Thick Film Resistor Networks, Single-In-Line, Molded SIP ## **FEATURES** Isolated, bussed terminator schematics available Thick film resisitive elements Low temperature coefficient (-55 °C to +125 °C) ± 100 ppm/°C Rugged, molded case construction Reduces total assembly costs Compatible with automatic insertion equipment and reduces PC board space Wide resistance range (10 Ω to 2.2 M Ω) Available in tube pack Material categorization: For definitions of compliance please see www.vishay.com/doc?99912 This datasheet provides information about parts that are RoHS-compliant and/or parts that are non-RoHS-compliant. For example, parts with lead (Pb) terminations are not RoHS-compliant. Please see the information/tables in this datasheet for details. | STANDARD ELECTRICAL SPECIFICATIONS | | | | | | | | | |------------------------------------|---------|---|--|----------------------|---|---|--|--| | GLOBAL
MODEL/
SCHEMATIC | PROFILE | POWER RATING
ELEMENT
P _{70°C}
W | $\begin{array}{c} \text{RESISTANCE} \\ \text{RANGE} \\ \Omega \end{array}$ | TOLERANCE (2)
± % | TEMPERATURE
COEFFICIENT
(-55 °C to +125 °C)
± ppm/°C | TCR
TRACKING ⁽¹⁾
(-55 °C to +125 °C)
± ppm/°C | MAXIMUM
WORKING
VOLTAGE (3)
V _{DC} | | | MSPxxx01 | Α | 0.20 | 10 to 2.2M | 1, 2, 5 | 100 | 50 | 100 | | | MSPxxx01 | С | 0.25 | 10 to 2.2M | 1, 2, 5 | 100 | 50 | 100 | | | MSPxxx03 | Α | 0.30 | 10 to 2.2M | 1, 2, 5 | 100 | 50 | 100 | | | MSPxxx03 | С | 0.40 | 10 to 2.2M | 1, 2, 5 | 100 | 50 | 100 | | | MSPxxx05 | Α | 0.20 | 10 to 2.2M | 1, 2, 5 | 100 | 150 | 100 | | | MSPxxx05 | С | 0.25 | 10 to 2.2M | 1, 2, 5 | 100 | 150 | 100 | | - (1) Tighter tracking available - (2) ± 2 % standard, ± 1 % and ± 5 % available - Continuous working voltage shall be $\sqrt{P \times R}$ or maximum working voltage, whichever is less | Outside Sworking voltage shall be $\sqrt{r} \times rr$ of maximum working voltage, whichever is less | | | | | | | | | |---|---|--|---|---|---|---|--|--| | GLOBAL PART NUMBER INFORMATION | | | | | | | | | | New Global Part Numbering: MSP06A031K00GDA (preferred part numbering format) | | | | | | | | | | M S F | - — — | A 0 3 | 1 K | 0 0 G | D A | | | | | GLOBAL PIN COUNT | PACKAGE
HEIGHT | SCHEMATIC | RESISTANCE
VALUE | TOLERANCE
CODE | PACKAGING | SPECIAL | | | | MSP 06 = 6 pin 08 = 8 pin 09 = 9 pin 10 = 10 pin | A = "A" profile
C = "C" profile | 01 = Bussed
03 = Isolated
00 = Special | $\mathbf{R} = \Omega$
$\mathbf{K} = \mathbf{k}\Omega$
$\mathbf{M} = \mathbf{M}\Omega$
10R0 = 10 Ω
33K0 = 33 kΩ
1M00 = 1 MΩ
000 = 0 Ω Jumper | $\begin{aligned} \textbf{F} &= \pm 1 \% \\ \textbf{G} &= \pm 2 \% \\ \textbf{J} &= \pm 5 \% \\ \textbf{S} &= \text{Special} \\ \textbf{Z} &= 0 \ \Omega \\ \text{Jumper} \end{aligned}$ | EJ = Lead (Pb)-free,
tube DA = Tin/lead, tube | Blank = Standard
(Dash Number)
(Up to 3 digits)
From 1 to 999
as applicable | | | | Historical Part Number Example: MSP06A03102G (will continue to be accepted) | | | | | | | | | | MSP | 06 | Α | 03 | 102 | G | D03 | | | | HISTORICAL MODEL | HISTORICAL MODEL PIN COUNT PACKAGE HEIGHT SCHEMATIC RESISTANCE VALUE TOLERANCE CODE PACKAGING | | | | | | | | | New Global Part Num | bering: MSP08C0 | 5131AGDA (prefe | rred part number | ring format) | | | | | | M S P 0 8 C 0 5 1 3 1 A G D A | | | | | | | | | | GLOBAL PIN COUNT | PACKAGE
