SMDA05C-8 through SMDA24C-8 Bidirectional TVS Array for Protection of Eight Lines

PROTECTION PRODUCTS

Description

The SMDAxxC-8 series of transient voltage suppressors are designed to protect components which are connected to data and transmission lines from voltage surges caused by electrostatic discharge (ESD), electrical fast transients (EFT), and lightning.

TVS diodes are characterized by their high surge capability, low operating and clamping voltages, and fast response time. This makes them ideal for use as board level protection of sensitive semiconductor components. The SMDAxxC-8 is designed to provide transient suppression on multiple data lines and I/O ports. The low profile SO-14 design allows the user to protect up to eight data and I/O lines with one package. They are bidirectional device and may be used on lines where the normal operating voltage is above and below ground (i.e. -12V to +12V).

The SMDAxxC-8 TVS diode array will meet the surge requirements of IEC 61000-4-2 (Formerly IEC 801-2), Level 4, "Human Body Model" for air and contact discharge.

Features

- ◆ Transient protection for data lines to IEC 61000-4-2 (ESD) ±15kV (air), ±8kV (contact) IEC 61000-4-4 (EFT) 40A (5/50ns) IEC 61000-4-5 (Lightning) 12A (8/20µs)
- Small SO-14 surface mount package
- Protects eight I/O lines
- ♦ Working voltages: 5V, 12V, 15V and 24V
- Low leakage current
- Low operating and clamping voltages
- Solid-state silicon avalanche technology

Mechanical Characteristics

- JEDEC SO-14 package
- Molding compound flammability rating: UL 94V-0
- Marking : Part Number, Logo, Date Code
- Packaging : Tape and Reel
- Pb-Free, Halogen Free, RoHS/WEEE Compliant

Applications

- RS-232 and RS-422 Data Lines
- Microprocessor Based Equipment
- LAN/WAN Equipment
- Set-Top Box
- Notebooks, Desktops, and Servers
- Portable Instrumentation
- Peripherals
- Serial and Parallel Ports

Circuit Diagram

Schematic & PIN Configuration

SMDA05C-8 through SMDA24C-8

PROTECTION PRODUCTS

Absolute Maximum Rating

Rating	Symbol	Value	Units
Peak Pulse Power ($t_p = 8/20\mu s$)	P _{pk}	300	Watts
Operating Temperature	T,	-55 to +125	°C
Storage Temperature	Т _{stg}	-55 to +150	°C

Electrical Characteristics (T=25°C)

SMDA05C-8

SINDAUSC-8						
Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Units
Reverse Stand-Off Voltage	V _{RWM}		.6*		5	V
Reverse Breakdown Voltage	V _{BR}	I _t = 1mA	6			V
Reverse Leakage Current	I _R	V _{RWM} = 5V, T=25°C			20	μA
Clamping Voltage	V _c	$I_{pp} = 1A, t_p = 8/20\mu s$			9.8	V
Peak Pulse Current	I _{PP}	t _p = 8/20µs			17	А
Junction Capacitance	C _j	Between I/O Pins and Ground V _R = OV, f = 1MHz			350	pF

SMDA12C-8	~					
Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Units
Reverse Stand-Off Voltage	V _{RWM}				12	V
Reverse Breakdown Voltage	V _{BR}	I _t = 1mA	13.3			V
Reverse Leakage Current	I _R	V _{RWM} = 12V, T=25°C			1	μA
Clamping Voltage	V _c	I _{PP} = 1A, t _p = 8/20μs			19	V
Peak Pulse Current	I _{PP}	t _p = 8/20µs			12	А
Junction Capacitance	C _j	Between I/O Pins and Ground V _R = OV, f = 1MHz			120	pF

SMDA05C-8 through SMDA24C-8

PROTECTION PRODUCTS

Electrical Characteristics (Continued)

SMDA15C-8

SWIDALSC-8								
Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Units		
Reverse Stand-Off Voltage	V _{RWM}				15	V		
Reverse Breakdown Voltage	V _{BR}	I _t = 1mA	16.7			V		
Reverse Leakage Current	۱ _R	V _{RWM} = 15V, T=25°C			1	μA		
Clamping Voltage	V _c	$I_{pp} = 1A, t_p = 8/20 \mu s$			24	V		
Peak Pulse Current	I _{PP}	t _p = 8/20µs			10	А		
Junction Capacitance	C _j	Between I/O Pins and Ground V _R = OV, f = 1MHz	C.S.		75	pF		

