intel)

Intel FPGA SDK for OpenCL

Programming Guide

UG-OCL002
2016.10.31

Last updated for Quartus Prime Design Suite: 16.1

@ Subscribe
C] Send Feedback

https://www.altera.com/servlets/subscriptions/alert?id=UG-OCL002
mailto:TechDocFeedback@altera.com?subject=Feedback%20on%20Intel%20FPGA%20SDK%20for%20OpenCL%20Programming%20Guide%20(UG-OCL002%202016.10.31)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

(intel“ﬁ>

Contents

1 Intel FPGA SDK for OpenCL Programming GUide.....cvcrumrerimrarraranserassessassssasassasassassnsassnsanss 5
1.1 Intel FPGA SDK for OpenCL Programming Guide Prerequisites............ccvviiiiiiiiiiiiennnnnns 5
1.2 Intel FPGA SDK for OpenCL FPGA Programming FIOW.......ccuiiiiiiiiiiii i 6
1.3 Intel FPGA SDK for OpenCL Offline Compiler Kernel Compilation Flows...........c.ccvvieiinnne. 7
1.3.1 One-Step Compilation for Simple Kernels.......cocviiiiiiiiiiii e 8
1.3.2 Multistep Intel FPGA SDK for OpenCL Design FIOW.......c.ccvviviiiiiiiiiiiiiiieieeeeeee 9
1.4 Obtaining General Information on Software, Compiler, and Custom Platform................. 12
1.4.1 Displaying the Software Version (VErsioN)......cvovieiiiiiiiiiiiiiiii i eieneneeeas 12
1.4.2 Displaying the Compiler Version (==Version)......ccviiiiiiiiiiiiii i iiesieennenanens 12
1.4.3 Listing the Intel FPGA SDK for OpenCL Utility Command Options (help)............ 13

1.4.4 Listing the Intel FPGA SDK for OpenCL Offline Compiler Command Options
(no argument, ==help, OF =N s 13
1.4.5 Listing the Available FPGA Boards in Your Custom Platform (--list-boards)........ 13
1.4.6 Displaying the Compilation Environment of an OpenCL Binary (env)................. 14
1.5 Managing @n FPGA BO@ard......c.cciuiiuiieiiieiteiteatieiesteaesatsesteassaesesesteaesneaeaeassneaness 14
1.5.1 Installing an FPGA Board (install)....c.ccoiiiiiiiiiic e e 15
1.5.2 Uninstalling the FPGA Board (uninstall)......c.coiiiiiiiiiiiiiiicciciir e 17
1.5.3 Querying the Device Name of Your FPGA Board (diagnose)........ccvevvvviiiieinnnnnns 17
1.5.4 Running a Board Diagnostic Test (diagnose <device_name>)........cccocvveernnnnne. 18
1.5.5 Programming the FPGA Offline or without a Host (program <device_name>).... 18
1.5.6 Programming the Flash Memory (flash <device_name>).........ccooviiiiiiiiiinnnen. 18
1.6 Structuring Your OpenCL KerNel.ot e aae s 19
1.6.1 Guidelines for Naming the Kernel.......cooiiiiiiiiii e 20
1.6.2 Programming Strategies for Optimizing Data Processing Efficiency................... 20
1.6.3 Programming Strategies for Optimizing Memory Access Efficiency.................... 23
1.6.4 Implementing the Intel FPGA SDK for OpenCL Channels Extension.................. 24
1.6.5 Implementing OpenCL PipPeS....cuuiiuii ittt e e ae e raeaans 42
1.6.6 Using Predefined Preprocessor Macros in Conditional Compilation.................... 58
1.6.7 Declaring __constant Address Space Qualifiers......ccccoiiiiiiiiiiiiiiiiiiiiiiic i 59
1.6.8 Including Structure Data Types as Arguments in OpenCL Kernels..................... 60
1.6.9 INferring @ REGISEEI ettt e e 63
1.6.10 Enabling Double Precision Floating-Point Operations............cccvvviiiiiiiiiiennnnn. 65
1.6.11 Single-Cycle Floating-Point Accumulator for Single Work-Item Kernels............ 65
1.7 Designing Your Host AppliCation. . ..ciieiiiiii it eaas 68
1.7.1 Host Programming ReqUIrEMENTS.oviiiiiiiiiii i s e es 68
1.7.2 Allocating OpenCL Buffer for Manual Partitioning of Global Memory.................. 69
1.7.3 Collecting Profile Data During Kernel EXeCUtioN.........covuiiiiiiiiiiiiiieieie e 72
1.7.4 Accessing Custom Platform-Specific FUNCLIONS........c.cooviiiiiiii s 74
1.7.5 Modifying Host Program for Structure Parameter Conversion...........c.covvvieinennn. 75
1.7.6 Managing Host Application........oiiiiiiiii s 76
1.7.7 Allocating Shared Memory for OpenCL Kernels Targeting SoCs.........cocvvvivinenns 87
1.8 Compiling YOUr OpenCL KEINEl . uuiui ittt e e e r e e e e raannaas 89
1.8.1 Compiling Your Kernel to Create Hardware Configuration File........................e. 89
1.8.2 Compiling Your Kernel without Building Hardware (=C)........cocviviiiiiiiiiiinninnnnens 90
1.8.3 Specifying the Location of Header Files (-I <directory>)......ccccvivviiiiiiiinnnnnnnns. 90

1.8.4 Specifying the Name of an Intel FPGA SDK for OpenCL Offline Compiler

Output File (-0 <file@Name>) ... e 91

Intel FPGA SDK for OpenCL Programming Guide

2

intel)

1.8.5 Compiling a Kernel for a Specific FPGA Board (--board <board_name>)........... 91
1.8.6 Resolving Hardware Generation Fitting Errors during Kernel Compilation (--
¥ Lo] AR =Y i Vo] o) PP 93
1.8.7 Defining Preprocessor Macros to Specify Kernel Parameters (-D
S 00 F=[o o T= 1 0 1 1= T PP PP 93
1.8.8 Generating Compilation Progress Report (=V).....cvoeviiiiiiiiieiiiiiiieienieneneeeas 95
1.8.9 Displaying the Estimated Resource Usage Summary On-Screen (--report)........ 96
1.8.10 Suppressing Warning Messages from the Intel FPGA SDK for OpenCL
Offline ComMPIler (FWW) et e e aas 96
1.8.11 Converting Warning Messages from the Intel FPGA SDK for OpenCL
Offline Compiler into Error Messages (FWerrOr) . o.uv v veveeieiieiienenenieeeenennans 96
1.8.12 Removing Debug Data from Compiler Reports and Source Code from
the .@0CX File (790 .ttt 97
1.8.13 Disabling Burst-Interleaving of Global Memory (--no-interleaving
<global _MEMOrY by PE >)i 97
1.8.14 Configuring Constant Memory Cache Size (--const-cache-bytes <N>)............ 98
1.8.15 Relaxing the Order of Floating-Point Operations (--fp-relaxed)...........c.coovvuens 98
1.8.16 Reducing Floating-Point Rounding Operations (--fPC)....c.covviiiiiiiiiiiiiiiiaeans 99
1.9 Emulating and Debugging Your OpenCL Kernel.......coviiiiiiiiiiiiiiiie i sensenesennens 99
1.9.1 Modifying Channels Kernel Code for Emulation...........cccoviiiiiiiiiiiiiiiiiennn 100
1.9.2 Compiling a Kernel for Emulation (-march=emulator)..........c.ccocoieiiiiiiinnnne. 101
1.9.3 Emulating Your OpenCL Kernel......ccoiiuiiiiiiiiiii it ee e 103
1.9.4 Debugging Your OpenCL Kernel 0N LiNUX......covvvieiieieiiiniiieiieienieneserennenenes 104
1.9.5 Limitations of the Intel FPGA SDK for OpenCL Emulator.........cccovviviiiiininnnnnns 105
1.10 Reviewing Your Kernel's report.html File.....cciiiiiiiiii e 106
1.11 Profiling YOUur OpenCL KerMel.uiuiieiitiieii i iese et e e s e s e ra e s eneananes 106
1.11.1 Instrumenting the Kernel Pipeline with Performance Counters (--profile)....... 107
1.11.2 Launching the Intel FPGA SDK for OpenCL Profiler GUI (report)...........cc..... 107
3 A 1o T T 11 1= o 1 P 107
1.13 Document ReVISION HisStOry .. .uuiiii i e e e s e raneens 108
2 Intel FPGA SDK for OpenCL Advanced Features........ccccuimimimmesisn s s s snsssassnnsnnss 114
2.1 OPENCL LiDrary ... e 114
2.1.1 Understanding RTL Modules and the OpenCL Pipeline..........ccccvviiiiiiiieiinnnnnnns 116
2.1.2 Packaging an OpenCL Helper Function File for an OpenCL Library................... 125
2.1.3 Packaging an RTL Component for an OpenCL Libraryccooviviiiiiiiiiiiinnnnn 125
2.1.4 Verifying the RTL MOdUIES........ciiiiiiii i e 128
2.1.5 Packaging Multiple Object Files into a Library File.......c.coooiiiiiiiiiiin 129
2.1.6 Specifying an OpenCL Library when Compiling an OpenCL Kernel................... 129
2.1.7 Using an OpenCL Library that Works with Simple Functions (Example 1)......... 130
2.1.8 Using an OpenCL Library that Works with External Memory (Example 2)......... 131
2.1.9 OpenCL Library Command-Line OptioNS.....ccciiiiiiiiiiiii i i i ie i naeeaeeas 132
2.2 Kernel Attributes for Configuring Local Memory System......c.coviviiiiiiiiiiiiiii e 133
2.2.1 Restrictions on the Usage of Local Variable-Specific Kernel Attributes............. 134
2.3 Kernel Attributes for Reducing the Overhead on Hardware Usage...........ccocvivieiiininenens 135
2.3.1 Hardware for Kernel Interface. ..ouviiiiiiii i aernee e e e 135
2.4 Kernel Replication Using the num_compute_units(X,Y,Z) Attribute..........ccoocvvviiiinnnns 138
2.4.1 Customization of Replicated Kernels Using the get_compute_id() Function...... 139
2.4.2 Using Channels with Kernel Copies......uiiiiiiiiiiiiiiiii i eenas 140
2.5 Document ReViISioN HiStOryo e 141

Intel FPGA SDK for OpenCL Programming Guide
3

(intel“’

A Support Statuses of OpenCL Featurescciciiiiimiimimi i smsm s s sssssssssassasssnssnssassansans 142
A.1 Support Statuses of OpenCL 1.0 FEATUIES.......oviuiiie i e 142
A.1.1 OpenCL1.0 C Programming Language Implementation..............cccocviiiiiinnen. 142

A.1.2 OpenCL C Programming Language RestrictionsS.......ccoviieviiiiiiiiiiiiiiciiee e 144

A.1.3 Argument Types for Built-in Geometric FUNCEIONS.......covvviiiiiiiiic e 145

A.1.4 Numerical Compliance Implementation........ccocoiiiiiiiiiiiiiic e 146

A.1.5 Image Addressing and Filtering Implementation..........c.cooviiiiiiiiiiiiiiie s 146

YA I G\ (o o | Tl 1 o U o i =P 146

A.1.7 Embedded Profile Implementation..........ccooviiiiiiiii 147

A.2 Support Statuses of OpenCL 1.2 FEAtUMES. . ..uiiiiii i e e 147
A.2.1 OpenCL 1.2 Runtime Implementation.......ccoiiiiiiiiiiii e 147

A.2.2 OpenCL 1.2 C Programming Language Implementation...............coceveiiiinnnnns 148

A.3 Support Statuses of OpenCL 2.0 FEAtUIES.......ouiuiiie i 149
A.3.1 OPENCL 2.0 HEAEIS. . eiiiiieiitiie ittt ettt e e e e e e e e nanes 149

A.3.2 OpenCL 2.0 Runtime Implementation........ccoooiiiiiiiii e 149

A.3.3 OpenCL 2.0 C Programming Language Restrictions for Pipes.............cccevvenne. 149

A.4 Intel FPGA SDK for OpenCL Allocation LimitS.....ooviiiiiiiiiiiiiii i 150
A.5 Document ReViSioN HisStoryo e i e e e 151

Intel FPGA SDK for OpenCL Programming Guide

4

] ®
1 Intel FPGA SDK for OpenCL Programming Guide l n tel)

1 Intel FPGA SDK for OpenCL Programming Guide

The Intel® FPGA SDK for OpenCL™ Programming Guide provides descriptions,
recommendations and usage information on the Intel Software Development Kit (SDK)
for OpenCL compiler and tools. The Intel FPGA SDK for OpenCL! is an OpenCL2-based
heterogeneous parallel programming environment for Intel FPGA products.

1.1 Intel FPGA SDK for OpenCL Programming Guide Prerequisites

The Intel FPGA SDK for OpenCL Programming Guide assumes that you are
knowledgeable in OpenCL concepts and application programming interfaces (APIs). It
also assumes that you have experience creating OpenCL applications and are familiar
with the OpenCL Specification version 1.0.

Before using the Intel FPGA SDK for OpenCL or the Intel FPGA Runtime Environment
(RTE) for OpenCL to program your device, familiarize yourself with the respective
getting started guides. This document assumes that you have performed the following
tasks:

e For developing and deploying OpenCL kernels, download the tar file and run the
installers to install the SDK, the Quartus® Prime software, and device support.

e For deployment of OpenCL kernels, download and install the RTE.

e If you want to use the SDK or the RTE to program a Cyclone® V SoC Development
Kit, you also have to download and install the SoC Embedded Design Suite (EDS).

e Install and set up your FPGA board.

e Program your device with the device-compatible version of the hello_world
example OpenCL application

If you have not performed the tasks described above, refer to the SDK's getting
starting guides for more information.

Prior to creating an OpenCL design and programming your FPGA board, review the
Intel FPGA SDK for OpenCL allocation limits.

Related Links
e Intel FPGA SDK for OpenCL Allocation Limits on page 150
e OpenCL References Pages

1 The Intel FPGA SDK for OpenCL is based on a published Khronos Specification, and has passed
the Khronos Conformance Testing Process. Current conformance status can be found at
www.khronos.org/conformance.

2 OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission of the Khronos
Group™.

© 2016 Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX,

Megacore, NIOS, Quartus and Stratix words and logos are trademarks of Intel Corporation in the US and/or

other countries. Other marks and brands may be claimed as the property of others. Intel warrants performance Iso

of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, 900}:2008
but reserves the right to make changes to any products and services at any time without notice. Intel assumes Registered
no responsibility or liability arising out of the application or use of any information, product, or service

described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the

latest version of device specifications before relying on any published information and before placing orders for

products or services.

http://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/
https://www.khronos.org/conformance/
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

] ®
l n tel) 1 Intel FPGA SDK for OpenCL Programming Guide

e OpenCL Specification version 1.0

e Intel FPGA SDK for OpenCL Getting Started Guide

e Intel FPGA RTE for OpenCL Getting Started Guide

e Intel FPGA SDK for OpenCL Cyclone V SoC Getting Started Guide

1.2 Intel FPGA SDK for OpenCL FPGA Programming Flow

Figure 1.

The Intel FPGA SDK for OpenCL programs an FPGA with an OpenCL application in a
two-step process. The Intel FPGA SDK for OpenCL Offline Compiler first compiles your
OpenCL kernels. The host-side C compiler compiles your host application and then
links the compiled OpenCL kernels to it.

Schematic Diagram of the Intel FPGA SDK for OpenCL Programming Model

Host Code Path Kernel Code Path Custom Platform Path
Port and/or
Intel FPGA for OpenCL Host source code Kernel source code Board-specific customize to Intel FPGA SDK for OpenCL
Runtime Environment (.cor.cpp) (.cl) Custom Platform Design target Reference Platform Design
platform
; . ; Quartus Prime
Host compller‘ ‘ SDK Offline Compiler Design Sute
‘ i ‘ ‘ X ‘ SDK's board directory
Host binary FPGA image (.aocx) for version-compatible
target platform
]
./ Execute host
application

on host

Final computation
results

Runtime Execution

D Board developer-created item D SDK user-created item D Intel-supplied tool or design D Board developer-supplied item

m Third-party-supplied or open source tool m Tool-generated item O Process or action

Three main parts in the SDK's programming model:

e The host application and the host compiler

e The OpenCL kernel and the offline compiler

e The Custom Platform

The Custom Platform provides the board design. The offline compiler targets the board

design when compiling the OpenCL kernel to generate the hardware image. The host
then runs the host application to execute the hardware image onto the FPGA.

Intel FPGA SDK for OpenCL Programming Guide

6

http://www.khronos.org/registry/cl/specs/opencl-1.0.pdf
https://documentation.altera.com/#/link/mwh1391807309901/mwh1391807297091/en-us
https://documentation.altera.com/#/link/mwh1391808173911/ewa1401738888275/en-us
https://documentation.altera.com/#/link/ewa1400875619714/ewa1400875828418/en-us

] ®
1 Intel FPGA SDK for OpenCL Programming Guide < l n tel)

1.3 Intel FPGA SDK for OpenCL Offline Compiler Kernel Compilation
Flows

The Intel FPGA SDK for OpenCL Offline Compiler can create your FPGA hardware

configuration file in a one-step or a multistep process. The complexity of your kernel
dictates the compilation option you implement.

Figure 2. The Intel FPGA SDK for OpenCL FPGA Programming Flow

Kernel Source | |Kernel Source | | Kernel Source Host Code
Code #1 (.cl) | | Code #2 (.cl) | | Code #3 (.cl)

Kernel Source | | Kernel Source | | Kernel Source

Code #4 (ucl) | | Code #5 (.cl) | | Code #6 (.cl)

A
Offline Compiler for Standard
OpenCL Kernels CCompiler

Offline Compiler for
OpenCL Kernels

Consolidated Kernel Binary A

(.a0co, .a0cx) Host Binary

Consolidated Kernel Binary B
(.aoco, .a0cx)

Load .a0cx
into memory

Kernel Binary B

Kernel Binary A
(.a0cx)

An OpenCL kernel source file (.cl) contains your OpenCL source code. The offline
compiler groups one or more kernels into a temporary file and then compiles this file
to generate the following files and folders:

Intel FPGA SDK for OpenCL Programming Guide
7

1 Intel FPGA SDK for OpenCL Programming Guide

A _aoco object file is an intermediate object file that contains information for later
stages of the compilation.

A_aocx executable file is the hardware configuration file and contains information
necessary at runtime.

The <your _kernel _fil enane> folder or subdirectory, which contains data
necessary to create the .aocx file.

The offline compiler creates the .aocx file from the contents of the
<your_kernel_filename> folder or subdirectory. It also incorporates information from
the .aoco file into the .aocx file during hardware compilation. The .aocx file
contains data that the host application uses to create program objects for the target
FPGA. The host application loads these program objects into memory. The host
runtime then calls these program objects from memory and programs the target FPGA
as required.

1.3.1 One-Step Compilation for Simple Kernels

By default, the Intel FPGA SDK for OpenCL Offline Compiler compiles your OpenCL
kernel and creates the hardware configuration file in a single step. Choose this
compilation option only if your OpenCL application requires minimal optimizations.

The following figure illustrates the OpenCL kernel design flow that has a single
compilation step.

Figure 3. One-Step OpenCL Kernel Compilation Flow

} <your_kernel_filename>.cl ;‘—

aoc <your_kernel_filename>.cl [--report]
Duration of compilation: hours

Syntactic > YES

Errors?

NO

|

‘<yaur_kernel_ ﬁlename>.ao(o‘

Estimated resource usage summary

in <your_kernel_filename>.log 4>{<yaur_kemel_ filename>.aocx %7 e
X <your_kernel_filename>.log
(and on-screen with --report)

Single
work-item kernel
performance

satisfactory?

Execute on
FPGA

Resource usage
acceptable?

Legend
[File Command [Kemnel Execution abc For single work-item kernel

A successful compilation results in the following files and reports:

Intel FPGA SDK for OpenCL Programming Guide

8

1 Intel FPGA SDK for OpenCL Programming Guide

Attention:

e A _aoco file
e A _aocx file

e Inthe <your kernel filenanme>/<your_kernel fil ename>.log file, the
estimated resource usage summary provides a preliminary assessment of area
usage. If you have a single work-item kernel, the optimization report identifies
performance bottlenecks.

It is very time consuming to iterate on your design using the one-step compilation
flow. For each iteration, you must perform a full compilation, which takes hours. Then
you must execute the kernel on the FPGA before you can assess its performance.

Related Links

Compiling Your Kernel to Create Hardware Configuration File on page 89
You can compile an OpenCL kernel and create the hardware configuration file (that
is, the aocx file) in a single step.

1.3.2 Multistep Intel FPGA SDK for OpenCL Design Flow

Choose the multistep Intel FPGA SDK for OpenCL design flow if you want to iterate on
your OpenCL kernel design to implement performance-improving optimizations .

The figure below outlines the stages in the SDK's design flow. The steps in the design
flow serve as checkpoints for identifying functional errors and performance
bottlenecks. They allow you to modify your OpenCL kernel code without performing a
full compilation after each iteration.

intel)

Intel FPGA SDK for OpenCL Programming Guide

9

intel.

1 Intel FPGA SDK for OpenCL Programming Guide

Figure 4. The Multistep Intel FPGA SDK for OpenCL Design Flow

\
\
k

i <your_kernel_filename>.cl
Intermediate Compilation l

aoc-c <your_kernel_filename> .cl [--report]
Duration of compilation: minutes

<your_kernel_filename>.aoco

v
l Estimated resource usage summary
‘<your_kernel_filename>.aoco ‘ in <your_kernel_filename>.log
(and on-screen with --report)
J

Optimization Repot in
<your_kernel_filename>.log

Emulation

aoc -march=emulator <your_kernel_filename> .l
Duration of compilation: seconds

Execute on
)) <your_kernel_filename>.aocx
emulation device

ingle Kernel
work-item performance
kernel? atisfactory?

YES

Review HTML Report

<your_kernel_filename>/reports/report.html

Estimated kernel
performance data
acceptable?

Profiling

aoc --profile <your_kernel_filename>.cl
Duration of compilation: hours

‘<your_kemel_ﬁlename>.aocx ‘ profile.mon

!

Execute kernel
on FPGA

Legend)
I:l File aodl report <your_kernel_filename>.aocx profile.mon
Command l
[Kemel Execution
|:| GUI Profiler
abc Single work-item kernel step &l

Kernel
performance
satisfactory?

Full Deployment

J aoc <your_kernel_filename>.cl
—\ Duration of compilation: hours

NO

YES

Execute kernel
‘ <your_kernel_filename>.aocx }—v on FPGA

Intel FPGA SDK for OpenCL Programming Guide
10

™ ®
1 Intel FPGA SDK for OpenCL Programming Guide l n tel)

The SDK's design flow includes the following steps:

1.

Intermediate compilation

The intermediate compilation step checks for syntatic errors. It then generates
a -aoco file without building the hardware configuration file. The estimated
resource usage summary in the <your kernel fil enanme>/

<your _kernel fil enane>.log file can provide insight into the type of kernel
optimizations you can perform. .

Emulation

Assess the functionality of your OpenCL kernel by executing it on one or multiple
emulation devices on an x86-64 host. For Linux systems, the Emulator offers
symbolic debug support. Symbolic debug allows you to locate the origins of
functional errors in your kernel code.

Review HTML Report

Review the <your kernel fil enane>/reports/report.html file of your
OpenCL application to determine whether the estimated kernel performace data is
acceptable. The HTML report also provides suggestions on how you can modify
your kernel to increase performance.

Profiling

Instruct the Intel FPGA SDK for OpenCL Offline Compiler to instrument
performance counters in the Verilog code in the .aocx file. During execution, the
performance counters collect performance information which you can then review
in the Profiler GUI.

Full deployment

If you are satisfied with the performance of your OpenCL kernel throughout the
design flow, perform a full compilation. You can then execute the .aocx file on the
FPGA.

Related Links

Reviewing Your Kernel's report.html File on page 106
To launch the HTML report, open the report._html file in the
<your_kernel_filename>/reports directory.

Compiling Your OpenCL Kernel on page 89
The Intel FPGA SDK for OpenCL offers a list of compiler options that allows you
to customize the kernel compilation process.

Emulating and Debugging Your OpenCL Kernel on page 99
The Intel FPGA SDK for OpenCL Emulator assesses the functionality of your
kernel.

Profiling Your OpenCL Kernel on page 106
The Intel FPGA SDK for OpenCL Profiler measures and reports performance
data collected during OpenCL kernel execution on the FPGA.

Intel FPGA SDK for OpenCL Programming Guide
11

] ®
< l n tel) 1 Intel FPGA SDK for OpenCL Programming Guide

1.4 Obtaining General Information on Software, Compiler, and
Custom Platform

The Intel FPGA SDK for OpenCL includes two sets of command options: the SDK utility
commands (aocl <command_opt i on>) and the offline compiler commands (a0C
<conmand_opt i on>). Each set of commands includes options you can invoke to
obtain general information on the software, the compiler, and the Custom Platform.

Displaying the Software Version (version) on page 12
To display the version of the Intel FPGA SDK for OpenCL, invoke the version
utility command.

Displaying the Compiler Version (--version) on page 12
To display the version of the Intel FPGA SDK for OpenCL Offline Compiler, invoke
the --version compiler command.

Listing the Intel FPGA SDK for OpenCL Utility Command Options (help) on page 13
To display information on the Intel FPGA SDK for OpenCL utility command options,
invoke the help utility command.

Listing the Intel FPGA SDK for OpenCL Offline Compiler Command Options (no
argument, --help, or -h) on page 13
To display information on the Intel FPGA SDK for OpenCL Offline Compiler
command options, invoke the compiler command without an argument, or invoke
the compiler command with the -—help or -h command option.

Listing the Available FPGA Boards in Your Custom Platform (--list-boards) on page 13
To list the FPGA boards available in your Custom Platform, include the —-list-
boards option in the aoc command.

Displaying the Compilation Environment of an OpenCL Binary (env) on page 14
To display the Intel FPGA SDK for OpenCL Offline Compiler's input arguments and
the environment for a compiled OpenCL design, invoke the env utility command.

1.4.1 Displaying the Software Version (version)

To display the version of the Intel FPGA SDK for OpenCL, invoke the version utility
command.

* At the command prompt, invoke the aocl version command.
Example output:

aocl <version>_<build> (Intel(R) FPGA SDK for OpenCL(TM),
Version <version> Build <buil d>, Copyright (C) <year> Intel
Corporation)

1.4.2 Displaying the Compiler Version (--version)

To display the version of the Intel FPGA SDK for OpenCL Offline Compiler, invoke the
—-version compiler command.

* At a command prompt, invoke the aoC —--version command.
Example output:

Intel(R) FPGA SDK for OpenCL(TM), 64-Bit Offline Compiler
Version <version> Build <bui |l d>
Copyright (C) <year> Intel Corporation

Intel FPGA SDK for OpenCL Programming Guide

] ®
1 Intel FPGA SDK for OpenCL Programming Guide < l n tel)

1.4.3 Listing the Intel FPGA SDK for OpenCL Utility Command Options
(help)

To display information on the Intel FPGA SDK for OpenCL utility command options,
invoke the help utility command.

* At a command prompt, invoke the aocl help command.
The SDK categorizes the utility command options based on their functions. It also
provides a description for each option.

1.4.3.1 Displaying Information on an Intel FPGA SDK for OpenCL Utility
Command Option (help <command_option>)

To display information on a specific Intel FPGA SDK for OpenCL utility command
option, include the command option as an argument of the help utility command.

* At a command prompt, invoke the aocl help <command_opti on> command.

For example, to obtain more information on the install utility command option,
invoke the aocl help install command.

Example output:

aocl install - Installs a board onto your host system.

Usage: aocl install

Description:

This command installs a board®"s drivers and other necessary software for the

host operating system to communicate with the board.
For example this might install PCle drivers.

1.4.4 Listing the Intel FPGA SDK for OpenCL Offline Compiler Command
Options (no argument, --help, or -h)

To display information on the Intel FPGA SDK for OpenCL Offline Compiler command
options, invoke the compiler command without an argument, or invoke the compiler
command with the ——help or -h command option.

e At a command prompt, invoke one of the following commands:
— aocC
— aoc --help
— aoc -h

The SDK categorizes the offline compiler command options based on their
functions. It also provides a description for each option.

1.4.5 Listing the Available FPGA Boards in Your Custom Platform (--list-
boards)

To list the FPGA boards available in your Custom Platform, include the —-list-
boards option in the aoc command.

Intel FPGA SDK for OpenCL Programming Guide
13

™ ®
l n tel) 1 Intel FPGA SDK for OpenCL Programming Guide

To view the list of available boards in your Custom Platform, you must first set the
environment variable AOCL_BOARD_ PACKAGE_ROOT to point to the location of your
Custom Platform.

* At a command prompt, invoke the aoc —--list-boards command.

The Intel FPGA SDK for OpenCL Offline Compiler generates an output that
resembles the following:

Board list:
<board_name_1>
<board_name_2>

Where <board_name_N> is the board name you use in your aoc command to
target a specific FPGA board.

1.4.6 Displaying the Compilation Environment of an OpenCL Binary (env)

To display the Intel FPGA SDK for OpenCL Offline Compiler's input arguments and the
environment for a compiled OpenCL design, invoke the env utility command.

e At the command prompt, invoke the aocl env <object fil e _nane> or the
aocl env <executabl e fil e _name> command,

where <object_file_name> is the name of the .aoco file of your OpenCL kernel,
and the <executable_file_name> is the name of the .aocx file of your kernel.

Output for the example command aocl env vector_add.aocx:

INPUT_ARGS=-march=emulator -v device/vector_add.cl -o bin/vector_add.aocx
BUILD_NUMBER=90

ACL_VERSION=16.1.0

OPERATING_SYSTEM=Iinux

PLATFORM_TYPE=s5_ net

1.5 Managing an FPGA Board

The Intel FPGA SDK for OpenCL includes utility commands you can invoke to install,
uninstall, diagnose, and program your FPGA board.

You can install multiple Custom Platforms simultaneously on the same system. To use
the SDK utilities, such as aocl diagnose with multiple Custom Platforms, you must
set the AOCL_BOARD_PACKAGE_ROOT environment variable to point to the location
of the Custom Platform subdirectory of the board on which you wish to run the utility.
The Custom Platform subdirectory contains the board_env.xml file. To run the SDK
utilities on a different Custom Platform, you must update the
AOCL_BOARD_PACKAGE_ROOT environment variable to point to the location of the
Custom Platform subdirectory of that specific board.

In a system with multiple Custom Platforms, ensure that the host program uses the
Altera Client Driver (ACD) to discover the boards rather than linking to the Custom
Platforms' memory-mapped device (MMD) libraries directly. As long as ACD is correctly
set up for Custom Platform, ACD will find all the installed boards at runtime.

Installing an FPGA Board (install) on page 15
To install your board into the host system, invoke the install utility command.

Intel FPGA SDK for OpenCL Programming Guide
14

] ®
1 Intel FPGA SDK for OpenCL Programming Guide l n tel)

Uninstalling the FPGA Board (uninstall) on page 17
To uninstall an FPGA board, invoke the uninstall utility command, uninstall the
Custom Platform, and unset the relevant environment variables.

Querying the Device Name of Your FPGA Board (diagnose) on page 17
When you query a list of accelerator boards, the OpenCL software produces a list of
installed devices on your machine in the order of their device names.

Running a Board Diagnostic Test (diagnose <device_name>) on page 18
To perform a detailed diagnosis on a specific FPGA board, include <device_name>
as an argument of the diagnose utility command.

Programming the FPGA Offline or without a Host (program <device_name>) on page
18
To program an FPGA device offline or without a host, invoke the program utility
command.

Programming the Flash Memory (flash <device_name>) on page 18
If supported, invoke the flash utility command to initialize the FPGA with a
specified startup configuration.

Related Links

e Installing an FPGA Board (install) on page 15
To install your board into the host system, invoke the install utility
command.

e Linking Your Host Application to the Khronos ICD Loader Library on page 80
The Intel FPGA SDK for OpenCL supports the OpenCL ICD extension from the
Khronos Group.

1.5.1 Installing an FPGA Board (install)

Attention:

Before creating an OpenCL application for an FPGA board, you must first download
and install the Custom Platform from your board vendor. Most Custom Platform
installers require administrator privileges. To install your board into the host system,
invoke the install utility command.

The steps below outline the board installation procedure. Some Custom Platforms
require additional installation tasks. Consult your board vendor's documentation for
further information on board installation.

If you are installing the Cyclone V SoC Development Kit for use with the Cyclone V
SoC Development Kit Reference Platform (c5soc), refer to Installing the Cyclone V SoC
Development Kit in the Intel FPGA SDK for OpenCL Cyclone V SoC Getting Started
Guide for more information.

Follow your board vendor's instructions to connect the FPGA board to your system.

2. Download the Custom Platform for your FPGA board from your board vendor's
website. To download an Intel FPGA SDK for OpenCL Reference Platform (for
example, the Stratix® V Network Reference Platform (s5_net)), refer to the Intel
FPGA SDK for OpenCL FPGA Platforms page on the Altera website.

3. Install the Custom Platform in a directory that you own (that is, not a system
directory).

4. Set the user environment variable AOCL_BOARD_PACKAGE_ROQT to point to the
location of the Custom Platform subdirectory containing the board_env.xml file.

Intel FPGA SDK for OpenCL Programming Guide
15

1 Intel FPGA SDK for OpenCL Programming Guide

For example, for s5_net, set AOCL_BOARD _PACKAGE _ROOT to point to the
<path_to_s5 net>/s5 net directory.

Set the QUARTUS_ROOTDIR_OVERRIDE user environment variable to point to the
correct Quartus Prime software installation directory.

If you have an Arria® 10 device, set QUARTUS_ROOTDIR_OVERRIDE to point to
the installation directory of the Quartus Prime Pro Edition software. Otherwise, set
QUARTUS_ROOTDIR_OVERRIDE to point to the installation directory of the
Quartus Prime Standard Edition software.

Add the paths to the Custom Platform libraries (for example, the memory-mapped
(MMD) library) to the PATH (Windows) or LD_LIBRARY_PATH (Linux) environment
variable setting.

For example, if you use s5_net, the Windows PATH environment variable setting is
%AOCL_BOARD PACKACE ROOT%\windows64\bin. The Linux LD_LIBRARY PATH
setting is $AOCCL_BQOARD PACKAGE ROOT/I1i1nux64/1ib.

The Intel FPGA SDK for OpenCL Getting Started Guide contains more information
on the init_opencl script. For information on setting user environment variables
and running the Init_opencl script, refer to the Setting the Intel FPGA SDK for
OpenCL User Environment Variables section.

Remember: You need administrative rights to install a board. To run a Windows
command prompt as an administrator, click Start O All Programs [
Accessories. Under Accessories, right click Command Prompt, In
the right-click menu, click Run as Administrator.

Invoke the command aocl install at a command prompt.

Invoking aocl install also installs a board driver that allows communication
between host applications and hardware kernel programs.

To query a list of FPGA devices installed in your machine, invoke the aocl
diagnose command.

The software generates an output that includes the <device_name>, which is an
acl number that ranges from acl0 to acl31.

For more information on querying the <device_name> of your accelerator board,
refer to the Querying the Device Name of Your FPGA Board section.

To verify the successful installation of the FPGA board, invoke the command aocl

diagnose <devi ce_name> to run any board vendor-recommended diagnostic
test.

Related Links

Installing the Cyclone V SoC Development Kit

Querying the Device Name of Your FPGA Board (diagnose) on page 17
When you query a list of accelerator boards, the OpenCL software produces a
list of installed devices on your machine in the order of their device names.

Setting the Intel FPGA SDK for OpenCL User Environment Variables (Windows)
Setting the Intel FPGA SDK for OpenCL User Environment Variables (Linux)
Intel FPGA SDK for OpenCL FPGA Platforms page

Intel FPGA SDK for OpenCL Programming Guide

16

https://documentation.altera.com/#/link/ewa1400875619714/ewa1393967079027/en-us
https://documentation.altera.com/#/link/mwh1391807309901/ewa1416586552764/en-us
https://documentation.altera.com/#/link/ewa1400875619714/ewa1416591141201/en-us
https://www.altera.com/products/design-software/embedded-software-developers/opencl/developer-zone.html#fpgaplatforms

™ ®
1 Intel FPGA SDK for OpenCL Programming Guide l n tel)

1.5.2 Uninstalling the FPGA Board (uninstall)

To uninstall an FPGA board, invoke the uninstall utility command, uninstall the
Custom Platform, and unset the relevant environment variables. You must uninstall
the existing FPGA board if you migrate your OpenCL application to another FPGA
board that belongs to a different Custom Platform.

To uninstall your FPGA board, perform the following tasks:

1.

Following your board vendor's instructions to disconnect the board from your
machine.

Invoke the aocl uninstall utility command to remove the current host
computer drivers (for example, PCIe® drivers). The Intel FPGA SDK for OpenCL
uses these drivers to communicate with the FPGA board.

Uninstall the Custom Platform.

Unset the LD_LIBRARY_PATH (for Linux) or PATH (for Windows) environment
variable.

Unset the AOCL_ BOARD_PACKAGE_ROOT environment variable.

1.5.3 Querying the Device Name of Your FPGA Board (diagnose)

Some OpenCL software utility commands require you to specify the device name
(<device_name>). The <device_name> refers to the acl number (e.g. acl0 to acl31)
that corresponds to the FPGA device. When you query a list of accelerator boards, the
OpenCL software produces a list of installed devices on your machine in the order of
their device names.

