Non-Silicone Heat Transfer Compound

8610

- Special synthetic base, fortified with metal oxides and compounded to a paste-like consistency for ease of application
- High efficient thermal conductive properties
 - o Means more rapid transfer of heat for longer component life
- High temperature stability
 - Provides physical properties of low bleed and low evaporation for long-term service in any application that requires Heat Sink Compound.
- Uses synthetic fluids and metal oxide fillers
 - Provides excellent conductive properties that exceed those of other heat sink formulas
- Will not dry, harden, melt or migrate in any heat sink application
- Compatible with metal and plastic components
- Also available in a <u>silicone version</u>

Benefits of Non Silicone Heat Transfer Compound OVER Silicone

No migration and component contamination.

Applications

- Typically, Heat Transfer Compounds (heat sink compounds) are used in OEM Electronic Component Plants to insure fast, accurate heat transfer in electronic components and circuitry
- Other used:
 - o Semiconductor Mounting Devices
 - o Thermal joints
 - o Ballast heat transfer mediums
 - o Power resistor mountings
 - o Thermocouple wells
 - o Transistor diodes & silicone rectifier base and mounting studs
 - ALL electric and electronic devices where efficient heat transfer cooling through thermal coupling is required

Specifications

Physical Properties	Test Method	Non Silicone 8610	Silicone 860
Appearance	Visual	Off white / smooth paste	White paste
Consistency	ASTM D 217	310-320	
Specific Gravity @ 25°C (77°F)		2.5 min	2.3 min
Bleed % 24 hours @ 200°C	FTM-321	1.0% max	2.0% max
Evaporation 24 hours @ 200°C	FTM-321	2.0% max	2.0% max
Dropping Point	ASTM D-566	> 500°F (260°C)	> 500°F (260°C)
Min. operating temp.		-40°F/-40°F	55°F/48°C
Max. operating temp.		200°C	200°C (consistent) 300°C (intermittent)

Electrical Properties	Test Method	Non Silicone 8610	Silicone 860
Thermal Conductivity	Hot Wire Method Heat Flow #36 °C	0.773 W/m•K	0.657 W/m•K
Dielectric Strength (0.05l gap)	ASTM D-149	350 V/MIL	400 V/MIL
Dielectric Constant @ 1000 Hz	ASTM D- 150	4.4	3.81
Dissipation Factor @ 1000 Hz	ASTM D 150	0.0021	0.0032
Resistivity @ 21°C	ASTM D 150	6.38 x 10 ¹³ Ohm•cm	1.5 x 10 ¹⁵ Ohm•cm

Available Sizes

Catalog Number	Sizes Available	Description
8610-60G	60g (2 oz)	Liquid - TUBE
8610-1P	1 pint (2.5 lbs)	Tub

© 2000 - 2010 MG Chemicals. All rights reserved. Site Map Terms & Conditions Contact Us