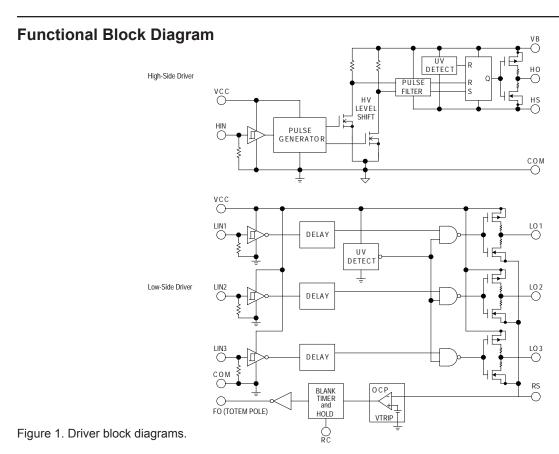


Features and Benefits

- Built-in pre-drive IC
- IGBT power element
- CMOS compatible input (3.3 to 5 V)
- High-side gate driver using bootstrap circuit or floating power supply
- Built-in protection circuit for controlling power supply voltage drop
- Overcurrent protection circuit (OCP)
- Output of fault signal during operation of protection circuit
- Output current 3 A
- Small SIP (SLA 23-pin)

Packages: Power SIP


Description

The SLA6805MP inverter power module (IPM) device provides a robust, highly-integrated solution for optimally controlling 3-phase motor power inverter systems and variable speed control systems used in energy-conserving designs to drive motors of residential and commercial appliances. These ICs take 230 VAC input voltage, and 3 A (continuous) output current. They can withstand voltages of up to 600 V (IGBT breakdown voltage).

The SLA6800MP power package includes an IC with all of the necessary power elements (six IGBTs), pre-driver ICs (two), and flyback diodes (six), needed to configure the main circuit of an inverter. This enables the main circuit of the inverter to be configured with fewer external components than traditional designs.

Applications include residential white goods (home applications) and commercial appliance motor control:

- · Air conditioner fan
- Refrigerator compressor
- · Dishwasher pump

Not to scale

28610.02. Rev. 3

High Voltage 3-Phase Motor Driver

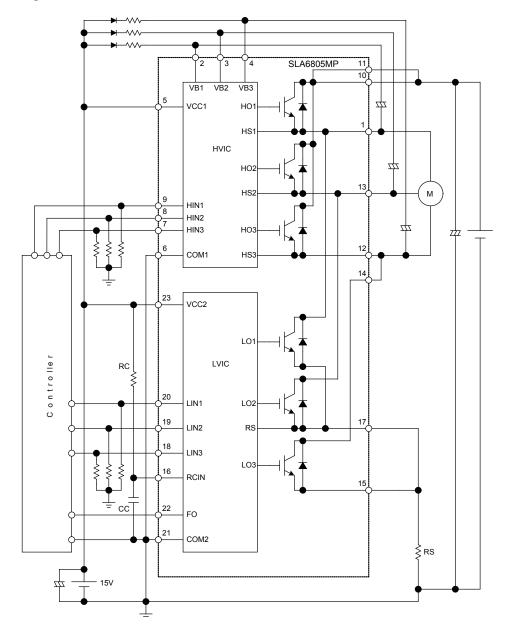
Selection Guide

		IGBT Breakdown Voltage, V _{CES} (min) (V)	IGBT Saturation	Output Current		
Part Number	Packing		Voltage, V _{CE(sat)} (typ) (V)	Continuous, I _O (max) (A)	Pulsed, I _{OP} (max) (A)	
SLA6805MP	18 pieces per tube	600	1.75	3	6	