To query a list of installed devices on your machine, type aocl diagnose at a
command prompt.
The software generates an output that resembles the example shown below:

aocl diagnose: Running diagnostic from ALTERAOCLSDKROOT/board/<boar d_nanme>/
<pl at f or m>/1ibexec

Verified that the kernel mode driver is installed on the host machine.

Using board package from vendor: <board_vendor_nane>
Querying information for all supported devices that are installed on the host
machine ...

device_name Status Information

aclo Passed <descri ptive_board_name>
PCle dev_id = <device_|l D>, bus:slot.func = 02:00.00,
at Gen 2 with 8 lanes.
FPGA temperature=43.0 degrees C.

acll Passed <descri ptive_board_nanme>
PCle dev_id = <device_| D>, bus:slot.func = 03:00.00,
at Gen 2 with 8 lanes.
FPGA temperature = 35.0 degrees C.

Found 2 active device(s) installed on the host machine, to perform a full
diagnostic on a specific device, please run aocl diagnose <devi ce_nane>

DIAGNOSTIC_PASSED

Intel FPGA SDK for OpenCL Programming Guide
17

] ®
< l n tel) 1 Intel FPGA SDK for OpenCL Programming Guide

Related Links

Probing the OpenCL FPGA Devices on page 84
The host must identify the number of OpenCL FPGA devices installed into the
system.

1.5.4 Running a Board Diagnostic Test (diagnose <device_name>)

To perform a detailed diagnosis on a specific FPGA board, include <device_name> as
an argument of the diagnose utility command.

* At a command prompt, invoke the aocl diagnhose <devi ce_nane>
command, where <device_name> is the acl number (for example, acl0 to acl31)
that corresponds to your FPGA device.

You can identify the <device_name> when you query the list of installed boards in
your system.

Consult your board vendor's documentation for more board-specific information on
using the diagnose utility command to run diagnostic tests on multiple FPGA boards.

1.5.5 Programming the FPGA Offline or without a Host (program
<device_name>)

To program an FPGA device offline or without a host, invoke the program utility
command.

* At a command prompt, invoke the aocl program <devi ce_nane>
<your kernel fil ename>_aocx command

where:

<device_name> refers to the acl number (for example, acl0 to acl31) that
corresponds to your FPGA device, and

<your _kernel _fil ename>_aocx is the executable file you use to program the
hardware.

Note: To program an SoC such as the Cyclone V SoC, you must specify the full path of the
device when invoking the program utility command. For example, aocl
program /dev/<devi ce_nanme> <your _kernel _fil ename>_aocx.

1.5.6 Programming the Flash Memory (flash <device_name>)

If supported, invoke the Flash utility command to initialize the FPGA with a specified
startup configuration.

Note: For instructions on programming the micro SD flash card of the Cyclone V SoC
Development Kit, refer to the Writing an SD Card Image onto the Micro SD Flash Card
section of the Intel FPGA SDK for OpenCL Cyclone V SoC Getting Started Guide.

Intel FPGA SDK for OpenCL Programming Guide
18

] ®
1 Intel FPGA SDK for OpenCL Programming Guide l n tel)

* At a command prompt, invoke the aocl flash <devi ce_nane>
<your kernel fil ename>_aocx command

where:

<device_name> refers to the acl number (for example, acl0 to acl31) that
corresponds to your FPGA device, and

<your _kernel _fil enanme>_aocx is the executable file you use to program the
hardware.

Related Links
e Writing an SD Card Image onto the Micro SD Flash Card on Windows
e Writing an SD Card Image onto the Micro SD Flash Card on Linux

1.6 Structuring Your OpenCL Kernel

Intel offers recommendations on how to structure your OpenCL kernel code. Consider
implementing these programming recommendations when you create a kernel or
modify a kernel written originally to target another architecture.

Guidelines for Naming the Kernel on page 20
Intel recommends that you include only alphanumeric characters in your file
names.

Programming Strategies for Optimizing Data Processing Efficiency on page 20
Optimize the data processing efficiency of your kernel by implementing strategies
such as unrolling loops, setting work-group sizes, and specifying compute units and
work-items.

Programming Strategies for Optimizing Memory Access Efficiency on page 23
Optimize the memory access efficiency of your kernel by implementing strategies
such as specifying local memory pointer size and specifying global memory buffer
location.

Implementing the Intel FPGA SDK for OpenCL Channels Extension on page 24
The Intel FPGA SDK for OpenCL channels extension provides a mechanism for
passing data to kernels and synchronizing kernels with high efficiency and low
latency.

Implementing OpenCL Pipes on page 42
The Intel FPGA SDK for OpenCL provides preliminary support for OpenCL pipe
functions.

Using Predefined Preprocessor Macros in Conditional Compilation on page 58
You may take advantage of predefined preprocessor macros that allow you to
conditionally compile portions of your kernel code.

Declaring __constant Address Space Qualifiers on page 59
There are several limitations and workarounds you must consider when you include
___constant address space qualifiers in your kernel.

Including Structure Data Types as Arguments in OpenCL Kernels on page 60
Convert each structure parameter (struct) to a pointer that points to a structure.

Inferring a Register on page 63
In general, the offline compiler chooses registers if the access to a variable is fixed
and does not require any dynamic indexes.

Enabling Double Precision Floating-Point Operations on page 65

Intel FPGA SDK for OpenCL Programming Guide
19

https://documentation.altera.com/#/link/ewa1400875619714/ewa1401302417882/en-us
https://documentation.altera.com/#/link/ewa1400875619714/ewa1401302802846/en-us

™ ®
l n tel) 1 Intel FPGA SDK for OpenCL Programming Guide

The Intel FPGA SDK for OpenCL offers preliminary support for all double precision
floating-point functions.

Single-Cycle Floating-Point Accumulator for Single Work-Item Kernels on page 65
Single work-item kernels that perform accumulation in a loop can leverage the
Intel FPGA SDK for OpenCL Offline Compiler's single-cycle floating-point
accumulator feature.

1.6.1 Guidelines for Naming the Kernel

Intel recommends that you include only alphanumeric characters in your file names.
e Begin a file name with an alphanumeric character.

If the file name of your OpenCL application begins with a nonalphanumeric
character, compilation fails with the following error message:

Error: Quartus compilation FAILED
See quartus_sh_compile.log for the output log.

¢ Do not differentiate file names using nonalphanumeric characters.

The Intel FPGA SDK for OpenCL Offline Compiler translates any nonalphanumeric
character into an underscore ("_"). If you differentiate two file names by ending
them with different nonalphanumeric characters only (for example,
myKernel#.cl and myKernelé&.cl), the offline compiler translates both file
names to <your kernel fil enane>_.cl (for example, myKernel .cl).

e For Windows system, ensure that the combined length of the kernel file name and
its file path does not exceed 260 characters.

64-bit Windows 7 and Windows 8.1 has a 260-character limit on the length of a
file path. If the combined length of the kernel file name and its file path exceeds
260 characters, the offline compiler generates the following error message:

The filename or extension is too long.
The system cannot find the path specified.

In addition to the compiler error message, the following error message appears in
the <your kernel fil enane>/quartus_sh_compile.log file:

Error: Can’t copy <file_type> Ffiles: Can’t open

<your _kernel _fil ename> for write: No such file or directory

For Windows 10, you have the option to to remove the 260-character limit. For
more information, refer to Microsoft's documentation.

¢ Do not name your .cl OpenCL kernel source file "kernel". Naming the source file
kernel .cl causes the offline compiler to generate intermediate design files that
have the same names as certain internal files, which leads to an compilation error.

1.6.2 Programming Strategies for Optimizing Data Processing Efficiency

Optimize the data processing efficiency of your kernel by implementing strategies such
as unrolling loops, setting work-group sizes, and specifying compute units and work-
items.

Intel FPGA SDK for OpenCL Programming Guide
20

™ ®
1 Intel FPGA SDK for OpenCL Programming Guide l n tel)

1.6.2.1 Unrolling a Loop

Attention:

The Intel FPGA SDK for OpenCL Offline Compiler might unroll simple loops even if they
are not annotated by a pragma.

To direct the offline compiler to unroll a loop, insert an unroll kernel pragma in the
kernel code preceding a loop you wish to unroll.

e Provide an unroll factor whenever possible. To specify an unroll factor N, insert the
#pragma unroll <N> directive before a loop in your kernel code.

The offline compiler attempts to unroll the loop at most <N> times.

Consider the code fragment below. By assigning a value of 2 as an argument to
#pragma unroll, you direct the offline compiler to unroll the loop twice.

#pragma unroll 2
for(size_t k = 0; k < 4; k++)

mac += data_in[(gid * 4) + k] * coeff[k];
¥

e To unroll a loop fully, you may omit the unroll factor by simply inserting the
#pragma unroll directive before a loop in your kernel code.

The offline compiler attempts to unroll the loop fully if it understands the trip
count. The offline compiler issues a warning if it cannot execute the unroll request.

1.6.2.2 Specifying Work-Group Sizes

Specify a maximum or required work-group size whenever possible. The Intel FPGA
SDK for OpenCL Offline Compiler relies on this specification to optimize hardware
usage of the OpenCL kernel without involving excess logic.

If you do not specify a max_work _group_size or a reqd_work_group_size
attribute in your kernel, the work-group size assumes a default value depending on
compilation time and runtime constraints.

e If your kernel contains a barrier, the offline compiler sets a default maximum
work-group size of 256 work-items.

e If your kernel contains a barrier or refers to the local work-item ID, or if you query
the work-group size in your host code, the runtime defaults the work-group size to
one work-item.

e If your kernel does not contain a barrier or refer to the local work-item ID, or if
your host code does not query the work-group size, the runtime defaults the work-
group size to the global NDRange size.

To specify the work-group size, modify your kernel code in the following manner:

Intel FPGA SDK for OpenCL Programming Guide
21

1 Intel FPGA SDK for OpenCL Programming Guide

To specify the maximum number of work-items that the offline compiler may
allocate to a work-group in a kernel, insert the max_work_group_size(N)
attribute in your kernel source code.

For example:

__attribute__((max_work_group_size(512)))
__kernel void sum (__global const float * restrict a,
__global const float * restrict b,
__global float * restrict answer)
{
size_t gid = get_global_id(0);
answer[gid] = a[gid] + b[gid];

To specify the required number of work-items that the offline compiler allocates to
a work-group in a kernel, insert the reqd_work_group_size(X, Y, 2)
attribute to your kernel source code.

For example:

__attribute__ ((reqd_work_group_size(64,1,1)))
__kernel void sum (__global const float * restrict a,
__global const float * restrict b,
__global float * restrict answer)

{
size_t

gid = get_global_id(0);
answer[gid

1 = a[gid] + b[gid];

The offline compiler allocates the exact amount of hardware resources to manage
the work-items in a work-group.

1.6.2.3 Specifying Number of Compute Units

Caution:

To increase the data-processing efficiency of an OpenCL kernel, you can instruct the
Intel FPGA SDK for OpenCL Offline Compiler to generate multiple kernel compute
units. Each compute unit is capable of executing multiple work-groups simultaneously.

Multiplying the number of kernel compute units increases data throughput at the
expense of global memory bandwidth contention among compute units.

To specify the number of compute units for a kernel, insert the
num_compute_units(N) attribute in the kernel source code.

For example, the code fragment below directs the offline compiler to instantiate
two compute units in a kernel:

__attribute__ ((num_compute_units(2)))

__kernel void test(__global const float * restrict a,
__global const float * restrict b,
__global float * restrict answer)

size_t gid = get_global_id(0);
answer[gid] = a[gid] + b[gid];

The offline compiler distributes work-groups across the specified number of
compute units.

Intel FPGA SDK for OpenCL Programming Guide

22

™ ®
1 Intel FPGA SDK for OpenCL Programming Guide l n tel)

1.6.2.4 Specifying Number of SIMD Work-Items

To increase the data-processing efficiency of an OpenCL kernel, specify the number of
work-items within a work-group that the Intel FPGA SDK for OpenCL Offline Compiler
executes in a single instruction multiple data (SIMD) manner.

Important: Introduce the num_simd_work items attribute in conjunction with the
reqd_work_group_size attribute. The num_simd_work_items attribute you
specify must evenly divide the work-group size you specify for the
reqd_work_group_size attribute.

e To specify the number of SIMD work-items in a work-group, insert the
num_simd_work_item(N) attribute in the kernel source code.

For example, the code fragment below assigns a fixed work-group size of 64 work-

items to a kernel. It then consolidates the work-items within each work-group into
four SIMD vector lanes:

__attribute__ ((num_simd_work_items(4)))

__attribute__ ((reqd_work_group_size(64,1,1)))

__kernel void test(__global const float * restrict a,
__global const float * restrict b,
__global float * restrict answer)

size_t gid = get_global_id(0);
answer[gid] = a[gid] + b[gid];

The offline compiler replicates the kernel datapath according to the value you
specify for num_simd_work_items whenever possible.

1.6.3 Programming Strategies for Optimizing Memory Access Efficiency

Optimize the memory access efficiency of your kernel by implementing strategies such
as specifying local memory pointer size and specifying global memory buffer location.

1.6.3.1 Specifying Pointer Size in Local Memory

Optimize local memory hardware footprint (that is, size) by specifying a pointer size in
bytes.

e To specify a pointer size other than the default size of 16 kilobytes (kB), include
the local _mem_size(N) attribute in the pointer declaration within your kernel
source code.

For example:

__kernel void myLocalMemoryPointer(
local float * A,

__attribute__ ((local_mem_size(1024))) _ local float * B,
__attribute__ ((local_mem_size(32768))) _ local float * C)

//statements

In the myLocalMemoryPointer kernel, 16 kB of local memory (default) is

allocated to pointer A, 1 kB is allocated to pointer B, and 32 kB is allocated to
pointer C.

Intel FPGA SDK for OpenCL Programming Guide
23

™ ®
l n tel) 1 Intel FPGA SDK for OpenCL Programming Guide

1.6.3.2 Specifying Buffer Location in Global Memory

Attention:

Specify the global memory type to which the host allocates a buffer.

1. Determine the names of the global memory types available on your FPGA board in
the following manners:

— Refer to the board vendor's documentation for more information.

— Find the names in the board_spec.xml file of your board Custom Platform.
For each global memory type, the name is the unique string assigned to the
name attribute of the global _mem element.

2. To instruct the host to allocate a buffer to a specific global memory type, insert
the buffer_location(*'<nenory_t ype>") attribute, where <memory_type>
is the name of the global memory type provided by your board vendor.

For example:

_ _kernel void foo(__global __ attribute__ ((buffer_location(*'DDR
__global __attribute__((buffer_location(*"'QDR

))) int *x,

D)) int *y)

If you do not specify the buffer_location attribute, the host allocates the
buffer to the default memory type automatically. To determine the default memory
type, consult the documentation provided by your board vendor. Alternatively, in
the board_spec.xml file of your Custom Platform, search for the memory type
that is defined first or has the attribute default=1 assigned to it.

Intel recommends that you define the buffer_location attribute in a preprocessor
macro for ease of reuse, as shown below:

#define QDR\
__global\
__attribute__ ((buffer_location(*"QDR")))

#define DDR\
__global\
__attribute__((buffer_location(*'DDR™)))

__kernel void foo (QDR uint * data, DDR uint * lup)

//statements

If you assign a kernel argument to a non-default memory (for example, QDR uint *
data and DDR uint * lup from the code above), you cannot declare that argument
using the const keyword. In addition, you cannot perform atomic operations with
pointers derived from that argument.

1.6.4 Implementing the Intel FPGA SDK for OpenCL Channels Extension

Attention:

The Intel FPGA SDK for OpenCL channels extension provides a mechanism for passing
data to kernels and synchronizing kernels with high efficiency and low latency.

If you want to leverage the capabilities of channels but have the ability to run your
kernel program using other SDKs, implement OpenCL pipes instead.

Intel FPGA SDK for OpenCL Programming Guide

24

] ®
1 Intel FPGA SDK for OpenCL Programming Guide l n tel)

Related Links

Implementing OpenCL Pipes on page 42
The Intel FPGA SDK for OpenCL provides preliminary support for OpenCL pipe
functions.

1.6.4.1 Overview of the Intel FPGA SDK for OpenCL Channels Extension

The Intel FPGA SDK for OpenCL channels extension allows kernels to communicate
directly with each other via FIFO buffers.

Implementation of channels decouples kernel execution from the host processor.
Unlike the typical OpenCL execution model, the host does not need to coordinate data
movement across kernels.

Figure 5. Overview of Channels Implementation

Host Processor

\—> Initialize ()

Kernel 1
FIFQ [—» "€} FIFO
’-’FIFO Kernel 2 FIFO

L

Kernel 0

ﬁ> RAM :>

1.6.4.2 Channel Data Behavior

Data written to a channel remains in a channel as long as the kernel program remains
loaded on the FPGA device. In other words, data written to a channel persists across
multiple work-groups and NDRange invocations. However, data is not persistent across
multiple or different invocations of kernel programs.

Consider the following code example:

#pragma OPENCL EXTENSION cl_altera_channels : enable
channel int cO;

__kernel void producer()

{
for(int i=0; 1 < 10; i++)
{
write_channel_altera(cO, i);
b
3

__kernel void consumer(__global uint * restrict dst)

for(int 1=0; 1 < 5; i++)

Intel FPGA SDK for OpenCL Programming Guide
25

] ®
l n tel) 1 Intel FPGA SDK for OpenCL Programming Guide

Figure 6.

dst[i] = read_channel_altera(c0);

Channel Data FIFO Ordering

Producer ‘9‘8‘7‘6‘5‘4‘3‘2‘1‘0 Consumer

The kernel producer writes ten elements ([0, 9]) to the channel. The kernel
consumer reads five elements from the channel per NDRange invocation. During the
first invocation, the kernel consumer reads values 0 to 4 from the channel. Because
the data persists across NDRange invocations, the second time you execute the kernel
consumer, it reads values 5 to 9.

For this example, to avoid a deadlock from occurring, you need to invoke the kernel
consumer twice for every invocation of the kernel producer. If you call consumer
less than twice, producer stalls because the channel becomes full. If you call
consumer more than twice, consumer stalls because there is insufficient data in the
channel.

1.6.4.3 Multiple Work-Item Ordering for Channels

The OpenCL specification does not define a work-item ordering. The Intel FPGA SDK
for OpenCL enforces a work-item order to maintain the consistency in channel read
and write operations.

Multiple work-item accesses to a channel can be useful in some scenarios. For
example, they are useful when data words in the channel are independent, or when
the channel is implemented for control logic. The main concern regarding multiple
work-item accesses to a channel is the order in which the kernel writes data to and
reads data from the channel. If possible, the SDK's channels extension processes
work-items read and write operations to the channel in a deterministic order. As such,
the read and write operations remain consistent across kernel invocations.

Requirements for Deterministic Multiple Work-Item Ordering

To guarantee deterministic ordering, the SDK checks that the channel call is work-item
invariant based on the following characteristics:

e All paths through the kernel must execute the channel call.

e If the first requirement is not satisfied, none of the branch conditions that reach
the channel call should execute in a work-item-dependent manner.

If the SDK cannot guarantee deterministic ordering of multiple work-item accesses to
a channel, it warns you that the channels might not have well-defined ordering with
nondeterministic execution. Primarily, the SDK fails to provide deterministic ordering if
you have work-item-variant code on loop executions with channel calls, as illustrated
below:

__kernel void ordering(_ global int * restrict check,
__global int * restrict data)

Intel FPGA SDK for OpenCL Programming Guide

26

™ ®
1 Intel FPGA SDK for OpenCL Programming Guide l n tel)

{
int condition = check[get_global_id(0)];
if(condition)
for(int i=0; 1 < N, i++)
process(data);
write_channel_altera(req, data[i]);
¥
else
{
process(data);
¥

1.6.4.3.1 Work-Item Serial Execution of Channels

Work-item serial execution refers to an ordered execution behavior where work-item
sequential IDs determine their execution order in the compute unit.

When you implement channels in a kernel, the Altera® Offline Compiler enforces that
kernel behavior is equivalent to having at most one work-group in flight. The AOC also
ensures that the kernel executes channels in work-item serial execution, where the
kernel executes work-items with smaller IDs first. A work-item has the identifier (X,
Y, Z, group), where X, y, z are the local 3D identifiers, and group is the work-
group identifier.

The work-item ID (X0, y0, z0, groupQ) is considered to be smaller than the ID
(x1, yl1, z1, groupl) if one of the following conditions is true:

e groupO < groupl

e groupO = groupl and z0 < z1

e groupO =groupland z0O = z1 and y0O <yl

e groupO = groupl and zO = z1 and yO = y1 and X0 < x1

Work-items with incremental IDs execute in a sequential order. For example, the work-
item with an ID (x0, yO, z0, groupO) executes the write channel call first. Then,
the work-item with an ID (x1, yO, zO0, groupO) executes the call, and so on.
Defining this order ensures that the system is verifiable with external models.

Channel Execution in Loop with Multiple Work-Items

When channels exist in the body of a loop with multiple work-items, as shown below,
each loop iteration executes prior to subsequent iterations. This implies that loop
iteration 0 of each work-item in a work-group executes before iteration 1 of each
work-item in a work-group, and so on.

__kernel void ordering(__global int * data)

write_channel_altera(req, data[get _global _id(0)]);
}

Intel FPGA SDK for OpenCL Programming Guide
27

intel.

1 Intel FPGA SDK for OpenCL Programming Guide

1.6.4.4 Restrictions in the Implementation of Intel FPGA SDK for OpenCL
Channels Extension

There are certain design restrictions to the implementation of channels in your
OpenCL application.

Single Call Site

Because the channel read and write operations do not function deterministically, for a
given kernel, you can only assign one call site per channel ID. For example, the Intel
FPGA SDK for OpenCL Offline Compiler cannot compile the following code example:

in_datal = read_channel_altera(channell);
in_data2 = read_channel_altera(channel?2);
in_data3 = read_channel_altera(channell);

The second read_channel_altera call to channell causes compilation failure
because it creates a second call site to channel 1.

To gather multiple data from a given channel, divide the channel into multiple
channels, as shown below:

in_datal = read_channel_altera(channell);
in_data2 = read_channel_altera(channel2);
in_data3 = read_channel_altera(channel3);

Because you can only assign a single call site per channel ID, you cannot unroll loops
containing channels. Consider the following code:

#pragma unroll 4

for (int i=0; i1 < 4; i++)

in_data = read_channel_altera(channell);

}

The offline compiler issues the following warning message during compilation:

Compiler Warning: Unroll is required but the loop cannot be
unrolled.

Feedback and Feed-Forward Channels

Channels within a kernel can be either read_only or write_only. Performance of a
kernel that reads and writes to the same channel is poor.

Static Indexing

The Intel FPGA SDK for OpenCL channels extension does not support dynamic
indexing into arrays of channel IDs.

Consider the following example:
#pragma OPENCL EXTENSION cl_altera_channels : enable

channel int ch[WORKGROUP_SIZE];

__kernel void consumer()

Intel FPGA SDK for OpenCL Programming Guide

28

1 Intel FPGA SDK for OpenCL Programming Guide

{
int gid = get_global_id(0);
int value = read_channel_altera(ch[gid]);
//statements

b

Compilation of this example kernel fails with the following error message:

Compiler Error: Indexing into channel array ch could not be resolved to all
constant

To avoid this compilation error, index into arrays of channel IDs statically, as shown
below:

#pragma OPENCL EXTENSION cl_altera_channels : enable

channel int ch[WORKGROUP_SIZE];

__kernel void consumer()

{
int gid = get_global_id(0);
int value;
switch(gid)
{
case 0: value = read_channel_altera(ch[0]); break;
case 1: value = read_channel_altera(ch[1]); break;
case 2: value = read_channel_altera(ch[2]); break;
case 3: value = read_channel_altera(ch[3]); break;
//statements
case WORKGROUP_SIZE-1:read_channel_altera(ch[WORKGROUP_SI1ZE-1]); break;
}
//statements
}

Kernel Vectorization Support

You cannot vectorize kernels that use channels; that is, do not include the
num_simd_work_items kernel attribute in your kernel code. Vectorizing a kernel that
uses channels creates multiple channel masters and requires arbitration, which the
SDK's channels extension does not support.

Instruction-Level Parallelism on read_channel_altera and
write_channel_altera Calls

If no data dependencies exist between read_channel _altera and
write_channel_altera calls, the offline compiler attempts to execute these
instructions in parallel. As a result, the offline compiler might execute these
read_channel_altera and write_channel_altera calls in an order that does
not follow the sequence expressed in the OpenCL kernel code.

Intel FPGA SDK for OpenCL Programming Guide
29

] ®
l n tel) 1 Intel FPGA SDK for OpenCL Programming Guide

Consider the following code sequence:

in_datal = read_channel_altera(channell);
in_data2 = read_channel_altera(channel2);
in_data3 = read_channel_altera(channel3);

Because there are no data dependencies between the read_channel _altera calls,
the offline compiler can execute them in any order.

1.6.4.5 Enabling the Intel FPGA SDK for OpenCL Channels for OpenCL Kernel

To implement the Intel FPGA SDK for OpenCL channels extension, modify your OpenCL
kernels to include channels-specific pragma and API calls.

Channel declarations are unique within a given OpenCL kernel program. Also, channel
instances are unique for every OpenCL kernel program device pair. If the runtime
loads a single OpenCL kernel program onto multiple devices, each device will have a
single copy of the channel. However, these channel copies are independent and do not
share data across the devices.

1.6.4.5.1 Declaring the Channels OPENCL EXTENSION pragma

To enable the Intel FPGA SDK for OpenCL channels extension, declare the OPENCL
EXTENSION pragma for channels at the beginning of your kernel source code.

e To enable the SDK's channels extension, include the following line in your kernel
source code to declare the OPENCL EXTENSION pragma:

#pragma OPENCL EXTENSION cl_altera_channels : enable

1.6.4.5.2 Declaring the Channel Handle

Use the channel variable to define the connectivity between kernels or between
kernels and I/0.

To read from and write to a channel, the kernel must pass the channel variable to
each of the corresponding API call.

e Declare the channel handle as a file scope variable in the kernel source code in the
following convention: channel <type> <vari abl e_nane>

For example: channel int c;

e The Intel FPGA SDK for OpenCL channel extension supports simultaneous channel
accesses by multiple variables declared in a data structure. Declare a struct data
structure for a channel in the following manner:

typedef struct type_ {
int a;
int b;

} type_t;

channel type_t foo;

1.6.4.5.3 Implementing Blocking Channel Write Extensions

The write_channel _altera API call allows you to send data across a channel.

Intel FPGA SDK for OpenCL Programming Guide
30

™ ®
1 Intel FPGA SDK for OpenCL Programming Guide l n tel)

Note: The write channel calls support single-call sites only. For a given channel, only one
write channel call to it can exist in the entire kernel program.

e To implement a blocking channel write, include the following
write_channel_altera function signature:

void write_channel_altera (channel <type> channel_id, const
<type> data);

Where:

channel _id identifies the buffer to which the channel connects, and it must
match the channel _id of the corresponding read channel
(read_channel_altera).

data is the data that the channel write operation writes to the channel. Data
<type> must match the <type> of the channel _id.

<type> defines a channel data width, which cannot be a constant. Follow the
OpenCL conversion rules to ensure that data the kernel writes to a channel is
convertible to <type>.

The following code snippet demonstrates the implementation of the
write_channel_altera API call:

//Enables the channels extension.
#pragma OPENCL EXTENSION cl_altera_channels : enable

//Defines chan, the kernel file-scope channel variable.
channel long chan;

/*Defines the kernel which reads eight bytes (size of long) from global memory,
and passes this data to the channel.*/
__kernel void kernel_write_channel(_ global const long * src)

for(int i=0; 1 < N; i++)

//\Writes the eight bytes to the channel.
write_channel_altera(chan, src[i]);
¥
3

Caution: When you send data across a write channel using the write_channel _altera API
call, keep in mind that if the channel is full (that is, if the FIFO buffer is full of data),

your kernel will stall. Use the Intel FPGA SDK for OpenCL Profiler to check for channel
stalls.

Related Links

Profiling Your OpenCL Kernel on page 106
The Intel FPGA SDK for OpenCL Profiler measures and reports performance data
collected during OpenCL kernel execution on the FPGA.

Implementing Nonblocking Channel Write Extensions

Perform nonblocking channel writes to facilitate applications where data write
operations might not occur. A nonblocking channel write extension returns a Boolean
value that indicates whether data is written to the channel.

Intel FPGA SDK for OpenCL Programming Guide
31

™ ®
l n tel) 1 Intel FPGA SDK for OpenCL Programming Guide

Consider a scenario where your application has one data producer with two identical
workers. Assume the time each worker takes to process a message varies depending
on the contents of the data. In this case, there might be situations where one worker
is busy while the other is free. A nonblocking write can facilitate work distribution such
that both workers are busy.

e To implement a nonblocking channel write, include the following
write_channel_nb_altera function signature:

bool write_channel _nb_altera(channel <type> channel _id, const
<type> data);

The following code snippet of the kernel producer facilitates work distribution using
the nonblocking channel write extension:

#pragma OPENCL EXTENSION cl_altera_channels : enable
channel long workerO, workerl;
__kernel void producer(__global const long * src)

{
for(int i=0; 1 < N; i++)

bool success = false;

do

{ i i
success = write_channel_nb_altera(workerO, src[i]);
if(!Isuccess)
{

success = write_channel_nb_altera(workerl, src[i]);

while(!success);

1.6.4.5.4 Implementing Blocking Channel Read Extensions

Note:

The read_channel _altera API call allows you to receive data across a channel.

The read channel calls support single-call sites only. For a given channel, only one
read channel call to it can exist in the entire kernel program.

e To implement a blocking channel read, include the following
read_channel_altera function signature:
<type> read_channel_altera(channel <type> channel_id);
Where:

channel _id identifies the buffer to which the channel connects, and it must
match the channel _id of the corresponding write channel
(write_channel _altera).

<type> defines a channel data width, which cannot be a constant. Ensure that the
variable the kernel assigns to read the channel data is convertible from <type>.

The following code snippet demonstrates the implementation of the
read_channel_altera API call:

//Enables the channel extension.
#pragma OPENCL EXTENSION cl_altera_channels : enable;

Intel FPGA SDK for OpenCL Programming Guide

32

] ®
1 Intel FPGA SDK for OpenCL Programming Guide l n tel

Caution:

//Defines chan, the kernel file-scope channel variable.
channel long chan;

/*Defines the kernel, which reads eight bytes (size of long) from the channel and
writes it back to global memory.*/
__kernel void kernel_read_channel(__global long * dst);

for(int i=0; 1 < N; i++)

//Reads the eight bytes from the channel.
dst[i] = read_channel_altera(chan);

If the channel is empty (that is, if the FIFO buffer is empty), you cannot receive data
across a read channel using the read_channel _altera API call. Doing so causes
your kernel to stall.

Implementing Nonblocking Channel Read Extensions

Perform nonblocking reads to facilitate applications where data is not always available.
The nonblocking reads signature is similar to blocking reads. However, it returns an
integer value that indicates whether a read operation takes place successfully.

e To implement a blocking channel write, include the following
read_channel nb_altera function signature:

<type> read_channel_nb_altera(channel <type> channel_id, bool
* valid);

The following code snippet demonstrates the use of the nonblocking channel read
extension:

#pragma OPENCL EXTENSION cl_altera_channels : enable
channel long chan;

__kernel void kernel_read_channel(_ _global long * dst)

t
int 1=0;
while(i < N)
{
bool validO, validl;
long data0 = read_channel_nb_altera(chan, &valid0O);
long datal = read_channel_nb_altera(chan, &validl);
if (validO)
process(data0);
3
if (validl) process(datal);
{
process(datal);
3
}
3

1.6.4.5.5 Implementing I/0 Channels Using the io Channels Attribute

Include an 10 attribute in your channel declaration to declare a special I/O channel to
interface with input or output features of an FPGA board.

These features might include network interfaces, PCle, cameras, or other data capture
or processing devices or protocols.

Intel FPGA SDK for OpenCL Programming Guide
33

™ ®
l n tel) 1 Intel FPGA SDK for OpenCL Programming Guide

The 1o(*'chan_i d') attribute specifies the I/0 feature of an accelerator board with
which a channel interfaces, where chan_id is the name of the I/0 interface listed in
the board_spec.xml file of your Custom Platform.

Because peripheral interface usage might differ for each device type, consult your
board vendor's documentation when you implement I/O channels in your kernel
program. Your OpenCL kernel code must be compatible with the type of data
generated by the peripheral interfaces.

Cautions: e Implicit data dependencies might exist for channels that connect to the board
directly and communicate with peripheral devices via I/O channels. These implicit
data dependencies might lead to compilation issues because the Intel FPGA SDK
for OpenCL Offline Compiler cannot identify these dependencies.

e External I/O channels communicating with the same peripherals do not obey any
sequential ordering. Ensure that the external device does not require sequential
ordering because unexpected behavior might occur.

1. Consult the board_spec.xml file in your Custom Platform to identify the input
and output features available on your FPGA board.

For example, a board_spec.xml file might include the following information on
I/0 features:

<channels>
<interface name='"udp_0" port="udpO_out'" type=''streamsource' width="256"
chan_id=""ethO_in"/>
<interface name="udp_0" port="udpO_in" type='"streamsink" width="256"
chan_id="eth0_out"/>
<interface name="udp_0" port="udpl_out" type="'streamsource" width="256"
chan_id="ethl_in"/>
<interface name='"udp_0" port="udpl_in" type='streamsink' width="256"
chan_id="ethl_out"/>

</channels>

The width attribute of an Interface element specifies the width, in bits, of the
data type used by that channel. For the example above, both the uint and float
data types are 32 bits wide. Other bigger or vectorized data types must match the
appropriate bit width specified in the board_spec.xml file.

2. Implement the 10 channel attribute as demonstrated in the following code
example. The 10 channel attribute names must match those of the I/O channels
(chan_id) specified in the board_spec.xml file.

channel QUDPWord udp_in_10 __ attribute__ ((depth(0)))
__attribute__ ((io(eth0_in")));

channel QUDPWord udp_out 10 _ attribute__((depth(0)))
__attribute__ ((io(*'eth0_out™)));

__kernel void io_in_kernel(_ _global ulong4 *mem_read,
uchar read_from,
int size)

int index = O;

ulong4 data;

int half_size = size >> 1;

while (index < half_size)
if (read_from & 0x01)

data = read_channel_altera(udp_in_I10);

Intel FPGA SDK for OpenCL Programming Guide
34

1 Intel FPGA SDK for OpenCL Programming Guide

}

else
data = mem_read[index];

write_channel_altera(udp_in, data);
index++;
¥
3

__kernel void io_out_kernel(__global ulong2 *mem_write,
uchar write_to,
int size)

int index = 0;

ulong4 data;

int half_size = size >> 1;

while (index < half_size)

{
ulong4 data = read_channel_altera(udp_out);
if (write_to & 0x01)
{

write_channel_altera(udp_out_l0, data);

else

{ i i
//only write data portion
ulong2 udp_data;
udp_data.s0 = data.sO;
udp_data.sl = data.sl;
mem_write[index] = udp_data;

¥
i

}
}

ndex++;

Attention: Declare a unique 10o(*'chan_i d'") handle for each I/O channel
specified in the channels eXtensible Markup Language (XML) element
within the board_spec.xml file.

1.6.4.5.6 Implementing Buffered Channels Using the depth Channels Attribute

You may have buffered or unbuffered channels in your kernel program. If there are
imbalances in channel read and write operations, create buffered channels to prevent
kernel stalls by including the depth attribute in your channel declaration. Buffered
channels decouple the operation of concurrent work-items executing in different
kernels.

You may use a buffered channel to control data traffic, such as limiting throughput or
synchronizing accesses to shared memory. In an unbuffered channel, a write operation
cannot proceed until the read operation reads a data value. In a buffered channel, a
write operation cannot proceed until the data value is copied to the buffer. If the buffer
is full, the operation cannot proceed until the read operation reads a piece of data and
removes it from the channel.

Intel FPGA SDK for OpenCL Programming Guide
35

1 Intel FPGA SDK for OpenCL Programming Guide

If you expect any temporary mismatch between the consumption rate and the
production rate to the channel, set the buffer size using the depth channel
attribute.

The following example demonstrates the use of the depth channel attribute in
kernel code that implements the Intel FPGA SDK for OpenCL channels extension.
The depth(N) attribute specifies the minimum depth of a buffered channel,
where N is the number of data values.

#pragma OPENCL EXTENSION cl_altera_channels : enable
channel int c _ attribute_ ((depth(10)));

__kernel void producer(__global int * in_data)

g for(int i=0; 1 < N; i++)

if(in_data[i])

t write_channel_altera(c, in_data[i]);
. ¥

__kernel void consumer(__global int * restrict check data,

__global int * restrict out_data)

{
int last val = 0;
for(int i=0; i< N, i++)
if(check _data[i])
last_val = read_channel_altera(c);
out_data[i] = last val;
¥
3

In this example, the write operation can write ten data values to the channel
without blocking. Once the channel is full, the write operation cannot proceed until
an associated read operation to the channel occurs.

Because the channel read and write calls are conditional statements, the channel
might experience an imbalance between read and write calls. You may add a
buffer capacity to the channel to ensure that the producer and consumer
kernels are decoupled. This step is particularly important if the producer kernel
is writing data to the channel when the consumer kernel is not reading from it.

1.6.4.5.7 Enforcing the Order of Channel Calls

To enforce the order of channel calls, introduce memory fence or barrier functions in
your kernel program to control memory accesses. A memory fence function is
necessary to create a control flow dependence between the channel synchronization
calls before and after the fence.