HEIGHT | SCHEMATIC | RESISTANCE
VALUE | TOLERANCE
CODE | PACKAGING | SPECIAL | | | | MSP 06 = 6 pin 08 = 8 pin 09 = 9 pin 10 = 10 pin A = "A" profile C = "C" profile 05 = Dual terminator 3 digit impedance code, followed by alpha modifier (see Impedance codes table) 3 digit impedance code, followed by alpha modifier (see Impedance Codes table) From 1 to 999 as applicable | | | | | | | | | | Historical Part Number Example: MSP08C05221331G (will continue to be accepted) | | | | | | | | | | MSP 0 | ВС | 05 | 221 | 331 | G | D03 | | | | HISTORICAL PI
MODEL COL | | | RESISTANC
VALUE 1 | E RESISTAI
VALUE | | PACKAGING | | | For additional information on packaging, refer to the Through-Hole Network Packaging document (www.vishav.com/doc?31542). ## **DIMENSIONS** in inches (millimeters) | GLOBAL MODEL | A (Max.) | В | С | D (Max.) | |--------------|---------------|---------------|---|--| | MSP06 | 0.590 (14.99) | 0.500 (12.70) | 5 | | | MSP08 | 0.790 (20.07) | 0.700 (17.78) | 7 | MSPxxA = 0.195 (4.95)
MSPxxC = 0.350 (8.89) | | MSP10 | 0.990 (25.15) | 0.900 (22.86) | 9 | WICH XXC = 0.000 (0.00) | | MSP09 | 0.890 (22.61) | 0.800 (20.32) | 8 | 0.195 (4.95) only | | TECHNICAL SPECIFICATIONS | | | | | | |--|-----------------|---------------------|--|--|--| | PARAMETER | UNIT | MSP SERIES | | | | | Package Power Rating
Maximum at +25 °C and +70 °C | | See Derating Curves | | | | | Voltage Coefficient of Resistance | V_{eff} | < 50 ppm typical | | | | | Dielectric Strength | V _{AC} | 200 | | | | | Isolation Resistance (03 Schematic) | Ω | > 100 M | | | | | Operating Temperature Range | °C | -55 to +125 | | | | | Storage Temperature Range | °C | -55 to +150 | | | | | MECHANICAL SPECIFICATIONS | | | | | |--------------------------------|---|--|--|--| | Marking Resistance to Solvents | Permanency testing per N | IIL-STD-202, Method 215 | | | | Solderability | Per MIL-STD-202, Me | Per MIL-STD-202, Method 208E, RMA flux | | | | Body | Molded epoxy | | | | | Terminals | Copper alloy, solder plated | | | | | Weight | MSP06A = 0.4 g
MSP08A = 0.5 g
MSP09A = 0.55 g
MSP10A = 0.6 g | MSP06C = 0.7 g
MSP08C = 0.9 g
MSP10C = 1.1 g | | | | IMPEDANCE CODES | | | | | | |-----------------|--------------------|--------------------|------|--------------------|--------------------| | CODE | R ₁ (Ω) | R ₂ (Ω) | CODE | R ₁ (Ω) | R ₂ (Ω) | | 500B | 82 | 130 | 141A | 270 | 270 | | 750B | 120 | 200 | 181A | 330 | 390 | | 800C | 130 | 210 | 191A | 330 | 470 | | 990A | 160 | 260 | 221B | 330 | 680 | | 101C | 180 | 240 | 281B | 560 | 560 | | 111C | 180 | 270 | 381B | 560 | 1.2K | | 121B | 180 | 390 | 501C | 620 | 2.7K | | 121C | 220 | 270 | 102A | 1.5K | 3.3K | | 131A | 220 | 330 | 202B | 3K | 6.2K | ## Note • For additional impedance codes, refer to the Dual Terminator Impedance Code Table document (www.vishay.com/doc?31530). ## **CIRCUIT APPLICATIONS** 01 Schematic 5, 7, 8 (1), or 9 resistors with one pin common The MSPxxx01 circuit contains 5, 7, 8 (1), or 9 nominally equal resistors, each connected between a common pin (pin no. 1) and a discrete PC board pin. Commonly used in the following applications: • "Wired OR" Pull-up • MOS/ROM Pull-up/Pull-down • Power Gate Pull-up • Open Collector Pull-up • TTL Input Pull-down • TTL Unused Gate Pull-up (1) Available in "A" Profile only n-1 Standard E-24 resistance values stocked. Consult factory. 