Absolute Maximum Ratings, valid at T_A = 25°C

Characteristic	Symbol	Remarks	Rating	Unit
IGBT Breakdown Voltage	V _{CES}	V _{CC} = 15 V, I _C = 1 mA, V _{IN} = 0 V	600	V
Logic Supply Voltage	V _{CC}	Between VCC and COM	20	V
Bootstrap Voltage	V _{BS}	Between VB and HS (U,V, and W phases)	20	V
Output Current, Continuous	Io	$T_C = 25^{\circ}C$	3	Α
Output Current, Pulsed	I _{OP}	PW ≤ 1 ms, duty cycle = 50%	6	Α
Input Voltage	V _{IN}		-0.5 to 7	V
RC Pin Input Voltage	V _{RC}	Between RC and COM; C _C ≤ 2200 pF	20	V
Allowable power dissipation	P _D	T _C = 25°C, all elements operating	32	W
The week resistance (hunstien to Cook)		All elements operating (IGBT)	3.8	°C/W
Thermal resistance (Junction to Case)	R _{θJC}	All elements operating (FWD)	5.4	°C
Case Operating Temperature	T _{COP}		-20 to 100	°C
Junction Temperature (MOSFET)	TJ		150	°C
Storage Temperature	T _{stg}		-40 to 150	°C

Recommended Operating Conditions


Characteristic	Symbol	Remarks	Min.	Тур.	Max.	Units
Main Supply Voltage	V _{BB}	Between VBB and LS, I _{BB} ≤ 2 A	_	300	450	V
Logic Supply Voltage	V _{CC}	Between VCC and COM	13.5	_	16.5	V
Dead Time	t _{dead}		1.5	_	_	μs
Junction Temperature	TJ		_	_	125	°C

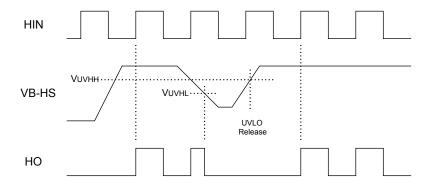
All performance characteristics given are typical values for circuit or system baseline design only and are at the nominal operating voltage and an ambient temperature, T_A , of 25°C, unless otherwise stated.

Typical Application Diagram

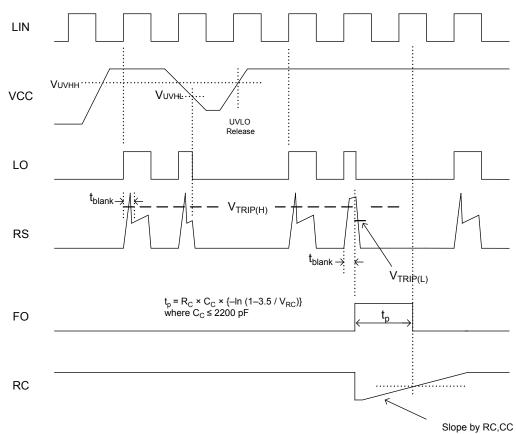
NOTE:

- All of the input pins are connected to GND with internal pull-down resistors rated at $100 \text{ k}\Omega$, however, an external pull-down resistor may be required to secure stable condition of the inputs if high impedance conditions are applied to them.
- To use the OCP circuit, an external shunt resistor, RS, is needed. The RS value can be obtained from the formula: $R_{\rm S}(\Omega) = 0.5 \text{ V}$ / Overcurrent Detection Set Current (A) .
- A blanking timer is built-in to mask the noise generated on RS at turn-on.
- The external electrolytic capacitors should be placed as close to the IC as possible, in order to avoid malfunctions from
 external noise interference. Put a ceramic capacitor in parallel with the electrolytic capacitor if further reduction of noise
 susceptibility is necessary.

High Voltage 3-Phase Motor Driver


ELECTRICAL CHARACTERISTICS, valid at T_A =25°C, $C_C \le 2200$ pF, unless otherwise noted