When the Intel FPGA SDK for OpenCL Offline Compiler generates a compute unit, it
does not create instruction-level parallelism on all instructions that are independent of
each other. As a result, channel read and write operations might not execute
independently of each other even if there is no control or data dependence between
them. When channel calls interact with each other, or when channels write data to

external devices, deadlocks might occur.

Intel FPGA SDK for OpenCL Programming Guide
36

™ ®
1 Intel FPGA SDK for OpenCL Programming Guide l n tel

For example, the code snippet below consists of a producer kernel and a consumer
kernel. Channels cO and c1 are unbuffered channels. The schedule of the channel
read operations from cO and c1 might occur in the reversed order as the channel
write operations to cO and cl1. That is, the producer kernel writes to cO but the
consumer kernel might read from c1 first. This rescheduling of channel calls might
cause a deadlock because the consumer kernel is reading from an empty channel.

__kernel void producer(__global const uint * src,

const uint iterations)

for(int i=0; 1 < iterations; i++)

write_channel_altera(cO, src[2*i]);
write_channel_altera(cl, src[2*i+1]);

__kernel void consumer(__global uint * dst,

const uint iterations)

for(int i=0; 1 < iterations; i++)

{

¥
¥

{

}
¥

/*During compilation, the AOC might reorder the way the consumer kernel
writes to memory to optimize memory access. Therefore, cl might be read
before cO, which is the reverse of what appears in code.*/

dst[2*i+1] = read_channel_altera(cO);
dst[2*i] = read_channel_altera(cl);

Intel FPGA SDK for OpenCL Programming Guide
37

1 Intel FPGA SDK for OpenCL Programming Guide

e To prevent deadlocks from occurring by enforcing the order of channel calls,
include memory fence functions (mem_fence) in your kernel.

Inserting the mem_fence call with each kernel's channel flag forces the sequential
ordering of the write and read channel calls. The code snippet below shows the
modified producer and consumer kernels:

#pragma OPENCL EXTENSION cl_altera_channels : enable

channel uint cO __ attribute__ ((depth(0)));
channel uint cl _ attribute__ ((depth(0)));

__kernel void producer(__global const uint * src,
const uint iterations)

{
for(int i=0; 1 < iterations; i++)
{
write_channel_altera(cO, src[2*i]);
mem_fence (CLK_CHANNEL_MEM_FENCE) ;
write_channel_altera(cl, src[2*i+1]);
3
3
__kernel void consumer(__global uint * dst;
const uint iterations)
for(int i=0; 1 < iterations; i++)
dst[2*i+1] = read_channel_altera(c0);
mem_Ffence (CLK_CHANNEL_MEM_FENCE) ;
dst[2*i] = read_channel_altera(cl);
3
}

In this example, mem_fence in the producer kernel ensures that the channel
write operation to cO occurs before that to c1. Similarly, mem_fence in the
consumer kernel ensures that the channel read operation from cO occurs before
that from c1.

Defining Memory Consistency Across Kernels When Using Channels

According to the OpenCL Specification version 1.0, memory behavior is undefined
unless a kernel completes execution. A kernel must finish executing before other
kernels can visualize any changes in memory behavior. However, kernels that use
channels can share data through common global memory buffers and synchronized
memory accesses. To ensure that data written to a channel is visible to the read
channel after execution passes a memory fence, define memory consistency across
kernels with respect to memory fences.

Intel FPGA SDK for OpenCL Programming Guide
38

] ®
1 Intel FPGA SDK for OpenCL Programming Guide l n tel

e To create a control flow dependency between the channel synchronization calls
and the memory operations, add the CLK_GLOBAL_MEM_FENCE flag to the
mem_Tfence call.

For example:

__kernel void producer(__global const uint * src,
const uint iterations)

{
for(int i=0; 1 < iterations; i++)
write_channel_altera(cO, src[2*i]);
mem_fence (CLK_CHANNEL_MEM_FENCE | CLK_GLOBAL_MEM_FENCE);
write_channel_altera(cl, src[2*i+1]);
¥
¥

In this kernel, the mem_Tfence function ensures that the write operation to cO and
memory access to src[2*i] occur before the write operation to c1 and memory
access to src[2*i+1]. This allows data written to cO to be visible to the read
channel before data is written to cl.

1.6.4.6 Use Models of Intel FPGA SDK for OpenCL Channels Implementation

Concurrent execution can improve the effectiveness of channels implementation in
your OpenCL kernels.

During concurrent execution, the host launches the kernels in parallel. The kernels
share memory and can communicate with each other through channels where
applicable.

The use models provide an overview on how to exploit concurrent execution safely and
efficiently.

Feed-Forward Design Model

Implement the feed-forward design model to send data from one kernel to the next
without creating any cycles between them. Consider the following code example:

__kernel void producer(__global const uint * src,
const uint iterations)

for(int i=0; 1 < iterations; i++)
{
write_channel_altera(c0O, src[2*i]);
mem_Tence (CLK_CHANNEL_MEM_FENCE) ;
write_channel_altera(cl, src[2*i+1]);
3
T

__kernel void consumer(__global uint * dst,
const uint iterations)

for (int i=0;i<iterations;i++)
dst[2*i] = read_channel_altera(c0);

mem_fFence(CLK_CHANNEL_MEM_FENCE) ;
dst[2*i+1] = read_channel_altera(cl);

Intel FPGA SDK for OpenCL Programming Guide
39

] ®
l n tel) 1 Intel FPGA SDK for OpenCL Programming Guide

Figure 7.

Figure 8.

The producer kernel writes data to channels cO and cl. The consumer kernel reads
data from c0 and cl. The figure below illustrates the feed-forward data flow between
the two kernels:

Feed-Forward Data Flow

Producer Consumer

Buffer Management

In the feed-forward design model, data traverses between the producer and
consumer kernels one word at a time. To facilitate the transfer of large data
messages consisting of several words, you can implement a ping-pong buffer, which is
a common design pattern found in applications for communication. The figure below
illustrates the interactions between kernels and a ping-pong buffer:

Feed-Forward Design Model with Buffer Management

Buffer

Producer Consumer

Manager

The manager kernel manages circular buffer allocation and deallocation between the
producer and consumer kernels. After the consumer kernel processes data, the
manager receives memory regions that the consumer frees up and sends them to
the producer for reuse. The manager also sends to the producer kernel the initial
set of free locations, or tokens, to which the producer can write data.

The following figure illustrates the sequence of events that take place during buffer
management:

Intel FPGA SDK for OpenCL Programming Guide

40

1 Intel FPGA SDK for OpenCL Programming Guide

Figure 9. Kernels Interaction during Buffer Management

Buffer Buffer Buffer Buffer

[Producer } [(onsumer} [Producer } [Consumer} [Producer H Consumer} [Producer } [Consumer}
@)

U} @ (O]

1. The manager kernel sends a set of tokens to the producer kernel to indicate
initially which regions in memory are free for producer to use.

2. After manager allocates the memory region, producer writes data to that region
of the ping-pong buffer.

3. After producer completes the write operation, it sends a synchronization token to
the consumer kernel to indicate what memory region contains data for
processing. The consumer kernel then reads data from that region of the ping-
pong buffer.

Note: When consumer is performing the read operation, producer can write to
other free memory locations for processing because of the concurrent
execution of the producer, consumer, and manager kernels.

4. After consumer completes the read operation, it releases the memory region and
sends a token back to the manager kernel. The manager kernel then recycles
that region for producer to use.

Implementation of Buffer Management for OpenCL Kernels

To ensure that the SDK implements buffer management properly, the ordering of
channel read and write operations is important. Consider the following kernel
example:

__kernel void producer(_ global const uint * restrict src,
__global volatile uint * restrict shared_mem,
const uint iterations)
int base offset;
for (uint gID = 0; gID < iterations; glD++)
{

// Assume each block of memory is 256 words
uint 11D = OxOff & glD;

if(11D == 0)

base_offset = read_channel_altera(req);

¥

shared_mem[base_offset + 1ID] = src[glD];

// Make sure all memory operations are committed before
// sending token to the consumer

mem_fence (CLK_GLOBAL_MEM_FENCE | CLK_CHANNEL_MEM_FENCE);

if (11D == 255)

Intel FPGA SDK for OpenCL Programming Guide
41

n tel) 1 Intel FPGA SDK for OpenCL Programming Guide

write_channel_altera(c, base_offset);

}
}

In this kernel, because the following lines of code are independent, the Intel FPGA
SDK for OpenCL Offline Compiler can schedule them to execute concurrently:

shared_mem[base_offset + 1ID] = src[glD];
and

write_channel_altera(c, base_offset);

Writing data to base_offset and then writing base_offset to a channel might be
much faster than writing data to global memory. The consumer kernel might then
read base_offset from the channel and use it as an index to read from global
memory. Without synchronization, consumer might read data from producer before
shared_mem[base_offset + 11D] = src[glD]; finishes executing. As a result,
consumer reads in invalid data. To avoid this scenario, the synchronization token
must occur after the producer kernel commits data to memory. In other words, a
consumer kernel cannot consume data from the producer kernel until producer
stores its data in global memory successfully.

To preserve this ordering, include an OpenCL mem_fence token in your kernels. The
mem_fence construct takes two flags: CLK_GLOBAL_MEM_FENCE and
CLK_CHANNEL_MEM_FENCE. The mem_Tfence effectively creates a control flow
dependence between operations that occur before and after the mem_fence call. The
CLK_GLOBAL_MEM_FENCE flag indicates that global memory operations must obey the
control flow. The CLK_CHANNEL_MEM_FENCE indicates that channel operations must
obey the control flow. As a result, the write_channel _altera call in the example
cannot start until the global memory operation is committed to the shared memory
buffer.

1.6.5 Implementing OpenCL Pipes

The Intel FPGA SDK for OpenCL provides preliminary support for OpenCL pipe
functions.

OpenCL pipes are part of the OpenCL Specification version 2.0. They provide a
mechanism for passing data to kernels and synchronizing kernels with high efficiency
and low latency.

Implement pipes if it is important that your OpenCL kernel is compatible with other
SDKs.

Refer to the OpenCL Specification version 2.0 for OpenCL C programming language
specification and general information about pipes.

The Intel FPGA SDK for OpenCL implementation of pipes does not encompass the
entire pipes specification. As such, it is not fully conformant to the OpenCL
Specification version 2.0. The goal of the SDK's pipes implementation is to provide a

Intel FPGA SDK for OpenCL Programming Guide

42

1 Intel FPGA SDK for OpenCL Programming Guide

solution that works seamlessly on a different OpenCL 2.0-conformant device. To
enable pipes for Intel FPGA products, your design must satisfy certain additional
requirements.

Related Links
OpenCL Specification version 2.0 (API)

1.6.5.1 Overview of the OpenCL Pipe Functions

Figure 10.

Important:

OpenCL pipes allow kernels to communicate directly with each other via FIFO buffers.

Overview of a Pipe Network Implementation

Host Processor

\—> Initialize ()

A 4

Kernel 1 FIFO
FIFO L Kernel N FIFO
FIFO F—"{Kernel 2 FIFO ‘
\—/\

Kernel 0

A 4

ﬁ> RAM :>

Implementation of pipes decouples kernel execution from the host processor. The
foundation of the Intel FPGA SDK for OpenCL pipes support is the SDK's channels
extension. However, the syntax for pipe functions differs from the channels syntax.

Unlike channels, pipes have a default nonblocking behavior.

For more information on blocking and nonblocking functions, refer to the
corresponding documentation on channels.

Related Links

e Implementing Blocking Channel Write Extensions on page 30
The write_channel _altera API call allows you to send data across a
channel.

e Implementing Nonblocking Channel Write Extensions on page 31
Perform nonblocking channel writes to facilitate applications where data write
operations might not occur.

e Implementing Nonblocking Channel Read Extensions on page 33
Perform nonblocking reads to facilitate applications where data is not always
available.

e Implementing Blocking Channel Read Extensions on page 32

Intel FPGA SDK for OpenCL Programming Guide

43

https://www.khronos.org/registry/cl/specs/opencl-2.0.pdf

] ®
l n tel) 1 Intel FPGA SDK for OpenCL Programming Guide

The read_channel_altera API call allows you to receive data across a
channel.

1.6.5.2 Pipe Data Behavior

Figure 11.

Data written to a pipe remains in a pipe as long as the kernel program remains loaded
on the FPGA device. In other words, data written to a pipe persists across multiple
work-groups and NDRange invocations. However, data is not persistent across multiple
or different invocations of kernel programs.

Consider the following code example:
__kernel void
producer (write_only pipe uint __ attribute__((blocking)) c0)

for (uint i1=0;i1<10;i++)
{

}

write_pipe(cO, &i);
b

__kernel void
consumer (__global uint * restrict dst,
read_only pipe uint __attribute__((blocking))
__attribute__((depth(10))) c0)
{

for (int i=0;i<5;i++)
read_pipe(cO, &dst[i]);
¥

A read operation to a pipe reads the /east recent piece of data written to the pipe first.
Pipes data maintains their FIFO ordering within the pipe.

Pipe Data FIFO Ordering

Producer ‘9‘8‘7‘6‘5‘4‘3‘2‘1‘0 Consumer

The kernel producer writes ten elements ([0, 9]) to the pipe. The kernel consumer
reads five elements from the pipe per NDRange invocation. During the first invocation,
the kernel consumer reads values 0 to 4 from the pipe. Because the data persists
across NDRange invocations, the second time you execute the kernel consumer, it
reads values 5 to 9.

For this example, to avoid a deadlock from occurring, you need to invoke the kernel
consumer twice for every invocation of the kernel producer. If you call consumer
less than twice, producer stalls because the pipe becomes full. If you call consumer
more than twice, consumer stalls because there is insufficient data in the pipe.

1.6.5.3 Multiple Work-Item Ordering for Pipes

The OpenCL specification does not define a work-item ordering. The Intel FPGA SDK
for OpenCL enforces a work-item order to maintain the consistency in pipe read and
write operations.

Intel FPGA SDK for OpenCL Programming Guide

44

™ ®
1 Intel FPGA SDK for OpenCL Programming Guide l n tel)

Multiple work-item accesses to a pipe can be useful in some scenarios. For example,
they are useful when data words in the pipe are independent, or when the pipe is
implemented for control logic. The main concern regarding multiple work-item
accesses to a pipe is the order in which the kernel writes data to and reads data from
the pipe. If possible, the OpenCL pipes process work-items read and write operations
to a pipe in a deterministic order. As such, the read and write operations remain
consistent across kernel invocations.

Requirements for Deterministic Multiple Work-Item Ordering

To guarantee deterministic ordering, the SDK checks that the pipe call is work-item

invariant based on the following characteristics:

e All paths through the kernel must execute the pipe call.

o If the first requirement is not satisfied, none of the branch conditions that reach
the pipe call should execute in a work-item-dependent manner.

If the SDK cannot guarantee deterministic ordering of multiple work-item accesses to
a pipe, it warns you that the pipes might not have well-defined ordering with
nondeterministic execution. Primarily, the SDK fails to provide deterministic ordering if
you have work-item-variant code on loop executions with pipe calls, as illustrated
below:

__kernel void
ordering (__global int * check, global int * data,
write_only pipe int _ attribute__((blocking)) req)
int condition = check[get_global_id(0)];

if (condition)

{
for (int i=0;i<N;i++)
process(data);
write_pipe(req, &data[i]);
3
else
{

process(data);

1.6.5.3.1 Work-Item Serial Execution of Pipes

Work-item serial execution refers to an ordered execution behavior where work-item
sequential IDs determine their execution order in the compute unit.

When you implement pipes in a kernel, the Intel FPGA SDK for OpenCL Offline
Compiler enforces that kernel behavior is equivalent to having at most one work-group
in flight. The offline compiler also ensures that the kernel executes pipes in work-item
serial execution, where the kernel executes work-items with smaller IDs first. A work-
item has the identifier (X, y, z, group), where X, y, z are the local 3D identifiers,
and group is the work-group identifier.

The work-item ID (X0, yO, z0, groupO) is considered to be smaller than the ID
(x1, y1, z1, groupl) if one of the following conditions is true:

Intel FPGA SDK for OpenCL Programming Guide
45

] ®
l n tel) 1 Intel FPGA SDK for OpenCL Programming Guide

e groupO < groupl

e groupO = groupl and z0 < z1

e group0 =groupland zO =zl and y0O <yl

e groupO = groupl and z0 = z1 and yO = y1 and x0 < x1

Work-items with incremental IDs execute in a sequential order. For example, the work-
item with an ID (x0, yO0, z0, groupO) executes the write channel call first. Then,
the work-item with an ID (x1, yO, z0, groupO) executes the call, and so on.
Defining this order ensures that the system is verifiable with external models.

Pipe Execution in Loop with Multiple Work-Items

When pipes exist in the body of a loop with multiple work-items, as shown below, each
loop iteration executes prior to subsequent iterations. This implies that loop iteration 0
of each work-item in a work-group executes before iteration 1 of each work-item in a
work-group, and so on.

__kernel void
ordering (__global int * data,

write_only pipe int _ attribute__((blocking)) req)
{

write_pipe(req, &data[get_global_id(0)]);

1.6.5.4 Restrictions in OpenCL Pipes Implementation

There are certain design restrictions to the implementation of pipes in your OpenCL
application.

Default Behavior

By default, pipes exhibit nonblocking behavior. If you want the pipes in your kernel to
exhibit blocking behavior, specify the blocking attribute
(__attribute_ ((blocking))) when you declare the read and write pipes.

Emulation Support

The Intel FPGA SDK for OpenCL Emulator supports emulation of kernels that contain
pipes. The level of Emulator support aligns with the subset of OpenCL pipes support
that is implemented for the FPGA hardware.

Pipes API Support

Currently, the SDK's implementation of pipes does not support all the built-in pipe
functions in the OpenCL Specification version 2.0. For a list of supported and
unsupported pipe APIs, refer to OpenCL 2.0 C Programming Language Restrictions for
Pipes.

Intel FPGA SDK for OpenCL Programming Guide
46

™ ®
1 Intel FPGA SDK for OpenCL Programming Guide l n tel)

Single Call Site

Because the pipe read and write operations do not function deterministically, for a
given kernel, you can only assign one call site per pipe ID. For example, the Intel
FPGA SDK for OpenCL Offline Compiler cannot compile the following code example:

read_pipe(pipel, &in_datal);
read_pipe(pipe2, &in_data?);
read_pipe(pipel, &in_data3);

The second read_pipe call to pipel causes compilation failure because it creates a
second call site to pipel.

To gather multiple data from a given pipe, divide the pipe into multiple pipes, as
shown below:

read_pipe(pipel, &in_datal);
read_pipe(pipe2, &in_data2);
read_pipe(pipe3, &in_data3);

Because you can only assign a single call site per pipe ID, you cannot unroll loops
containing pipes. Consider the following code:

#pragma unroll 4
for (int 1=0; 1 < 4; i++)
{
read_pipe(pipel, &in_datal);

The offline compiler issues the following warning message during compilation:

Compiler Warning: Unroll is required but the loop cannot be
unrolled.

Feedback and Feed-Forward Pipes

Pipes within a kernel can be either read_only or write_only. Performance of a
kernel that reads and writes to the same pipe is poor.

Kernel Vectorization Support

You cannot vectorize kernels that use pipes; that is, do not include the
num_simd_work_items kernel attribute in your kernel code. Vectorizing a kernel that
uses pipes creates multiple pipe masters and requires arbitration, which OpenCL pipes
specification does not support.

Instruction-Level Parallelism on read_pipe and write_pipe Calls

If no data dependencies exist between read_pipe and write_pipe calls, the offline
compiler attempts to execute these instructions in parallel. As a result, the offline
compiler might execute these read_pipe and write_pipe calls in an order that
does not follow the sequence expressed in the OpenCL kernel code.

Intel FPGA SDK for OpenCL Programming Guide
47

™ ®
l n tel) 1 Intel FPGA SDK for OpenCL Programming Guide

Consider the following code sequence:

in_datal = read_pipe(pipel);
in_data2 = read_pipe(pipe2);
in_data3 = read_pipe(pipe3l);

Because there are no data dependencies between the read_pipe calls, the offline
compiler can execute them in any order.

Related Links

OpenCL 2.0 C Programming Language Restrictions for Pipes on page 149
The Intel FPGA SDK for OpenCL offers preliminary support of OpenCL pipes.

1.6.5.5 Enabling OpenCL Pipes for Kernels
To implement pipes, modify your OpenCL kernels to include pipes-specific API calls.

Pipes declarations are unique within a given OpenCL kernel program. Also, pipe
instances are unique for every OpenCL kernel program-device pair. If the runtime
loads a single OpenCL kernel program onto multiple devices, each device will have a
single copy of each pipe. However, these pipe copies are independent and do not
share data across the devices.

1.6.5.5.1 Ensuring Compatibility with Other OpenCL SDKs

Currently, Intel's implementation of OpenCL pipes is partially conformant to the
OpenCL Specification version 2.0. If you port a kernel that implements pipes from
another OpenCL SDK to the Intel FPGA SDK for OpenCL, you must modify the host
code and the kernel code. The modifications do not affect subsequent portability of
your application to other OpenCL SDKs.

Host Code Modification

Below is an example of a modified host application:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "CL/opencl._h"
#define SI1ZE 1000

const char *kernel_source = "__kernel void pipe_writer(__global int *in,"
" write_only pipe int p_in)
\n"
“Q\n"
' int gid = get_global_id(0);\n"
write_pipe(p_in, &in[gid]);\n"
"An"
__kernel void pipe_reader(__global int *out,™
read_only pipe int p_out)
\n"
“{\n"
int gid = get_global_id(0);\n"
read_pipe(p_out, &out[gid]);\n"
“H\n*;
int main()

int *input = (int *)malloc(sizeof(int) * SIZE);
int *output = (int *)malloc(sizeof(int) * SIZE);
memset(output, 0, sizeof(int) * SIZE);

Intel FPGA SDK for OpenCL Programming Guide
48

1 Intel FPGA SDK for OpenCL Programming Guide l n tel

for (int i = 0; i != SIZE; ++i)

input[i] = rand(Q);

cl_int status;

cl_platform_id platform;

cl_uint num_platforms;

status = clGetPlatformIDs(1l, &platform, &num_platforms);

cl_device_id device;

cl_uint num_devices;

status = clGetDevicelDs(platform,
CL_DEVICE_TYPE_ALL,
1,
&device,
&num_devices);

cl_context context = clCreateContext(0, 1, &device, NULL, NULL, &status);
cl_command_gueue queue = clCreateCommandQueue(context, device, 0, &status);

size_t len = strlen(kernel_source);
cl_program program = clCreateProgramWithSource(context,
i
(const char **)&kernel_source,
&len,
&status);

status = clBuildProgram(program, num_devices, &device, ", NULL, NULL);

cl_kernel pipe_writer = clCreateKernel(program, "pipe_writer", &status);
cl_kernel pipe_reader = clCreateKernel(program, "pipe_reader', &status);

cl_mem in_buffer = clCreateBuffer(context,
CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
sizeof(int) * SIZE,
input,
&status);
cl_mem out_buffer = clCreateBuffer(context,
CL_MEM_WRITE_ONLY,
sizeof(int) * SIZE,

NULL,
&status);
cl_mem pipe = clCreatePipe(context, 0, sizeof(cl_int), SIZE, NULL, &status);
status = clSetKernelArg(pipe_writer, 0, sizeof(cl_mem), &in_buffer);
status = clSetKernelArg(pipe_writer, 1, sizeof(cl_mem), &pipe);
status = clSetKernelArg(pipe_reader, 0, sizeof(cl_mem), &out buffer);
status = clSetKernelArg(pipe_reader, 1, sizeof(cl_mem), &pipe);

size_t size = SIZE;
cl_event sync;
status = clEnqueueNDRangeKernel (queue,
pipe_writer,
1,
NULL,
&size,
&size,
0,
NULL,
&sync);
status = clEnqueueNDRangeKernel (queue,
pipe_reader,
1,
NULL,
&size,
&size,
1,
&sync,

Intel FPGA SDK for OpenCL Programming Guide
49

™ ®
l n tel) 1 Intel FPGA SDK for OpenCL Programming Guide

NULL);
status = clFinish(queue);

status = clEnqueueReadBuffer(queue,
out_buffer,
CL_TRUE,
0,
sizeof(int) * SIZE,
output,
0,
NULL,
NULL);

int golden = 0, result = 0;
for (int i = 0; 1 != SIZE; ++i)

golden += input[i];
result += output[i];
}

int ret = 0;
if (golden != result)
{

printf("FAILED!"™);
ret = 1;
} else
printf(*"'PASSED!");
printf(*'\n");

return ret;

Kernel Code Modification

If your kernel code runs on OpenCL SDKs that conforms to the OpenCL Specification
version 2.0, you must modify it before running it on the Intel FPGA SDK for OpenCL.
To modify the kernel code, perform the following modifications:

e Rename the pipe arguments so that they are the same in both kernels. For
example, rename p_in and p_out to p.

e Specify the depth attribute for the pipe arguments. Assign a depth attribute
value that equals to the maximum number of packets that the pipe creates to hold
in the host.

e Execute the kernel program in the offline compilation mode because the Intel
FPGA SDK for OpenCL has an offline compiler.

The modified kernel code appears as follows:

#define SIZE 1000

__kernel void pipe_writer(__global int *in,
write_only pipe int _ attribute__((depth(SIZE))) p)

int gid = get_global_id(0);
write_pipe(p, &in[gidl]);

__kernel void pipe_reader(__global int *out,
read_only pipe int __ attribute__((depth(SIZE))) p)
{

Intel FPGA SDK for OpenCL Programming Guide
50

™ ®
1 Intel FPGA SDK for OpenCL Programming Guide l n tel)

int gid = get_global_id(0);
read_pipe(p, &out[gid]);

1.6.5.5.2 Declaring the Pipe Handle

Use the pipe variable to define the static pipe connectivity between kernels or
between kernels and I/0.

To read from and write to a pipe, the kernel must pass the pipe variable to each of the
corresponding API call.

e Declare the pipe handle as a file scope variable in the kernel source code in the
following convention: <access qual ifier> pipe <type> <vari abl e_nane>

The <type> of the pipe may be any OpenCL built-in scalar or vector data type
with a scalar size of 1024 bits or less. It may also be any user-defined type that is
comprised of scalar or vector data type with a scalar size of 1024 bits or less.

Consider the following pipe handle declarations:
__kernel void first (pipe int ¢)
__kernel void second (write_only pipe int c)

The first example declares a read-only pipe handle of type int in the kernel
First. The second example declares a write-only pipe in the kernel second. The
kernel First may only read from pipe ¢, and the kernel second may only write
to pipe c.

Important: The Intel FPGA SDK for OpenCL Offline Compiler statically infers the
connectivity of pipes in your system by matching the names of the
pipe arguments. In the example above, the kernel First is connected
to the kernel second by the pipe c.

In an Intel OpenCL system, only one kernel may read to a pipe. Similarly, only one
kernel may write to a pipe. If a non-I/O pipe does not have at least one corresponding
reading operation and one writing operation, the offline compiler issues an error.

For more information in the Intel FPGA SDK for OpenCL I/0O pipe implementation, refer
to Implementing I/0 Pipes Using the io Attribute.

Related Links

Implementing I/O Pipes Using the io Attribute on page 54
Include an 10 attribute in your OpenCL pipe declaration to declare a special I/O
pipe to interface with input or output features of an FPGA board.

1.6.5.5.3 Implementing Pipe Writes

Attention:

The write_pipe API call allows you to send data across a pipe.

Intel only supports the convenience version of the write_pipe function. By default,
write_pipe calls are nonblocking. Pipe write operations are successful only if there is
capacity in the pipe to hold the incoming packet.

The write pipe calls support single-call sites only. For a given pipe, only one write pipe
call to it can exist in the entire kernel program.

Intel FPGA SDK for OpenCL Programming Guide
51

™ ®
l n tel) 1 Intel FPGA SDK for OpenCL Programming Guide

Caution:

e To implement a pipe write, include the following write_pipe function signature:

int write pipe (write_only pipe <type> pipe_id, const <type>
*data);

Where:

pipe_id identifies the buffer to which the pipe connects, and it must match the
pipe_id of the corresponding read pipe (read_pipe).

data is the data that the pipe write operation writes to the pipe. It is a pointer to
the packet type of the pipe. Note that writing to the pipe might lead to a global or
local memory load, depending on the source address space of the data pointer.

<type> defines a pipe data width. The return value indicates whether the pipe
write operation is successful. If successful, the return value is 0. If pipe write is
unsuccessful, the return value is -1.

The following code snippet demonstrates the implementation of the write_pipe API
call:

/*Declares the writable nonblocking pipe, p, which contains packets of type int*/
__kernel void kernel_write_pipe (__global const long *src,
write_only pipe int p)

{
for (int i=0; 1 < N; i++)
//Performs the actual writing
//Emulates blocking behavior via the use of a while loop
while (write_pipe(p, &src[i]) <0) { }
}
}

The whi le loop is unnecessary if you specify a blocking attribute. To facilitate better
hardware implementations, Intel provides facility for blocking write_pipe calls by
specifying the blocking attribute (that is, __attribute__((blocking))) on the
pipe arugment declaration for the kernel. Blocking write_pipe calls always return
success.

When you send data across a blocking write pipe using the write_pipe API call, keep
in mind that if the pipe is full (that is, if the FIFO buffer is full of data), your kernel will
stall. Use the Intel FPGA SDK for OpenCL Profiler to check for pipe stalls.

Related Links

Profiling Your OpenCL Kernel on page 106
The Intel FPGA SDK for OpenCL Profiler measures and reports performance data
collected during OpenCL kernel execution on the FPGA.

1.6.5.5.4 Implementing Pipe Reads

Note:

The read_pipe API call allows you to receive data across a pipe.

Intel only supports the convenience version of the read_pipe function. By default,
read_pipe calls are nonblocking.

The read pipe calls support single-call sites only. For a given pipe, only one read pipe
call to it can exist in the entire kernel program.

Intel FPGA SDK for OpenCL Programming Guide

52

™ ®
1 Intel FPGA SDK for OpenCL Programming Guide l n tel)

Caution:

e To implement a pipe read, include the following read_pipe function signature:
int read pipe (read only pipe <type> pipe_id, <type> *data);
Where:

pipe_id identifies the buffer to which the pipe connects, and it must match the
pipe_id of the corresponding pipe write operation (write_pipe).

data is the data that the pipe read operation reads from the pipe. It is a pointer
to the location of the data. Note that write_pipe call might lead to a global or
local memory load, depending on the source address space of the data pointer.

<type> defines the packet size of the data.

The following code snippet demonstrates the implementation of the read_pipe API
call:

/*Declares the read_only_pipe that contains packets
of type long.*/
/*Declares that read_pipe calls within the kernel will exhibit
blocking behavior*/
__kernel void kernel_read_pipe (__global long *dst,
read_only pipe long _ attribute__((blocking)) p)

for (int i=0; 1 < N; i++)

{
/*Reads from a long from the pipe and stores it
into global memory at the specified location*/
read_pipe(p, &dst[i]);

}

}

To facilitate better hardware implementations, Intel provides facility for blocking
write_pipe calls by specifying the blocking attribute (that is,

__attribute__ ((blocking))) on the pipe arugment declaration for the kernel.
Blocking write_pipe calls always return success.

If the pipe is empty (that is, if the FIFO buffer is empty), you cannot receive data
across a blocking read pipe using the read_pipe API call. Doing so causes your
kernel to stall.

1.6.5.5.5 Implementing Buffered Pipes Using the depth Attribute

You may have buffered or unbuffered pipes in your kernel program. If there are
imbalances in pipe read and write operations, create buffered pipes to prevent kernel
stalls by including the depth attribute in your pipe declaration. Buffered pipes
decouple the operation of concurrent work-items executing in different kernels.

You may use a buffered pipe to control data traffic, such as limiting throughput or
synchronizing accesses to shared memory. In an unbuffered pipe, a write operation
can only proceed when the read operation is expecting to read data. Use unbuffered
pipes in conjunction with blocking read and write behaviors in kernels that execute
concurrently. The unbuffered pipes provide self-synchronizing data transfers
efficiently.

In a buffered pipe, a write operation can only proceed if there is capacity in the pipe to
hold the incoming packet. A read operation can only proceed if there is at least one
packet in the pipe.

Intel FPGA SDK for OpenCL Programming Guide
53

™ ®
l n tel) 1 Intel FPGA SDK for OpenCL Programming Guide

Use buffered pipes if pipe calls are predicated differently in the writer and reader
kernels, and the kernels do not execute concurrently.

e If you expect any temporary mismatch between the consumption rate and the
production rate to the pipe, set the buffer size using the depth attribute.

The following example demonstrates the use of the depth attribute in kernel code
that implements the OpenCL pipes. The depth(N) attribute specifies the minimum
depth of a buffered pipe, where N is the number of data values. If the read and write
kernels specify different depths for a given buffered pipe, the Intel FPGA SDK for
OpenCL Offline Compiler will use the larger depth of the two.

__kernel void
producer (__global int *in_data,
write_only pipe int _ attribute__((blocking))
__attribute__ ((depth(10))) c)

for (i=0; i < N; i++)
if (in_data[i])
. write_pipe(c, &in_data[i]);

}
}

__kernel void
consumer (__global int *check_data,
__global int *out_data,
read_only pipe int __attribute__((blocking)) c)

g int last_val = 0;
for (i=0; i < N; i++)
if (check_data[i])
. read_pipe(c, &last val);
gut_data[i] = last_val;
3

In this example, the write operation can write ten data values to the pipe successfully.
After the pipe is full, the write kernel returns failure until a read kernel consumes
some of the data in the pipe.

Because the pipe read and write calls are conditional statements, the pipe might
experience an imbalance between read and write calls. You may add a buffer capacity
to the pipe to ensure that the producer and consumer kernels are decoupled. This
step is particularly important if the producer kernel is writing data to the pipe when
the consumer kernel is not reading from it.

1.6.5.5.6 Implementing I/0 Pipes Using the io Attribute

Include an 10 attribute in your OpenCL pipe declaration to declare a special I/O pipe
to interface with input or output features of an FPGA board.

These features might include network interfaces, PCle, cameras, or other data capture
or processing devices or protocols.

Intel FPGA SDK for OpenCL Programming Guide
54

™ ®
1 Intel FPGA SDK for OpenCL Programming Guide l n tel)

In the Intel FPGA SDK for OpenCL channels extension, the 1o(*'chan_i d'") attribute
specifies the I/0 feature of an accelerator board with which a channel interfaces. The
chan_id argument is the name of the I/0 interface listed in the board_spec.xml file
of your Custom Platform. The same I/0O features can be used to identify I/O pipes.

Cautions:

Because peripheral interface usage might differ for each device type, consult your
board vendor's documentation when you implement I/O pipes in your kernel program.
Your OpenCL kernel code must be compatible with the type of data generated by the
peripheral interfaces. If there is a difference in the byte ordering between the external
I/0 pipes and the kernel, the Intel FPGA SDK for OpenCL Offline Compiler converts the
byte ordering seamlessly upon entry and exit.

Implicit data dependencies might exist for pipes that connect to the board directly
and communicate with peripheral devices via I/O pipes. These implicit data
dependencies might lead to compilation issues because the offline compiler cannot
identify these dependencies.

External I/O pipes communicating with the same peripherals do not obey any
sequential ordering. Ensure that the external device does not require sequential
ordering because unexpected behavior might occur.

Consult the board_spec.xml file in your Custom Platform to identify the input
and output features available on your FPGA board.

For example, a board_spec.xml file might include the following information on
I/0 features:

<channels>
<interface name="udp_0" port="udpO_out"™ type="streamsource" width="256"
chan_id="ethO_in"/>
<interface name="udp_0" port="udpO_in" type="streamsink" width="256"
chan_id="eth0_out"/>
<interface name="udp_0" port="udpl_out" type="streamsource'" width="256"
chan_id="ethl_in"/>
<interface name="udp_0" port="udpl_in" type="streamsink" width="256"
chan_id="ethl_out"/>

</channels>

The width attribute of an Interface element specifies the width, in bits, of the
data type used by that pipe. For the example above, both the uint and float
data types are 32 bits wide. Other bigger or vectorized data types must match the
appropriate bit width specified in the board_spec.xml file.

Implement the 10 attribute as demonstrated in the following code example. The
10 attribute names must match those of the I/0 channels (chan_id) specified in
the board_spec.xml file.

__kernel void test (pipe uint pkt _ attribute__ ((io(*enet™))),;
pipe float data __ attribute__ ((io(“pcie’))));

Attention: Declare a unique 1o("'chan_i d") handle for each I/0O pipe specified
in the channels XML element within the board_spec.xml file.

Intel FPGA SDK for OpenCL Programming Guide
55

™ ®
l n tel) 1 Intel FPGA SDK for OpenCL Programming Guide

1.6.5.5.7 Enforcing the Order of Pipe Calls

To enforce the order of pipe calls, introduce memory fence or barrier functions in your
kernel program to control memory accesses. A memory fence function is necessary to
create a control flow dependence between the pipe synchronization calls before and
after the fence.

When the Intel FPGA SDK for OpenCL Offline Compiler generates a compute unit, it
does not create instruction-level parallelism on all instructions that are independent of
each other. As a result, pipe read and write operations might not execute
independently of each other even if there is no control or data dependence between
them. When pipe calls interact with each other, or when pipes write data to external
devices, deadlocks might occur.

For example, the code snippet below consists of a producer kernel and a consumer
kernel. Pipes cO and c1 are unbuffered pipes. The schedule of the pipe read
operations from cO and c1 might occur in the reversed order as the pipe write
operations to cO and cl. That is, the producer kernel writes to cO but the consumer
kernel might read from c1 first. This rescheduling of pipe calls might cause a deadlock
because the consumer kernel is reading from an empty pipe.

