Power Modules, Passivated Assembled Circuit Elements, 25 A PACE-PAK (D-19) | PRODUCT SUMMARY | | | | | | |-----------------|--|--|--|--|--| | Io | 25 A | | | | | | Type | Modules - Thyristor, Standard | | | | | | Package | PACE-PAK (D-19) | | | | | | Circuit | Single phase, hybrid bridge common cathode,
Single phase, hybrid bridge doubler connection,
Single phase, all SCR bridge | | | | | #### **FEATURES** - · Electrically isolated base plate - Available up to 1200 V_{RRM}/V_{DRM} - High dynamic characteristics - Wide choice of circuit configurations - Simplified mechanical design and assembly - UL E78996 approved - Material categorization: For definitions of compliance please see www.vishay.com/doc?99912 #### **DESCRIPTION** The VS-P100 series of integrated power circuits consists of power thyristors and power diodes configured in a single package. With its isolating base plate, mechanical designs are greatly simplified giving advantages of cost reduction and reduced size. Applications include power supplies, control circuits and battery chargers. | MAJOR RATINGS AND CHARACTERISTICS | | | | | | |-------------------------------------|-----------------|-------------|-------------------|--|--| | SYMBOL | CHARACTERISTICS | VALUES | UNITS | | | | lo | 85 °C | 25 | А | | | | 1 | 50 Hz | 357 | А | | | | I _{TSM} | 60 Hz | 375 | A | | | | l ² t | 50 Hz | 637 | A ² s | | | | 1-1 | 60 Hz | 580 | A-5 | | | | I ² √t | | 6365 | A ² √s | | | | V _{DRM} , V _{RRM} | | 400 to 1200 | V | | | | V _{ISOL} | | 2500 | V | | | | T_J | Range | -40 to 125 | °C | | | | T _{Stg} | | -40 to 125 | °C | | | #### **ELECTRICAL SPECIFICATIONS** | VOLTAGE RATINGS | | | | | | | |---------------------------|--|---|---|--|--|--| | TYPE NUMBER | V _{RRM} /V _{DRM} , MAXIMUM
REPETITIVE PEAK REVERSE AND
PEAK OFF-STATE VOLTAGE
V | V _{RSM} , MAXIMUM
NON-REPETITIVE PEAK
REVERSE VOLTAGE
V | I _{RRM} MAXIMUM
AT T _J MAXIMUM
mA | | | | | VS-P101, VS-P121, VS-P131 | 400 | 500 | | | | | | VS-P102, VS-P122, VS-P132 | 600 | 700 | | | | | | VS-P103, VS-P123, VS-P133 | 800 | 900 | 10 | | | | | VS-P103, VS-P124, VS-P134 | 1000 | 1100 | | | | | | VS-P105, VS-P125, VS-P135 | 1200 | 1300 | | | | | | ON-STATE CONDUCTION | | | | | | | |--|--------------------|---|------------------------------|------------------------------|-------|--------------------| | PARAMETER | SYMBOL | TEST CONDITIONS | | VALUES | UNITS | | | Maximum DC output current at case | Io | Full bridge | | | 25 | Α | | temperature | 10 | ruii briage | | | 85 | °C | | | | t = 10 ms | No voltage | | 357 | Α | | Maximum peak, one-cycle non-repetitive | I _{TSM} , | t = 8.3 ms | reapplied | | 375 | | | on-state or forward current | I _{FSM} | t = 10 ms | 100 % V _{RRM} | | 300 | A | | | | t = 8.3 ms | reapplied | Sinusoidal half wave, | 315 | | | | | t = 10 ms | No voltage initial reapplied | initial $T_J = T_J$ maximum | 637 | - A ² s | | Maximum I ² t for fusing | l ² t | t = 8.3 ms | | | 580 | | | Maximum i-t for fusing | | t = 10 ms | 100 % V _{RRM} | | 450 | | | | | t = 8.3 ms | reapplied | | 410 | | | Maximum I ² √t for fusing | l²√t | $t = 0.1$ ms to 10 ms, no voltage reapplied I^2t for time $tx = I^2\sqrt{t} \cdot \sqrt{t}x$ | | 6365 | A²√s | | | Maximum value of threshold voltage | V _{T(TO)} | T _J = 125 °C | | 0.82 | V | | | Maximum level value of on-state slope resistance | r _{t1} | $T_J = 125 \text{ °C}$, average power = $V_{T(TO)} \times I_{T(AV)} + r_t + (I_{T(RMS)})^2$ | | 12 | mΩ | | | Maximum on-state voltage drop | V _{TM} | $I_{TM} = \pi \times I_{T/A}$ | AV) | T _J = 25 °C | 1.35 | V | | Maximum forward voltage drop | V_{FM} | $I_{FM} = \pi \times I_{F(AV)}$ $T_J = 25 ^{\circ}C$ | | 1.35 | V | | | Maximum non-repetitive rate of rise of turned-on current | dl/dt | $T_{J} = 125 ^{\circ}\text{C}$ from 0.67 V_{DRM} $I_{TM} = \pi \times I_{T(AV)}, I_{g} = 500$ mA, $t_{r} < 0.5 \mu s, t_{p} > 6 \mu s$ | | 200 | A/μs | | | Maximum holding current | I _H | T _J = 25 °C a | node supply = 6 \ | /, resistive load, gate open | 130 | mA | | Maximum latching current | ΙL | T _J = 25 °C anode supply = 6 V, resistive load 250 | | 250 | IIIA | | | BLOCKING | | | | | |---|--|---|--------|-------| | PARAMETER | SYMBOL | TEST CONDITIONS | VALUES | UNITS | | Maximum critical rate of rise of off-state voltage | dV/dt | T _J = 125 °C, exponential to 0.67 V _{DRM} gate open | 200 | V/µs | | Maximum peak reverse and off-state leakage current at V _{RRM} , V _{DRM} | I _{RRM} ,
I _{DRM} | T _J = 125 °C, gate open circuit | 10 | mA | | Maximum peak reverse leakage current | I _{RRM} | T _J = 25 °C | 100 | μA | | RMS isolation voltage | V _{ISOL} | 50 Hz, circuit to base, all terminals shorted, $T_J = 25$ °C, $t = 1$ s | 2500 | V | | TRIGGERING | | | | | | |--|--------------------|---|--------------------|--------|-------| | PARAMETER | SYMBOL | TEST CONDITIONS | | VALUES | UNITS | | Maximum peak gate power | P_{GM} | | | 8 | W | | Maximum average gate power | P _{G(AV)} | | | 2 | VV | | Maximum peak gate current | I _{GM} | | | 2 | Α | | Maximum peak negative gate voltage | -V _{GM} | | | 10 | V | | | | T _J = - 40 °C | | 3 | | | Maximum gate voltage required to trigger | V_{GT} | T _J = 25 °C | | 2 | V | | | | T _J = 125 °C | Anode supply = | 1 | | | | | T _J = - 40 °C | 6 V resistive load | 90 | | | Maximum gate current required to trigger | I _{GT} | T _J = 25 °C | | 60 | mA | | | | T _J = 125 °C | | 35 | | | Maximum gate voltage that will not trigger | V_{GD} | T 105 °C rated V are slied | | 0.2 | V | | Maximum gate current that will not trigger | I _{GD} | T _J = 125 °C, rated V _{DRM} applied 2 | | mA | | | THERMAL AND MECHANICAL SPECIFICATIONS | | | | | | |---|-----------------------------------|--------------------------------------|------------|-----------|--| | PARAMETER | SYMBOL | TEST CONDITIONS | VALUES | UNITS | | | Maximum junction operating and storage temperature range | T _J , T _{Stg} | | -40 to 125 | °C | | | Maximum thermal resistance, junction to case per junction | R _{thJC} | DC operation | 2.24 | K/W | | | Maximum thermal resistance, case to heatsink | R _{thCS} | Mounting surface, smooth and greased | 0.10 | r./ vv | | | Mounting torque, base to heatsink (1) | | | 4 | Nm | | | Approximate weight | | | 58 | g | | | Approximate weight | | | 2.0 | OZ. | | | Case style | | | PACE-PA | AK (D-19) | | #### Note ⁽¹⁾ A mounting compound is recommended and the torque should be checked after a period of 3 hours to allow for the spread of the compound Fig. 1 - Current Ratings Nomogram (1 Module Per Heatsink) Fig. 2 - On-State Power Loss Characteristics Fig. 3 - On-State Power Loss Characteristics Fig. 4 - Current Ratings Characteristics Fig. 5 - On-State Voltage Drop Characteristics Fig. 6 - Maximum Non-Repetitive Surge Current Fig. 7 - Maximum Non-Repetitive Surge Current Fig. 8 - Thermal Impedance Z_{thJC} Characteristics Fig. 9 - Gate Characteristics #### **ORDERING INFORMATION TABLE** #### Device code - 1 Vishay Semiconductors product - 2 Module type - 3 Current rating - 1 = 25 A DC (P100 Series) - 4 = 40 A DC (P400 Series) - 4 Circuit configuration - 0 = Single Phase, Hybrid Bridge Common Cathode - 2 = Single Phase, Hybrid Bridge Doubler Connection - 3 = Single Phase, all SCR Bridge - 5 Voltage code - 1 = 400 V - 2 = 600 V - 3 = 800 V - 4 = 1000 V - 5 = 1200 V - 6 K = Optional Voltage Suppression - 7 W = Optional Freewheeling Diode | CIRCUIT CONFIGURATION | | | | | |--|----------------------------------|------------------------------|---------------------------|--| | CIRCUIT DESCRIPTION | CIRCUIT
CONFIGURATION
CODE | SCHEMATIC DIAGRAM | TERMINAL POSITIONS | | | Single phase, hybrid bridge common cathode | 0 | G2 (+) | AC1 G1 -
AC2 G2 + | | | Single phase, hybrid bridge doubler connection | 2 | G1 9 G2
AC2 AC1 (+) | AC1 G1 -
AC2 G2 + | | | Single phase, all SCR bridge | 3 | G3 o G1
AC1 AC2 G4 G2 (+) | AC2 G2 - G1 G4 - AC1 G3 + | | | CODING (1) | | | | | | | |--|----------------------------------|-----------------|-----------------------------|-------------------------------|--|--| | CIRCUIT DESCRIPTION | CIRCUIT
CONFIGURATION
CODE | BASIC
SERIES | WITH VOLTAGE
SUPPRESSION | WITH
FREEWHEELING
DIODE | WITH BOTH VOLTAGE SUPPRESSION AND FREEWHEELING DIODE | | | Single phase, hybrid bridge common cathode | 0 | P10. | P10.K | P10.W | P10.KW | | | Single phase, hybrid bridge doubler connection | 2 | P12. | P12.K | - | - | | | Single phase, all SCR bridge | 3 | P13. | P13.K | - | - | | #### Note ⁽¹⁾ To complete code refer to Voltage Ratings table, i.e.: For 600 V P10.W complete code is P102W | LINKS TO RELATED DOCUMENTS | | | | |----------------------------|--------------------------|--|--| | Dimensions | www.vishay.com/doc?95335 | | | ## **D-19 PACE-PAK** #### **DIMENSIONS** in millimeters (inches) ## **Legal Disclaimer Notice** Vishay ### **Disclaimer** ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product. Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability. Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein. Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners. ## **Material Category Policy** Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant. Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU. Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards. Revision: 02-Oct-12 Document Number: 91000