fixed at Imm. A total of 24 snapshots, {Bs(d;,l;)}, i = 1,...,6, j = 1, ...,4 were generated using
Ansoft. We present results in Table 2 for estimating a depth of d* = 2mm and length [* = 1em, a
depth of d* = 4mm and length [* = 2¢m, and finally a depth of d* = 6mm and length [* = 3cem.
(In each case, 10% relative noise was added to the generated data before use in the inverse problem
criteria.)

Table 2. Results Estimating Two Parameters Simultaneously at a 10% Relative Noise Level

q No. POD | True q* | Avg. Est. q | St. Dev.
depth ) 2mm 2.0473mm | 0.0045mm
length 5 lem 1.0180cm 0.0087cm
depth 5 dmm 4.0850mm | 0.0074mm
length 5 2cm 1.9801cm 0.0098cm
depth ) 6mm 6.0316mm | 0.0031mm
length 5 3cm 3.0396cm 0.0055¢cm

5.3. Conclusions

When using the B, field in the inverse problem, the methods proved to be accurate and robust,
allowing us to accurately estimate the length, thickness, and depth of a damage within a sample as
well as length and depth simultaneously even when the data contained considerable noise.
Furthermore, there are two significant findings to report with regard to the above results.
First of all, in most cases we were able to use 10 POD basis elements or less in each of the trials
performed. We compare this to a total of over 7000 finite elements required to solve the boundary
value problem initially (using Ansoft Maxwell 2D Field Simulator). Hence, if one were to use the
finite element software for each forward run, we could expect a time-intensive inverse problem.
This leads us to the second, and most significant, finding with regard to reduction in computational
time which can be summarized as follows. If one were to use a software package such as Ansoft’s
Maxwell 2D Field Simulator to calculate the forward problem each time it is required in the inverse
problem, it would take approximately 5-7 minutes for a single forward solve and hence any inverse
algorithm based on this forward solver may require several minutes to several hours of time for the
optimization problem. In using the reduced order POD methodology for the forward problem, the
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entire inverse problem takes approximately 8 seconds, less than % the time required for a single
forward simulation. As a forward algorithm is called numerous times, this is a substantial reduction
in time required. For example, assuming an average of 20 iterative steps in the typical optimization
procedure for these problems and a total forward simulation time of 5 minutes (300 seconds) to
7 minutes (420 seconds) for a finite element forward solve, the total computational time for the
inverse problem would range from 1 hour 40 minutes (6000 seconds) to 2 hours 20 minutes (8400
seconds). Thus, we arrive at a speed up factor ranging from 750 to 1050, a factor of approximately
103.

Furthermore, most of the extensive computational time is required only in the initial collection
of snapshots which would take place prior to implementation in a practical setting. This suggests
that a portable sensing device, when coupled with reduced order modeling in the inverse problem,
maght be plausible in practical damage detection applications.

6. Experimental Results

The simulations performed in the previous section are most encouraging and suggest a natural next
step to further test our proposed methods with experimental data. Therefore, we designed the
experiment depicted in Figure 4, in which we try to detect and parameterize a damage within an
aluminum sample using a giant magnetoresistive (GMR) sensor. The sample is constructed of 17

i

Figure 4. Experimental Setup

layers of 1mm thick aluminum plates with a slice cut out of one of the layers to simulate a damage
within the sample (see Figure 5). The “damaged” piece of aluminum is moved from one layer to
another to simulate damages within the sample at different depths, and the length of the damage is
varied by producing “gaps” of varying size from the aluminum plate (the thickness of the damage
is always fixed at 1mm). As a means of inducing current within the sample, a thin sheet of copper
carrying a uniform current of 34 is placed above the sample on top of a thin sheet of paper (to avoid
direct physical contact between the sample and the conducting sheet). The GMR sensor measures
the amplitude and phase of the magnetic flux density across a 2in line (along the length of the
sample) every 0.635mm. The data is then filtered through a lock-in amplifier and saved to a file.



Real Time Comp. Alg. for Damage Detection 27

Furthermore, we took data across various frequencies to analyze the effect of the frequency on the
estimation problem.