__kernel void

producer (__global const uint * restrict src,
const uint iterations,
write_only pipe uint __ attribute__((blocking)) cO,
write_only pipe uint __ attribute__((blocking)) cl)

for (int i=0; i1 < iterations; i++) {
write_pipe(c0, &src[2*i]);
write_pipe(cl, &src[2*i+1]); }
3

__kernel void

consumer (__global uint * restrict dst,
const uint iterations,
read_only pipe uint __ attribute__((blocking)) cO,
read_only pipe uint __ attribute__((blocking)) cl)

{
for (int i=0; i < iterations; i++) {
read_pipe(cO, &dst[2*i+1]);
read_pipe(cl, &dst[2*i]); }
}

Intel FPGA SDK for OpenCL Programming Guide

56

] ®
1 Intel FPGA SDK for OpenCL Programming Guide l n tel

e To prevent deadlocks from occurring by enforcing the order of pipe calls, include
memory fence functions (mem_fence) in your kernel.

Inserting the mem_fence call with each kernel's pipe flag forces the sequential
ordering of the write and read pipe calls. The code snippet below shows the
modified producer and consumer kernels:

__kernel void

producer (__global const uint * src,
const uint iterations,
write_only pipe uint __ attribute__ ((blocking)) cO,
write_only pipe uint __ attribute__ ((blocking)) cl)

{
for(int i=0; 1 < iterations; i++)
{
write_pipe(cO, &src[2*i 1]);
mem_Tence (CLK_CHANNEL_MEM_FENCE) ;
write_pipe(cl, &src[2*i+1]);
3
b

__kernel void

consumer (__global uint * dst;
const uint iterations,
read_only_pipe uint __ attribute__((blocking)) cO,
read_only_pipe uint __ attribute__((blocking)) cl)

{
for(int i=0; 1 < iterations; i++)
{
read_pipe(cO, &dst[2*i 1]);
mem_Tence (CLK_CHANNEL_MEM_FENCE) ;
read_pipe(cl, &dst[2*i+1]);
3

In this example, mem_fence in the producer kernel ensures that the pipe write
operation to c0 occurs before that to c1. Similarly, mem_fence in the consumer
kernel ensures that the pipe read operation from cO occurs before that from c1.

Defining Memory Consistency Across Kernels When Using Pipes

According to the OpenCL Specification version 2.0, memory behavior is undefined
unless a kernel completes execution. A kernel must finish executing before other
kernels can visualize any changes in memory behavior. However, kernels that use
pipes can share data through common global memory buffers and synchronized
memory accesses. To ensure that data written to a pipe is visible to the read pipe after
execution passes a memory fence, define memory consistency across kernels with
respect to memory fences.

Intel FPGA SDK for OpenCL Programming Guide
57

1 Intel FPGA SDK for OpenCL Programming Guide

To create a control flow dependency between the pipe synchronization calls and
the memory operations, add the CLK_GLOBAL_MEM_FENCE flag to the mem_fence
call.

For example:

__kernel void

producer (__global const uint * restrict src,
const uint iterations,
write_only pipe uint _ attribute__((blocking)) cO,
write_only pipe uint _ attribute__((blocking)) cl)

{
for (int i=0;i<iterations;i++)
write_pipe(c0, &src[2*i]);
mem_fence(CLK_CHANNEL_MEM_FENCE | CLK_GLOBAL_MEM_FENCE);
write_pipe(cl, &src[2*i+1]);
}
}

In this kernel, the mem_fence function ensures that the write operation to cO and
memory access to src[2*i] occur before the write operation to c1 and memory
access to src[2*i+1]. This allows data written to cO to be visible to the read
pipe before data is written to c1.

1.6.6 Using Predefined Preprocessor Macros in Conditional Compilation

You may take advantage of predefined preprocessor macros that allow you to
conditionally compile portions of your kernel code.

To include device-specific (for example, FPGA_board_1) code in your kernel
program, structure your kernel program in the following manner:

#if defined(AOCL_BOARD_FPGA_board_1)
//FPGA_board_1-specific statements
#else
//FPGA_board_2-specific statements
#endif

When you target your kernel compilation to a specific board, it sets the predefined
preprocessor macro AOCL_BOARD_<boar d_nane> to 1. If <board_name> is
FPGA_board_1, the Intel FPGA SDK for OpenCL Offline Compiler will compile the
FPGA_board_1-specific parameters and features.

To introduce Intel FPGA SDK for OpenCL Offline Compiler-specific compiler
features and optimizations, structure your kernel program in the following
manner:

#if defined(ALTERA_CL)
//statements
#else
//statements
#endif

Where ALTERA_CL is the Intel predefined preprocessor macro for the offline
compiler.

Intel FPGA SDK for OpenCL Programming Guide

58

] ®
1 Intel FPGA SDK for OpenCL Programming Guide l n tel)

Related Links

Defining Preprocessor Macros to Specify Kernel Parameters (-D <macro_name>) on
page 93
The Intel FPGA SDK for OpenCL Offline Compiler supports preprocessor macros
that allow you to pass macro definitions and compile code on a conditional basis.

1.6.7 Declaring ___constant Address Space Qualifiers

Warning:

There are several limitations and workarounds you must consider when you include
___constant address space qualifiers in your kernel.

Function Scope ___constant Variables

The Intel FPGA SDK for OpenCL Offline Compiler does not support function scope
___constant variables. Replace function scope __constant variables with file scope
constant variables. You can also replace function scope ___constant variables with
___constant buffers that the host passes to the kernel.

File Scope __ constant Variables

If the host always passes the same constant data to your kernel, consider declaring
that data as a constant preinitialized file scope array within the kernel file. Declaration
of a constant preinitialized file scope array creates a ROM directly in the hardware to
store the data. This ROM is available to all work-items in the NDRange.

The offline compiler supports only scalar file scope constant data. For example, you
may set the ___constant address space qualifier as follows:

__constant int my_array[8] = {Ox0, Ox1, 0x2, O0x3, Ox4, O0x5, Ox6, Ox7};

__kernel void my_kernel (__global int * my_buffer)

{
size_t gid = get_global_id(0);
my_buffer[gid] += my_array[gid % 8];

In this case, the offline compiler sets the values for my_array in a ROM because the
file scope constant data does not change between kernel invocations.

Do not set your file scope ___constant variables in the following manner because the
offline compiler does not support vector type __constant arrays declared at the file
scope:

__constant int2 my_array[4] = {(Ox0, 0x1), (0x2, 0x3); (0Ox4,
0x5), (0x6, O0x7)};

Pointers to ___constant Parameters from the Host

You can replace file scope constant data with a pointer to a __constant parameter in
your kernel code. You must then modify your host application in the following manner:

Intel FPGA SDK for OpenCL Programming Guide
59

1 Intel FPGA SDK for OpenCL Programming Guide

1. Create cl_mem memory objects associated with the pointers in global memory.

2. Load constant data into cl_mem objects with clEnqueueWriteBuffer prior to

kernel execution.

3. Pass the cl_mem objects to the kernel as arguments with the clSetKernelArg

function.

For simplicity, if a constant variable is of a complex type, use a typedef argument, as

shown in the table below:

Table 1. Replacing File Scope

Parameter

___constant Variable with Pointer to

__constant

If your source code is structured as follows:

Rewrite your code to resemble the following syntax:

__constant int Payoff[2][2] = {{ 1, 3} {5 3}};
" kernel void original(__global int *

*A = Payoff[1][2];
// and so on

}

__kernel void modified(__global int * A,
__constant Payoff_type * PayoffPtr)

*A = (PayoffPtr)[1][2];
// and so on

¥

Attention:

Use the same type definition in both your host application and your kernel.

1.6.8 Including Structure Data Types as Arguments in OpenCL Kernels

Convert each structure parameter (struct) to a pointer that points to a structure.

The table below describes how you can convert structure parameters:

Table 2.

Converting Structure Parameters to Pointers that Point to Structures

If your source code is structured as follows:

Rewrite your code to resemble the following syntax:

struct Context

float paraml;
float param2;
int param3;

uint param4;

};

__kernel void algorithm(__global float * A,
struct Context c)

if (c.param3)

// statements

—_global struct Context * restrict c)

struct Context
float paraml;
float param2;

int param3;
uint param4;

kernel void algorithm(__global float * A,
if (c->param3)

// Dereference through a
// pointer and so on

Attention: The _ global struct declaration creates a new buffer to store the structure. To
prevent pointer aliasing, include a restrict qualifier in the declaration of the pointer

to the structure.

1.6.8.1 Matching Data Layouts of Host and Kernel Structure Data Types

If you use structure data types (struct) as arguments in OpenCL kernels, match the
member data types and align the data members between the host application and the

kernel code.

Intel FPGA SDK for OpenCL Programming Guide
60

™ ®
1 Intel FPGA SDK for OpenCL Programming Guide l n tel)

To match member data types, use the cl_ version of the data type in your host
application that corresponds to the data type in the kernel code. The cl_ version of
the data type is available in the opencl _h header file. For example, if you have a
data member of type fFloat4 in your kernel code, the corresponding data member
you declare in the host application is cl_Ffloat4.

Align the structures and align the struct data members between the host and kernel
applications. Manage the alignments carefully because of the variability among
different host compilers.

For example, if you have float 4 OpenCL data types in the struct, the alignments of
these data items must satisfy the OpenCL specification (that is, 16-byte alignment for
float4).

The following rules apply when the Intel FPGA SDK for OpenCL Offline Compiler
compiles your OpenCL kernels:

1. Alignment of built-in scalar and vector types follow the rules outlined in Section
6.1.5 of the OpenCL Specification version 1.0.

The offline compiler usually aligns a data type based on its size. However, the
compiler aligns a value of a three-element vector the same way it aligns a four-
element vector.

An array has the same alignment as one of its elements.

A struct (or a union) has the same alignment as the maximum alignment
necessary for any of its data members.

Consider the following example:

struct my_struct

{
char data[3];
floatd f4;
int index;

}:

The offline compiler aligns the struct elements above at 16-byte boundaries
because of the float4 data type. As a result, both data and index also have
16-byte alignment boundaries.

4. The offline compiler does not reorder data members of a struct.

Normally, the offline compiler inserts a minimum amount of data structure
padding between data members of a struct to satisfy the alignment
requirements for each data member.

a. In your OpenCL kernel code, you may specify data packing (that is, no
insertion of data structure padding) by applying the packed attribute to the
struct declaration. If you impose data packing, ensure that the alignment of
data members satisfies the OpenCL alignment requirements. The Intel FPGA

Intel FPGA SDK for OpenCL Programming Guide
61

1 Intel FPGA SDK for OpenCL Programming Guide

SDK for OpenCL does not enforce these alignment requirements. Ensure that
your host compiler respects the kernel attribute and sets the appropriate
alignments.

In your OpenCL kernel code, you may specify the amount of data structure
padding by applying the aligned(N) attribute to a data member, where N is
the amount of padding. The SDK does not enforce these alignment
requirements. Ensure that your host compiler respects the kernel attribute and
sets the appropriate alignments.

For Windows systems, some versions of the Microsoft Visual Studio compiler
pack structure data types by default. If you do not want to apply data packing,
specify an amount of data structure padding as shown below:

struct my_struct

__declspec(align(16)) char data[3];

/*Note that cl_float4 is the only known float4 definition on the
host*/

__declspec(align(16)) cl_floatd4 f4;

__declspec(align(16)) int index;
}:

Tip: An alternative way of adding data structure padding is to insert dummy
struct members of type char or array of char.

Related Links

Modifying Host Program for Structure Parameter Conversion on page 75

If you convert any structure parameters to pointers-to-constant structures in
your OpenCL kernel, you must modify your host application accordingly.

OpenCL Specification version 1.0

1.6.8.2 Disabling Insertion of Data Structure Padding

You may instruct the Intel FPGA SDK for OpenCL Offline Compiler to disable automatic
padding insertion between members of a struct data structure.

To disable automatic padding insertion, insert the packed attribute prior to the
kernel source code for a struct data structure.

For example:

struct __ attribute__ ((packed)) Context

{

float paraml;
float param2;
int param3;

uint param4;

}:
__kernel void algorithm(__global float * restrict A,

__global struct Context * restrict c)
if (c->param3)

// Dereference through a pointer and so on

Intel FPGA SDK for OpenCL Programming Guide

62

https://www.khronos.org/registry/cl/specs/opencl-1.0.pdf

™ ®
1 Intel FPGA SDK for OpenCL Programming Guide l n tel)

For more information, refer to the Align a Struct with or without Padding section of the
Intel FPGA SDK for OpenCL Best Practices Guide.

Related Links
Align a Struct with or without Padding

1.6.8.3 Specifying the Alignment of a Struct

You may instruct the Intel FPGA SDK for OpenCL Offline Compiler to set a specific
alignment of a struct data structure.

e To specify the struct alignment, insert the aligned(N) attribute prior to the
kernel source code for a struct data structure.

For example:

struct __ attribute__((aligned(2))) Context

float paraml;
float param2;
int param3;

uint param4;

_;kernel void algorithm(__global float * A,
__global struct Context * restrict c)

if (c->param3)

// Dereference through a pointer and so on
}
3

For more information, refer to the Align a Struct with or without Padding section of the
Intel FPGA SDK for OpenCL Best Practices Guide.

Related Links
Align a Struct with or without Padding

1.6.9 Inferring a Register

The Intel FPGA SDK for OpenCL Offline Compiler can implement data that is in the
private address space in registers or in block RAMs. In general, the offline compiler
chooses registers if the access to a variable is fixed and does not require any dynamic
indexes. Accessing an array with a variable index usually forces the array into block
RAMs. Implementing private data as registers is beneficial for data access that occurs
in a single cycle (for example, feedback in a single work-item loop).

The offline compiler infers private arrays as registers either as single values or in a
piecewise fashion. Piecewise implementation results in very efficient hardware;
however, the offline compiler must be able to determine data accesses statically. To
facilitate piecewise implementation, hardcode the access points into the array. You can
also facilitate register inference by unrolling loops that access the array.

If array accesses are not inferable statically, the offline compiler might infer the array
as registers. However, the offline compiler limits the size of these arrays to 64 bytes in
length for single work-item kernels. There is effectively no size limit for kernels with
multiple work-items.

Intel FPGA SDK for OpenCL Programming Guide
63

https://documentation.altera.com/#/link/mwh1391807516407/ewa1417026580901/en-us
https://documentation.altera.com/#/link/mwh1391807516407/ewa1417026580901/en-us

1 Intel FPGA SDK for OpenCL Programming Guide

Consider the following code example:

int array[SIZE];

for (int j = 0; j < N; ++j)
{
for (int i = 0; 1 < SIZE - 1; ++i)
array[i] = array[i + 1];

}

The indexing into array[i] is not inferable statically because the loop is not unrolled.
If the size of array[S1ZE] is less than or equal to 64 bytes for single work-item
kernels, the offline compiler implements array[S1ZE] into registers as a single
value. If the size of array[[SIZE] is greater than 64 bytes for single work-item
kernels, the offline compiler implements the entire array in block RAMs. For multiple
work-item kernels, the offline compiler implements array[SI1ZE] into registers as a
single value as long as its size is less than 1 kilobyte (KB).

1.6.9.1 Inferring a Shift Register

The shift register design pattern is a very important design pattern for many
applications. However, the implementation of a shift register design pattern might
seem counterintuitive at first.

Consider the following code example:

channel int in, out;

#define SIZE 512
//Shift register size must be statically determinable

__kernel void foo()

{

int shift_reg[SI1ZE];

//The key is that the array size is a compile time constant
// Initialization loop
#pragma unroll
for (int i=0; i1 < SIZE; i++)

//Al11 elements of the array should be initialized to the same value

shift_reg[i] = O;

}
while(l)
{

// Fully unrolling the shifting loop produces constant accesses

#pragma unroll

for (int j=0; j < SIZE-1; j++)

shift_reg[j] = shift_reg[j + 1];

}

shift_reg[SI1ZE — 1] = read_channel_altera(in);

// Using fixed access points of the shift register

int res = (shift_reg[0] + shift_reg[l]) 7/ 2;

// “out’ channel will have running average of the input channel

write_channel_altera(out, res);
}

}

Intel FPGA SDK for OpenCL Programming Guide

64

™ ®
1 Intel FPGA SDK for OpenCL Programming Guide l n tel)

In each clock cycle, the kernel shifts a new value into the array. By placing this shift
register into a block RAM, the Intel FPGA SDK for OpenCL Offline Compiler can
efficiently handle multiple access points into the array. The shift register design
pattern is ideal for implementing filters (for example, image filters like a Sobel filter or
time-delay filters like a finite impulse response (FIR) filter).

When implementing a shift register in your kernel code, keep in mind the following
key points:

1. Unroll the shifting loop so that it can access every element of the array.

2. All access points must have constant data accesses. For example, if you write a
calculation in nested loops using multiple access points, unroll these loops to
establish the constant access points.

3. Initialize all elements of the array to the same value. Alternatively, you may leave
the elements uninitialized if you do not require a specific initial value.

4. If some accesses to a large array are not inferable statically, they force the offline
compiler to create inefficient hardware. If these accesses are necessary, use
___local memory instead of ___private memory.

5. Do not shift a large shift register conditionally. The shifting must occur in very loop
iteration that contains the shifting code to avoid creating inefficient hardware.

1.6.10 Enabling Double Precision Floating-Point Operations

The Intel FPGA SDK for OpenCL offers preliminary support for all double precision
floating-point functions.

Before declaring any double precision floating-point data type in your OpenCL kernel,
include the following OPENCL EXTENSION pragma in your kernel code:

#pragma OPENCL EXTENSION cl_khr_fp64 : enable

1.6.11 Single-Cycle Floating-Point Accumulator for Single Work-Item

Kernels

Attention:

Single work-item kernels that perform accumulation in a loop can leverage the Intel
FPGA SDK for OpenCL Offline Compiler's single-cycle floating-point accumulator
feature. The offline compiler searches for these kernel instances and attempts to map
an accumulation that executes in a loop into the accumulator structure.

The offline compiler supports an accumulator that adds or subtracts a value. To
leverage this feature, describe the accumulation in a way that allows the offline
compiler to infer the accumulator.

e The accumulator is only available on Arria 10 devices.

e The accumulator must be part of a loop.

e The accumulator must have an initial value of 0.

e The accumulator cannot be conditional.

Intel FPGA SDK for OpenCL Programming Guide
65

1 Intel FPGA SDK for OpenCL Programming Guide

Below are examples of a description that results in the correct inference of the
accumulator by the offline compiler.

#pragma OPENCL EXTENSION cl_altera_channels : enable
channel float4 RANDOM_STREAM;

__kernel void acc_test(__global float *a, int k) {
// Simplest example of an accumulator.
// In this loop, the accumulator acc is incremented by 5.
int i;
float acc = 0.0f;
for (i = 0; 1 < k; i++) {
acc+=5;

a[0] = acc;

}

__kernel void acc_test2(__global float *a, int k) {
// Extended example showing that an accumulator can be
// conditionally incremented. The key here is to describe the increment
// as conditional, not the accumulation itself.
int i;
float acc = 0.0f;
for (i = 0; 1 < k; i++) {
acc += ((i <30) ? 5 : 0);

a[0] = acc;

}

__kernel void acc_test3(__global float *a, int k) {
// A more complex case where the accumulator is fed
// by a dot product.
int i;
float acc = 0.0f;
for (i = 0; 1 < k; 1++){

float4 v = read_channel_altera(RANDOM_STREAM) ;
float x1 = v.Xx;
float x2 = v.y;
float yl = v.z;
float y2 = v.w;

acc += (X1*yl+x2*y2);

a[0] = acc;

}
__kernel void loader(__global float *a, int k) {
int i;
float4 my _val = 0;
for(i = 0; i < k; i++) {
if ((i%4) == 0)
write_channel_altera(RANDOM_STREAM, my_val);
it ((i%4) == 0) my_val.x = a[i];
it ((i%4) == 1) my_val.y = a[i];
it ((i%4) == 2) my val.z = a[i];
it ((i%4) == 3) my_val.w = a[i];
}
}

1.6.11.1 Programming Strategies for Inferring the Accumulator

To leverage the single cycle floating-point accumulator feature, you can modify the
accumulator description in your kernel code to improve efficiency or work around
programming restrictions.

Intel FPGA SDK for OpenCL Programming Guide
66

] ®
1 Intel FPGA SDK for OpenCL Programming Guide l n tel)

Describing an Accumulator Using Multiple Loops

Consider a case where you want to describe an accumulator using multiple loops, with
some of the loops being unrolled:

float acc = 0.0f;
for (i = 0; 1 < k; i++) {
#pragma unroll
for(J=0;j < 16; j++)
acc += (xLi+Jj1*y[i+il);
3

In this situation, it is important to compile the kernel with the --fp-relaxed Intel FPGA
SDK for OpenCL Offline Compiler command option to enable the offline compiler to
rearrange the operations in a way that exposes the accumulation. If you do not
compile the kernel with —-fp-relaxed, the resulting accumulator structure will have
a high initiation interval (II). II is the launch frequency of a new loop iteration. The
higher the II value, the longer the accumulator structure must wait before it can
process the next loop iteration.

Modifying a Multi-Loop Accumulator Description

In cases where you cannot compile an accumulator description using the —-fp-
relaxed offline compiler command option, rewrite the code to expose the
accumulation.

For the code example above, rewrite it in the following manner:

float acc = 0.0F;
for (i = 0; 1 < k; i++) {
float my_dot = 0.0f;
#pragma unroll
for(J=0;j < 16; j++)
my_dot += (x[i+j1*yLi+il);
acc += my_dot;

Modifying an Accumulator Description Containing a Variable or Non-Zero
Initial Value

Consider a situation where you might want to apply an offset to a description of an
accumulator that begins with a non-zero value:

float acc = array[0];

for (i = 0; 1 < k; 1++) {
acc += x[i];

3

Because the accumulator hardware does not support variable or non-zero initial values
in a description, you must rewrite the description.

float acc = 0.0F;
for (i = 0; 1 < k; 1++) {
acc += x[i];

acc += array[0]:

Intel FPGA SDK for OpenCL Programming Guide
67

] ®
l n tel) 1 Intel FPGA SDK for OpenCL Programming Guide

Rewriting the description in the above manner enables the kernel to use an
accumulator in a loop. The loop structure is then followed by an increment of
array|[0].

1.7 Designing Your Host Application

Intel offers guidelines on host requirements and procedures on structuring the host
application. If applicable, implement these design strategies when you create or
modify a host application for your OpenCL kernels.

Host Programming Requirements on page 68
When designing your OpenCL host application for use with the Intel FPGA SDK for
OpenCL, ensure that the application satisfies the following host programming
requirements.

Allocating OpenCL Buffer for Manual Partitioning of Global Memory on page 69

Collecting Profile Data During Kernel Execution on page 72
In cases where kernel execution finishes after the host application completes, you
can query the FPGA explicitly to collect profile data during kernel execution.

Accessing Custom Platform-Specific Functions on page 74
To reference Custom Platform-specific user-accessible functions while linking to the
ACD, include the clGetBoardExtensionFunctionAddressAltera extension in
your host application.

Modifying Host Program for Structure Parameter Conversion on page 75
If you convert any structure parameters to pointers-to-constant structures in your
OpenCL kernel, you must modify your host application accordingly.

Managing Host Application on page 76
The Intel FPGA SDK for OpenCL includes utility commands you can invoke to obtain
information on flags and libraries necessary for compiling and linking your host
application.

Allocating Shared Memory for OpenCL Kernels Targeting SoCs on page 87
Intel recommends that OpenCL kernels that run on Intel SoCs access shared
memory instead of the FPGA DDR memory.

1.7.1 Host Programming Requirements
When designing your OpenCL host application for use with the Intel FPGA SDK for

OpenCL, ensure that the application satisfies the following host programming
requirements.

1.7.1.1 Host Machine Memory Requirements

The machine that runs the host application must have enough host memory to support
several components simultaneously.

The host machine must support the following components:

Intel FPGA SDK for OpenCL Programming Guide
68

| | ®
1 Intel FPGA SDK for OpenCL Programming Guide < l n tel)

e The host application and operating system.
e The working set for the host application.

e The maximum amount of OpenCL memory buffers that can be allocated at once.
Every device-side cl_mem buffer is associated with a corresponding storage area
in the host process. Therefore, the amount of host memory necessary might be as
large as the amount of external memory supported by the FPGA.

1.7.1.2 Host Binary Requirement

When compiling the host application, target one of these architectures: x86-64 (64-
bit) or ARM® 32-bit ARMV7-A for SoCs. The Intel FPGA SDK for OpenCL host runtime
does not support x86-32 (32-bit) binaries.

1.7.1.3 Multiple Host Threads
The Intel FPGA SDK for OpenCL host library is thread-safe.
All OpenCL APIs are thread safe except the clSetKernelArg function.

It is safe to call clSetKernelArg from any host thread or as an reentrant as long as
concurrent calls to any combination of clSetKernelArg calls operate on different
cl_kernel objects.

Related Links
Multi-Threaded Host Application

1.7.1.4 Out-of-Order Command Queues

The OpenCL host runtime command queues do not support out-of-order command
execution.

1.7.1.5 Requirement for Multiple Command Queues in Channels or Pipes
Implementation

Although the Intel FPGA SDK for OpenCL channels extension or OpenCL pipes
implementation allows multiple kernels to execute in parallel, channels or pipes
facilitate this concurrent behavior only when cl_command_queue objects are in order.

To enable multiple command queues , instantiate a separate command for each kernel
you wish to run concurrently.

1.7.2 Allocating OpenCL Buffer for Manual Partitioning of Global Memory

Manual partitioning of global memory buffers allows you to control memory accesses
across buffers to maximize the memory bandwidth. Before you partition the memory,
first you have to disable burst-interleaving during OpenCL kernel compilation. Then, in
the host application, you must specify the memory bank to which you allocate the
OpenCL buffer.

By default, the Intel FPGA SDK for OpenCL Offline Compiler configures each global
memory type in a burst-interleaved fashion. Usually, the burst-interleaving
configuration leads to the best load balancing between the memory banks. However,
there might be situations where it is more efficient to partition the memory into non-
interleaved regions.

Intel FPGA SDK for OpenCL Programming Guide
69

https://documentation.altera.com/#/link/mwh1391807516407/ewa1444245039361/en-us

™ ®
< l n tel) 1 Intel FPGA SDK for OpenCL Programming Guide

The figure below illustrates the differences between burst-interleaved and non-
interleaved memory partitions.

Burst-Interleaved Separate Partitions
Address Address
OX7FFF_FFFF Ox7FFF_FFFF
Bank 2
OX7FFF_FC00
OX7FFF_FBFF
Bank 1 Bank 2
0x7FFF_F800
°
°
°
0x0000_OFFF
Bank 2 0x4000_0000
O0x3FFF _FFFF
0x0000_0C00
0x0000_0BFF
Bank 1
0x0000_0800
0x0000_07FF Bank 1
Bank 2
0x0000_0400
0x0000_03FF
Bank 1
0x0000_0000 0x0000_0000

To manually partition some or all of the available global memory types, perform the
following tasks:

1. Compile your OpenCL kernel using the ——no-interleaving
<gl obal _nmenory_t ype> flag to configure the memory bank(s) of the specified
memory type as separate addresses.

For more information on the usage of the ——no-interleaving
<gl obal _menory_t ype> flag, refer to the Disabling Burst-Interleaving of Global
Memory (--no-interleaving <global_memory_type>) section.

2. Create an OpenCL buffer in your host application, and allocate the buffer to one of
the banks using the CL_MEM_HETEROGENEOUS_ALTERA and CL_MEM_BANK flags.

— Specify CL_MEM_BANK_1 ALTERA to allocate the buffer to the lowest available
memory region.

— Specify CL_MEM_BANK_2_ ALTERA to allocation memory to the second bank (if
available).

Attention: Allocate each buffer to a single memory bank only.

By default, the host allocates buffers into the main memory when you load kernels
into the OpenCL runtime via the clCreateProgramWithBinary function. During
kernel invocation, the host automatically relocates heterogeneous memory buffers
that are bound to kernel arguments to the main memory . To avoid the initial

Intel FPGA SDK for OpenCL Programming Guide
70

™ ®
1 Intel FPGA SDK for OpenCL Programming Guide l n tel)

Attention:

allocation of heterogeneous memory buffers in the main memory, include the
CL_MEM_HETEROGENEOUS_ALTERA flag when you call the clCreateBuffer
function, as shown below:

mem = clCreateBuffer(context,
flags|CL_MEM_HETEROGENEOUS_ALTERA,
memSize,
NULL,
&errNum) ;

For example, the following clCreateBuffer call allocates memory into the
lowest available memory region of a nondefault memory bank:

mem = clCreateBuffer(context,
(CL_MEM_HETEROGENEOUS_ALTERA|CL_MEM_BANK_1_ALTERA),
memSize,
NULL,
&errNum) ;

The clCreateBuffer call allocates memory into a certain global memory type
based on what you specify in the kernel argument. If a memory (cl_mem) object
residing in a memory type is set as a kernel argument that corresponds to a
different memory technology, the host moves the memory object automatically
when it queues the kernel. Do not pass a buffer as kernel arguments that
associate it with multiple memory technologies.

If the second bank is not available at runtime, the memory is allocated to the first
bank. If no global memory is available, the clCreateBuffer call fails with the error
message CL_MEM_OBJECT_ALLOCATION_FAILURE.

For more information on optimizing heterogeneous global memory accesses, refer to
the Heterogeneous Memory Buffers and the Manual Partitioning of Global Memory
sections of the Intel FPGA SDK for OpenCL Best Practices Guide.

Related Links

e Disabling Burst-Interleaving of Global Memory (--no-interleaving
<global_memory_type>) on page 97
You can disable burst-interleaving for all global memory banks of the same
type and manage them manually by including the -—no-interleaving
<global_memory_type> option in your aoc command.

¢ Manual Partitioning of Global Memory

e Heterogeneous Memory Buffers

1.7.2.1 Creating a Pipe Object in Your Host Application

To implement OpenCL pipes in your kernel, you must create Intel FPGA SDK for
OpenCL-specific pipe objects in your host application.

An SDK-specific pipe object is not a true OpenCL pipe object as described in the
OpenCL Specification version 2.0. This implementation allows you to migrate away
from Intel FPGA products with a conformant solution. The SDK-specific pipe object is a
memory object (cl_mem); however, the host does not allocate any memory for the
pipe itself.

Intel FPGA SDK for OpenCL Programming Guide
71

https://documentation.altera.com/#/link/mwh1391807516407/mwh1391807511852/en-us
https://documentation.altera.com/#/link/mwh1391807516407/mwh1391807512179/en-us

™ ®
l n tel) 1 Intel FPGA SDK for OpenCL Programming Guide

The following cICreatePipe host API creates a pipe object:

cl_mem clCreatePipe(cl_context context,
cl_mem_flags flags,
cl_uint pipe_packet_size,
cl_uint pipe_max_packets,
const cl_pipe_properties *properties,
cl_int *errcode_ret)

For more information on the clCreatePipe host API function, refer to section 5.4.1
of the OpenCL Specification version 2.0.

Below is an example syntax of the cICreatePipe host API function:

cl_int status;
cl_mem cO_pipe = clCreatePipe(context,

sizeof(int),

NOLL,
&status);
status = clSetKernelArg(kernel, 1, sizeof(cl_mem), &cO_pipe);

Caution: The SDK does not support dynamic channel assignment at runtime. The SDK statically
links the pipes during compilation.

Related Links
OpenCL Specification version 2.0 (API)

1.7.3 Collecting Profile Data During Kernel Execution

In cases where kernel execution finishes after the host application completes, you can
query the FPGA explicitly to collect profile data during kernel execution.

When you profile your OpenCL kernel during compilation, a profile._mon file is
generated automatically. The profile data is then written to profile.mon after kernel
execution completes on the FPGA. However, if kernel execution completes after the
host application completes, no profiling information for that kernel invocation will be
available in the profile.mon file. In this case, you can modify your host code to
acquire profiling information during kernel execution.

Intel FPGA SDK for OpenCL Programming Guide
72

https://www.khronos.org/registry/cl/specs/opencl-2.0.pdf

™ ®
1 Intel FPGA SDK for OpenCL Programming Guide l n tel)

e To query the FPGA to collect profile data while the kernel is running, call the
following host library call:

extern CL_API_ENTRY cl_int CL_API_CALL

clGetProfilelnfoAltera(cl_event);

where cl_event is the kernel event. The kernel event you pass to this host

library call must be the same one you pass to the clEnqueueNDRangeKernel
call.

Important: If kernel execution completes before the invocation of
clGetProfilelnfoAltera, the function returns an event error
message.

Caution: Invoking the clGetProfilelnfoAltera function during kernel
execution disables the profile counters momentarily so that the Profiler
can collect data from the FPGA. As a result, you will lose some profiling
information during this interruption. If you call this function at very
short intervals, the profile data might not accurately reflect the actual
performance behavior of the kernel.

Consider the following example host code:

int mainQ)
éiénqueueNDRangeKernel (queue, kernel, ..., NULL);
éiénqueueNDRangeKernel (queue, kernel, .. , NULL);
. -

This host application runs on the assumption that a kernel launches twice and
then completes. In the profile.mon file, there will be two sets of profile data,
one for each kernel invocation. To collect profile data while the kernel is running,
modify the host code in the following manner:

int mainQ)

éiénqueueNDRangeKernel (queue, kernel, ..., &event);

//Get the profile data before the kernel completes
clGetProfilelnfoAltera (event);

//Wait until the kernel completes
clFinish (queue);

éiénqueueNDRangeKernel (queue, kernel, ..., NULL);

The call to clGetProfilelnfoAltera adds a new entry in the profile.mon
file. The Profiler GUI then parses this entry in the report.

For more information on the Intel FPGA SDK for OpenCL Profiler, refer to the following
sections:

Intel FPGA SDK for OpenCL Programming Guide
73

] ®
l n tel) 1 Intel FPGA SDK for OpenCL Programming Guide

e Profile Your Kernel to Identify Performance Bottlenecks in the Intel FPGA SDK for
OpenCL Best Practices Guide

e Profiling Your OpenCL Kernel

Related Links
e Profile Your Kernel to Identify Performance Bottlenecks

e Profiling Your OpenCL Kernel on page 106
The Intel FPGA SDK for OpenCL Profiler measures and reports performance
data collected during OpenCL kernel execution on the FPGA.

1.7.4 Accessing Custom Platform-Specific Functions

Attention:

You have the option to include in your application user-accessible functions that are
available in your Custom Platform. However, when you link your host applicaiton to the
Altera Client Driver (ACD), you cannot directly reference these Custom Platform-
specific functions. To reference Custom Platform-specific user-accessible functions
while linking to the ACD, include the
clGetBoardExtensionFunctionAddressAltera extension in your host
application.

The clGetBoardExtensionFunctionAddressAltera extension specifies an API
that retrieves a pointer to a user-accessible function from the Custom Platform.

For Linux systems, the clGetBoardExtensionFunctionAddressAltera function
works with or without ACD. For Windows systems, the function only works in
conjunction with ACD. Consult with your board vendor to determine if ACD is
supported in your Custom Platform.

Definitions of the extension interfaces are available in the ALTERAOCLSDKROOT/
host/include/CL/cl_ext._h file.

Intel FPGA SDK for OpenCL Programming Guide

74

https://documentation.altera.com/#/link/mwh1391807516407/ewa1399053428262/en-us

] ®
1 Intel FPGA SDK for OpenCL Programming Guide l n tel

e To obtain a pointer to a user-accessible function in your Custom Platform, call the
following function in your host application:

void* clGetBoardExtensionFunctionAddressAltera (
const char* function_name,
cl_device_id device

);
Where:

function_name is the name of the user-accessible function that your Custom
Platform vendor provides,

and
device is the device ID returned by the clGetDevicelDs function.

After locating the user-accessible function, the
clGetBoardExtensionFunctionAddressAltera function returns a pointer to
the user-accessible function. If the function does not exist in the Custom Platform,
clGetBoardExtensionFunctionAddressAltera returns NULL.

Attention: To access the clGetBoardExtensionFunctionAddressAltera API
via the Installable Client Driver (ICD), ensure that the ICD extension
API clGetExtensionFunctionAddress retrieves the pointer to the
clGetBoardExtensionFunctionAddressAltera API first.

The following code example shows how you can access the Custom
Platform-specific function via ICD:

typedef void* (*get_board_extension_function_address_fn_t)
(const char* func_name, cl_device_id device);

get_board_extension_function_address_fn_t
get_board_extension_function_address =
(get_board_extension_function_address_fn_t)
clGetExtensionFunctionAddress
("'clGetBoardExtensionFunctionAddressAltera™);

iT (get_board_extension_function_address == NULL) {
printf ("Failed to get clGetBoardExtensionFunctionAddressAltera
\n"");

3

void *board_extension_function_ptr =
get_board_extension_function_address(**function_name',device_id);
1.7.5 Modifying Host Program for Structure Parameter Conversion

If you convert any structure parameters to pointers-to-constant structures in your
OpenCL kernel, you must modify your host application accordingly.

Perform the following changes to your host application:

1. Allocate a cl_mem buffer to store the structure contents.

Intel FPGA SDK for OpenCL Programming Guide
75

] ®
l n tel) 1 Intel FPGA SDK for OpenCL Programming Guide

Attention: You need a separate cl_mem buffer for every kernel that uses a
different structure value.

2. Set the structure kernel argument with a pointer to the structure buffer, not with a
pointer to the structure contents.