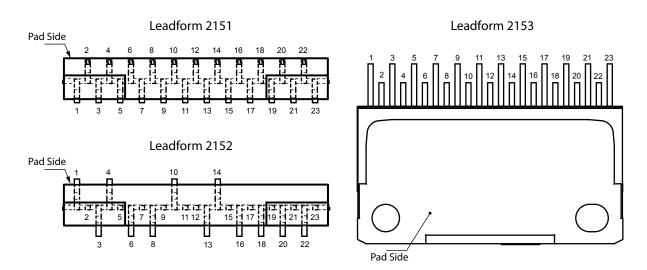
Characteristics	Symbol	Conditions	Min	Тур	Max	Units
Logic Supply Voltage	V _{CC}	Between VCC and COM	13.5	15	16.5	V
Logic Supply Current	Icc	V _{CC} = 15 V	-	4	6	mA
Innut Valtage	V _{IH}	V _{CC} = 15 V, output on	_	2.0	2.5	V
Input Voltage	V _{IL}	V _{CC} = 15 V, output off	1.0	1.5	_	V
Input Voltage Hysteresis	V _{Ihys}	V _{CC} = 15 V	_	0.5	_	V
Innut Current	I _{IH}	High side, V _{CC} = 15 V, V _{IN} = 5 V	_	50	100	μA
Input Current	I _{IL}	Low side, V _{CC} = 15 V, V _{IN} = 0 V	_	_	2	μA
	V _{UVHL}		9.0	10.0	11.0	V
	V _{UVHH}	High side, between VB and U, V, or W	9.5	10.5	11.5	V
Hadamakan Lask Out	V _{UVHhys}	High side, hysteresis	_	0.5	_	V
Undervoltage Lock Out	V _{UVLL}	Law side hatus as VD and LL V as W	10.0	11.0	12.0	V
	V _{UVLH}	Low side, between VB and U, V, or W	10.5	11.5	12.5	V
	V _{UVLhys}	Low side, hysteresis	_	0.5	_	V
	V _{FOL}	V _{CC} = 15 V	0	_	1.0	V
FO Terminal Output Voltage	V _{FOH}		4.0	_	5.5	V
Overcurrent Protection Trip Voltage	V _{TRIP}	V _{CC} = 15 V	0.45	0.50	0.55	V
	t _{p1}	V_{RC} = 15 V, R_C = 1 M Ω , C_C = 1000 pF	_	260	_	μs
Overcurrent Protection Hold Time	t _{p2}	V_{RC} = 5 V, R_{C} = 330 k Ω , C_{C} = 2200 pF	_	870	_	μs
Blanking Time	t _{blank}	V _{CC} = 15 V	_	2	_	μs
IGBT Breakdown Voltage	V _{CES}	V _{CC} = 15 V, I _C = 1 mA, V _{IN} = 0 V	600	_	_	V
IGBT Leakage Current	I _{CES}	V _{CC} = 15 V, V _{CE} = 600 V, V _{IN} = 0 V	_	_	1	mA
IGBT Saturation Voltage	V _{CE(sat)}	V _{CC} = 15 V, I _C = 3 A, V _{IN} = 5 V	_	1.75	2.1	V
Diode Forward Voltage	V _F	V _{CC} = 15 V, I _F = 3 A, V _{IN} = 0 V	_	1.65	2.0	V
Diode Recovery Time	t _{rr}	I _F = 3 A, di/dt = 100 A/µs	_	50	_	ns
	t _{dH(on)}	V_{BB} = 300 V, V_{CC} = 15 V, I_{C} = 3 A, 0 V ≤ V_{IN} ≤ 5 V, inductive load	_	315	_	ns
0 7 1 7 1 7 1 7 1 7 1	t _{rH}		_	55	_	ns
Switching Time, High Side	t _{dH(off)}		_	455	_	ns
	t _{fH}		_	175	_	ns
	t _{dL(on)}		_	430	_	ns
	t _{rL}		_	100	_	ns
Switching Time, Low Side	t _{dL(off)}	1		410	_	ns
	t _{fL}		_	190	_	ns



High Side Driver Input/Output Timing Diagrams

After UVLO is released, IC operation is started by the first rising edge of input

Low Side Driver Input/Output Timing Diagrams

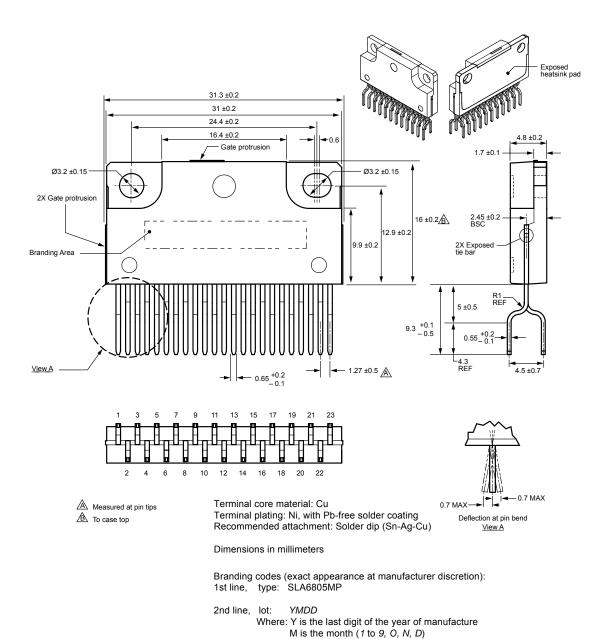

After UVLO is released, IC operation is started by the first rising edge of input