L 3

damage

Figure 5. Schematic of the Damaged Layer

Frequency is a very important factor to consider when trying to detect and parameterize a
damage. This is due to the depth of penetration of the eddy currents, also referred to as the
“skin effect”. Eddy currents are not uniformly distributed throughout a material but instead decay
exponentially with depth in the material [40]. The distance at which the eddy current density has
decreased by a factor of 1/e (36.8%) is called the depth of penetration and can be calculated by

1
0= NCIAT: (52)
where f; is the source frequency, p is the magnetic permeability and o is the conductivity of the
material [10, p. 370]. We carried out experiments using four different frequencies, 250Hz, 500Hz,
1kHz and 2kHz with a depth of penetration ranging from 2.70mm to 7.64mm for 2kHz down to
250Hz, respectively. This provides varying sensitivity when considering damages at different depths.

Given the magnetic flux density data, B,, from the GMR sensor for a given damage at a
specified depth d* and with a given length [*, we wished to estimate these parameters using an
appropriate cost criterion. The first step in the optimization process was to generate snapshots
representative of the experimental data across the various damages. To generate the snapshots, we
first explored the idea of using simulations obtained from the finite element solver Ansoft Maxwell
2D Field Simulator to form the POD basis elements as done in the previous section. However, in
order for the snapshots to be representative of the data, we needed to modify the assumptions made
in the original test problem. We had originally assumed a sample of infinite length to disregard
boundary effects from the edges of the material. Unfortunately, the experimental data showed
significant boundary effects. Therefore, we modified the computational domain used in the finite
element solver to that domain depicted in Figure 6 which includes the edges of the sample. Moreover,
instead of only considering half of the sample, we now considered data across the entire length of
the sample as collected in the experimental setup.

However, after analyzing the experimental data and the Ansoft simulations, we noticed
significant differences between the data and simulations. (For details and analysis of these
differences, see [23].) Consequently, we chose to instead snapshot directly on the experimental
data to form the POD basis elements. Furthermore, to obtain a definite pattern in the data as
a function of the damage within the sample, it was necessary to filter out the background noise
(data obtained when the sample contained no damage) and to average the amplitude across the
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Figure 6. Modified Computational Domain

center of the damage (this produces desired symmetry in the data). However, while filtering out
the background noise enhanced the differences in the data as a function of the various damages, at
the same time, it also seemed to intensify the boundary effects present. Thus, it was necessary to
disregard the data at the edges of the sample. In other words, we consider the cost function given
by
| b2 T
J@=5 Y [10°BY (z;:q) - 10°B| . (53)
j=a—2

where q is the vector containing the parameters we wish to estimate, BY(q) is the POD
approximation formed using snapshots on the data itself, B’% is GMR data at grid points z;,
j=1,...,n with n total grid points and a and b indicate the indices of the grid points we consider
in our cost criterion.

In [23], we also analyzed the data when the phase data was manipulated with either a phase shift
and/or when the phase data was averaged. We took data at different frequencies (the importance
of which was mentioned above), and depending on the frequency, either the real portion of the data
or imaginary portion of the data exhibited sporadic behavior. This was due, in part, to the phase
of the data. If an appropriate phase shift was incorporated, the sporadic behavior of the data could
be minimized. Furthermore, since it was necessary to average the amplitude across the center of
the damage, it seemed logical to also consider averaging the phase data across the center of the
damage. We performed extensive analysis of the data with these various modifications in [23] and
concluded that the best results of the inverse problem, in all but one case considered (the case in
which a source frequency of 1kHz was used), could be found when the data incorporated a phase
shift. The phase shift seemed to intensify the variations in the data as a function of the damage
within the sample. Furthermore, it was necessary to use only the real portion of the data or the
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imaginary portion of the data in the cost criterion, but not both parts (due to the sporadic nature
of the data as discussed above). The choice of either the real portion or imaginary portion could
be readily determined by simply examining the data before implementation and determining which
portion exhibited a clear pattern as opposed to sporadic behavior which would be found in the
other portion of the data. In the case of 1kHz, a phase shift did not intensify the variation in the
data as in the other cases but did just the opposite. As a consequence, for this frequency it was
necessary to consider the data with no phase modifications.

Before presenting results for the inverse problems, we make one final note regarding the use of
only a portion of the data in the cost criterion. To apply the results in a practical setting, it would
be necessary to either develop a model which accurately portrays the data or to collect data over
a period of time, building a data base which inherently contained the variations in the data. With
this extensive data set, we would be able to discern the pattern in the data a priori. Thus, the
frequency would indicate the appropriate form of the data to be used in the cost criterion.