3. Populate the structure buffer contents before queuing the kernel. Perform one of
the following steps to ensure that the structure buffer is populated before the
kernel launches:

— Queue the structure buffer on the same command queue as the kernel queue.

— Synchronize separate kernel queues and structure buffer queues with an
event.

4. When your application no longer needs to call a kernel that uses the structure
buffer, release the cl_mem buffer.

Related Links

e Including Structure Data Types as Arguments in OpenCL Kernels on page 60
Convert each structure parameter (struct) to a pointer that points to a
structure.

e Matching Data Layouts of Host and Kernel Structure Data Types on page 60
If you use structure data types (struct) as arguments in OpenCL kernels,
match the member data types and align the data members between the host
application and the kernel code.

1.7.6 Managing Host Application

Attention:

Caution:

The Intel FPGA SDK for OpenCL includes utility commands you can invoke to obtain
information on flags and libraries necessary for compiling and linking your host
application.

To cross-compile your host application to an SoC FPGA board, include the —-arm
option in your utility command.

For Linux systems, if you debug your host application using the GNU Project Debugger
(GDB), invoke the following command prior to running the host application:

handle S1G44 nostop

Without this command, the GDB debugging process terminates with the following
error message:

Program received signal SI1G44, Real-time event 44.

1.7.6.1 Displaying Example Makefile Fragments (example-makefile or makefile)

To display example Makefile fragments for compiling and linking a host application
against host runtime libraries available with the Intel FPGA SDK for OpenCL, invoke
the example-makefile or makefile utility command.

Intel FPGA SDK for OpenCL Programming Guide

76

1 Intel FPGA SDK for OpenCL Programming Guide

intel.

* At a command prompt, invoke the aocl example-makefile or aocl
makefi le utility command.
The software displays an output similar to the following:

The following are example Makefile fragments for compiling and linking
a host program against the host runtime libraries included with the
Intel FPGA SDK for OpenCL.

Example GNU makefile on Linux, with GCC toolchain:

AOCL_COMPILE_CONFI1G=$(shell aocl compile-config)
AOCL_L INK_CONFIG=$(shell aocl link-config)

host_prog : host_prog.o
g++ -0 host_prog host_prog.o $(AOCL_LINK_CONFIG)

host_prog.-o : host_prog.-cpp
g++ -c host_prog.cpp $(AOCL_COMPILE_CONFIG)

Example GNU makefile on Windows, with Microsoft Visual C++ command line
compiler:

AOCL_COMPILE_CONFI1G=$(shell aocl compile-config)
AOCL_LINK_CONFI1G=$(shell aocl link-config)

host_prog.exe : host_prog.obj
link -nologo /0UT:host _prog.exe host_prog.obj $(AOCL_LINK_CONFIG)

host_prog.obj : host_prog.cpp
cl /MD /Fohost_prog.obj -c host _prog.cpp $(AOCL_COMPILE_CONFIG)

Example GNU makefile cross-compiling to ARM SoC from Linux or Windows, with
Linaro GCC cross-compiler toolchain:

CROSS-COMPILER=arm-l1inux-gnueabihf-
AOCL_COMPILE_CONFI1G=$(shell aocl compile-config --arm)
AOCL_L INK_CONFIG=$(shell aocl link-config --arm)

host_prog : host_prog.o
$(CROSS-COMPILER)g++ -0 host_prog host_prog.o $(AOCL_LINK_CONFIG)

host_prog.-o : host_prog.cpp
$(CROSS-COMPILER)g++ -c host_prog.cpp $(AOCL_COMPILE_CONFIG)

1.7.6.2 Compiling and Linking Your Host Application

Important:

The OpenCL host application uses standard OpenCL runtime APIs to manage device
configuration, data buffers, kernel launches, and synchronization. The host application
also contains functions such as file I/O, or portions of the source code that do not run
on an accelerator device. The Intel FPGA SDK for OpenCL includes utility commands
you can invoke to obtain information on C header files describing the OpenCL APIs,
and board-specific MMD and host runtime libraries with which you must link your host
application.

For Windows systems, you must add the /MD flag to link the host runtime libraries
against the multithreaded dynamic link library (DLL) version of the Microsoft C
Runtime library. You must also compile your host application with the /MD compilation
flag, or use the /NODEFAULTLIB linker option to override the selection of runtime
library.

Intel FPGA SDK for OpenCL Programming Guide
77

| | ®
< l n tel) 1 Intel FPGA SDK for OpenCL Programming Guide

Remember: Include the path to the ALTERAOCLSDKROOT/host/<CS pl at f or m»/bin folder in
your library search path when you run your host application.

Displaying Flags for Compiling Host Application (compile-config) on page 78
To display a list of flags necessary for compiling a host application, invoke the
compile-config utility command.

Displaying Paths to OpenCL Host Runtime and MMD Libraries (ldflags) on page 78
To display the paths necessary for linking a host application to the OpenCL host
runtime and MMD libraries, invoke the Idflags utility command.

Listing OpenCL Host Runtime and MMD Libraries (ldlibs) on page 79
To display the names of the OpenCL host runtime and MMD libraries necessary for
linking a host application, invoke the Idlibs utility command.

Displaying Information on OpenCL Host Runtime and MMD Libraries (link-config or
linkflags) on page 79
To display a list of flags necessary for linking a host application with OpenCL host
runtime and MMD libraries, invoke the link-config or inkflags utility
command.

1.7.6.2.1 Displaying Flags for Compiling Host Application (compile-config)

To display a list of flags necessary for compiling a host application, invoke the
compile-config utility command.

1. At a command prompt, invoke the aocl compi le-config utility command.
The software displays the path to the folder or directory in which the OpenCL API
header files reside. For example:

e For Windows systems, the path is - 1%ALTERAOCL SDKROOT%/host/include
* For Linux systems, the path is - 1 $ALTERAOCL SDKROOT/host/include
where ALTERAOCLSDKROOT points to the location of the software installation.

2. Add this path to your C preprocessor.

Attention: In your host source, include the opencl .h OpenCL header file, located in the
ALTERAQCLSDKROOT/host/include/CL folder or directory.

1.7.6.2.2 Displaying Paths to OpenCL Host Runtime and MMD Libraries (Idflags)

To display the paths necessary for linking a host application to the OpenCL host
runtime and MMD libraries, invoke the Idflags utility command.

* At a command prompt, invoke the aocl 1dflags utility command.
The software displays the paths for linking your host application with the following
libraries:

1. The OpenCL host runtime libraries that provide OpenCL platform and runtime
APIs. The OpenCL host runtime libraries are available in the
ALTERAOCL SDKROOT/host/<0S_pl at f or m=/1ib directory.

2. The path to the Custom Platform-specific MMD libraries. The MMD libraries are
available in the <board_fam | y_nane>/<CS _pl at f or e/ 11ib directory of
your Custom Platform.

Intel FPGA SDK for OpenCL Programming Guide
78

™ ®
1 Intel FPGA SDK for OpenCL Programming Guide l n tel)

1.7.6.2.3 Listing OpenCL Host Runtime and MMD Libraries (ldlibs)

To display the names of the OpenCL host runtime and MMD libraries necessary for
linking a host application, invoke the Idlibs utility command.

At a command prompt, invoke the aocl 1dlibs utility command.

The software lists the OpenCL host runtime libraries residing in the
ALTERAOCLSDKROOT/host/<CS _pl at f or m»/1ib directory. It also lists the
Custom Platform-specific MMD libraries residing in the /<board _fam |y name>/
<0S_pl at f or m»/11ib directory of your Custom Platform.

For Windows systems, the output might resemble the following example:

alterahalmmd.lib

<boar d_vendor _nane>_<board_fam | y_name>_mmd.[lib|so]aldll]
alteracl.lib

acl_emulator_kernel_rt_lib

pkg_editor.lib

libelf_lib

acl_hostxml_lib

For Linux systems, the output might resemble the following example:

-lalteracl

-1dl

-lacl_emulator_kernel_rt

-lalterahalmmd

-I<boar d_vendor _nane>_<board_fam | y_nane>_mmd
-lelf

-Irt

-Istdc++

1.7.6.2.4 Displaying Information on OpenCL Host Runtime and MMD Libraries (link-config

or linkflags)

To display a list of flags necessary for linking a host application with OpenCL host
runtime and MMD libraries, invoke the link-config or linkflags utility command.

This utility command combines the functions of the Idflags and Idlibs utility
commands.

1.

At a command prompt, invoke the aocl link-configoraocl linkflags
command.

The software displays the link options for linking your host application with the
following libraries:

a.

The path to and the names of OpenCL host runtime libraries that provide
OpenCL platform and runtime APIs. The OpenCL host runtime libraries are
available in the ALTERAOCL SDKROOT/host/<0S_pl at f or me/11ib directory .

The path to and the names of the Custom Platform-specific MMD libraries. The
MMD libraries are available in the <board_fam | y_nanme>/
<0S _pl at f or me/1ib directory of your Custom Platform.

Intel FPGA SDK for OpenCL Programming Guide
79

™ ®
l n tel) 1 Intel FPGA SDK for OpenCL Programming Guide

e For Windows systems, the link options might resemble the following example
output:

/1 ibpath :%ALTERAOCL SDKROOT%/board/<boar d_nanme>/windows64/1ib
/1 ibpath : %ALTERAOCL SDKROOT%/host/windows64/1ib
alterahalmmd. lib

<boar d_vendor _nane>_<board_fanmi | y_name> mmd.[lib]so]a]dll]
alteracl.lib

acl_emulator_kernel_rt._lib

pkg_editor.lib

libelf_lib

acl_hostxml.lib

e For Linux systems, the link options might resemble the following example
output:

-L/$ALTERACCL SDKROOT/board/<boar d_name>/1inux64/1ib
-L/$ALTERACCL SDKROOT/host/ 1 inux64/1ib

-lalterac

-1dl

-lacl_emulator_kernel_rt

-lalterahalmmd

-I<boar d_vendor _nane>_<board_fami | y_nane>_mmd

-lelf

-Irt

-Istdc++

1.7.6.3 Linking Your Host Application to the Khronos ICD Loader Library

The Intel FPGA SDK for OpenCL supports the OpenCL ICD extension from the Khronos
Group. The OpenCL ICD extension allows you to have multiple OpenCL
implementations on your system. With the OpenCL ICD Loader Library, you may
choose from a list of installed platforms and execute OpenCL API calls that are specific
to your OpenCL implementation of choice.

In addition to the SDK's host runtime libraries, Intel supplies a version of the ICD
Loader Library that supports the OpenCL Specification version 1.0 and the
implemented APIs from the OpenCL Specification versions 1.1, 1.2, and 2.0. To use an
ICD library from another vendor, consult the vendor's documentation on how to link to
their ICD library.

Linking to the ICD Loader Library on Windows on page 80
To link your Windows OpenCL host application to the ICD Loader Library, modify
the Makefi le and set up the Altera Client Driver.

Linking to the ICD Loader Library on Linux on page 81
To link your Linux OpenCL host application to the ICD Loader Library, modify the
Makefile. For Cyclone V SoC boards, you also have to create an Altera.icd
file.

1.7.6.3.1 Linking to the ICD Loader Library on Windows

Attention:

To link your Windows OpenCL host application to the ICD Loader Library, modify the
Makefile and set up the Altera Client Driver.

For Windows systems, you must use the ICD in conjunction with the ACD. If the
custom platform from your board vendor does not currently support ACD, you can set
it up manually.

Intel FPGA SDK for OpenCL Programming Guide

80

™ ®
1 Intel FPGA SDK for OpenCL Programming Guide < l n tel)

Attention:

Prior to linking your host application to any Intel FPGA SDK for OpenCL host
runtime libraries, link it to the OpenCL library by modifying the MakeFfile.

A modified MakeFi le might include the following lines:

AOCL_COMPILE_CONFI1G=$(shell aocl compile-config)
AOCL_LDFLAGS=$(shell aocl l1dflags)
AOCL_LDLIBS=$(shell aocl I1dlibs)

host_prog.exe : host_prog.obj
link -nologo /0UT:host_prog.exe host_prog.obj $(AOCL_ LDFLAGS) OpenCL.lib

host_prog.obj : host_prog.cpp
cl /MD /Fohost_prog.obj -c host_prog.cpp $(AOCL_COMPILE_CONFIG)

If you need to manually set up ACD support for your Custom Platform, perform
the following tasks:

a. Consult with your board vendor to identify the libraries that the ACD requires.
Alternatively, you may invoke the aocl Idlibs command and identify the
libraries that your OpenCL application requires.

b. Specify the libraries in the registry key HKEY_LOCAL_MACHINE
\SOFTWARE\AIltera\OpenCL\Boards. Specify the value name to be the
path to the library, and specify the data to be a DWORD that is set to 0.

Attention: If your board vendor provides multiple libraries, you might need to
load them in a particular order. Consult with your board vendor to
determine the correct order to load the libraries. List the libraries
in the registry in their loading order.

To enumerate board vendor-specific ICDs, the ICD Loader scans the values in the
HKEY_LOCAL_MACHINE\SOFTWARE\AIltera\OpenCL\Boards registry key. For
each DWORD value that is set to 0, the ACD Loader opens the corresponding DLL that
is specified in the value name.

Consider the following registry key value:

[HKEY_LOCAL_MACHINE\SOFTWARE\AIltera\OpenCL\Boards] "c:
\board_vendor a\my_board_mmd.dll"=dword:00000000

The ICD Loader scans this value, and then the ACD Loader opens the library
my_board_mmd.dl1 from the board_vendor a folder.

If your host application fails to run while it is linking to the ICD, ensure that the
HKEY_LOCAL_MACHINE\SOFTWARE\Khronos\OpenCL\Vendors registry key
contains the following value:

[HKEY_LOCAL_MACHINE\SOFTWARE\Khronos\OpenCL\Vendors]
"alteracl_icd.dll"=dword:00000000

1.7.6.3.2 Linking to the ICD Loader Library on Linux

To link your Linux OpenCL host application to the ICD Loader Library, modify the
Makefile. For Cyclone V SoC boards, you also have to create an Altera. icd file.

Prior to linking your host application to any Intel FPGA SDK for OpenCL host
runtime libraries, link it to the OpenCL library by modifying the MakeFile.

Intel FPGA SDK for OpenCL Programming Guide
81

™ ®
l n tel) 1 Intel FPGA SDK for OpenCL Programming Guide

A modified Makefi le might include the following lines:

AOCL_LDFLAGS=$(shell aocl I1dflags)
AOCL_LDLIBS=$(shell aocl Idlibs)

host_prog : host_prog.o
g++ -0 host_prog host_prog.o $(AOCL_LDFLAGS) -10penCL $(AOCL_LDLIBS)

2. For Cyclone V SoC boards, when you build the SD flash card image for your
Custom Platform, create an Altera. icd file containing the text
libalteracl._so. Store the Altera. icd file in the /etc/OpenCL/vendors
directory of your Custom Platform.

Refer to Building an SD Flash Card Image section of the Intel FPGA SDK for
OpenCL Cyclone V SoC Development Kit Reference Platform Porting Guide for
more information.

Attention: If your host application fails to run while linking to the ICD, ensure that the file Zetc/
OpenCL/vendors/Altera. icd matches the file found in the directory that
ALTERAOCLSDKROOT specifies. The environment variable ALTERAOCLSDKROOT points
to the location of the SDK installation. If the files do not match, or if it is missing
from /etc/OpenCL/vendors, copy the Altera. icd file from ALTERAOCLSDKROOT
to /etc/OpenCL/vendors.

Related Links
Building an SD Flash Card Image

1.7.6.4 Programming an FPGA via the Host

The Intel FPGA SDK for OpenCL Offline Compiler is an offline compiler that compiles
kernels independently of the host application. To load the kernels into the OpenCL
runtime, include the clCreateProgramWithBinary function in your host
application.

Caution: If your host system consists of multiple processors, only one processor can access the
FPGA at a given time. Consider an example where there are two host applications,
corresponding to two processors, attempting to launch kernels onto the same FPGA at
the same time. The second host application wil receive an error message indicating
that the device is busy. The second host application cannot run until the first host
application releases the OpenCL context.

1. Compile your OpenCL kernel with the offline compiler to create the .aocx file.

2. Include the cICreateProgramWithBinary function in your host application to
create the cl_program OpenCL program objects from the .aocx file.

3. Include the clBui ldProgram function in your host application to create the
program executable for the specified device.

Below is an example host code on using clCreateProgramWithBinary to
program an FPGA device:

size_t lengths[1];

unsigned char* binaries[1] ={NULL};
cl_int status[1];

cl_int error;

cl_program program;

Intel FPGA SDK for OpenCL Programming Guide
82

https://documentation.altera.com/#/link/ewa1403875738903/ewa1404735806345/en-us

™ ®
1 Intel FPGA SDK for OpenCL Programming Guide l n tel)

const char options[] = "";

FILE *fp = fopen(''program.aocx","rb™);

fseek(fp,0,SEEK_END);

lengths[0] = ftell(fp);

binaries[0] = (unsigned char*)malloc(sizeof(unsigned char)*lengths[0]);
rewind(fp);

fread(binaries[0], lengths[0],1,fp);

fclose(fp);

program = clCreateProgramWithBinary(context,
1,
device_list,
lengths,
(const unsigned char **)binaries,
status,
&error);
clBui ldProgram(program,1,device_list,options,NULL,NULL);
If the clBui ldProgram function executes successfully, it returns CL_SUCCESS.

4. Create kernel objects from the program executable using the
clICreateKernelsInProgram or clCreateKernel function.

5. Include the kernel execution function to instruct the host runtime to execute the
scheduled kernel(s) on the FPGA.

— To enqueue a command to execute an NDRange kernel, use
clEnqueueNDRangeKernel.

— To enqueue a single work-item kernel, use clEnqueueTask.

Attention: Intel recommends that you release an event object when it is not in
use. The SDK keeps an event object live until you explicitly instruct it
to release the event object. Keeping an unused event object live
causes unnecessary memory usage.

To release an event object, call the clReleaseEvent function.

You can load multiple FPGA programs into memory, which the host then uses to
reprogram the FPGA as required.

For more information on these OpenCL host runtime API calls, refer to the OpenCL
Specification version 1.0.

Related Links
OpenCL Specification version 1.0

1.7.6.4.1 Programming Multiple FPGA Devices

Important:

If you install multiple FPGA devices in your system, you can direct the host runtime to
program a specific FPGA device by modifying your host code.

By default, you may only program multiple FPGA devices from the same Custom
Platform because the AOCL_BOARD_PACKAGE_ROOT environment variable points to
the location of a single Custom Platform.

Linking your host application to ACD allows you to target multiple FPGA devices from
different Custom Platforms. However, this feature has limited support for Custom
Platforms that are compatible with SDK versions prior to 16.1.

You can present up to 32 FPGA devices to your system in the following manner:

Intel FPGA SDK for OpenCL Programming Guide
83

https://www.khronos.org/registry/cl/specs/opencl-1.0.pdf

n tel) 1 Intel FPGA SDK for OpenCL Programming Guide

e Multiple FPGA accelerator boards, each consisting of a single FPGA.

e Multiple FPGAs on a single accelerator board that connects to the host system via
a PClIe switch.

e Combinations of the above.

The host runtime can load kernels onto each and every one of the FPGA devices. The
FPGA devices can then operate in a parallel fashion.

1. Probing the OpenCL FPGA Devices on page 84
The host must identify the number of OpenCL FPGA devices installed into the
system.

2. Querying Device Information on page 85
You can direct the host to query information on your OpenCL FPGA devices.

3. Loading Kernels for Multiple FPGA Devices on page 85
If your system contains multiple FPGA devices, you can create specific
cl_program objects for each FPGA and load them into the OpenCL runtime.

Related Links

Accessing Custom Platform-Specific Functions on page 74
To reference Custom Platform-specific user-accessible functions while linking to the
ACD, include the clGetBoardExtensionFunctionAddressAltera extension in
your host application.

Probing the OpenCL FPGA Devices

The host must identify the number of OpenCL FPGA devices installed into the system.

1. To query a list of FPGA devices installed in your machine, invoke the aocl
diagnose command.

2. To direct the host to identify the number of OpenCL FPGA devices, add the
following lines of code to your host application:

//Get the platform
CiErrNum = clGetPlatformlD(&cpPlatform);

//Get the devices
CciErrNum = clGetDevicelDs(cpPlatform,
CL_DEVICE_TYPE_ALL,
0,
NULL,
&ciDeviceCount);
cdDevices = (cl_device_id *)malloc(ciDeviceCount * sizeof(cl_device_id));
ciErrNum = clGetDevicelDs(cpPlatform,
CL_DEVICE_TYPE_ALL,
ciDeviceCount,
cdDevices,
NULL);

For example, on a system with two OpenCL FPGA devices, ciDeviceCount has a
value of 2, and cdDevices contains a list of two device IDs (cl_device_id).

Related Links

Querying the Device Name of Your FPGA Board (diagnose) on page 17
When you query a list of accelerator boards, the OpenCL software produces a list of
installed devices on your machine in the order of their device names.

Intel FPGA SDK for OpenCL Programming Guide

84

™ ®
1 Intel FPGA SDK for OpenCL Programming Guide l n tel)

Querying Device Information

Note:

You can direct the host to query information on your OpenCL FPGA devices.

e To direct the host to output a list of OpenCL FPGA devices installed into your
system, add the following lines of code to your host application:

char buf[1024];
for (unsigned i = 0; i < ciDeviceCount; i++);

clGetDevicelnfo(cdDevices[i], CL_DEVICE_NAME, 1023, buf, 0);
printf(*'Device %d: “"%s®"\n", i, buf);

When you query the device information, the host will list your FPGA devices in the
following manner: Device <N>: <board_name>: <nane_of FPGA boar d>
Where:

e <N> is the device number.

e <board _name> is the board designation you use to target your FPGA device when
you invoke the aoc command.

e <name_of _FPGA_board> is the advertised name of the FPGA board.

For example, if you have two identical FPGA boards on your system, the host
generates an output that resembles the following:

Device 0: board_1: Stratix V FPGA Board
Device 1: board_1: Stratix V FPGA Board

The clGetDevicelnfo function returns the board type (for example, board_1) that
the Intel FPGA SDK for OpenCL Offline Compiler lists on-screen when you invoke the
aoc --list-boards command. If your accelerator board contains more than one
FPGA, each device is treated as a "board" and is given a unique name.

Related Links

Listing the Available FPGA Boards in Your Custom Platform (--list-boards) on page 13
To list the FPGA boards available in your Custom Platform, include the —-list-
boards option in the aoc command.

Loading Kernels for Multiple FPGA Devices

If your system contains multiple FPGA devices, you can create specific cl_program
objects for each FPGA and load them into the OpenCL runtime.

The following host code demonstrates the usage of the
clCreateProgramWithBinary and createMultiDeviceProgram functions to
program multiple FPGA devices:

cl_program createMultiDeviceProgram(cl_context context,
const cl_device_id *device_list,
cl_uint num_devices,
const char *aocx_name);

// Utility function for loading file into Binary String
//
unsigned char* load_file(const char* filename, size_t *size_ret)

Intel FPGA SDK for OpenCL Programming Guide
85

1 Intel FPGA SDK for OpenCL Programming Guide

FILE *fp = fopen(aocx_name,''rb™);

fseek(fp,0,SEEK_END);

size_t len = ftell(fp);

char *result = (unsigned char*)malloc(sizeof(unsigned char)*len);
rewind(fp);

fread(result,len,1,fp);

fclose(fp);

*size_ret = len;

return result;

}

//Create a Program that is compiled for the devices in the "device_list"
//
cl_program createMultiDeviceProgram(cl_context context,
const cl_device_id *device_list,
cl_uint num_devices,
const char *aocx_name)

{
printf(“'creating multi device program %s for %d devices\n",
aocx_name, num_devices);
const unsigned char **binaries =
(const unsigned char**)malloc(num_devices*sizeof(unsigned char¥*));
size_t *lengths=(size_t*)malloc(num_devices*sizeof(size_t));
cl_int err;
for(cl_uint i=0; i<num_devices; i++)
{
binaries[i] = load_file(aocx_name,&lengths[i]);
it (Ibinaries[i])
printf(“'couldn®"t load %s\n', aocx_name);
exit(-1);
3
3
cl_program p = clCreateProgramWithBinary(context,
num_devices,
device_list,
lengths,
binaries,
NULL,
&err);
free(lengths);
free(binaries);
if (err = CL_SUCCESS)
printf("'Program Create Error\n');
return p;
3

// main program
main O

// Normal OpenCL setup
T

program = createMultiDeviceProgram(context,

device_list,

num_devices,

"program.aocx');
clBuildProgram(program,num_devices,device_list,options,NULL,NULL);

1.7.6.5 Termination of the Runtime Environment and Error Recovery

In the event that the host application terminates unexpectedly, you must restart the
runtime environment and reprogram the FPGA.

Intel FPGA SDK for OpenCL Programming Guide
86

™ ®
1 Intel FPGA SDK for OpenCL Programming Guide l n tel)

The runtime environment is a library that is compiled as part of the host application.
When the host application terminates, the runtime environment will also terminate
along with any tracking activity that it performs. If you restart the host application, a
new runtime environment and its associated tracking activities will reinitialize. The
initialization functions reset the kernel's hardware state.

In same cases, unexpected termination of the host application causes the
configuration of certain hardware (for example, PCle hard IP) to be incomplete. To
restore the configuration of these hardware, the host needs to reprogram the FPGA.

If you use a Custom Platform that implements customized hardware blocks, be aware
that restarting the host application and resetting these blocks might have design
implications:

e When the host application calls the clGetPlatformlDs function, all kernels and
channels will be reset for all available devices.

e When the host application calls the clGetPlatformlDs function, it resets FIFO
buffers and channels as it resets the device.

e The host application initializes memory buffers via the clCreateBuffer and
clEnqueueWriteBuffer function calls. You cannot access the contents of
buffers from a previous host execution within a new host execution.

1.7.7 Allocating Shared Memory for OpenCL Kernels Targeting SoCs

Notes:

Intel recommends that OpenCL kernels that run on Intel SoCs access shared memory
instead of the FPGA DDR memory. FPGA DDR memory is accessible to kernels with
very high bandwidths. However, read and write operations from the ARM CPU to FPGA
DDR memory are very slow because they do not use direct memory access (DMA).
Reserve FPGA DDR memory only for passing temporary data between kernels or
within a single kernel for testing purposes.

1. Mark the shared buffers between kernels as volatile to ensure that buffer
modification by one kernel is visible to the other kernel.

2. To access shared memory, you only need to modify the host code. Modifications to
the kernel code are unnecessary.

3. You cannot use the library function mal loc or the operator new to allocate
physically shared memory. Also, the CL_MEM_USE_HOST_PTR flag does not work
with shared memory.

In DDR memory, shared memory must be physically contiguous. The FPGA cannot
consume virtually contiguous memory without a scatter-gather direct memory
access (SG-DMA) controller core. The malloc function and the new operator are
for accessing memory that is virtually contiguous.

4. CPU caching is disabled for the shared memory.
The ARM CPU and the FPGA can access the shared memory simultaneously. You do not

need to include the clEnqueueReadBuffer and clEnqueueWriteBuffer calls in
your host code to make data visible to either the FPGA or the CPU.

Intel FPGA SDK for OpenCL Programming Guide
87

1 Intel FPGA SDK for OpenCL Programming Guide

To allocate and access shared memory, structure your host code in a similar
manner as the following example:

cl_mem src = clCreateBuffer(.., CL_MEM_ALLOC_HOST_PTR, size, ..);

int *src_ptr = (int*)clEnqueueMapBuffer (.., src, size, .);

*src_ptr = input_value; //host writes to ptr directly

clSetKernelArg (.., Src);

clEnqueueNDRangeKernel (..);

clFinishQ;

printf (“Result = %d\n”, *dst_ptr); //result is available immediately
clEnqueueUnmapMemObject(.., src, src_ptr, ..);

clReleaseMemObject(src); // actually frees physical memory

You can include the CONFIG_CMA_SIZE_MBYTES kernel configuration option to
control the maximum total amount of shared memory available for allocation. In
practice, the total amount of allocated shared memory is smaller than the value of
CONFIG_CMA_SIZE_MBYTES.

Important: 1. If your target board has multiple DDR memory banks, the
clCreateBuffer(..., CL_MEM_READ WRITE, ...) function
allocates memory to the nonshared DDR memory banks. However,
if the FPGA has access to a single DDR bank that is shared
memory, then clCreateBuffer(...,

CL_MEM_READ_WRITE, ...) allocates to shared memory, similar
to using the CL_MEM_ALLOC_HOST_PTR flag.

2. The shared memory that you request with the
clCreateBuffer(..., CL_MEM_ALLOC HOST PTR,
size, ...) function is allocated in the Linux OpenCL kernel
driver, and it relies on the contiguous memory allocator (CMA)
feature of the Linux kernel. For detailed information on enabling
and configuring the CMA, refer to the Recompiling the Linux Kernel
and the OpenCL Linux Kernel Driver section of the Intel FPGA SDK
for OpenCL Cyclone V SoC Development Kit Reference Platform
Porting Guide.

To transfer data from shared hard processor system (HPS) DDR to FPGA DDR
efficiently, include a kernel that performs the memcpy function, as shown below.

__attribute__ ((num_simd_work_items(8)))
mem_stream(__global uint * src, _ global uint * dst)

{
size_t gid = get_global_id(0);
dst[gid] = src[gid];

Attention: Allocate the src pointer in the HPS DDR as shared memory using the
CL_MEM_ALLOC_HOST_PTR flag.

If the host allocates constant memory to shared HPS DDR system and then
modifies it after kernel execution, the modifications might not take effect. As a
result, subsequent kernel executions might use outdated data. To prevent kernel
execution from using outdated constant memory, perform one of the following
tasks:

a. Do not modify constant memory after its initialization.

b. Create multiple constant memory buffers if you require multiple __constant
data sets.

c. If available, allocate constant memory to the FPGA DDR on your accelerator
board.

Intel FPGA SDK for OpenCL Programming Guide

88

] ®
1 Intel FPGA SDK for OpenCL Programming Guide l n tel)

Related Links

Recompiling the Linux Kernel and the OpenCL Linux Kernel Driver

1.8 Compiling Your OpenCL Kernel

Attention:

Caution:

The Intel FPGA SDK for OpenCL offers a list of compiler options that allows you to
customize the kernel compilation process. An Intel FPGA SDK for OpenCL Offline
Compiler command consists of the aoc command, compiler option(s) and settings,
and kernel filenames. You can invoke an aoc command to direct the compiler to target
a specific FPGA board, generate reports, or implement optimization techniques.

Before you compile an OpenCL kernel, ensure that the environment variable
AOCL_BOARD_PACKAGE_ROOT points to the location of the appropriate Custom
Platform. Also, verify that the QUARTUS_ROOTDIR_OVERRIDE environment variable
points to the correct edition of the Quartus Prime software.

If these environment variables do not have the correct settings, follow the instructions
in the Setting the Intel FPGA SDK for OpenCL User Environment Variables section of
the Intel FPGA SDK for OpenCL Getting Started Guide to modify the settings.

If you use the Stratix V Network Reference Platform, you must acquire and install the
PLDA QuickUDP intellectual property (IP) core license. Refer to the PLDA website for
more information. If you use a Custom Platform that includes the QuickUDP IP core,
refer to your board vendor's documentation for more information on the acquisition
and installation of the QuickUDP IP license.

Improper installation of the QuickUDP IP license causes kernel compilation to fail with
the following error message:

Error (292014): Can"t find valid feature line for core PLDA
QUICKTCP (73E1_AE12) in current license.

Note that the error has no actual dependency on the TCP Hardware Stack QuickTCP IP
from PLDA.

Related Links

e Setting the Intel FPGA SDK for OpenCL User Environment Variables (Windows)

e Setting the Intel FPGA SDK for OpenCL User Environment Variables (Linux)

1.8.1 Compiling Your Kernel to Create Hardware Configuration File

You can compile an OpenCL kernel and create the hardware configuration file (that is,
the .aocx file) in a single step.

Intel recommends that you use this one-step compilation strategy under the following
circumstances:

e After you optimize your kernel via the Intel FPGA SDK for OpenCL design flow, and
you are now ready to create the .aocx file for deployment onto the FPGA.

e You have one or more simple kernels that do not require any optimization.

Intel FPGA SDK for OpenCL Programming Guide
89

https://documentation.altera.com/#/link/ewa1403875738903/mwh1391806417857/en-us
https://documentation.altera.com/#/link/mwh1391807309901/ewa1416586552764/en-us
https://documentation.altera.com/#/link/mwh1391807309901/ewa1416591141201/en-us

n tel) 1 Intel FPGA SDK for OpenCL Programming Guide

®* To compile the kernel and generate the .aocx file in one step, invoke the a0C

<your _kernel _filenanel>._.cl [<your_kernel filename2>_.cl ...]
command.

Where [<your _kernel _fil enane2>_cl ...] are the optional space-delimited file
names of kernels that you can compile in addition to
<your kernel filenanel>.cl.

The Intel FPGA SDK for OpenCL Offline Compiler groups the .cl files into a temporary
file. It then compiles this file to generate the .aocx file. You must specify the order of
the kernels in this temporary file on the command line.

1.8.2 Compiling Your Kernel without Building Hardware (-c)

To direct the Intel FPGA SDK for OpenCL Offline Compiler to compile your OpenCL
kernel and generate a Quartus Prime hardware design project without creating a
hardware configuration file, include the -c option in your aoc command.

®* At a command prompt, invoke the aoC -C <your _kernel filenamel>.cl
[<your _kernel filenane2>.cl .._.] command.

Where [<your _kernel _fil ename2>_cl ...] are the optional space-delimited file
names of kernels that you can compile in addition to
<your _kernel _filenanmel>_cl.

When you invoke the aoc command with the -c flag, the offline compiler compiles
the kernel and creates the following files and directories:

— The .aoco file. The offline compiler creates the .aoco file in a matter of
seconds to minutes. If you compile multiple kernels, their information in
the .aoco file appears in the order in which you list them on the command
line.

— A<your_kernel _fil ename> folder or subdirectory. It contains intermediate
files that the SDK uses to build the hardware configuration file necessary for
FPGA programming.

1.8.3 Specifying the Location of Header Files (-I <directory>)

To add a directory to the list of directories that the Intel FPGA SDK for OpenCL Offline
Compiler searches for header files during kernel compilation, include the -1
<di r ect or y> option in your aoc command.

If the header files are in the same directory as your kernel, you do not need to include
the —1 <di r ect or y> option in your aoc command. The offline compiler
automatically searches the current folder or directory for header files.

Intel FPGA SDK for OpenCL Programming Guide

90

| | ®
1 Intel FPGA SDK for OpenCL Programming Guide < l n tel)

* At a command prompt, invoke the aoc -1 <directory>
<your kernel filename>_cl command.

Caution: For Windows systems, ensure that your include path does not contain
any trailing slashes. The offline compiler considers a trailing forward
slash (/) or backward slash (\) as illegal.

The offline compiler generates an error message if you invoke the aoc
command in the following manner:

aoc -1 <drive>\<folder>\ ... \<subfol der>\
<your _kernel _fil enane>._cl

or

aoc -l <drive>/<folder>/ ... /<subfol der>/

<your kernel filenane>.cl

The correct way to specify the include path is as follows:

aoc -1 <drive>\<folder>\ ... \<subfol der>
<your _kernel _filenanme>._cl

or

aoc -1 <drive>/<folder>/ ... /<subfol der>

<your _kernel filename>.cl

1.8.4 Specifying the Name of an Intel FPGA SDK for OpenCL Offline
Compiler Output File (-o <filename>)

To specify the name of a .aoco file or a .aocx file, include the -0 <fi |l enane>
option in your aoc command.

e If you implement the multistep compilation flow, specify the names of the output
files in the following manner:

a. To specify the name of the .aoco file that the offline compiler creates during
an intermediate compilation step, invoke the aoC -C -0

<your _object filename>_aoco <your kernel filename>.cl
command.

b. To specify the name of the .aocx file that the offline compiler creates during
the final compilation step, invoke the aoC -0
<your _executabl e fil ename>_aocx <your_object fil enane>_.aoco
command.

e If you implement the one-step compilation flow, specify the name of the .aocx
file by invoking the a0C -0 <your _execut abl e_fil enane>_aocx
<your _kernel _fil ename>_cl command.

1.8.5 Compiling a Kernel for a Specific FPGA Board (--board
<board_name>)

To compile your OpenCL kernel for a specific FPGA board, include the ——board
<boar d_nane> option in the aoc command.

Intel FPGA SDK for OpenCL Programming Guide
91

™ ®
l n tel) 1 Intel FPGA SDK for OpenCL Programming Guide

Attention:

Tips:

To compile a kernel for a specific board in your Custom Platform, you must first set the
environment variable AOCL_BOARD _ PACKAGE_ROOT to point to the location of your
Custom Platform.

If you want to program multiple FPGA devices, you may select board types that are
available in the same Custom Platform because AOCL_BOARD_PACKAGE_ROOT only
points to the location of one Custom Platform.

When you compile your kernel by including the ——board <boar d_nane> option in
the aoc command, the Intel FPGA SDK for OpenCL Offline Compiler defines the
preprocessor macro AOCL_BOARD <boar d_name> to be 1, which allows you to
compile device-optimized code in your kernel.

1. To obtain the names of the available FPGA boards in your Custom Platform, invoke
the aoc —--list-boards command.

For example, the offline compiler generates the following output:

Board List:
FPGA_board_1

where FPGA_board_1 is the <board_name>.

2. To compile your OpenCL kernel for FPGA_board_1, invoke the aoc --board
FPGA board_1 <your _kernel fil ename>.cl command.
The offline compiler defines the preprocessor macro AOCL_BOARD_FPGA board 1
to be 1 and compiles kernel code that targets FPGA_board_1.