After RC charging and releasing, the OCP operation is started by the first rising edge of input

Pin-out Diagrams

Terminal List Table

Number	Name	Function
1	U	Output of U phase
2	VB1	High side bootstrap terminal (U phase)
3	VB2	High side bootstrap terminal (V phase)
4	VB3	High side bootstrap terminal (W phase)
5	VCC1	High side logic supply voltage
6	COM1	High side logic GND terminal
7	HIN3	High side input terminal (W phase)
8	HIN2	High side input terminal (V phase)
9	HIN1	High side input terminal (U phase)
10	VBB1	Main supply voltage 1 (connect to VBB2 externally)
11	VBB2	Main supply voltage 2 (connect to VBB1 externally)
12	W1	Output of W phase (connect to W2 externally)
13	V	Output of V phase
14	W2	Output of W phase (connect to W1 externally)
15	LS2	Low side emitter terminal (connect to LS1 externally)
16	RCIN	Overcurrent protection hold time adjustment terminal
17	LS1	Low side emitter terminal (connect to LS1 externally)
18	LIN3	Low side input terminal (W phase)
19	LIN2	Low side input terminal (V phase)
20	LIN1	Low side input terminal (U phase)
21	COM2	Low side GND terminal
22	FO	Overcurrent protection fault-signal output terminal
23	VCC2	Low side logic supply voltage



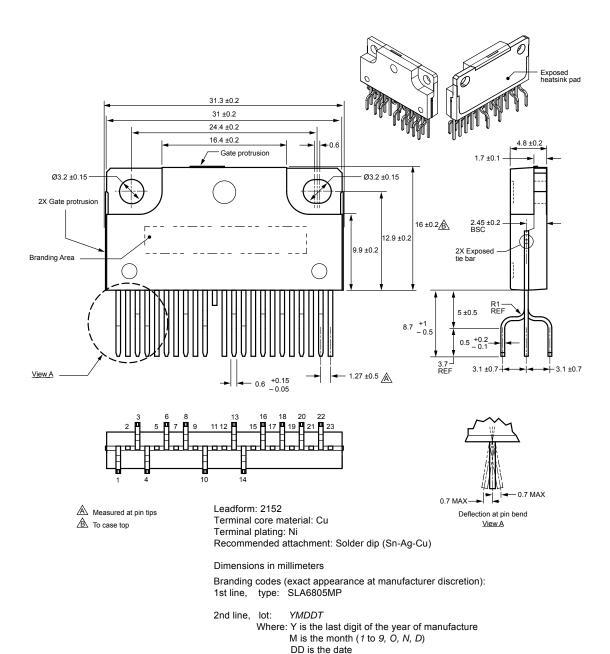
Package Outline Drawing

Leadform 2151

Dual rows, 23 alternating pins; vertical case mounting; pin #1 opposite pad side

Leadframe plating Pb-free. Device composition complies with the RoHS directive.

DD is the date



Package Outline Drawing

Leadform 2152

Triple rows (IEC compliant), 23 alternating pins; vertical case mounting; pin #1 on pad side

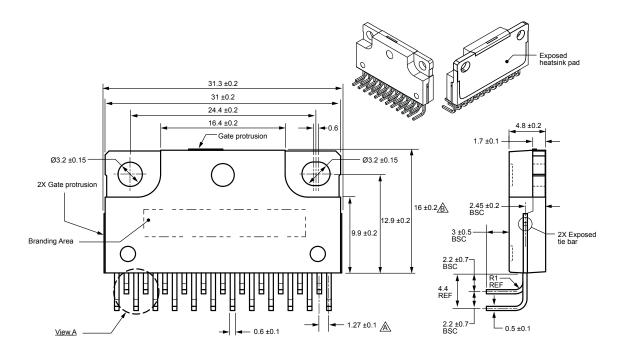
Leadframe plating Pb-free. Device composition complies with the RoHS directive.