SMDA24C-8									
Symbol	Conditions	Minimum	Typical	Maximum	Units				
V _{RWM}				24	V				
V _{BR}	I _t = 1mA	26.7			V				
I _R	V _{RWM} = 24V, T=25°C			1	μA				
V _c	$I_{pp} = 1A, t_p = 8/20 \mu s$			43	V				
I _{PP}	t _p = 8/20µs			5	А				
C _j	Between I/O Pins and Ground V _R = OV, f = 1MHz			50	pF				
	V _{RWM} V _{BR} I _R V _C	V_{RWM} V_{BR} $I_t = 1mA$ I_R $V_{RWM} = 24V, T=25°C$ V_C $I_{PP} = 1A, t_p = 8/20\mu s$ I_{PP} $t_p = 8/20\mu s$ C_j Between I/O Pins and Ground	V_{RWM} I I t = 1mA26.7 V_{BR} $I_t = 1mA$ 26.7 I_R $V_{RWM} = 24V, T=25 ° C$ I V_C $I_{PP} = 1A, t_p = 8/20 \mu s$ I I_{PP} $t_p = 8/20 \mu s$ I I_p $t_p = 8/20 \mu s$ I C_j Between I/O Pins and GroundI	V_{RWM} I I II V_{RWM} I 1 26.7 I_R V_{RWM} = 24V, T=25°C I V_C I_{PP} = 1A, t_p = 8/20µs I I_{PP} t_p = 8/20µs I C_j Between I/O Pins and Ground I	V_{RWM} Image: Constraint of the second sec				

onlinecomponents.com

SMDA05C-8 through SMDA24C-8

PROTECTION PRODUCTS

Typical Characteristics

Non-Repetitive Peak Pulse Power vs. Pulse Time

EMTECH

Pulse Waveform

ESD Pulse Waveform (IEC 61000-4-2)

IEC 61000-4-2 Discharge Parameters

Level	First Peak Current	Peak Current at 30 ns	Peak Current at 60 ns	Test Voltage (Contact	Test Voltage (Air
	(A)	(A)	(A)	Discharge) (kV)	Discharge) (kV)
1	7.5	4	8	2	2
2	15	8	4	4	4
3	22.5	12	6	6	8
4	30	16	8	8	15

SMDA05C-8 through SMDA24C-8

PROTECTION PRODUCTS

Applications Information

Device Connection for Protection of Eight Data Lines

The SMDAxxC-8 is designed to protect up to 8 data or I/O lines. They are bidirectional devices and may be used on lines where the signal polarities are above and below ground.

The SMDAxxC-8 TVS arrays employ a monolithic structure. Therefore, the working voltage (V_{RWM}) and breakdown voltage (V_{BR}) specifications apply to the differential voltage between any two data line pins. For example, the SMDA24C-8 is designed for a maximum voltage excursion of ±12V between any two data lines.

The device is connected as follows:

• Pins 2, 3, 5, 6, 9, 10, 12 and 13 are connected to the lines that are to be protected. Pins 1, 7, 8, and 14 are connected to ground. The ground connections should be made directly to the ground plane for best results. The path length is kept as short as possible to reduce the effects of parasitic inductance in the board traces. Pins 4 and 11 are not connected.

Circuit Board Layout Recommendations for Suppression of ESD.

Good circuit board layout is critical for the suppression of ESD induced transients. The following guidelines are recommended:

- Place the TVS near the input terminals or connectors to restrict transient coupling.
- Minimize the path length between the TVS and the protected line.
- Minimize all conductive loops including power and ground loops.
- The ESD transient return path to ground should be kept as short as possible.
- Never run critical signals near board edges.
- Use ground planes whenever possible.

Circuit Diagram

Matte Tin Lead Finish

Matte tin has become the industry standard lead-free replacement for SnPb lead finishes. A matte tin finish is composed of 100% tin solder with large grains. Since the solder volume on the leads is small compared to the solder paste volume that is placed on the land pattern of the PCB, the reflow profile will be determined by the requirements of the solder paste. Therefore, these devices are compatible with both lead-free and SnPb assembly techniques. In addition, unlike other lead-free compositions, matte tin does not have any added alloys that can cause degradation of the solder joint.

SMDA05C-8 through SMDA24C-8

PROTECTION PRODUCTS

Outline Drawing - SO-14

Land Pattern - SO-14

onlinecomponents.com SMDA05C-8 through SMDA24C-8

PROTECTION PRODUCTS

Top Mark

Ordering Information

Part Number	Lead Finish	Qty per Reel	Reel Size						
SMDA05C-8.TBT	Pb Free	500	7 inch						
SMDA12C-8.TBT	Pb Free	500	7 inch						
SMDA15C-8.TBT	Pb Free	500	7 inch						
SMDA24C-8.TBT	Pb Free	500	7 inch						
SMDA05C-8.T	Pb Free	56/Tube	N/A						
SMDA12C-8.T	Pb Free	56/Tube	N/A						
SMDA15C-8.T	Pb Free	56/Tube	N/A						
SMDA24C-8.T	Pb Free	56/Tube	N/A						

YYWW = Date Code

Device Orientation in Tape

AO	В0	ко
6.50 +/-0.30 mm	9.50 +/-0.30 mm	2.10 +/-0.15 mm

Tape Width	B, (Max)	D	D1	E	F	K (MAX)	Ρ	PO	P2	T(MAX)	w
16 mm	12.1 mm	1.5 + 0.1 mm - 0.0 mm)	0.5 mm ±0.05	1.750±.10 mm	7.5±0.10 mm	6.5 mm	8.0±0.1 mm	4.0±0.1 mm	2.0±0.01 mm	0.4 mm	16.0 mm ± 0.3 mm

onlinecomponents.com

SMDA05C-8 through SMDA24C-8

Contact Information

Semtech Corporation Protection Products Division 200 Flynn Road, Camarillo, CA 93012 Phone: (805)498-2111 FAX (805)498-3804

timecomponents.com