To readily identify compiled kernel files that target a specific FPGA board, Intel
recommends that you rename the kernel binaries by including the -0 option in the
aoc command.

To target your kernel to FPGA_board_1 in the one-step compilation flow, invoke the
following command:

aoc --board FPGA_board_1 <your kernel filename>.cl -0
<your _execut abl e_fil enane>_FPGA_board_1.aocx

To target your kernel to FPGA_board_1 in the multistep compilation flow, perform the
following tasks:
1. Invoke the following command to generate the .aoco file:

aoc -c --board FPGA_board_1 <your _kernel filename>.cl -0
<ny_obj ect _fil enane>_FPGA_board_1.aoco

2. Invoke the following command to generate the .aocx file:

aoc --board FPGA_board 1
<your _obj ect fil ename> FPGA board 1.aoco -0
<your executabl e fil enane>_ FPGA board_1.aocx

If you have an accelerator board consisting of two FPGAs, each FPGA device has an
equivalent "board" name (for example, board_fpga_1 and board_fpga_2). To target a
kernel _1.cl to board_fpga_1 and a kernel_2.cl to board_fpga_2, invoke the
following commands:

Intel FPGA SDK for OpenCL Programming Guide

92

] ®
1 Intel FPGA SDK for OpenCL Programming Guide l n tel)

aoc --board board_fpgal kernel_1.cl
aoc --board board_fpga2 kernel_2.cl

Related Links
Specifying the Name of an Intel FPGA SDK for OpenCL Offline Compiler Output File (-0
<filename>) on page 91
To specify the name of a .aoco file or a .aocx file, include the -0 <fi | enane>
option in your aoc command.

1.8.6 Resolving Hardware Generation Fitting Errors during Kernel
Compilation (--high-effort)

Sometimes, OpenCL kernel compilation fails during the hardware generation stage
because the design fails to meet fitting constraints. In this case, recompile the kernel
using the —-—high-effort option of the aoc command.

When kernel compilation fails because of a fitting constraint problem, the Intel FPGA
SDK for OpenCL Offline Compiler displays the following error message:

Error: Kernel fit error, recommend using --high-effort.
Error: Cannot fit kernel(s) on device

e To overcome this problem, recompile your kernel by invoking the following
command:

aoc --high-effort <your_kernel fil enane>.cl
After you invoke the command, the offline compiler displays the following
message:

High-effort hardware generation selected, compile time may iIncrease
significantly.

The offline compiler will make three attempts to recompile your kernel and generate
hardware. Modify your kernel if compilation still fails after the —-high-effort
attempt.

1.8.7 Defining Preprocessor Macros to Specify Kernel Parameters (-D
<macro_name>)

The Intel FPGA SDK for OpenCL Offline Compiler supports preprocessor macros that
allow you to pass macro definitions and compile code on a conditional basis.

Intel FPGA SDK for OpenCL Programming Guide
93

1 Intel FPGA SDK for OpenCL Programming Guide

To pass a preprocessor macro definition to the offline compiler, invoke the aoC -
D <macro_nane> <kernel fil ename>.cl command.

To override the existing value of a defined preprocessor macro, invoke the aoC -
D <mar co_nane>=<val ue> <kernel _fil ename>.cl command.

Consider the following code snippet for the kernel sum:

#ifndef UNROLL_FACTOR
#define UNROLL_FACTOR 1
#endif

__kernel void sum (__global const int * restrict x,
__global int * restrict sum)
{

int accum = 0;

#pragma unroll UNROLL_FACTOR
for(size_t 1 = 0; 1 < 4; i++)
{

accum += x[i + get_global_id(0) * 4];

gum[get_global_id(O)] = accum;
3

To override the UNROLL_FACTOR of 1 and set it to 4, invoke the aoc -D
UNROLL_FACTOR=4 sum.cl command. Invoking this command is equivalent to
replacing the line #define UNROLL_FACTOR 1 with #define UNROLL_FACTOR
4 in the sum kernel source code.

To use preprocessor macros to control how the offline compiler optimizes your
kernel without modifying your kernel source code, invoke the aoC -0
<hardware_fil ename>.aocx -D <macro_nane>=<val ue>

<kernel _fil ename>._cl

Where:

-0 is the offline compiler option you use to specify the name of the .aocx file that
the offline compiler generates.

<hardware_filename> is the name of the .aocx file that the offline compiler

generates using the preprocessor macro value you specify.

Tip: To preserve the results from both compilations on your file system, compile
your kernels as separate binaries by using the -0 flag of the aoc command.

For example, if you want to compile the same kernel multiple times with required
work-group sizes of 64 and 128, you can define a WORK_GROUP_SIZE
preprocessor macro for the kernel attribute reqd_work_group_size, as shown
below:

__attribute__ ((reqd_work_group_size(WORK_GROUP_SIZE,1,1)))
__kernel void myKernel(...)
for (size_t i = 0; 1 < 1024; i++)

// statements

}

Compile the kernel multiple times by typing the following commands:

aoc —0 myKernel _64.aocx —D WORK_GROUP_SIZE=64 myKernel.cl
aoc —0 myKernel 128.aocx —D WORK_GROUP_SI1ZE=128 myKernel .cl

Intel FPGA SDK for OpenCL Programming Guide

94

] ®
1 Intel FPGA SDK for OpenCL Programming Guide l n tel

1.8.8 Generating Compilation Progress Report (-v)

To direct the Intel FPGA SDK for OpenCL Offline Compiler to report on the progress of
a compilation, include the -v option in your aoc command.

To direct the offline compiler to report on the progress of a full compilation, invoke
the aoc -V <your_kernel filenane>.cl command.

The offline compiler generates a compilation progress report similar to the
following example:

aoc: Environment checks are completed successfully.
You are now compiling the full flow!!

aoc: Selected target board s5 net

aoc: Running OpenCL parser....

aoc: OpenCL parser completed successfully.

aoc: Compiling....

aoc: Linking with IP library ...

aoc: First stage compilation completed successfully.
aoc: Setting up project for CvP revision flow....
aoc: Hardware generation completed successfully.

To direct the offline compiler to report on the progress of an intermediate
compilation step that does not build hardware, invoke the aoc -C -V
<your _kernel _fil ename>_cl command.

The offline compiler generates a compilation progress report similar to the
following example:

aoc: Environment checks are completed successfully.

aoc: Selected target board s5 net

aoc: Running OpenCL parser....

aoc: OpenCL parser completed successfully.

aoc: Compiling....

aoc: Linking with 1P library ...

aoc: First stage compilation completed successfully.

aoc: To compile this project, run "aoc <your_kernel_filename>.aoco"

To direct the offline compiler to report on the progress of a compilation for
emulation, invoke the aoc -march=emulator -v
<your _kernel _fil ename>_cl command.

The offline compiler generates a compilation progress report similar to the
following example:

aoc: Environment checks are completed successfully.
You are now compiling the full flow!!

aoc: Selected target board s5_net

aoc: Running OpenCL parser....ex

aoc: OpenCL parser completed successfully.

aoc: Compiling for Emulation

aoc: Emulator Compilation completed successfully.
Emulator flow is successful.

Related Links

Compiling Your Kernel without Building Hardware (-c) on page 90
To direct the Intel FPGA SDK for OpenCL Offline Compiler to compile your
OpenCL kernel and generate a Quartus Prime hardware design project without
creating a hardware configuration file, include the —c option in your aoc
command.

Intel FPGA SDK for OpenCL Programming Guide
95

] ®
l n tel) 1 Intel FPGA SDK for OpenCL Programming Guide

e Emulating and Debugging Your OpenCL Kernel on page 99
The Intel FPGA SDK for OpenCL Emulator assesses the functionality of your
kernel.

1.8.9 Displaying the Estimated Resource Usage Summary On-Screen (--
report)

By default, the Intel FPGA SDK for OpenCL Offline Compiler estimates hardware
resource usage during compilation . The offline compiler factors in the usage of
external interfaces such as PCIle, memory controller, and DMA engine in its
calculations. During kernel compilation, the offline compiler generates an estimated
resource usage summary in the <your _kernel _fil enanme>_1log file within the
<your kernel fil ename> directory. To review the estimated resource usage
summary on-screen, include the —--report option in the aoc command.

You can review the estimated resource usage summary without performing a full
compilation. To review the summary on-screen prior to generating the hardware
configuration file, include the —c option in your aoc command.

®* At a command prompt, invoke the aoCc -C <your _kernel fil ename>.cl —-

report command.
The offline compiler generates an output similar to the following example:

B T T +
; Estimated Resource Usage Summary ;
e e +
; Resource + Usage ;
e e +
; Logic utilization ; 35% ;
; ALUTs ; 22%

; Dedicated logic registers ; 15%

; Memory blocks ; 29%

; DSP blocks ; 0% ;
e e :

Related Links

Compiling Your Kernel without Building Hardware (-c) on page 90
To direct the Intel FPGA SDK for OpenCL Offline Compiler to compile your OpenCL
kernel and generate a Quartus Prime hardware design project without creating a
hardware configuration file, include the —c option in your aoc command.

1.8.10 Suppressing Warning Messages from the Intel FPGA SDK for
OpenCL Offline Compiler (-W)
To suppress all warning messages, include the -W option in your aoc command.
* At a command prompt, invoke the aoc -W <your _kernel _fil ename>.cl

command.

1.8.11 Converting Warning Messages from the Intel FPGA SDK for OpenCL
Offline Compiler into Error Messages (-Werror)

To convert all warning messages into error messages, include the -Werror option in
your aoc command.

Intel FPGA SDK for OpenCL Programming Guide
96

] ®
1 Intel FPGA SDK for OpenCL Programming Guide l n tel)

* At a command prompt, invoke the aoc -Werror
<your kernel filename>_cl command.

1.8.12 Removing Debug Data from Compiler Reports and Source Code
from the .aocx File (-g0)

By default, the Intel FPGA SDK for OpenCL Offline Compiler includes source
information in compiler reports and embeds the source code into the .aocx binary
when it compiles the .cl or .aoco file. Include the —g0 option in the aoc command
to remove source information from the compiler reports and to remove source code
and customer IP information from the .aocx file.

e To remove source information in reports and remove source code and customer IP
information from the .aocx file, invoke the aoc -gO
<your kernel filename>_cl command.

1.8.13 Disabling Burst-Interleaving of Global Memory (--no-interleaving
<global_memory_type>)

Caution:

The Intel FPGA SDK for OpenCL Offline Compiler cannot burst-interleave global
memory across different memory types. You can disable burst-interleaving for all
global memory banks of the same type and manage them manually by including the
--no-interleaving <global _memory_type> option in your aoc command.
Manual partitioning of memory buffers overrides the default burst-interleaved
configuration of global memory.

The --no-interleaving option requires a global memory type parameter. If you do
not specify a memory type, the offline compiler issues an error message.

Intel FPGA SDK for OpenCL Programming Guide
97

Caution:

1 Intel FPGA SDK for OpenCL Programming Guide

To direct the offline compiler to disable burst-interleaving for the default global
memory, invoke the aoc <your _kernel _fil ename>.cl --no-
interleaving default command.

Your accelerator board might include multiple global memory types. To identify the
default global memory type, refer to board vendor's documentation for your
Custom Platform.

For a heterogeneous memory system, to direct the offline compiler to disable
burst-interleaving of a specific global memory type, perform the following tasks:

a. Consult the board_spec.xml file of your Custom Platform for the names of
the available global memory types (for example, DDR and quad data rate
(QDR)).

b. To disable burst-interleaving for one of the memory types (for example, DDR),
invoke the aoc <your_kernel_filename>.cl --no-
interleaving DDR command.

The offline compiler enables manual partitioning for the DDR memory bank,
and configures the other memory bank in a burst-interleaved fashion.

c. To disable burst-interleaving for more than one type of global memory buffers,

include a -—-no-interleaving <gl obal _nenory_t ype> option for each
global memory type.

For example, to disable burst-interleaving for both DDR and QDR, invoke the
aoc <your_kernel _filename>.cl --no-interleaving DDR --no-
interleaving QDR command.

Do not pass a buffer as kernel arguments that associate it with multiple memory
technologies.

1.8.14 Configuring Constant Memory Cache Size (--const-cache-bytes

<N>)

Include the —-const-cache-bytes <N> flag in your aoc command to direct the
Intel FPGA SDK for OpenCL Offline Compiler to configure the constant memory cache
size (rounded up to the closest power of 2).

The default constant cache size is 16 kB.

To configure the constant memory cache size, invoke the aoc —--const-

cache-bytes <N> <your_kernel _fil enane>.cl command, where <N> is
the cache size in bytes.

For example, to configure a 32 kB cache during compilation of the OpenCL kernel
myKernel _cl, invoke the aoc --const-cache-bytes 32768
myKernel .cl command.

Note: This argument has no effect if none of the kernels uses the __constant
address space.

1.8.15 Relaxing the Order of Floating-Point Operations (--fp-relaxed)

Include the --fp-relaxed option in your aoc command to direct the Intel FPGA SDK
for OpenCL Offline Compiler to relax the order of arithmetic floating-point operations
using a balanced tree hardware implementation.

Intel FPGA SDK for OpenCL Programming Guide

98

| | ®
1 Intel FPGA SDK for OpenCL Programming Guide < l n tel)

Caution:

Implementing a balanced tree structure leads to more efficient hardware at the
expense of numerical variation in results.

To implement this optimization control, your program must be able to tolerate small
variations in the floating-point results.

e To direct the offline compiler to execute a balanced tree hardware implementation,
invoke the aoc --fp-relaxed <your_kernel _fil ename>.cl command.

1.8.16 Reducing Floating-Point Rounding Operations (--fpc)

Include the —-Ffpc option in your aoc command to direct the Intel FPGA SDK for
OpenCL Offline Compiler to remove intermediary floating-point rounding operations
and conversions whenever possible, and to carry additional bits to maintain precision.

Implementing this optimization control also changes the rounding mode. It rounds
towards zero only at the end of a chain of floating-point arithmetic operations (that is,
multiplications, additions, and subtractions).

e To direct the offline compiler to reduce the number of rounding operations, invoke
the aoc —-Ffpc <your_kernel _fil ename>.cl command.

1.9 Emulating and Debugging Your OpenCL Kernel

Caution:

The Intel FPGA SDK for OpenCL Emulator assesses the functionality of your kernel.

The Intel FPGA SDK for OpenCL Emulator generates a .aocx file that executes on
x86-64 Windows or Linux host. This feature allows you to emulate the functionality of
your kernel and iterate on your design without executing it on the actual FPGA each
time. For Linux platform, you can also use the Emulator to perform functional debug.

Emulation does not support cross-compilation to ARM processor. To run emulation on a
design that targets an SoC, emulate on a non-SoC board (for example,
ALTERAOCLSDKROOT/board/s5_ref). When you are satisfied with the emulation
results, you may target your design on an SoC board for subsequent optimization
steps.

1. Modifying Channels Kernel Code for Emulation on page 100
To emulate applications with a channel that reads or writes to an I/O channel,
modify your kernel to add a read or write channel that replaces the I/0O channel,
and make the source code that uses it is conditional.

2. Compiling a Kernel for Emulation (-march=emulator) on page 101
To compile an OpenCL kernel for emulation, include the -march=emulator
option in your aoc command.

3. Emulating Your OpenCL Kernel on page 103
To emulate your OpenCL kernel, run the emulation .aocx file on the platform
on which you build your kernel.

4. Debugging Your OpenCL Kernel on Linux on page 104
For Linux systems, you can direct the Intel FPGA SDK for OpenCL Emulator to
run your OpenCL kernel in the debugger and debug it functionally as part of the
host application.

5. Limitations of the Intel FPGA SDK for OpenCL Emulator on page 105
The Intel FPGA SDK for OpenCL Emulator feature has some limitations.

Intel FPGA SDK for OpenCL Programming Guide
99

™ ®
l n tel) 1 Intel FPGA SDK for OpenCL Programming Guide

1.9.1 Modifying Channels Kernel Code for Emulation

The Emulator emulates kernel-to-kernel channels. It does not support the emulation
of I/0 channels that interface with input or output features of your FPGA board. To
emulate applications with a channel that reads or writes to an I/O channel, modify
your kernel to add a read or write channel that replaces the I/O channel, and make
the source code that uses it is conditional.

The Intel FPGA SDK for OpenCL does not set the EMULATOR macro definition. You
must set it manually either from the command line or in the source code.

Consider the following kernel example:

channel unlong4 inchannel __ attribute ((io(*"eth0_in'")));

__kernel void send (int size)

{
for (unsigned i=0; 1 < size; i++)
ulong4 data = read_channel_altera(inchannel);
//statements
3
3

To enable the Emulator to emulate a kernel with a channel that interfaces with an I/O
channel, perform the following tasks:

1. Modify the kernel code in one of the following manner:

— Add a matching write_channel _altera call such as the one shown below.

#ifdef EMULATOR

__kernel void io_in (_global char * restrict arr, int size)

{
for (unsigned i=0; i<size; i++)
ulong4 data = arr[i]; //arr[i] being an alternate data source
write_channel_altera(inchannel, data);
}
oo
#endif

— Replace the I/O channel access with a memory access, as shown below:

__kernel void send (int size)

{

for (unsigned i=0; 1 < size; i++)
#ifndef EMULATOR
ulong4 data = read_channel_altera(inchannel);

#else
ulong4 data = arr[i]; //arr[i] being an alternate data source

#endif
//statements

}
}

2. Modify the host application to create and start this conditional kernel during
emulation.

Intel FPGA SDK for OpenCL Programming Guide

100

] ®
1 Intel FPGA SDK for OpenCL Programming Guide l n tel)

Related Links

Implementing I/0 Channels Using the io Channels Attribute on page 33
Include an 10 attribute in your channel declaration to declare a special I/O channel
to interface with input or output features of an FPGA board.

1.9.1.1 Emulating a Kernel that Passes Pipes or Channels by Reference

The Intel FPGA SDK for OpenCL Emulator supports a kernel that passes pipes or
channels by reference.

For example, you may emulate a kernel that has the following structure:

void my_function (pipe uint * pipe_ref,
__global uint * dst, int i)

read_pipe (*pipe_ref, &dst[i]);
¥

__kernel void
consumer (__global uint * restrict dst,
read_only pipe uint __ attribute__((blocking)) c0)

for (int i=0;i<5;i++)
my_function(&cO, dst, i);

}
}

1.9.2 Compiling a Kernel for Emulation (-march=emulator)

To compile an OpenCL kernel for emulation, include the -march=emulator option in
your aoc command.

Intel FPGA SDK for OpenCL Programming Guide
101

™ ®
l n tel) 1 Intel FPGA SDK for OpenCL Programming Guide

e Before you perform kernel emulation, perform the following tasks:

— Install a Custom Platform from your board vendor for your FPGA accelerator
boards.

— Verify that the environment variable AOCL_BOARD_PACKAGE_ROOT points to
the location of the Custom Platform. Alternatively, if your kernel targets a
board from an Intel FPGA SDK for OpenCL Reference Platform, set
AOCL_BOARD_PACKAGE_ROOQT to the path of the Reference Platform (for
example, ALTERAOCLSDKROOT/board/<Ref erence_PIl at f or m _nanme>).

— Verify that the environment variable QUARTUS_ROOTDIR _OVERRIDE points to
the correct edition of the Quartus Prime software.

e For non-Arria 10 devices, QUARTUS_ROOTDIR_OVERRIDE points to the
installation directory of the Quartus Prime Standard Edition software.

e For Arria 10 devices, QUARTUS_ROOTDIR_OVERRIDE points to the
installation directory of the Quartus Prime Pro Edition software.

e To emulate your kernels on Windows systems, you need the Microsoft linker and
additional compilation time libraries. Verify that the PATH environment variable
setting includes all the paths described in the Setting the Intel FPGA SDK for
OpenCL User Environment Variables section of the Intel FPGA SDK for OpenCL
Getting Started Guide.

The PATH environment variable setting must include the path to the LINK.EXE file
in Microsoft Visual Studio.

e Ensure that your LIB environment variable setting includes the path to the
Microsoft compilation time libraries.

The compilation time libraries are available with Microsoft Visual Studio.

e Verify that the LD_LIBRARY_PATH environment variable setting includes all the
paths described in the Setting the Intel FPGA SDK for OpenCL User Environment
Variables section in the Intel FPGA SDK for OpenCL Getting Started Guide.

e To create kernel programs that are executable on x86-64 host systems, invoke the
aoc -march=emulator <your kernel filename>.cl command.

®* To compile a kernel for emulation that targets a specific board, invoke the aoC -
march=emulator --board <board nane>
<your _kernel _fil ename>_cl command.

e For Linux systems, the Intel FPGA SDK for OpenCL Offline Compiler offers
symbolic debug support for the debugger.

The offline compiler's debug support allows you to pinpoint the origins of
functional errors in your kernel source code.
Related Links

e Compiling a Kernel for a Specific FPGA Board (--board <board_name>) on page
91
To compile your OpenCL kernel for a specific FPGA board, include the —-
board <boar d_nane> option in the aoc command.
e Setting the Intel FPGA SDK for OpenCL User Environment Variables (Windows)

e Setting the Intel FPGA SDK for OpenCL User Environment Variables (Linux)

Intel FPGA SDK for OpenCL Programming Guide
102

https://documentation.altera.com/#/link/mwh1391807309901/ewa1416586552764/en-us
https://documentation.altera.com/#/link/mwh1391807309901/ewa1416591141201/en-us

™ ®
1 Intel FPGA SDK for OpenCL Programming Guide < l n tel)

1.9.3 Emulating Your OpenCL Kernel

To emulate your OpenCL kernel, run the emulation .aocx file on the platform on
which you build your kernel.

To emulate your kernel, perform the following steps:

1. Run the utility command aocl linkflags to find out which libraries are
necessary for building a host application. The software lists the libraries for both
emulation and regular kernel compilation flows.

2. Build a host application and link it to the libraries from Step 1.

Attention: To emulate multiple devices alongside other OpenCL SDKs, link your
host application to the Khronos ICD Loader Library before linking it to
the host runtime libraries. Link the host application to the ICD Loader
Library by modifiying the Makefi le for the host application. Refer to
Linking Your Host Application to the Khronos ICD Loader Library for
more information.

3. If necessary, move the <your _kernel _fil ename>.aocx file to a location where
the host can find easily, preferably the current working directory.

4. To run the host application for emulation:

— For Windows, first define the number of emulated devices by invoking the set
CL_CONTEXT_EMULATOR_DEVICE_ALTERA=<nunber _of devi ces>
command and then run the host application.

After you run the host application, invoke set
CL_CONTEXT_EMULATOR_DEVICE_ALTERA= to unset the variable.

— For Linux, invoke the env
CL_CONTEXT_EMULATOR_DEVICE_ALTERA=<nunber _of _devi ces>
<host application_fil ename> command.

This command specifies the number of identical emulation devices that the
Emulator needs to provide.

5. If you change your host or kernel program and you want to test it, only recompile
the modified host or kernel program and then rerun emulation.

Each invocation of the emulated kernel creates a shared library copy called
<process_| D>-libkernel .so in a default temporary directory, where
<process_ID> is a unique numerical value assigned to each emulation run. You may
override the default directory by setting the TMP or TEMP environment variable on
Windows, or setting TMPDIR on Linux.

Related Links

¢ Displaying Information on OpenCL Host Runtime and MMD Libraries (link-config or
linkflags) on page 79
To display a list of flags necessary for linking a host application with OpenCL
host runtime and MMD libraries, invoke the link-conFfig or linkflags
utility command.

e Linking Your Host Application to the Khronos ICD Loader Library on page 80
The Intel FPGA SDK for OpenCL supports the OpenCL ICD extension from the
Khronos Group.

Intel FPGA SDK for OpenCL Programming Guide
103

™ ®
l n tel) 1 Intel FPGA SDK for OpenCL Programming Guide

1.9.4 Debugging Your OpenCL Kernel on Linux

Caution:

Note:

For Linux systems, you can direct the Intel FPGA SDK for OpenCL Emulator to run
your OpenCL kernel in the debugger and debug it functionally as part of the host
application. The debugging feature allows you to debug the host and the kernel
seamlessly. You can step through your code, set breakpoints, and examine and set
variables.

Prior to debugging your kernel, you must perform the following tasks:

1. During program execution, the debugger cannot step from the host code to the
kernel code. You must set a breakpoint before the actual kernel invocation by
adding these lines:

a. break <your_kernel >
This line sets a breakpoint before the kernel.
b. continue

If you have not begun debugging your host, then type start instead.

2. The kernel is loaded as a shared library immediately before the host loads the
kernels. The debugger does not recognize the kernel names until the host actually
loads the kernel functions. As a result, the debugger will generate the following
warning for the breakpoint you set before the execution of the first kernel:

Function *<your_kernel>" not defined.

Make breakpoint pending on future shared library load? (y or
[nD

Answer Y. After initial program execution, the debugger will recognize the function
and variable names, and line number references for the duration of the session.

The Emulator uses the OpenCL runtime to report some error details. For emulation,
the runtime uses a default print out callback when you initialize a context via the
clCreateContext function.

Kernel debugging is independent of host debugging. Debug your host code in existing
tools such as Microsoft Visual Studio Debugger for Windows and GDB for Linux.

To compile your OpenCL kernel for debugging, perform the following steps:

1. To generate a .aocx file for debugging that targets a specific accelerator board,
invoke the aoc -march=emulator <your _kernel filename>.cl --
board <board_name> command.

Intel FPGA SDK for OpenCL Programming Guide

104

™ ®
1 Intel FPGA SDK for OpenCL Programming Guide < l n tel)

Attention: Specify the name of your FPGA board when you run your host
application. To verify the name of the target board for which you
compile your kernel, invoke the aoc -march=emulator -v
<your _kernel _fil ename>_cl command. The Intel FPGA SDK for
OpenCL Offline Compiler will display the name of the target FPGA
board.

Run the utility command aocl Binkflags to find out the additional libraries
necessary to build a host application that supports kernel debugging.
Build a host application and link it to the libraries from Step 2.

Ensure that the <your _kernel _fil enanme>_aocx file is in a location where the
host can find it, preferably the current working directory.

To run the application, invoke the command env
CL_CONTEXT_EMULATOR_DEVICE_ALTERA=<nunber of devi ces> gdb --
args <your _host _program nane>, where <number_of_devices> is the
number of identical emulation devices that the Emulator needs to provide.

If you change your host or kernel program and you want to test it, only recompile
the modified host or kernel program and then rerun the debugger.

Related Links

Compiling a Kernel for a Specific FPGA Board (--board <board_name>) on page
91
To compile your OpenCL kernel for a specific FPGA board, include the ——
board <board_nane> option in the aoc command.

Generating Compilation Progress Report (-v) on page 95
To direct the Intel FPGA SDK for OpenCL Offline Compiler to report on the
progress of a compilation, include the -v option in your aoc command.

Displaying Information on OpenCL Host Runtime and MMD Libraries (link-config or
linkflags) on page 79
To display a list of flags necessary for linking a host application with OpenCL
host runtime and MMD libraries, invoke the link-config or linkFflags
utility command.

1.9.5 Limitations of the Intel FPGA SDK for OpenCL Emulator

The Intel FPGA SDK for OpenCL Emulator feature has some limitations.

1.

Execution model

The Emulator supports the same compilation modes as the FPGA variant. As a
result, you must call the clCreateProgramBinary function to create
cl_program objects for emulation.

Concurrent execution

Modeling of concurrent kernel executions has limitations. During execution, the
Emulator does not actually run interacting work-items in parallel. Therefore, some
concurrent execution behaviors, such as different kernels accessing global
memory without a barrier for synchronization, might generate inconsistent
emulation results between executions.

Kernel performance

Intel FPGA SDK for OpenCL Programming Guide
105

] ®
l n tel) 1 Intel FPGA SDK for OpenCL Programming Guide

The .aocx file that you generate for emulation does not include any
optimizations. Therefore, it might execute at a significantly slower speed than
what an optimized kernel might achieve. In addition, because the Emulator does
not implement actual parallel execution, the execution time multiplies with the
number of work-items that the kernel executes.

4. The Emulator executes the host runtime and the kernels in the same address
space. Certain pointer or array usages in your host application might cause the
kernel program to fail, and vice versa. Example usages include indexing external
allocated memory and writing to random pointers. You may use memory leak
detection tools such as Valgrind to analyze your program. However, the host might
encounter a fatal error caused by out-of-bounds write operations in your kernel,
and vice versa.

5. Emulation of channel behavior has limitations, especially for conditional channel
operations where the kernel does not call the channel operation in every loop
iteration. In these cases, the Emulator might execute channel operations in a
different order than on the hardware.

1.10 Reviewing Your Kernel's report.html File

Attention: The analyze-area Intel FPGA SDK for OpenCL utility option has been deprecated. To
view your kernel's estimated area usage, refer to the report.html file.

For reference information on the deprecated area report, refer to the Review Your
Kernel's Area Report to Identify Inefficiencies in Resource Usage section in version
16.0 of the Altera SDK for OpenCL Best Practices Guide.

After compiling your OpenCL kernel, the Intel FPGA SDK for OpenCL Offline Compiler
automatically generates an HTML report that analyzes various aspects of your kernel,
such as area, loop structure, memory usage, and kernel pipeline.

To launch the HTML report, open the report._html file in the
<your_kernel_filename>/reports directory.

For more information on the HTML report, refer to the Review Your Kernel's
report.html File section in the Intel FPGA SDK for OpenCL Best Practices Guide.
Related Links

e Review Your Kernel's report.html File

e Altera SDK for OpenCL Best Practices Guide version 16.0

1.11 Profiling Your OpenCL Kernel

The Intel FPGA SDK for OpenCL Profiler measures and reports performance data
collected during OpenCL kernel execution on the FPGA. The SDK's Profiler relies on
performance counters to gather kernel performance data. You can then review
performance data in the Profiler GUI.

1. Instrumenting the Kernel Pipeline with Performance Counters (--profile) on page
107
To instrument the OpenCL kernel pipeline with performance counters, include
the ——profile option of the aoc command when you compile your kernel.

2. Launching the Intel FPGA SDK for OpenCL Profiler GUI (report) on page 107

Intel FPGA SDK for OpenCL Programming Guide
106

https://documentation.altera.com/#/link/mwh1391807516407/yyl1476199406907/en-us
https://www.altera.com/en_US/pdfs/literature/hb/opencl-sdk/archives/ug-aocl-best-practices-guide-16.0.pdf

™ ®
1 Intel FPGA SDK for OpenCL Programming Guide l n tel)

You can use the Intel FPGA SDK for OpenCL Profiler report utility command to
launch the Profiler GUI.

1.11.1 Instrumenting the Kernel Pipeline with Performance Counters (--
profile)

To instrument the OpenCL kernel pipeline with performance counters, include the —-
profile option of the aoc command when you compile your kernel.

Attention: Instrumenting the Verilog code with performance counters increases hardware

resource utilization (that is, increases FPGA area usage) and typically decreases
performance.

e To instrument the Verilog code in the <your _kernel _fi | ename>_aocx file with
performance counters, invoke the aoc --profile
<your kernel filename>_cl command.

Attention: When profiling multiple, different kernels, do not use the same kernel
names across different .aocx files. If the kernel names are the same,
the profile data will be wrong for these kernels.

e Run your host application from a local disk to execute the
<your _kernel fil ename>_aocx file on your FPGA. During kernel execution,
the performance counters throughout the kernel pipeline collects profile
information. The host saves the information in a profile.mon monitor
description file in your current working directory.

Caution: Because of slow network disk accesses, running the host application
from a networked directory might introduce delays between kernel
executions. These delays might increase the overall execution time of
the host application. In addition, they might introduce delays between
kernel launches while the runtime stores profile output data to disk.

1.11.2 Launching the Intel FPGA SDK for OpenCL Profiler GUI (report)

You can use the Intel FPGA SDK for OpenCL Profiler report utility command to launch
the Profiler GUI. The Profiler GUI allows you to view kernel performance data statistics
that the SDK's Profiler collects during kernel execution.

The SDK's Profiler stores performance data in a profile.mon file in your current
working directory.

* To launch the Profiler GUI, invoke the aocl report
<your kernel filenanme>.aocx profile.mon utility command.

1.12 Conclusion

You have now familiarized yourself with the Intel FPGA SDK for OpenCL design flow
and the tools available to help you achieve your design goals. For more information on
the support statuses of the OpenCL APIs and programming language, refer to
Appendix A: Support Statuses of OpenCL Features.

For in-depth information on optimizing your OpenCL kernel to maximize performance,
refer to the Intel FPGA SDK for OpenCL Best Practices Guide.

Intel FPGA SDK for OpenCL Programming Guide
107

intel.

Related Links
Intel FPGA SDK for OpenCL Best Practices Guide

1 Intel FPGA SDK for OpenCL Programming Guide

1.13 Document Revision History

Table 3. Document Revision History of the Intel FPGA SDK for OpenCL Programming
Guide
Date Version Changes
October 2016 2016.10.31 Rebranded the Altera SDK for OpenCL to Intel FPGA SDK for OpenCL.

Intel FPGA SDK for OpenCL Programming Guide

108

Rebranded the Altera Offline Compiler to Intel FPGA SDK for OpenCL

Offline Compiler.

Deprecated and removed support for big-endian system, resulting in the

following documentation changes:

— Removed the topic Compiling a Kernel for a Big-Endian System (--big-
endian).

— Removed big-endian (64-bit) from the list of architectures that the
host application can target.

Added the topic Displaying the Compilation Environment of an OpenCL

Binary to introduce the aoc env command.

Removed Adding Source References to Optimization Reports (-g) because

the the offline compiler automatically includes source information in the

compiler reports and enables symbolic debug during emulation on an x86

Linux machine.

Added the topic Removing Debug Data from Compiler Reports and Source

Code from the .aocx File (-g0) to introduce the -g0 aoc command option.

In Limitations of the Intel FPGA SDK for OpenCL Emulator, removed the

limitation "The Emulator does not support half data type".

In Linking Your Host Application to the Khronos ICD Loader Library,

provided an update that the Intel-supplied ICD Loader Library supports

OpenCL Specification version 1.0 as well as implemented APIs from the

OpenCL Specification versions 1.1, 1.2, and 2.0.

In Managing an FPGA Board, provided the following updates:

— Noted that the SDK supports installation of multiple Custom Platforms.
To use the SDK utilities on each board in a multi-board installation, the
AOCL_BOARD_PACKAGE_ROOT environment variable setting must
correspond to the Custom Platform subdirectory of the associated
board.

— Noted that in a system with multiple Custom Platforms, the host
program should use ACD to discover the boards instead of directly
linking to the MMD libraries.

Added the topic Reviewing Your Kernel's report.html File and included

deprecation notice for the analyze-area utility option. As a result of

introducing the HTML report, removed the following topics:

— Reviewing Your Kernel's Resource Usage Information in the Area
Report

— Accessing the Area Report

— Layout of the Area Report

continued...

https://documentation.altera.com/#/link/mwh1391807516407/mwh1391807494883/en-us

] ®
1 Intel FPGA SDK for OpenCL Programming Guide l n tel

Date

Version

Changes

In Multistep Design Flow, updated the design steps and the figure The
Multistep Intel FPGA SDK for OpenCL Design Flow to replace area report
with the HTML report, and remove information on enabling -g.

In Inferring a Register, corrected the text following the code snippet that
explained how the offline compiler decide on the implementation of the
array in hardware.

In Linking to the ICD Loader Library on Windows, updated the text to
improve clarity.

May 2016

2016.05.02

Added a schematic diagram of the AOCL programming model in the Altera

SDK for OpenCL FPGA Programming Flow section.

Moved the figure The AOCL FPGA Programming Flow to the Altera Offline

Compiler Kernel Compilation Flows section.

Updated the figure The Multistep AOCL Design Flow and associated text to

include the Review Area Report step.

Added information on the single-cycle floating-point accumulator feature

for single work-item kernels. Refer to the Single-Cycle Floating-Point

Accumulator for Single Work-Item Kernels section for more information.

Added information in the Emulating Your OpenCL Kernel section on multi-

device support for emulation alongside other OpenCL SDKs using ICD.

Included information on the enhanced area report feature:

— Added the option to invoke the analyze-area AOCL utility command
to generate an HTML area report.

— Included a topic that describes the layout of the HTML area report.

In Linking to the ICD Loader Library on Windows, removed $

(AOCL_LDLIBS) from the code example for the modified MakeFi le.

In the Multiple Work-Item Ordering sections for channels and pipes,

modified the characteristics that the AOCL uses to check whether the

channel or pipe call is work-item invariant.

November 2015

2015.11.02

Added the option to invoke the aoc command with no argument to access
the Altera Offline Compiler help menu.

Updated the Mutliple Host Threads section to specify that the OpenCL
host runtime is thread-safe.

Updated the following figure and sections to reflect multiple kernel source
file support:

— The figure The AOCL FPGA Programming Flow in the AOCL FPGA
Programming Flow section

— The Compiling Your Kernel to Create Hardware Configuration File
section

— The Compiling Your Kernel without Building Hardware (-c) section

n Multiple Work-Item Ordering for Channels, removed misleading text.
Updated the Overview of Channels Implementation figure.

Updated the the following sections on OpenCL pipes:

— Overview of a Pipe Network Implementation figure in Overview of the
OpenCL Pipe Functions

— Emulation support in Restrictions in OpenCL Pipes Implementation
section

— Replaced erroneous code with the correct syntax

— Added link to Implementing I/O Pipes Using the io Attribute in
Declaring the Pipe Handle

Added a reminder in Programming an FPGA via the Host that you should

release an event object after use to prevent excessive memory usage.