Next, we present representative results below for the various frequencies, in which we use only
the real portion of the data with a phase shift incorporated in the cost function given by (53) for
frequencies 250Hz and 500Hz, the imaginary portion of the data with no phase shift is used in the
cost function for frequency 1kHz and the imaginary portion of the data with a phase shift is used
in the cost function for frequency 2kHz.

6.1. Determining the Length of the Damage

In determining the length of the damage, we kept the depth fixed at 2mm or 3mm and estimated
a length of either lem or 1.5¢m (keeping the thickness fixed at 1mm). When estimating length,
snapshots for the POD basis elements incorporated data from samples with damages at the fixed
depth with varying lengths, ezcluding the true length. In other words, in trying to estimate a
length of 1em at a fixed depth of 2mm, we used data from samples with damages having lengths of
0.5cm, 1.5em, 2em and 3em all at a depth of 2mm to form the snapshots. In addition, all the POD
basis elements were used in the approximation since we had only 4 basis elements. (Only a small
amount of data was taken to establish proof-of-concept.) The results of the estimation problem
can be found in Table 3 (where ‘-’ indicates that the optimization routine failed to converge to an
estimated parameter).

6.2. Determining the Depth of the Damage

In determining the depth of the damage, we analyzed the results obtained when detecting the same
depth using various frequencies at a fixed length of 1em and 1.5¢m. In forming the snapshots,
we did the same as with length where our snapshots were given by magnetic flux density data for
samples with damages with the chosen fixed length (and fixed thickness of 1mm) at all the depths
(Imm, 2mm, 3mm, 4mm, 6mm, and 8mm) ezxcluding the depth we wish to estimate. Tables 4 and
5 summarize the results.
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Table 3. Determination of Length

Frequency | Depth | Actual Length | Optimized Length | Relative Error
(Hz) | (mm) (cm) (cm)
250 2 1.0 1.5068 50.68%
1.5 2.5713 71.42%
3 1.0 0.9254 7.46%
1.5 1.3869 7.54%
500 2 1.0 0.8002 19.98%
1.5 1.6036 6.91%
3 1.0 0.9225 7.75%
1.5 1.5540 3.60%
1000 2 1.0 0.8169 18.31%
1.5 1.4789 1.41%
3 1.0 - -
1.5 - -
2000 2 1.0 0.7566 24.34%
1.5 2.7050 80.34 %
3 1.0 1.3782 37.82%
1.5 1.3100 12.67 %

Table 4. Determination of Depth with Fixed Length 1.0cm

Actual Depth(mm) | Frequency(Hz) | Optimized Depth(mm) | Relative Error
2 250 0.9411 52.95%
500 2.1919 9.59%
1000 2.1191 5.96 %
2000 2.0479 2.39 %
3 250 3.4827 16.09%
200 2.8047 6.51 %
1000 2.9004 3.32 %
2000 2.9127 0.91 %

6.3. Determining the Length and Depth of the Damage

In our final trials, we estimated both length and depth simultaneously. In order to implement the
interpolation routine for our POD approximation of the magnetic flux density, we need to have a
grid upon which we know the values of our coefficients for our POD approximations. However, in
forming our snapshots for a specific estimation, we exclude all the data with either the same depth
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Table 5. Determination of Depth with Fixed Length 1.5¢m

Actual Depth(mm) | Frequency(Hz) | Optimized Depth(mm) | Relative Error

2 250 1.5721 21.40%
200 1.8979 5.10 %
1000 1.8330 9.35 %
2000 1.6484 17.58%

3 250 - -
500 3.1094 3.15%
1000 3.1274 4.25%
2000 3.2070 6.90%

or length as that we are attempting to estimate. For example, if we are estimating a length of
I* = 1.5em and a depth of d* = 2mm, our snapshots consist of data for samples with damages
having lengths 0.5¢cm, lem, 2em and 3em at depths 1mm, 3mm, 4mm, 6mm and 8mm (all with
fixed thickness of 1mm). In this case, we only analyze the results using a frequency of 500Hz. The
results can be found in Table 6.