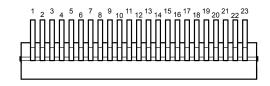
Worcester, Massachusetts 01615-0036 (508) 853-5000

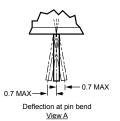
Allegro MicroSystems, Inc. 115 Northeast Cutoff, Box 15036

www.allegromicro.com

T is the tracking letter






Package Outline Drawing

Leadform 2153

Dual rows, 23 alternating pins; pins bent 90° for horizontal case mounting; pin #1 in outer row

A Measured at pin exit from case

To case top

Leadform: 2153 Terminal core material: Cu Terminal plating: Ni

Recommended attachment: Solder dip (Sn-Ag-Cu)

Dimensions in millimeters

Branding codes (exact appearance at manufacturer discretion):

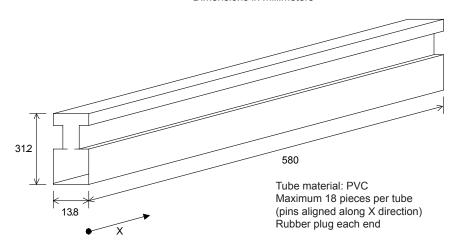
1st line, type: SLA6805MP

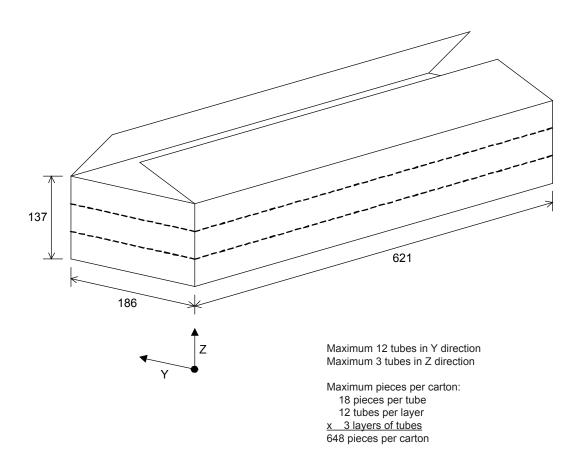
2nd line, lot: YMDDT

Where: Y is the last digit of the year of manufacture

M is the month (1 to 9, O, N, D)

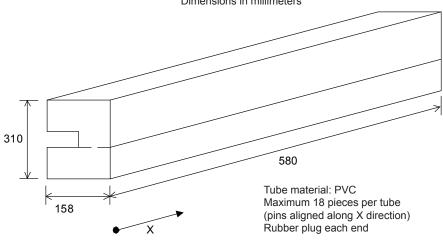
DD is the date
T is the tracking letter

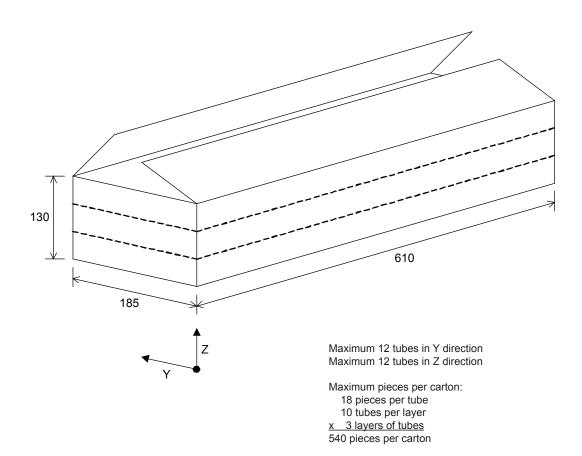

Leadframe plating Pb-free. Device composition complies with the RoHS directive.



Packing Specification Leadforms 2151 and 2152

Dimensions in millimeters





Packing Specification Leadform 2153

Dimensions in millimeters

High Voltage 3-Phase Motor Driver

WARNING — These devices are designed to be operated at lethal voltages and energy levels. Circuit designs that embody these components must conform with applicable safety requirements. Precautions must be taken to prevent accidental contact with power-line potentials. Do not connect grounded test equipment.