—

continued...

Intel FPGA SDK for OpenCL Programming Guide
109

intel.

Intel FPGA SDK for OpenCL Programming Guide

110

1 Intel FPGA SDK for OpenCL Programming Guide

Date

Version

Changes

May 2015

15.0.0

In Guidelines for Naming the Kernel, added entry that advised against
naming an OpenCL kernel kernel .cl.

In Instrumenting the Kernel Pipeline with Performance Counters (--
profile), specified that you should run the host application from a local
disk to avoid potential delays caused by slow network disk accesses.

In Emulating and Debugging Your OpenCL Kernel, modified Caution note
to indicate that you must emulate a design targeting an SoC on a non-
SoC board.

In Emulating Your OpenCL Kernel, updated command to run the host
application and added instruction for overriding default temporary
directory containing <pr ocess_| D>-libkernel .so.

Introduced the --high-effort aoc command flag in Resolving
Hardware Generation Fitting Errors during Kernel Compilation.

In Enabling Double Precision Floating-Point Operations, introduced the
OPENCL EXTENSION pragma for enabling double precision floating-point
operations.

Introduced OpenCL pipes support. Refer to Implementing OpenCL Pipes
(and subsequent subtopics) and Creating a Pipe Object in Your Host
Application for more information.

In AOCL Channels Extension: Restrictions, added code examples to
demonstrate how to statically index into arrays of channel IDs.

In Multiple Host Threads, added recommendation for synchronizing
OpenCL host function calls in a multi-threaded host application.
Introduced ICD and ACD support. Refer to Linking Your Host Application
to the Khronos ICD Loader Library for more information.

Introduced clGetBoardExtenstionFunctionAddressAltera for
referencing user-accessible functions. Refer to Accessing Custom
Platform-Specific Functions for more information.

December 2014

14.1.0

Reorganized information flow. Information is now presented based on the
tasks you might perform using the Altera SDK for OpenCL (AOCL) or the
Altera RTE for OpenCL.

Removed information pertaining to the ——util <N> and -03 Altera

Offline Compiler (AOC) options.

Added the following information on PLDA QuickUDP IP core licensing in

Compiling Your OpenCL Kernel:

1. A PLDA QuickUDP IP core license is required for the Stratix V Network
Reference Platform or a Custom Platform that uses the QuickUDP IP
core.

2. Improper installation of the QuickUDP IP core licence causes
compilation to fail with an error message that refers to the QuickTCP
IP core.

Added reminder that conditionally shifting a large shift register is not

recommended.

Removed the Emulating Systems with Multiple Devices section. A new

env

CL_CONTEXT_EMULATOR_DEVICE_ALTERA=<nunber _of _devi ces>

command is now available for emulating multiple devices.

Removed language support limitation from the Limitations of the AOCL

Emulator section.

June 2014

14.0.0

Removed the --estimate-throughput and --sw-dimm-partition
AOC options

Added the -march=emulator, -g, --big-endian, and --profile
AOC options

--no-interleaving needs <global_memory_type> argument
-fp-relaxed=true is now --fp-relaxed

-fpc=true is now --fpc

For non-SoC devices, aocl diagnostic is now aocl diagnose
and aocl diagnose <devi ce_nane>

continued...

®
1 Intel FPGA SDK for OpenCL Programming Guide l n tel

Date

Version

Changes

program and Flash need <device_name> arguments

Added Identifying the Device Name of Your FPGA Board

Added AOCL Profiler Utility

Added AOCL Channels Extension and associated subsections

Added Attributes for Channels

Added Match Data Layouts of Host and Kernel Structure Data Types
Added Register Inference and Shift Register Inference

Added Channels and Multiple Command Queues

Added Shared Memory Accesses for OpenCL Kernels Running on SoCs
Added Collecting Profile Data During Kernel Execution

Added Emulate and Debug Your OpenCL Kernel and associated
subsections

Updated AOC Kernel Compilation Flows

Updated -v

Updated Host Binary Requirement

Combined Partitioning Global Memory Accesses and Partitioning
Heterogeneous Global Memory Accesses into the section Partitioning
Global Memory Accesses

Updated AOC Allocation Limits in Appendix A

Removed max_unroll_loops, max_share_resources,
num_share_resources, and task kernel attributes

Added packed, and al igned(<N>) kernel attributes

December 2013

13.1.1

Removed the section -W and -Werror, and replaced it with two sections: -
W and -Werror.

Updated the following contents to reflect multiple devices support:

— The figure The AOCL FPGA Programming Flow.

— --list-boards section.

— -board <board_name> section.

— AOCL Utilities for Managing an FPGA Board section.

— Added the subsection Programming Multiple FPGA Devices under FPGA
Programming.

The following contents were added to reflect heterogeneous global

memory support:

— --no-interleaving section.

— buffer_location kernel attribute under Kernel Pragmas and
Attributes.

— Partitioning Heterogeneous Global Memory Accesses section.

Modified support status designations in Appendix: Support Statuses of

OpenCL Features.

Removed information on OpenCL programming language restrictions from

the section OpenCL Programming Language Implementation, and

presented the information in a new section titled OpenCL Programming

Language Restrictions.

November 2013

13.1.0

Reorganized information flow.

Updated and renamed Intel FPGA SDK for OpenCL Compilation Flow to
AOCL FPGA Programming Flow.

Added figures One-Step AOC Compilation Flow and Two-Step AOC
Compilation Flow.

Updated the section Contents of the AOCL Version 13.1.
continued...

Intel FPGA SDK for OpenCL Programming Guide
111

Intel FPGA SDK for OpenCL Programming Guide

112

ntel.

1 Intel FPGA SDK for OpenCL Programming Guide

Date

Version

Changes

Removed the following sections:

— OpenCL Kernel Source File Compilation.

— Using the Altera Offline Kernel Compiler.

— Setting Up Your FPGA Board.

— Targeting a Specific FPGA Board.

— Running Your OpenCL Application.

— Consolidating Your Kernel Source Files.

— Aligned Memory Allocation.

— Programming the FPGA Hardware.

— Programming the Flash Memory of an FPGA.

Updated and renamed Compiling the OpenCL Kernel Source File to AOC
Compilation Flows.

Renamed Passing File Scope Structures to OpenCL Kernels to Use
Structure Arguments in OpenCL Kernels.

Updated and renamed Augmenting Your OpenCL Kernel by Specifying
Kernel Attributes and Pragmas to Kernel Pragmas and Attributes.

Renamed Loading Kernels onto an FPGA to FPGA Programming.

Consolidated Compiling and Linking Your Host Program, Host Program
Compilation Settings, and Library Paths and Links into a single section.

Inserted the section Preprocessor Macros.

Renamed Optimizing Global Memory Accesses to Partitioning Global
Memory Accesses.

June 2013

13.0 SP1.0

Added the section Setting Up Your FPGA Board.

Removed the subsection Specifying a Target FPGA Board under Kernel
Programming Considerations.

Inserted the subsections Targeting a Specific FPGA Board and Generating
Compilation Reports under Compiling the OpenCL Kernel Source File.

Renamed File Scope __constant Address Space Qualifier to __constant
Address Space Qualifiers, and inserted the following subsections:

— Function Scope ___constant Variables.
— File Scope ___constant Variables.
— Points to ___constant Parameters from the Host.

Inserted the subsection Passing File Scope Structures to OpenCL Kernels
under Kernel Programming Considerations.

Renamed Modifying Your OpenCL Kernel by Specifying Kernel Attributes
and Pragmas to Augmenting Your OpenCL Kernel by Specifying Kernel
Attributes and Pragmas.

Updated content for the unroll pragma directive in the section
Augmenting Your OpenCL Kernel by Specifying Kernel Attributes and
Pragmas.

Inserted the subsections Out-of-Order Command Queues and Modifying
Host Program for Structure Parameter Conversion under Host
Programming Considerations.

Updated the sections Loading Kernels onto an FPGA Using
clClreateProgramWithBinary and Aligned Memory Allocation.

Updated flash programming instructions.

Renamed Optional Extensions in Appendix B to Atomic Functions, and
updated its content.

Removed Platform Layer and Runtime Implementation from Appendix B.

continued...

1 Intel FPGA SDK for OpenCL Programming Guide

intel.

Date

Version

Changes

May 2013

13.0.1

Explicit memory fence functions are now supported; the entry is removed

from the table OpenCL Programming Language Implementation.
Updated the section Programming the Flash Memory of an FPGA.

Added the section Modifying Your OpenCL Kernel by Specifying Kernel
Attributes and Pragmas to introduce kernel attributes and pragmas that
can be implemented to optimize kernel performance.

Added the section Optimizing Global Memory Accesses to discuss data
partitioning.

Removed the section Programming the FPGA with the aocl program
Command from Appendix A.

May 2013

13.0.0

Updated compilation flow.

Updated kernel compiler commands.

Included Altera SDK for OpenCL Utility commands.

Added the section OpenCL Programming Considerations.

Updated flash programming procedure and moved it to Appendix A.

Included a new cICreateProgramWithBinary FPGA hardware
programming flow.

Moved the hostless clCreateProgramWithBinary hardware
programming flow to Appendix A under the title Programming the FPGA
with the aocl program Command.

Moved updated information on allocation limits and OpenCL language
support to Appendix B.

November 2012

12.1.0

Initial release.

Intel FPGA SDK for OpenCL Programming Guide

113

2 Intel FPGA SDK for OpenCL Advanced Features l

2 Intel FPGA SDK for OpenCL Advanced Features

The Intel FPGA SDK for OpenCL provides advanced features you can use to control
certain aspects of the design architecture and the Intel FPGA SDK for OpenCL Offline

Compiler's behavior.

2.1 OpenCL Library

An OpenCL library is a single file that contains multiple functions. Each function is
comprised of data processing logic that works at any clock frequency. You can create
an OpenCL library in OpenCL or RTL. You can then include this library file and use the

functions inside your OpenCL kernels.

Figure 12. Overview of Intel FPGA SDK for OpenCL's Library Support

Intel FPGA SDK for OpenCL
Offline Compiler

You may use a previously-created library or create your own library. To use an OpenCL

library, you do not require in-depth knowledge in hardware design or in the

implementation of library components. To create an OpenCL library, you need to

create the following files and components:

Table 4. Necessary Files and Components for Creating an OpenCL Library

File or Component Description

RTL Components

component.

(-tcl) are not allowed.

RTL source files Verilog, System Verilog, or VHDL files that define the RTL

Additional files such as Quartus Prime IP File (.qip),
Synopsys Design Constraints File (.sdc), and Tcl Script File

continued...

© 2016 Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX,
Megacore, NIOS, Quartus and Stratix words and logos are trademarks of Intel Corporation in the US and/or
other countries. Other marks and brands may be claimed as the property of others. Intel warrants performance
of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty,
but reserves the right to make changes to any products and services at any time without notice. Intel assumes
no responsibility or liability arising out of the application or use of any information, product, or service
described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the
latest version of device specifications before relying on any published information and before placing orders for
products or services.

Iso
9001:2008
Registered

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

] ®
2 Intel FPGA SDK for OpenCL Advanced Features l n tel)

File or Component Description

eXtensible Markup Language File (.xml) Describes the properties of the RTL component. The Intel

FPGA SDK for OpenCL Offline Compiler uses these
properties to integrate the RTL component into the OpenCL

pipeline.

Header file (-h) A C-style header file that declares the signatures of
function(s) that are implement by the RTL component.

OpenCL emulation model file (.cl) Provides C model for the RTL component that is used only
for emulation. Full hardware compilations use the RTL
source files.

OpenCL Functions

OpenCL source files (.cl) Contains definitions of the OpenCL functions. These

functions are used during emulation and full hardware
compilations.

Header file (-.h) A C-style header file that declares the signatures of

function(s) that are defined in the OpenCL source files.

Understanding RTL Modules and the OpenCL Pipeline on page 116
This section provides an overview of how the Intel FPGA SDK for OpenCL Offline
Compiler integrates RTL modules into the Intel FPGA SDK for OpenCL pipeline
architecture.

Packaging an OpenCL Helper Function File for an OpenCL Library on page 125
Before creating an OpenCL library file, package each OpenCL source file with helper
functions into a .aoco file.

Packaging an RTL Component for an OpenCL Library on page 125
Before creating an OpenCL library file, package each RTL component into a .aoco
file.

Verifying the RTL Modules on page 128
The creator of an OpenCL library is responsible for verifying the RTL modules within
the library, both as stand-alone entities and as part of an OpenCL system.

Packaging Multiple Object Files into a Library File on page 129
After creating the .aoco files that you want to include into an OpenCL library,
package them into a library file by invoking the Intel FPGA SDK for OpenCL
library utility command option.

Specifying an OpenCL Library when Compiling an OpenCL Kernel on page 129
To use an OpenCL library in an OpenCL kernel, specify the library file name and
directory when you compile the kernel.

Using an OpenCL Library that Works with Simple Functions (Example 1) on page 130
Intel provides an OpenCL library design example of a simple kernel that uses a
library containing RTL implementations of three double-precision functions: sqrt,
rsqrt, and divide.

Using an OpenCL Library that Works with External Memory (Example 2) on page 131
Intel provides an OpenCL library design example of a simple kernel that uses a
library containing two RTL modules that communicate with global memory.

OpenCL Library Command-Line Options on page 132
Both the Intel FPGA SDK for OpenCL Offline Compiler's set of commands and the
SDK utility include options you can invoke to perform OpenCL library-related tasks.
Related Links

OpenCL Library Command-Line Options on page 132

Intel FPGA SDK for OpenCL Programming Guide
115

] ®
l n tel) 2 Intel FPGA SDK for OpenCL Advanced Features

Both the Intel FPGA SDK for OpenCL Offline Compiler's set of commands and the
SDK utility include options you can invoke to perform OpenCL library-related tasks.

2.1.1 Understanding RTL Modules and the OpenCL Pipeline

The OpenCL library feature allows you to use RTL modules, written in Verilog,
SystemVerilog, or VHDL, inside OpenCL kernels. This section provides an overview of
how the Intel FPGA SDK for OpenCL Offline Compiler integrates RTL modules into the
Intel FPGA SDK for OpenCL pipeline architecture.

You might want to use RTL modules under the following circumstances:

e You want to use optimized and verified RTL modules in OpenCL kernels without
rewriting the modules as OpenCL functions.

e You want to implement OpenCL kernel functionality that you cannot express
effectively in OpenCL.

Overview: Intel FPGA SDK for OpenCL Pipeline Approach

The following figure depicts the architecture of an Intel FPGA SDK for OpenCL
pipeline:

Figure 13. Parallel Execution Model of AOCL Pipeline Stages

The operations on the right represent the SDK's pipeline implementation of the
OpenCL kernel code on the left. Each yellow box is an operation or data value found in
the pipeline. The number associated with each operation represents the number of
threads in the pipeline.

gid

4 ~
void kernel pe(global int* A, l |
global int* B, 2 2) ’_Tr] —
global int* C){ Load A Q Load B gid |

int gid = get_global_id(0);
int a = A[gid];
int b = B[gid];
C[gid] = a + b;

oready ivalid Store C

i readyT ovalid

Assume each level of operation is one stage in the pipeline. At each stage, the Intel
FPGA SDK for OpenCL Offline Compiler executes all operations in parallel by the
thread existing at that stage. For example, thread 2 executes Load A, Load B, and
copies the current global ID (via gid) to the next pipeline stage. Similar to the
pipelined execution on instructions in reduced instruction set computing (RISC)
processors, the SDK's pipeline stages also execute in parallel. The threads will
advance to the next pipeline stage only after all the stages have completed execution.

Intel FPGA SDK for OpenCL Programming Guide
116

™ ®
2 Intel FPGA SDK for OpenCL Advanced Features l n tel)

Figure 14.

Some operations are capable of stalling the Intel FPGA SDK for OpenCL pipeline.
Examples of such operations include variable latency operations like memory load and
store operations. To support stalls, ready and valid signals need to propagate
throughout the pipeline so that the offline compiler can schedule the pipeline stages.
However, ready signals are not necessary if all operations have fixed latency. In these
cases, the offline compiler optimizes the pipeline to statically schedule the operations,
which significantly reduces the logic necessary for pipeline implementation.

Integration of an RTL Module into the Intel FPGA SDK for OpenCL Pipeline

When you specify an OpenCL library during kernel compilation, the offline compiler
integrates the RTL module within the library into the overall pipeline.

Integration of an RTL Module into an Intel FPGA SDK for OpenCL Pipeline

This figure depicts the integration of the RTL module myMod into the pipeline depicted
in Figure 13 on page 116.
gid

i |
s) B

- N
extern int myMod(int, int);
void kernel pe(global int* A,

global int* B,
global int* C){

int gid = get_global_id(0);
int a = A[gid];

int b = B[gid];

C[gid] = myMod(a, b);

oready ivalid n X
Store C

iready ovalid

The RTL module depicted in Figure 14 on page 117 has a balanced latency where the
threads of the RTL module match the number of pipeline stages. A balanced latency
allows the threads of the RTL module to execute without stalling the SDK's pipeline.

Setting the latency of the RTL module in the RTL specification file allows the offline
compiler to balance the pipeline latency. RTL supports Avalon® Streaming (Avalon-ST)
interfaces; therefore, the latency of the RTL module can be variable (that is, not
fixed). However, the variability in the latency should be small in order to maximize
performance. In addition, specify the latency in the <RTL nodul e descri ption
file name>.xml specification file so that the RTL module experiences a good
approximation of the actual latency in steady state.

2.1.1.1 Stall-Free RTL

The Intel FPGA SDK for OpenCL Offline Compiler can optimize hardware resource
usage and performance by removing stall logic around an RTL module with fixed
latency.

Intel FPGA SDK for OpenCL Programming Guide
117

™ ®
l n tel) 2 Intel FPGA SDK for OpenCL Advanced Features

Note:

An RTL module that has a variable latency and uses Avalon-ST input and output
signals can wait until input data is ready. Conversely, the Intel FPGA SDK for OpenCL
pipeline can stall until it receives valid output data from the RTL module. For an RTL
module with a fixed latency, you can remove an RTL stall by modifying the <RTL
nodul e description file nane>.xml specification file, as described below.

To instruct the offline compiler to remove stall logic around the RTL module, if
appropriate, set the IS_STALL_FREE attribute under the FUNCTION element to
"'yes"'. This modification informs the offline compiler that the RTL module produces
valid data every EXPECTED_LATENCY cycle(s). EXPECTED_LATENCY is an attribute
you specify in the .xml file under the FUNCTION element. Specify a value for
EXPECTED_LATENCY such that the latency equals the number of pipeline stages in the
module. An inaccurate EXPECTED_LATENCY value will cause the RTL module to be out
of sync with the rest of the pipeline.

The offline compiler expects an RTL module with fixed or variable latency to have
proper Avalon-ST input and output parameters (that is, ivalid, ovalid, iready,
and oready). For an RTL module with fixed latency, the output signals (that is,

oval id and oready) can have constant high values, and the input ready signal (that
is, iready) can be ignored.

A stall-free RTL module might receive an invalid input signal (that is, ivalid is low).
In this case, the module ignores the input and produces invalid data on the output.
For a stall-free RTL module without an internal state, it might be easier to propagate
the invalid input through the module. However, for an RTL module with an internal
state, you must handle an ival id=0 input carefully.

2.1.1.2 RTL Reset and Clock Signals

Resets and clocks of RTL modules are connected to the same clock and reset drivers
as the rest of the OpenCL pipeline.

Because of the common clock and reset drivers, an RTL module runs in the same clock
domain as the OpenCL kernel. The module is reset only when the OpenCL kernel is
first loaded onto the FPGA, either via Intel FPGA SDK for OpenCL program utility or
the cICreateProgramwithBinary host function. In particular, if the host restarts a
kernel via successive clEnqueueNDRangeKernel or clEnqueueTask invocations,
the associated RTL modules will not reset in between these restarts.

The following steps outline the process of setting the kernel clock frequency:

1. The Quartus Prime software's Fitter applies an aggressive constraint on the kernel
clock.

2. The Quartus Prime software's TimeQuest Timing Analyzer performs static timing
analysis to determine the frequency that the Fitter actually achieves.

3. The phase-locked loop (PLL) that drives the kernel clock sets the frequency
determined in Step 2 to be the kernel clock frequency.

2.1.1.3 XML Syntax of an RTL Module

This section provides the syntax of a simple XML specification file for an RTL module
that implements double-precision square root function. The RTL module is
implemented in VHDL with a Verilog wrapper.

Intel FPGA SDK for OpenCL Programming Guide

118

| | ®
2 Intel FPGA SDK for OpenCL Advanced Features l n tel

The following XML specification file is for an RTL module named my_fp_sqrt_double
(line 2.5) that implements an OpenCL helper function named my_sqrtfd (line 2).

1: <RTL_SPEC>
2: <FUNCTION name="my_sqrtfd"

2.5: module="my_fp_sqrt_double">
3: <ATTRIBUTES>
B.52 <PARAMETER name="WIDTH" value="32"/>
4: <IS_STALL_FREE value="yes"/>
s <IS_FIXED_LATENCY value="'yes'"/>
6: <EXPECTED_LATENCY value="31"/>
7: <CAPACITY value="1"/>
8: <HAS_SIDE_EFFECTS value='"no"/>
9: <ALLOW_MERGING value="yes'"/>
10: </ATTRIBUTES>
11: <INTERFACE>
12: <AVALON port="clock" type="clock"/>
13: <AVALON port="resetn’ type='"‘resetn’/>
14: <AVALON port="ivalid" type="ivalid'"/>
15: <AVALON port="iready" type="iready'/>
16: <AVALON port="ovalid"” type="ovalid"/>
17: <AVALON port="oready" type='"oready'/>
18: <INPUT port="datain" width="64"/>
19: <OUTPUT port="dataout’” width="64"/>
20: </ INTERFACE>
21: <C_MODEL>
22: <FILE name="c_model.cl" />
23: </C_MODEL>
24: <REQUIREMENTS>
25: <FILE name="my_fp_sqrt_double_s5.v" />
26: <FILE name="fp_sqrt_double_s5.vhd" />
27: </REQUIREMENTS>

28: </FUNCTION>
29: </RTL_SPEC>

Elements and Attributes in the XML Specification File

XML Element Description

Top-level element in the XML specification file. There can only be one such top-
level element in the file. In this example, the name RTL_SPEC is historic and
carries no file-specific meaning.

Element that defines the OpenCL function that the RTL module implements. The
name attribute within the FUNCTION element specifies the function's name.
You may have multiple FUNCTION elements, each declaring a different function

that you can call from the OpenCL kernel. The same RTL module can implement
multiple functions by specifying different parameters.

ATTRIBUTES Element containing other XML elements that describe various characteristics

(for example, latency) of the RTL module. The example RTL module takes one
PARAMETER setting named WIDTH, which has a value of 32. Refer to Table 6 on
page 120 for more details other ATTRIBUTES-specific elements.

Note: If you create multiple OpenCL helper functions for different modules, or
use the same RTL module with different PARAMETER settings, you must
create a separate FUNCTION element for each function.

Element containing other XML elements that describe the RTL module's
interface. The example XML specification file shows the Avalon-ST interface
signals that every RTL module must provide (that is, clock, resetn, ivalid,

continued...

Intel FPGA SDK for OpenCL Programming Guide
119

] ®
l n tel 2 Intel FPGA SDK for OpenCL Advanced Features

XML Element Description

iready, ovalid, and oready). The signal names must match the ones
specified in the .xml file. An error will occur during library creation if a signal
name is inconsistent.

C_MODEL Element specifying one or more files that implement OpenCL C model for the
function. The model is used only during emulation. However, the C_MODEL
element and the associated file(s) must be present when you create the library
file.

REQUIREMENTS Element specifying one or more RTL resource files (that

is, .v, -sv, .vhd, .hex, and .miF). The specified paths to these files are
relative to the location of the XML specification file. Each RTL resource file
becomes part of the associated Qsys component that corresponds to the entire
OpenCL system.

Note: The Intel FPGA SDK for OpenCL library feature does not support .qip
files. An Intel FPGA SDK for OpenCL Offline Compiler error will occur if
you compile an OpenCL kernel while using a library that includes an
unsupported resource file type.

2.1.1.3.1 XML Elements for ATTRIBUTES

In the XML specification file of the RTL module within an Intel FPGA SDK for OpenCL
library, there are XML elements under ATTRIBUTES that you can specify to set the
module's characteristics.

Table 6. XML Elements Associated with the ATTRIBUTES Element in the XML
Specification File of an RTL Module

Attention: Except for IS_STALL_FREE and EXPECTED_LATENCY, all elements have safe values. If you
are unsure which value you should specify for an attribute, set it to the safe value. Compiling
your kernel with a library that uses safe values will result in functional hardware. However,
the hardware might be larger than the actual size.

XML Element Description

IS_STALL_FREE Instructs the Intel FPGA SDK for OpenCL Offline Compiler to remove all stall
logic around the RTL module.

Set IS_STALL_FREE to "yes" to indicate that the module neither generates
stalls internally nor can it properly handle incoming stalls. The module simply
ignores its stall input. If you set IS_STALL_FREE to "'no"’, the module must
properly handle all stall and valid signals.

Note: If you set 1S_STALL_FREE to ""yes", you must also set
IS_FIXED_LATENCY to "yes". Also, if the RTL module has an internal
state, it must properly handle ival 1d=0 inputs.

An incorrect 1S_STALL_FREE setting will lead to incorrect results in hardware.

I1S_FIXED_LATENCY Indicates whether the RTL module has a fixed latency.

Set IS_FIXED_LATENCY to "yes" if the RTL module always takes known a
number of clock cycles to compute its output. The value you assign to the
EXPECTED_LATENCY element specifies the number of clock cycles.

The safe value for 1S_FIXED_LATENCY is "no".

Note: For a given module, you may set IS_FIXED_LATENCY to "yes" and
IS_STALL_FREE to "no". Such a module produces its output in a fixed
number of clock cycles and handles stall signals properly.

EXPECTED_LATENCY Specifies the expected latency of the RTL module.

If you set 1S_FIXED_LATENCY to ""yes", the EXPECTED_LATENCY value
indicates the number of pipeline stages inside the module. In this case, you
must set this value to be the exact latency of the module. Otherwise, the offline
compiler will generate incorrect hardware.

continued...

Intel FPGA SDK for OpenCL Programming Guide
120

] ®
2 Intel FPGA SDK for OpenCL Advanced Features l n tel

XML Element

Description

For a module with variable latency, the offline compiler balances the pipeline
around this module to the EXPECTED_LATENCY value that you specify. The
specified value and the actual latency might differ, which might affect the
number of stalls inside the pipeline. However, the resulting hardware will be
correct.

CAPACITY

Specifies the number of multiple inputs that this module can process
simultaneously. You must specify a value for CAPACITY if you also set
IS_STALL_FREE="no" and IS_FIXED_LATENCY="no". Otherwise, you do not
need to specify a value for CAPACITY.

If CAPACITY is strictly less than EXPECTED_LATENCY, the offline compiler will
automatically insert capacity-balancing FIFO buffers after this module when
necessary.

The safe value for CAPACITY is 1.

HAS_SIDE_EFFECTS

Indicates whether the RTL module has side effects. Modules that have internal
states or communicate with external memories are examples of modules with
side effects.

Set HAS_SIDE_EFFECTS to ""yes™ to indicate that the module has side effects.
Specifying HAS_SIDE_EFFECTS to "'yes" ensures that optimization efforts do
not remove calls to modules with side effects.

Stall-free modules with side effects (that is, 1S_STALL_FREE=""yes" and
HAS_SIDE_EFFECTS="yes") must properly handle ival id=0 input cases
because the module might receive invalid data occasionally.

The safe value for HAS_SIDE_EFFECTS is "yes™.

ALLOW_MERGING

Instructs the offline compiler to merge multiple instances of the RTL module.
Set ALLOW_MERGING to ""yes" to allow merging of multiple instances of the
module. Intel recommends setting ALLOW_MERGING to "'yes".

The safe value for ALLOW_MERGING is "*no™.

Note: Marking the module with HAS_SIDE_EFFECTS=""yes" does not prevent
merging.

2.1.1.3.2 XML Elements for INTERFACE

In the XML specification file of the RTL module within an Intel FPGA SDK for OpenCL
library, there are XML elements under INTERFACE that you can define to specify
aspects of the RTL module's interface (for example, Avalon-ST interface).

Table 7. Mandatory XML Elements Associated with the INTERFACE Eement in the XML
Specification File of an RTL Module
XML Element Description
INPUT Specifies the input parameter of the RTL module.
INPUT attributes:
* port—Specifies the port name of the RTL module.
¢ width—Specifies the width of the port in bits.
AOCL only supports widths that correspond to OpenCL data types (that is, 8
(uchar), 16, 32, 64, 128, 256, 512, and 1024 bits (Iong16)).
Note: Size of a type3 vector is 4 x sizeof(type), giving the impression that
valid sizes of 24, 48, 96, and 192 bits are unsupported.
The input parameters are concatenated to form the input stream.
Aggregate data structures such as structs and arrays are not supported as
input parameters.
OUTPUT Specifies the output parameter of the RTL module.
OUTPUT attributes:
continued...

Intel FPGA SDK for OpenCL Programming Guide
121

intel.

2 Intel FPGA SDK for OpenCL Advanced Features

XML Element

Description

The return value from the input stream is sent out via the output parameter on
the output stream.

Aggregate data structures such as structs and arrays are not supported as
input parameters.

port—Specifies the port name of the RTL module.

width—Specifies the width of the port in bits.

The SDK only supports widths that correspond to OpenCL data types (that
is, 8 (uchar), 16, 32, 64, 128, 256, 512, and 1024 bits (1ong16)).

Note: Size of type3 vector is 4 x sizeof(type), giving the impression that
valid sizes of 24, 48, 96, and 192 bits are unsupported.

Table 8.

Intel FPGA SDK for OpenCL Programming Guide

122

If your RTL module communicates with external memory, you need to include

additional XML elements:

<MEM_INPUT port="m_input_A" access="readonly"/>
<MEM_INPUT port="m_input_sum'" access ='readwrite'/>
<AVALON_MEM port="avm_port0" width="512" burstwidth="5" optype="read"

buffer_location="""/>

Additional XML Elements to Support External Memory Access

XML Element

Description

MEM_INPUT

Describes a pointer input to the RTL module.
MEM__INPUT attributes:

Because all pointers to external memory must be 64 bits, there is no width
attribute associated with MEM_INPUT.

port—Specifies the name of the pointer input.

access—Specifies to the Intel FPGA SDK for OpenCL Offline Compiler how
the RTL module will use this pointer. Valid access values are readonly and
readwrite. If the RTL module only writes with this pointer, assign
readwrite to access.

AVALON_MEM

Declares the Avalon-MM interface for your RTL module.
AVALON_MEM attributes:

port—Specifies the root of the corresponding port names in the RTL
module. For example, if port has a value of avm_portO_, the names of all
Avalon-MM interface ports for the RTL module will start with avm_port0O_.

width—Specifies the data width, which must match the corresponding
width value in the accelerator board's board_spec.xml file. Within the
board_spec.xml file, the width value is specified in the interface
element under global_mem.

For more information, refer to the global_mem section under XML Elements,
Attributes, and Parameters in the board_spec.xml File in the Intel FPGA SDK
for OpenCL Custom Platform Toolkit User Guide

burstwidth—Specifies the number of bits required to represent burst size.
Use burstwidth = log(maxburst) +1 to calculate the burst size, where
maxburst is the corresponding maximum burst size specified in the
board_spec.xml file. For example, if maxburst=16, burstwidth=5.
optype—Specifies either the Avalon-MM port is reading (read) or writing
(write) from external memory. You can only assign either read or write
to optype.

buffer_location—Supports heterogeneous memory. Leave this attribute

blank because the heterogeneous memory compilation flow is currently
untested.

] ®
2 Intel FPGA SDK for OpenCL Advanced Features l n tel)

For the AVALON_MEM element defined in the code example above, the corresponding
RTL module ports are as follows:

output avm_port0O_enable,

input [511:0] avm_portO_readdata,
input avm_portO_readdatavalid,
input avm_portO_waitrequest,
output [31:0] avm_portO_address,
output avm_portO_read,

output avm_portO_write,

input avm_port0_writeack,

output [511:0] avm_portO_writedata,
output [63:0] avm_portO_byteenable,
output [4:0] avm_port0_burstcount,

There is no assumed correspondence between pointers that you specify with
MEM__INPUT and the Avalon-MM interfaces that you specify with AVALON_MEM. An RTL
module can use a single pointer to address zero to multiple Avalon-MM interfaces.

Related Links

XML Elements, Attributes, and Parameters in the board_spec.xml File: global_mem

2.1.1.4 Interaction between RTL Module and External Memory

Implement code to allow your RTL module to interact with external memory only if the
interaction is necessary. For operations like reading from and writing to external
memory on every kernel invocation, instruct the OpenCL kernel to perform the
operation. To do so, you can create an OpenCL helper function for the OpenCL kernel
in the same Intel FPGA SDK for OpenCL library as the RTL module.

The following examples demonstrate how to structure code in an RTL module for easy
integration into an OpenCL library:

Table 9. Example Code in an RTL Module that Interacts with External Memory
Complex RTL Module Simplified RTL Module
// my_rtl_fn does: int in_value = in_ptr[idx];
// out_ptr[idx] = fn(in_ptr[idx]) // my_rtl_fn now does: out = fn(in)
my_rtl_fn (in_ptr, out_ptr,idx); int out_value = my_rtl_fn (in_value);
out_ptr[idx] = out_value;

The complex RTL module on the left reads a value from external memory, performs a
scalar function on the value, and then writes the value back to global memory. Such
an RTL module is difficult to describe when you integrate it into an OpenCL library. In
addition, this RTL module is harder to verify and causes very conservative pointer
analysis in the Intel FPGA SDK for OpenCL Offline Compiler.

The simplified RTL module on the right provides the same overall functionality as the
complex RTL module. However, the simplified RTL module only performs a scalar-to-
scalar calculation without connecting to global memory. Integrating this simplified RTL
module into the OpenCL library makes it much easier for the offline compiler to
analyze the resulting OpenCL kernel.

There are times when an RTL module requires an Avalon-MM port to communicate
with external memory. This Avalon-MM port connects to the same arbitration network
to which all other global load and store units in the OpenCL kernels connect.

Intel FPGA SDK for OpenCL Programming Guide
123

https://documentation.altera.com/#/link/ewa1402666946838/ewa1402971199180/en-us

] ®
< l n tel) 2 Intel FPGA SDK for OpenCL Advanced Features

If an RTL module receives a memory pointer as an argument, the offline compiler
enforces the following memory model:

e If an RTL module writes to a pointer, nothing else in the OpenCL kernel can read
from or write to this pointer.

e If an RTL module reads from a pointer, the rest of the OpenCL kernel and other
RTL modules may also read from this pointer.

* You may set the access field of the MEM_INPUT attribute to specify how the RTL
module uses the memory pointer. Ensure that you set the value for access
correctly because there is no way to verify the value.

2.1.1.5 Order of Threads Entering an RTL Module

Do not assume that threads entering an RTL module follow a defined order. In
addition, an RTL module can reorder threads. As a result, thread 0 does not
necessarily enter the module before thread 1.

2.1.1.6 OpenCL C Model of an RTL Module

Each RTL module within an OpenCL library must have an OpenCL C model. The
OpenCL C model verifies the overall OpenCL system during emulation.

Example OpenCL C model file for a square root function:

double my_sqrtfd (double a)
{

return sqrt(a);

Intel recommends that you emulate your OpenCL system. If you decide not to
emulate your OpenCL system, create an empty function with a name that matches the
function name you specified in the XML specification file.

Related Links

XML Syntax of an RTL Module on page 118
This section provides the syntax of a simple XML specification file for an RTL
module that implements double-precision square root function.

2.1.1.7 Potential Incompatibility between RTL Modules and Partial
Reconfiguration

When creating an OpenCL library using RTL modules, you might encounter Partial
Reconfiguration (PR)-related issues.

Consider a situation where you create and verify your library on a device that does not
support PR. If a library user then uses the library's RTL module inside a PR region, the
module might not function correctly after PR.

To ensure that the RTL modules function correctly on a device that uses PR:

e The RTL modules do not use memory logic array blocks (MLABs) with initialized
content.

e The RTL modules do not make any assumptions regarding the power-up values of
any logic.

Intel FPGA SDK for OpenCL Programming Guide
124

] ®
2 Intel FPGA SDK for OpenCL Advanced Features < l n tel)

2.1.2 Packaging an OpenCL Helper Function File for an OpenCL Library

Before creating an OpenCL library file, package each OpenCL source file with helper
functions into a -aoco file. Unlike RTL modules, you do not need to create an XML
specification file.

In general, you do not need to create a library to share helper functions written in
OpenCL. You can distribute a helper function in source form (for example,
<shared fil e>_cl) and then insert the line #include "'<shared file>.cl" in
the OpenCL kernel source code.

Consider creating a library under the following circumstances:

e The helper functions are in multiple files and you want to simplify distribution.

e You do not want to expose the helper functions' source code.
The helper functions are stored as LLVM IR, an assembly-like language, without
comments inside the associated library.

Hardware generation is not necessary for the creation of a .aoco file. Compile the
OpenCL source file using the —c offline compiler command option.

Note: A library can only include OpenCL helper functions. The Intel FPGA SDK for OpenCL
Offline Compiler will issue an error message if the library contains OpenCL kernels.

* To package an OpenCL source file into a .aoco file, invoke the following
command: aoCc -C -shared <COpenCL_source_file_nane>.cl -0
<OpenCL_obj ect _file_nane>.aoco

where the -shared offline compiler command option instructs the compiler to
create a .aoco file that is suitable for inclusion into an OpenCL library.