Table 6. Determination of Depth and Length Simultaneously with Frequency 500Hz

Actual Length [
lecm 1.5cm
mm [ =1.0635 | | =1.8080
Actual d=2.3097 | d =1.8403
Depth d $mm [ =0.9065 | | =1.4612
d=2.9522 | d =2.9759

6.4. Conclusions

Assuming a fixed source frequency and its associated cost criterion, we were able to demonstrate
that the POD method in the context of inverse problems is a viable method even with experimental
data. Depending on the frequency used, we were able to quite accurately estimate the length and
depth alone. Estimating the two parameters simultaneously was a little more challenging; however,
we still obtained reasonable results. In estimating length alone, using either 500Hz with the phase
shifted or 1kHz with raw phase produced accurate results when comparing data across all the
data points across the center of the damage. In a few cases using 250Hz or 2kHz also produced
fairly accurate; however, results using these frequencies were not consistent. In determining the
depth of the damage alone, frequencies 500Hz, 1kHz and 2kHz again produced accurate results
for the depths estimated with less than 10% error. Our tests suggest that 250Hz is not a viable
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frequency for interrogation in any case presented in this paper. When estimating length and depth
simultaneously, using 500Hz produced accurate results in many cases. Overall, the methods again
proved to be feasible when used with experimental data.

In some cases, depending on the length or depth of the damage, certain frequencies were found
to be more accurate than others; therefore, the most accurate results may be found by using the
reduced order POD methodology together with another NDE technique. For example, the magneto-
optic/eddy current imager ([16, 45]) is a visually based technique which displays crack images or
images of the magnetic fields surrounding the actual crack. An estimate of the crack length may
be obtained from these images giving us a prior: knowledge of the damage. Based upon these
estimates, a source frequency as well as an initial guess for the optimization routine can be chosen,
providing valuable information for use in the inverse problem.

In conclusion, given the data available, we have shown we can successfully use our proposed
reduced order computational methodology to determine both the length and depth of a damage
within a sample (both separately and simultaneously). Moreover, since we only used a few basis
elements (due to the small sample size), the results were obtained quite quickly, giving us a method
which is both fast and accurate on experimental data. Indeed this section gives concrete results
indicating that the POD methodology in the context of appropriate least squares techniques is a
practical approach to nondestructive damage detection.

7. Concluding Remarks

In this paper, we developed a model for a specific eddy current method making some simplifying
assumptions reducing the three-dimensional problem to a two-dimensional problem. We utilized a
mathematical tool (phasors) where complex valued fields were employed allowing us to suppress the
time-dependence. Furthermore, for computational purposes, we included two additional quantities
in the Maxwell formulations, a magnetic vector potential and a scalar electric potential, deriving the
boundary value problem for the magnetic vector potential with some additional constraints on the
electric scalar potential. Given the magnetic vector potential, we could easily derive the magnetic
flux density necessary for the parameter estimation problem.

We then presented some theoretical results which established the existence and uniqueness of
solutions as well as continuous dependence of the solution on the parameters which represent the
damage. We further discussed theoretical issues concerning the least squares parameter estimation
problem used to identify the geometry of the damage.

Since the parameter estimation problem involves solving the forward problem numerous times,
we needed extremely fast and accurate solution methods. Therefore, in Section 4, we discussed the
reduced order POD method which allows one to create a set of basis elements spanning a data set
consisting of either numerical simulations or experimental data. The POD method is unique in that
the majority of information is captured in just a few basis elements, allowing us to use a smaller
number of basis elements for each forward solution. This results in a substantial decrease in total
computational time. We also discussed two different approaches in forming the POD approximation,
a POD/Galerkin technique and a POD/Interpolation technique and concluded that in this problem,
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the POD/Interpolation method gave a much better approximation than the POD/Galerkin method.
Furthermore, using only three basis elements with the POD/Galerkin method we still obtained an
approximation with less than a 7% relative error when compared to a finite element solution using
more than 7000 finite elements. Using the POD /Interpolation method, we achieved less than a 1%
relative error using four or more POD basis elements.

In Section 5, we presented parameter estimation results when estimating one or two parameter
values using simulated data. In both cases, we were able to achieve extremely accurate results even
with 10% relative noise added. In addition, on average we obtained a total reduction in time of a
factor of approximately 103.

Finally, we offered results of the parameter estimation problem when using experimental data
obtained from a giant magnetoresistive (GMR) sensor. The experimental results were based on
successfully using actual experimental data to form the POD basis elements (instead of numerical
simulations) and thus illustrated the effectiveness of this method on a wide range of applications.
In other words, whenever it is difficult to model the physical process but “good” data is available,
the POD method may be a viable option. Taken as a whole, our work here indicates that using
a POD computational method in NDE research can be an attractive alternative to the standard
finite element methods, offering the potential for substantial savings in total computational time.
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