The use of an isolation transformer is recommended during circuit development and breadboarding.

Because reliability can be affected adversely by improper storage environments and handling methods, please observe the following

Cautions for Storage

- Ensure that storage conditions comply with the standard temperature (5°C to 35°C) and the standard relative humidity (around 40 to 75%); avoid storage locations that experience extreme changes in temperature or humidity.
- Avoid locations where dust or harmful gases are present and avoid direct sunlight.
- Reinspect for rust on leads and solderability of products that have been stored for a long time.

Cautions for Testing and Handling

When tests are carried out during inspection testing and other standard test periods, protect the products from power surges from the testing device, shorts between adjacent products, and shorts to the heatsink.

Remarks About Using Silicone Grease with a Heatsink

- When silicone grease is used in mounting this product on a heatsink, it shall be applied evenly and thinly. If more silicone grease than required is applied, it may produce stress.
- Volatile-type silicone greases may permeate the product and produce cracks after long periods of time, resulting in reduced heat radiation effect, and possibly shortening the lifetime of the
- Our recommended silicone greases for heat radiation purposes, which will not cause any adverse effect on the product life, are indicated below:

Туре	Suppliers
G746	Shin-Etsu Chemical Co., Ltd.
YG6260	Momentive Performance Materials, Inc.
SC102	Dow Corning Toray Silicone Co., Ltd.

Heatsink Mounting Method

Torque When Tightening Mounting Screws. The recommended tightening torque for this product package type is: 58.8 to 78.4 Nocm (6.0 to 8.0 kgf•cm).

Soldering

When soldering the products, please be sure to minimize the working time, within the following limits:

260±5°C 10 s 380±5°C 5 s

Soldering iron should be at a distance of at least 1.5 mm from the body of the products

Electrostatic Discharge

- When handling the products, operator must be grounded. Grounded wrist straps worn should have at least 1 $\mbox{M}\Omega$ of resistance to ground to prevent shock hazard.
- Workbenches where the products are handled should be grounded and be provided with conductive table and floor mats.
- When using measuring equipment such as a curve tracer, the equipment should be grounded.
- When soldering the products, the head of soldering irons or the solder bath must be grounded in other to prevent leak voltages generated by them from being applied to the products.
- The products should always be stored and transported in our shipping containers or conductive containers, or be wrapped in aluminum foil.

Worcester, Massachusetts 01615-0036 (508) 853-5000 www.allegromicro.com

High Voltage 3-Phase Motor Driver

The products described herein are manufactured in Japan by Sanken Electric Co., Ltd. for sale by Allegro MicroSystems, Inc.

Sanken and Allegro reserve the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Therefore, the user is cautioned to verify that the information in this publication is current before placing any order.

When using the products described herein, the applicability and suitability of such products for the intended purpose shall be reviewed at the users responsibility.

Although Sanken undertakes to enhance the quality and reliability of its products, the occurrence of failure and defect of semiconductor products at a certain rate is inevitable.

Users of Sanken products are requested to take, at their own risk, preventative measures including safety design of the equipment or systems against any possible injury, death, fires or damages to society due to device failure or malfunction.

Sanken products listed in this publication are designed and intended for use as components in general-purpose electronic equipment or apparatus (home appliances, office equipment, telecommunication equipment, measuring equipment, etc.). Their use in any application requiring radiation hardness assurance (e.g., aerospace equipment) is not supported.

When considering the use of Sanken products in applications where higher reliability is required (transportation equipment and its control systems or equipment, fire- or burglar-alarm systems, various safety devices, etc.), contact a company sales representative to discuss and obtain written confirmation of your specifications.

The use of Sanken products without the written consent of Sanken in applications where extremely high reliability is required (aerospace equipment, nuclear power-control stations, life-support systems, etc.) is strictly prohibited.

The information included herein is believed to be accurate and reliable. Application and operation examples described in this publication are given for reference only and Sanken and Allegro assume no responsibility for any infringement of industrial property rights, intellectual property rights, or any other rights of Sanken or Allegro or any third party that may result from its use.

The contents in this document must not be transcribed or copied without Sanken's written consent.

Copyright © 2008-2010 Allegro MicroSystems, Inc. This datasheet is based on Sanken datasheet SSJ-03405.

www.allegromicro.com