03 Schematic 3, 4 or 5 isolated resistors The MSPxxx03 circuit contains 3, 4, or 5 resistors of nominally equal value in a compact package. Each resistor is connected to two discrete PC pins. Standard E-24 resistance values stocked. Consult factory. 05 Schematic Pulse squaring and TTL dual-line terminators The MSPxxx05 circuits contain 4, 6, 7 (2), or 8 series pair of resistors. Each series pair is connected between two common lines. The junction of these resistor pairs is connected to the input terminals. The 05 circuits are designed for TTL dual-line termination and pulse squaring. Note (2) Available in "A" Profile only Many dual terminator resistance values stocked. Consult factory. n-1 ### **DERATING** Vishay Dale | "A" PROFILE +70 °C PACKAGE RATINGS | | | | | |------------------------------------|--------|--|--|--| | MSP10A | 1.25 W | | | | | MSP09A | 1.12 W | | | | | MSP08A | 1.00 W | | | | | MSP06A | 0.75 W | | | | | "C" PROFILE +70 °C PACKAGE RATINGS | | | | | | |------------------------------------|--------|--|--|--|--| | MSP10C | 1.60 W | | | | | | MSP08C | 1.30 W | | | | | | MSP06C | 1.00 W | | | | | ### Note • Higher power ratings available. Contact factory. | PERFORMANCE | | | | | | | |---------------------------------|---|--------------------------------|--|--|--|--| | TEST | CONDITIONS | MAX. ∆R
(TYPICAL TEST LOTS) | | | | | | Power Conditioning | 1.5 x rated power, applied 1.5 h "ON" and 0.5 h "OFF" for 100 h ± 4 h at +25 °C ambient temperature | ± 0.50 % ΔR | | | | | | Thermal Shock | 5 cycles between -65 °C and +125 °C | ± 0.50 % ΔR | | | | | | Short Time Overload | 2.5 x rated working voltage 5 s | ± 0.25 % ΔR | | | | | | Low Temperature Operation | 45 min at full rated working voltage at -65 °C | ± 0.25 % ΔR | | | | | | Moisture Resistance | 240 h with humidity ranging from 80 % RH to 98 % RH | ± 0.50 % ΔR | | | | | | Resistance to Soldering Heat | Leads immersed in +260 °C solder to within 1/16" of device body for 10 s | ± 0.25 % ΔR | | | | | | Shock | Total of 18 shocks at 100 g's | ± 0.25 % ΔR | | | | | | Vibration | 12 h at maximum of 20 g's between 10 Hz and 2000 Hz | ± 0.25 % ΔR | | | | | | Load Life | 1000 h at +70 °C, rated power applied 1.5 h "ON", 0.5 h "OFF" for full 1000 h period. Derated according to the curve. | ± 1.00 % ΔR | | | | | | Terminal Strength | 4.5 pound pull for 30 s | ± 0.25 % ΔR | | | | | | Insulation Resistance | 10 000 MΩ (minimum) | - | | | | | | Dielectric Withstanding Voltage | - | - | | | | | # **Legal Disclaimer Notice** Vishay # **Disclaimer** ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability. Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein. Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners. # **Material Category Policy** Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant. Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU. Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards. Revision: 02-Oct-12 Document Number: 91000