Related Links

e Packaging Multiple Object Files into a Library File on page 129
After creating the .aoco files that you want to include into an OpenCL library,
package them into a library file by invoking the Intel FPGA SDK for OpenCL
library utility command option.

e Specifying an OpenCL Library when Compiling an OpenCL Kernel on page 129
To use an OpenCL library in an OpenCL kernel, specify the library file name and
directory when you compile the kernel.

2.1.3 Packaging an RTL Component for an OpenCL Library
Before creating an OpenCL library file, package each RTL component into a .aoco file.

Hardware generation is not necessary for the creation of a .aoco file. Compile the
OpenCL source file using the -c Intel FPGA SDK for OpenCL Offline Compiler
command option.

e To package an RTL component into a .aoco file, invoke the following command:
aoc -Cc <RTL conponent description file name>.xml -0 <RTL
object file nanme>.aoco

Intel FPGA SDK for OpenCL Programming Guide
125

™ ®
< l n tel) 2 Intel FPGA SDK for OpenCL Advanced Features

Related Links

e Packaging Multiple Object Files into a Library File on page 129
After creating the .aoco files that you want to include into an OpencCL library,
package them into a library file by invoking the Intel FPGA SDK for OpenCL
library utility command option.

e \erifying the RTL Modules on page 128
The creator of an OpenCL library is responsible for verifying the RTL modules
within the library, both as stand-alone entities and as part of an OpenCL
system.

e Specifying an OpenCL Library when Compiling an OpenCL Kernel on page 129
To use an OpenCL library in an OpenCL kernel, specify the library file name and
directory when you compile the kernel.

2.1.3.1 Restrictions and Limitations in RTL Support for the Intel FPGA SDK for
OpenCL Library Feature

The Intel FPGA SDK for OpenCL supports the use of RTL modules in an OpenCL library
with some restrictions and limitations.

When creating your RTL module, ensure that it operates within the following
restrictions:

e An RTL module must contain one Avalon-ST interface. In particular, a single ready
or valid logic must control all the inputs.

You have the option to provide the necessary Avalon-ST ports but declare the RTL
module as stall-free. In this case, you do not have to implement proper stall
behavior because the Intel FPGA SDK for OpenCL Offline Compiler creates a
wrapper for your module. Refer to XML Syntax of an RTL Module and Using an
OpenCL Library that Works with Simple Functions (Example 1) for more syntax
and usage information, respectively.

Note: You must handle ivalid signals properly if your RTL module has an
internal state. Refer to Stall-Free RTL for more information.

e The RTL module must work correctly with exactly one clock, regardless of clock
frequency.

e Data input and output sizes must match valid OpenCL data types, from 8 bits for
char to 1024 bits for longl6.

For example, if you work with 24-bit values inside an RTL module, declare inputs
to be 32 bits and declare function signature in the SDK's library header file to
accept the uint data type. Then, inside the RTL module, accept the 32-bit input
but discard the top 8 bits.

e RTL modules cannot connect to external I/0 signals. All input and output signals
must come from an OpenCL kernel.

e An RTL module must have a clock port, a resetn port, and Avalon-ST input and
output ports (that is, ivalid, ovalid, iready, oready). Name the ports as
specified here.

e RTL modules that communicate with external memory must have Avalon Memory-
Mapped (Avalon-MM) port parameters that match the corresponding Custom
Platform parameters. The offline compiler does not perform any width or burst
adaptation.

Intel FPGA SDK for OpenCL Programming Guide

126

™ ®
2 Intel FPGA SDK for OpenCL Advanced Features l n tel)

RTL modules that communicate with external memory must behave as follows:
— They cannot burst across the burst boundary.

— They cannot make requests every clock cycle and stall the hardware by
monopolizing the arbitration logic. An RTL module must pause its requests
regularly to allow other load or store units to execute their operations.

RTL modules cannot act as stand-alone OpenCL kernels. RTL modules can only be
helper functions and be integrated into an OpenCL kernel during kernel
compilation.

Every function call that corresponds to RTL module instantiation is completely
independent of other instantiations. There is no hardware sharing.

Do not incorporate kernel code (that is, functions marked as kernel) into

a .aoclib library file. Incorporating kernel code into the library file causes the
offline compiler to issue an error message. You may incorporate helper functions
into the library file.

An RTL component must receive all its inputs at the same time. A single ivalid
input signifies that all inputs contain valid data.

The SDK does not support I/O RTL modules.

You can only set RTL module parameters in the <RTL nodul e descri ption
fil e name>.xml specification file, not the OpenCL kernel source file. To use the
same RTL module with multiple parameters, create a separate FUNCTION tag for
each parameter combination.

Currently, the SDK's RTL module support for the library feature has the following
limitations:

You can only pass data inputs to an RTL module by value via the OpenCL kernel
code. Do not pass data inputs to an RTL module via pass-by reference, structs, or
channels. In the case of channel data, extract the data from the channel first and
then pass the extracted the scalar data to the RTL module.

Note: Passing data inputs to an RTL module via pass-by reference or structs will
cause a fatal error to occur in the offline compiler.

The debugger (for example, GDB for Linux) cannot step into a library function
during emulation. In addition, optimization and area reports will not include code
line numbers beside the library functions.

Names of RTL module source files cannot conflict with the file names of Intel FPGA
SDK for OpenCL Offline Compiler IP. Both the RTL module source files and the
offline compiler IP files are stored in the <kernel file nane>/system/
synthesis/submodules directory. Naming conflicts will cause existing offline
compiler IP files in the directory to be overwritten by the RTL module source files.

The SDK does not support .qip files. You must manually parse nested .qip files
to create a flat list of RTL files.

Intel FPGA SDK for OpenCL Programming Guide
127

2 Intel FPGA SDK for OpenCL Advanced Features

It is very difficult to debug an RTL module that works correctly on its own but
works incorrectly as part of an OpenCL kernel. Double check all parameters under
the ATTRIBUTES element in the <RTL nodul e description file
name>_xml file.

All offline compiler area estimation tools assume that RTL module area is 0. The
SDK does not currently support the capability of specifying an area model for RTL
modules.

RTL modules cannot access a 2x clock that is in-phase with the kernel clock and at
twice the kernel clock frequency.

Related Links

XML Syntax of an RTL Module on page 118
This section provides the syntax of a simple XML specification file for an RTL
module that implements double-precision square root function.

Using an OpenCL Library that Works with Simple Functions (Example 1) on page
130
Intel provides an OpenCL library design example of a simple kernel that uses a
library containing RTL implementations of three double-precision functions:
sgrt, rsqrt, and divide.

Stall-Free RTL on page 117
The Intel FPGA SDK for OpenCL Offline Compiler can optimize hardware
resource usage and performance by removing stall logic around an RTL module
with fixed latency.

2.1.4 Verifying the RTL Modules

The creator of an OpenCL library is responsible for verifying the RTL modules within
the library, both as stand-alone entities and as part of an OpenCL system.

1.
2.

Verify each RTL module using standard hardware verification methods.

Modify one of Intel FPGA SDK for OpenCL library design examples to test your RTL
modules inside the overall OpenCL system.

This testing step is critical to prevent library users from encountering hardware
problems.

It is crucial that you set the values for the ATTRIBUTES elements in the XML
specification file correctly. Because you cannot simulate the entire OpenCL system,
you will likely not discover problems caused by interface-level errors until
hardware runs.

Note: The Intel FPGA SDK for OpenCL library utility performs consistency
checks on the XML specification file and source files, with some limitations.

Invoke the aocl library [<command opti on>] command.

* For a list of supported <command options>, invoke the aocl library
command.

e The library utility does not detect errors in values assigined to elements
within the ATTRIBUTES, MEM_INPUT, and AVALON_MEM elements in the XML
specification file.

e The library utility does not detect RTL syntax errors. You must check the
<your kernel filename>/quartus_sh_compile.log file for RTL syntax
errors. However, parsing the errors might be time consuming.

Intel FPGA SDK for OpenCL Programming Guide

128

™ ®
2 Intel FPGA SDK for OpenCL Advanced Features < l n tel)

2.1.5 Packaging Multiple Object Files into a Library File

After creating the .aoco files that you want to include into an OpenCL library,
package them into a library file by invoking the Intel FPGA SDK for OpenCL library
utility command option.

To package multiple object files into a single library file, invoke the following
command: aocl library create -0 <library file name>.aoclib
<object file 1>.aoco [<object file 2>.aoco ... <object file
N>_aoco]

The aocl library utility command creates a <l i brary fil e name>_aoclib
library file, which includes the .aoco object files you specify in the command. A
library file may contain both RTL-based object files and OpenCL-based object files.

2.1.6 Specifying an OpenCL Library when Compiling an OpenCL Kernel

Important:

Note:

To use an OpenCL library in an OpenCL kernel, specify the library file name and
directory when you compile the kernel.

Using a library does not reduce kernel compilation time.

To specify an OpenCL library to the Intel FPGA SDK for OpenCL Offline Compiler,
invoke the following command: aoc -l <library_file_nanme>.aoclib [-L
<library directory>] <kernel file nane>.cl

where the -1 <library file_nanme>.aoclib command option specifies the
library file name, and the -L <l i brary directory> command option specifies
the directory containing the library files.

You may include multiple instances of -1 <library file nanme>and -L
<library directory>in the offline compiler command.

For example, if you create a library that includes the functions my_div_fd(),
my_sqrtfd(), and myrsqrtfd(), the OpenCL kernel code might resemble the

following:

#include “lib_header.h”

kernel void test_lib (

global double * restrict in,
global double * restrict out,
int N) {
int i = get_global_id(0);
for (int k =0; k < N; k++) {
double x = in[i*N + K];
out[i*N + k] = my_divfd
(my_rsqrtfd(x),
my_sqgrtfd(my_rsqrtfd (x)));

Library-related lines are highlighted in bold.

Intel FPGA SDK for OpenCL Programming Guide
129

n tel) 2 Intel FPGA SDK for OpenCL Advanced Features

The corresponding lib_header.h file might resemble the following:

double my_sqrtfd (double x);
double my_rsqrtfd(double x);
double my_divfd(double a, double b);

2.1.7 Using an OpenCL Library that Works with Simple Functions
(Example 1)

Intel provides an OpenCL library design example of a simple kernel that uses a library
containing RTL implementations of three double-precision functions: sqrt, rsqrt,
and divide.

The examplel.tgz tar ball includes a library, a kernel, and a host system. The
examplel._cl kernel source file includes two kernels. The kernel test_lib uses
library functions; the kernel test_bui ltin uses built-in functions. The host runs
both kernels and then compares their outputs and runtimes. Intel recommends that
you use the same strategy to verify your own library functions.

To compile this design example, perform the following tasks:

1. Obtain examplel.tgz from the OpenCL Design Examples page on the Altera
website and store it in a directory that you own.

2. At the Intel FPGA SDK for OpenCL command prompt, navigate to the location of
the design example.

Type perl make_ lib.pl to create the libl1/double_lib.aoclib library file.

4. Type aoc -1 double lib.aoclib -L libl -1 libl examplel.cl to
compile the OpenCL kernel while including the double_lib.aoclib library file.

Type cd host to navigate to the host directory.
6. Type gmake -f Makefile to build the host program.

Type host/examplel to run the host program.
The SDK generates the following messages after the host program runs
successfully:

Loading examplel.aocx ...

Create buffers

Generate random data for conversion...

Enqueueing both library and builtin in kernels 4 times with global size 65536
Kernel computation using library function took 5.35333 seconds

Kernel computation using built-in function took 5.39949 seconds

Reading results to buffers...

Checking results...

Library function throughput is within 5% of builtin throughput.

PASSED

Related Links
OpenCL Design Examples page

Intel FPGA SDK for OpenCL Programming Guide

130

https://www.altera.com/support/support-resources/design-examples/design-software/opencl.html

™ ®
2 Intel FPGA SDK for OpenCL Advanced Features < l n tel)

2.1.8 Using an OpenCL Library that Works with External Memory
(Example 2)

Note:

Intel provides an OpenCL library design example of a simple kernel that uses a library
containing two RTL modules that communicate with global memory.

The examplel.tgz tar ball includes a library, a kernel, and a host system. In this
example, the RTL code that communicates with global memory is Custom Platform- or
Reference Platform-dependent. Ensure that the compilation targets the board that
corresponds to the Stratix V Network Reference Platform.

Intel generated the RTL modules copyElement() and sumOfElements() using the
Intel FPGA SDK for OpenCL Offline Compiler, which explains the extra inputs in the
code.

The example2.cl kernel source file includes two kernels. The kernel test6 is an
NDRange kernel that calls the copyElement() RTL function, which copies data from
B[] to A[] and then stores global_id+100 in C[]. The kernel testl1l is a single
work-item kernel that uses an RTL function . The sumOfElements() RTL function
determines the sum of the elements of A[] in range [i, N] and then adds the rest
to C[i].

First invocations of sumOfElements(i=0) will take more time to execute than later
invocations.

To compile this design example, perform the following tasks:

1. Obtain example2.tgz from the OpenCL Design Examples page on the Altera
website and store it in a directory that you own.

2. At the Intel FPGA SDK for OpenCL command prompt, navigate to the location of
the design example.

Type perl make_lib.pl to create the libl/mem_users.aoclib library file.

4. Type aoc -1 lib/mem users.aoclib -1 lib example2.cl to compile the
OpenCL kernel while including the mem_users.aoclib library file.

Type cd host to navigate to the host directory.
6. Type gmake -f Makefile to build the host program.

Type host/example2 to run the host program.
The SDK generates the following messages after the host program runs
successfully:

Loading example2.aocx ...

Running test6

Launching the kernel test6 with globalsize=128 localSize=16
Loading example2.aocx ...

Running testll

Launching the kernel testll with globalsize=1 localSize=1
PASSED

Related Links

e OpenCL Design Examples page

e Compiling a Kernel for a Specific FPGA Board (--board <board_name>) on page
91

Intel FPGA SDK for OpenCL Programming Guide
131

https://www.altera.com/support/support-resources/design-examples/design-software/opencl.html

2 Intel FPGA SDK for OpenCL Advanced Features

To compile your OpenCL kernel for a specific FPGA board, include the —-
board <boar d_nane> option in the aoc command.

¢ Intel FPGA SDK for OpenCL Stratix V Network Reference Platform Porting Guide

2.1.9 OpenCL Library Command-Line Options

Both the Intel FPGA SDK for OpenCL Offline Compiler's set of commands and the SDK
utility include options you can invoke to perform OpenCL library-related tasks.

Table 10. Library-Related Intel FPGA SDK for OpenCL Offline Compiler Command

Options

Command Option

Description

-shared

In conjunction with the -c command option, compiles an OpenCL
source file into an object file (.aoco) that you can then include into
a library.

aoc -C -shared <OpenCL source file nane>.cl -0
<OpenCL object file name>.aoco

-1 <library_directory>

Adds <library directory> to the header file search path.

aocl -1 <library_header_file_directory> -1
<library_file_nane>_aoclib <kernel _fil e_name>.cl

-L <library directory>

Adds <library directory> to the OpenCL library search path.
Space after "-L" is optional.

aoc -l <library_file_nane>.aoclib [-L <library
directory>] <kernel file nane>.cl

-1 <library_file_nane>.aoclib

Specifies the OpenCL library file
(<library_file_nanme>.aoclib).

Space after -1 is optional.

aoc -l <library_file_name>.aoclib [-L <library
directory>] <kernel file nanme>.cl

--library-debug

Generates debug output that relates to libraries. Part of the
additional output appears in stdout, the other part appears in the
<kernel _fil e_nane>/<kernel _fil e_name>.log file.

aoc -l <library_file_name>_aoclib --library-debug
<kernel _file_name>._cl

Table 11. Intel FPGA SDK for OpenCL Library Utility (aocl library) Command Options

Command Option

Description

hdl-comp-pkg <XM__specification_
file>.xml

Packages a single HDL component into a -aoco file that you then
include into a library. Invoking this command option is similar to
invoking aoc —-c <XM__speci fication_fil e>.xml. However,
the processing time is faster because the aocl utility will not
perform any environment checks.

aocl library hdl-comp-pkg <XM.__specification_
file>.xml -0 <output_file>_aoco

-C <XM__specification_ file>.xml

Same function as hdl-comp-pkg <XM__speci fication_
file>.xml.

aocl library -c <XM__specification_ file>.xml

create

Creates a library file from the .aoco files that you created by
invoking the hdl-comp-pkg utility option or the aoc -shared
command, and any other .aoclib libraries.

continued...

Intel FPGA SDK for OpenCL Programming Guide
132

https://documentation.altera.com/#/link/ewa1404851957878/ewa1404852921684/en-us

] ®
2 Intel FPGA SDK for OpenCL Advanced Features l n tel

Command Option Description

aocl library create [-name <library_name>] [-
vendor <library_vendor>] [-version
<library_version>] [-0 <output_file>_aoclib]
[-aoco...] [-aoclib...]

where -name, -vendor, and -version are optional information
strings you can specify and add to the library.

list <library_nane> Lists all the RTL components in the library. Currently, this option is
not available for use to list OpenCL functions.

aocl library list <library_nane>

help Prints the list of Intel FPGA SDK for OpenCL library utility options
and their descriptions on screen.

aocl library help

2.2 Kernel Attributes for Configuring Local Memory System

The Intel FPGA SDK for OpenCL includes kernel attributes that you can include in a
kernel to customize the geometry of the local memory system.

Attention: Only apply these local memory kernel attributes to local variables.

Table 12. OpenCL Kernel Attributes for Configuring Local Memory

Kernel Attribute Description
register Specifies that the local variable must be implemented in a register.
memory Specifies that the local variable must be implemented in a memory

system. Including the memory kernel attribute is equivalent to
declaring the local variable with the __local qualifier.

numbanks (N) Specifies that the memory system implementing the local variable

N is an integer value. must have N banks, where N is a power-of-2 integer value greater
than zero.

bankwidth(N) Specifies that the memory system implementing the local variable

must have banks that are N bytes wide, where N is a power-of-2

N is an integer value. .
integer value greater than zero.

singlepump Specifies that the memory system implementing the local variable
must be single pumped.

doublepump Specifies that the memory system implementing the local variable
must be double pumped.

numreadports(N) Specifies that the memory system implementing the local variable

N is an integer value. must have N read ports, where N is an integer value greater than
zero.

numwriteports(N) Specifies that the memory system implementing the local variable

N is an integer value. must have N read ports, where N is an integer value greater than
zero.

Intel FPGA SDK for OpenCL Programming Guide
133

Table 13.

intel.

2 Intel FPGA SDK for OpenCL Advanced Features

Code Examples for Local Memory Kernel Attributes

Example Use Case

Syntax

Implements a local variable in a register

int _ attribute_ ((register)) a[l12];

Implements a local memory system with eight banks, each
with a width of 8 bytes

int __ attribute__((memory,
numbanks(8),
bankwidth(8)) b[16];

Implements a double-pumped local memory system with
one 128-byte wide bank, one write port, and four read ports

int _ attribute__((memory,
numbanks(1),
bankwidth(128),
doublepump,
numwriteports(l),
numreadports(4)) c[32];

Related Links

¢ Improve Kernel Performance by Banking the Local Memory

e Optimize Accesses to Local Memory by Controlling the Memory Replication Factor

2.2.1 Restrictions on the Usage of Local Variable-Specific Kernel
Attributes

The Intel FPGA SDK for OpenCL Offline Compiler will error out or issue warnings if it
detects unsupported usages of the local variable-specific kernel attributes or incorrect

memory configurations.

Unsupported usages of local variable-specific kernel attributes that cause compilation

errors.

e You use the kernel attributes in declarations other than local variable declarations
(for example, declarations for function parameters, global variable declarations, or

function declarations).

* You use the register attribute in conjunction with any of the other local
variable-specific kernel attributes.

* You specify the numbanks kernel attribute but not the bankwidth kernel attribute

in the same local variable declaration, and vice versa.

* You include both the singlepump and doublepump kernel attributes in the same

local variable declaration.

Intel FPGA SDK for OpenCL Programming Guide

134

https://documentation.altera.com/#/link/mwh1391807516407/ewa1458581983424/en-us
https://documentation.altera.com/#/link/mwh1391807516407/ewa1457384630094/en-us

™ ®
2 Intel FPGA SDK for OpenCL Advanced Features l n tel)

* You specify the numreadports and numwriteports kernel attributes without

also including the singlepump or doublepump kernel attribute in the same local
variable declaration.

* You specify the numreadports kernel attribute but not the numwriteports
kernel attribute in the same local variable declaration, and vice versa.

¢ You specify any of the following kernel attributes without also specifying the
numbanks and bankwidth kernel attributes in the same local variable
declaration:

— numreadports
— numwriteports
— singlepump

— doublepump

Incorrect memory configurations that cause the offline compiler to issue warnings
during compilation:

e The memory configuration that is defined by the local variable-specific kernel
attributes exceeds the available storage size (for example, specifying eight banks
of local memory for an integer variable).

Incorrect memory configurations that cause compilation errors:

e The bank width is smaller than the data storage size (for example, bank width is 2
bytes for an array of 4-byte integers).

e You specify memory configurations for the local variables. However, because of
compiler restrictions or coding style, the offline compiler implements the variables
in the same memory instead of splitting the memory.

* You specify the register kernel attribute for a local variable. However, because
of compiler restrictions or coding style, the offline compiler cannot implement the
variable in a register.

2.3 Kernel Attributes for Reducing the Overhead on Hardware
Usage

The Intel FPGA SDK for OpenCL includes kernel attributes that you can include in a
single work-item kernel to reduce logic utilization and improve kernel
performance.These kernel attributes enables the Intel FPGA SDK for OpenCL Offline
Compiler to omit the generation of unnecessary hardware to increase efficiency.

2.3.1 Hardware for Kernel Interface

The Intel FPGA SDK for OpenCL Offline Compiler generates hardware around the
kernel pipeline. For some OpenCL applications, these interface hardware components
are not necessary.

Hardware around the kernel pipeline is necessary for functions such as the following:
e Dispatching IDs for work-items and work-groups

e Communicating with the host regarding kernel arguments and work-group sizes

Intel FPGA SDK for OpenCL Programming Guide
135

] ®
l n tel) 2 Intel FPGA SDK for OpenCL Advanced Features

Figure 15 on page 136 illustrates the hardware that the offline compiler generates
when it compiles the following kernel:

__kernel void my_kernel(global int* arg)
int sum = 0;
for(unsigned 1 = 0; 1 < nj; i++)
if(sum < m) sum += val;

3

*arg = sum;

Figure 15. Intel FPGA SDK for OpenCL Offline Compiler-Generated Interface Hardware
around a Kernel Pipeline

Host Link Hardware

y

Kernel ID Generators

y

Kernel

2.3.1.1 Omit Hardware that Generates and Dispatches Kernel IDs

The max_global_work_dim(0) kernel attribute instructs the Intel FPGA SDK for
OpenCL Offline Compiler to omit logic that generates and dispatches global, local, and
group IDs into the compiled kernel.

Semantically, the max_global_work _dim(0) kernel attribute specifies that the
global work dimension of the kernel is zero. Setting this kernel attribute means that
the kernel does not use any global, local, or group IDs. The presence of this attribute
in the kernel code serves as a guarantee to the offline compiler that the kernel is a
single work-item kernel.

When compiling the following kernel, the offline compiler will generate interface
hardware as illustrated in Figure 16 on page 137.

channel int chan_in;
channel int chan_out;

__attribute__ ((max_global_work_dim(0)))
__kernel void plusK (int N, int k) {
for (int 1 = 0; 1 < N; ++i) {
int data_in = read_channel_altera(chan_in);
write_channel_altera(chan_out, data_in + k);
3
}

Intel FPGA SDK for OpenCL Programming Guide
136

] ®
2 Intel FPGA SDK for OpenCL Advanced Features l n tel)

Figure 16.

Intel FPGA SDK for OpenCL Offline Compiler-Generated Interface Hardware
for a Kernel with the max_global_work_dim(0) Attribute

Host Link Hardware

v

Kernel

If your current kernel implementation has multiple work-items but does not use
global, local, or group IDs, you can use the max_global_work_dim(0) kernel
attribute if you modify the kernel code accordingly:

1. Wrap the kernel body in a for loop that iterates as many times as the number of
work-items.

2. Launch the modified kernel with only one work-item.

2.3.1.2 Omit Communication Hardware between the Host and the Kernel

The autorun kernel attribute instructs the Intel FPGA SDK for OpenCL Offline
Compiler to omit logic that is used for communication between the host and the
kernel. A kernel that uses the autorun attribute starts executing automatically before
any kernel that the host launches explicitly. In addition, this kernel restarts
automatically as soon as it finishes its execution.

The autorun kernel attribute notifies the offline compiler that the kernel runs on its
own and will not be enqueued by any host.
To leverage the autorun attribute, a kernel must meet all of the following criteria:
1. Does not use I/O channels

Note: Kernel-to-kernel channels are supported.

Does not have any arguments

Has either the max_global _work_dim(0) attribute or the
reqd_work _group_size(X,Y,Z2) attribute

Note: The parameters of the reqd_work_group_size(X,Y,Z) attribute must be
divisors of 232,

As mentioned above, kernels with the autorun attribute cannot have any arguments
and start executing without the host launching them explicitly. As a result, the offline
compiler does not need to generate the logic for communication between the host and
the kernel. Omitting this logic reduces logic utilization and allows the offline compiler
to apply additional performance optimizations.

Intel FPGA SDK for OpenCL Programming Guide
137

] ®
l n tel) 2 Intel FPGA SDK for OpenCL Advanced Features

Figure 17.

A typical use case for the autorun attribute is a kernel that reads data from one or
more kernel-to-kernel channels, processes the data, and then writes the results to one
or more channels. When compiling the kernel, the offline compiler will generate
hardware as illustrated in Figure 17 on page 138.

channel int chan_in;
channel int chan_out;

attribute__ ((max_global_work_dim(0)))
attribute__ ((autorun))
kernel void plusOne () {
while(1) {
int data_in = read_channel_altera(chan_in);
write_channel_altera(chan_out, data_in + 1);

}
}

Single Work-Item Kernel with No Interface Hardware

Kernel

2.4 Kernel Replication Using the num_compute_units(X,Y,Z)

Attribute

You can replicate your single work-item OpenCL kernel by including the
num_compute_units(X,Y,Z) kernel attribute.

As mentioned in Specifying Number of Compute Units, including the
num_compute_units(N) kernel attribute in your kernel instructs the Intel FPGA SDK
for OpenCL Offline Compiler to generate multiple compute units to process data. Since
the offline compiler processes a single work-item kernel in one compute unit, the
num_compute_unit(N) attribute instructs the offline compiler to generate N identical
copies of the kernel in hardware.

Related Links

Specifying Number of Compute Units on page 22
To increase the data-processing efficiency of an OpenCL kernel, you can instruct
the Intel FPGA SDK for OpenCL Offline Compiler to generate multiple kernel
compute units. Each compute unit is capable of executing multiple work-groups
simultaneously.

Intel FPGA SDK for OpenCL Programming Guide

138

™ ®
2 Intel FPGA SDK for OpenCL Advanced Features l n tel)

2.4.1 Customization of Replicated Kernels Using the get_compute_id()
Function

To create compute units that are slightly different from one another but share a lot of
common code, call the get_compute_id() intrinsic function in a kernel that also
uses the num_compute_units (X,Y,Z2) attribute.

Attention: You can only use the get_compute_id() function in a kernel that also uses the
autorun and max_global_work_dim(0) kernel attributes.

Retrieving compute IDs is a convenient alternative to replicating your kernel in source
code and then adding specialized code to each kernel copy. When a kernel uses the
num_compute_units(X,Y,Z) attribute and calls the get_compute_id() function,
the Intel FPGA SDK for OpenCL Offline Compiler assigns a unique compute ID to each
compute unit. The get_compute_id() function then retrieves these unique compute
IDs. You can use the compute ID to specify how the associated compute unit should
behave differently from the other compute units that are derived from the same kernel
source code. For example, you can use the return value of get_compute_id() to
index into an array of channels to specify which channel each compute unit should
read from or write to.

The num_compute_units attribute accepts up to three arguments (that is,
num_compute_units(X,Y,2)). In conjunction with the get_compute_id()
function, this attribute allows you to create one-dimensional, two-dimensional, and
three-dimensional logical arrays of compute units. An example use case of a 1D array
of compute units is a linear pipeline of kernels (also called a daisy chain of kernels).
An example use case of a 2D array of compute units is a systolic array of kernels.

Intel FPGA SDK for OpenCL Programming Guide
139

™ ®
l n tel) 2 Intel FPGA SDK for OpenCL Advanced Features

Figure 18.

Schematic Diagram of a 4x4 Array of Compute Units

The following example code specifies num_compute_units(4,4) in a single work-
item kernel results in a 4x4 array that consists of 4 x 4 = 16 compute units.

__attribute__ ((max_global_work_dim(0)))
__attribute__ ((autorun))

__attribute__ ((num_compute_units(4,4)))
__kernel void PEQ {

row
col

get_compute_id(0);
get_compute_id(1);

(W]

col

(=}

—_
m

E

row

No

E

w

E

For a 3D array of compute units, you can retrieve the X, Y, and Z coordinates of a
compute unit in the logical compute unit array using get_compute_id(0),
get_compute_id(1), and get_compute_id(2), respectively. In this case, the API
is very similar to the API of the work-item's intrinsic functions (that is,

get_global _id(), get_local _id(), and get_group_id(Q)).

Global IDs, local IDs, and group IDs can vary at runtime based on how the host
invokes the kernel. However, compute IDs are known at compilation time, allowing the
offline compiler to generate optimized hardware for each compute unit.

2.4.2 Using Channels with Kernel Copies

To implement channels within compute units (that is, replicated kernel copies), create
an array of channels and then index into that array using the return value of
get_compute_id().

The example code below implements channels within multiple compute units.

#define N 4
channel int chain_channels[N+1];

Intel FPGA SDK for OpenCL Programming Guide

140

®
2 Intel FPGA SDK for OpenCL Advanced Features l n tel

Figure 19.

Note:

__attribute__ ((max_global_work_dim(0)))
__kernel void reader(global int *data_in, int size) {
for (i = 0; 1 < size; ++i) {
write_channel_altera(chain_channels[0], data_in[i]);
¥

}

__attribute__ ((max_global_work_dim(0)))

__attribute__ ((autorun))

__attribute__ ((num_compute_units(N)))

__kernel void plusOne() {
int compute_id = get_compute_id(0);
int input = read_channel_altera(chain_channels[compute_id]);
write_channel_altera(chain_channels[compute_id+1], input + 1);

3
__attribute__ ((max_global_work_dim(0)))
__kernel void writer(global int *data_out, int size) {
for (i = 0; 1 < size; ++i) {
data_out[i] = read_channel_altera(chain_channels[N]);;
¥

Example Topology of Kernel Copies that Implement Channels

This figure illustrates the topology of the group of kernels that the OpenCL application
code above generates.

DDR4 kernel copies created using num_compute_units(N) DDR4

The implementation of kernel copies is functionally equivalent to defining four
separate kernels in your source code and then hard-coding unique indexes for the
accesses to chain_channels[N].

2.5 Document Revision History

Table 14. Document Revision History of the Advanced Features Chapter of the Intel
FPGA SDK for OpenCL Programming Guide
Date Version Changes
October 2016 2016.10.31 e Rebranded Altera SDK for OpenCL to Intel FPGA SDK for OpenCL.
e Rebranded Altera Offline Compiler to Intel FPGA SDK for OpenCL Offline
Compiler.
May 2016 2016.05.02 Initial release.

Intel FPGA SDK for OpenCL Programming Guide
141

®
A Support Statuses of OpenCL Features l n tel

A Support Statuses of OpenCL Features

Thelntel FPGA SDK for OpenCL host runtime conforms with the OpenCL platform layer
and application programming interface (API), with clarifications and exceptions.
Support Statuses of OpenCL 1.0 Features on page 142

Support Statuses of OpenCL 1.2 Features on page 147

Support Statuses of OpenCL 2.0 Features on page 149

Intel FPGA SDK for OpenCL Allocation Limits on page 150

Document Revision History on page 151

A.1 Support Statuses of OpenCL 1.0 Features

The following sections outline the support statuses of the OpenCL features described
in the OpenCL Specification version 1.0.

A.1.1 OpenCL1.0 C Programming Language Implementation

OpenCL is based on C99 with some limitations. Section 6 of the OpenCL Specification
version 1.0 describes the OpenCL C programming language. The Intel FPGA SDK for
OpenCL conforms with the OpenCL C programming language with clarifications and
exceptions. The table below summarizes the support statuses of the features in the
OpenCL programming language implementation.

Attention: The support status "e" means that the feature is supported, and there might be a

clarification for the supported feature in the Notes column. The support status "[0"
means that the feature is supported with exceptions identified in the Notes column. A
feature that is not supported by the SDK is identified with an "X". OpenCL
programming language implementations that are supported with no additional
clarifications are not shown.

Sectio Feature Support Notes

n Status
6.1.1 Built-in Scalar Data Types

double precision float O Preliminary support for all double precision float built-in scalar

data type. This feature might not conform with the OpenCL
Specification version 1.0.

Currently, the following double precision floating-point functions
conform with the OpenCL Specification version 1.0:

add / subtract / multiply / divide / ceil / floor / rint / trunc /
fabs / fmax / fmin / sqrt / rsqrt / exp / exp2 / exp10 / log /
log2 / log10 / sin / cos / asin / acos / sinh / cosh / tanh /

asinh / acosh / atanh / pow / pown / powr / tanh / atan /
atan2 / Idexp / loglp / sincos

continued...

© 2016 Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX,
Megacore, NIOS, Quartus and Stratix words and logos are trademarks of Intel Corporation in the US and/or

other countries. Other marks and brands may be claimed as the property of others. Intel warrants performance 1so .
of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, :OOEI..tZOOg
egistere

but reserves the right to make changes to any products and services at any time without notice. Intel assumes
no responsibility or liability arising out of the application or use of any information, product, or service
described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the
latest version of device specifications before relying on any published information and before placing orders for
products or services.

http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

A Support Statuses of OpenCL Features

intel.

Sectio Feature Support Notes
n Status
half precision float O Support for scalar addition, subtraction and multiplication.
Support for conversions to and from single-precision floating
point. This feature might not conform with the OpenCL
Specification version 1.0.
This feature is supported in the Emulator.
6.1.2 Built-in Vector Data Types O Preliminary support for vectors with three elements. Three-
element vector support is a supplement to the OpenCL
Specification version 1.0.
6.1.3 Built-in Data Types X
6.1.4 Reserved Data Types X
6.1.5 Alignment of Types . All scalar and vector types are aligned as required (vectors with
three elements are aligned as if they had four elements).
6.2.1 Implicit Conversions . Refer to Section 6.2.6: Usual Arithmetic Conversions in the
OpenCL Specification version 1.2 for an important clarification
of implicit conversions between scalar and vector types.
6.2.2 Explicit Casts . The SDK allows scalar data casts to a vector with a different
element type.
6.5 Address Space Qualifiers O Function scope__constant variables are not supported.
6.6 Image Access Qualifiers X
6.7 Function Qualifiers
6.7.2 Optional Attribute Qualifiers . Refer to the Intel FPGA SDK for OpenCL Best Practices Guide
for tips on using reqd_work_group_size to improve kernel
performance.
The SDK parses but ignores the vec_type_hint and
work_group_size_hint attribute qualifiers.
6.9 Preprocessor Directives and Macros
#pragma directive: #pragma . The Intel FPGA SDK for OpenCL Offline Compiler supports only
unroll #pragma unroll. You may assign an integer argument to the
unroll directive to control the extent of loop unrolling.
For example, #pragma unroll 4 unrolls four iterations of a
loop.
By default, an unroll directive with no unroll factor causes the
offline compiler to attempt to unroll the loop fully.
Refer to the Intel FPGA SDK for OpenCL Best Practices Guide
for tips on using #pragma unroll to improve kernel
performance.
__ ENDIAN_LITTLE__ defined to . The target FPGA is little-endian.
be value 1
__ IMAGE_SUPPORT___ X __ IMAGE_SUPPORT___is undefined; the SDK does not support
images.
6.10 Attribute Qualifiers—The offline compiler parses attribute qualifiers as follows:
6.10.2 | Specifying Attributes of Functions X Convert structure arguments to a pointer to a structure in
—Structure-type kernel global memory.
arguments
6.10.3 | Specifying Attributes of Variables X
—endian
6.10.4 | Specifying Attributes of Blocks X
and Control-Flow-Statements
continued...

Intel FPGA SDK for OpenCL Programming Guide
143

intel.

A Support Statuses of OpenCL Features

Sectio
n

Feature

Support
Status

Notes

6.10.5

Extending Attribute Qualifiers

The offline compiler can parse attributes on various syntactic
structures. It reserves some attribute names for its own
internal use.

Refer to the Intel FPGA SDK for OpenCL Best Practices Guide

for tips on how to optimize kernel performance using these
kernel attributes.

6.11.2

Math Functions

built-in math functions

Preliminary support for built-in math functions for double
precision float. These functions might not conform with the
OpenCL Specification version 1.0.

built-in half_ and native_
math functions

Preliminary support for built-in half_ and native_ math
functions for double precision float. These functions might not
conform with the OpenCL Specification version 1.0.

6.11.5

Geometric Functions

Preliminary support for built-in geometric functions for double
precision float. These functions might not conform with the
OpenCL Specification version 1.0.

Refer to Argument Types for Built-in Geometric Functions for a
list of built-in geometric functions supported by the SDK.

6.11.8

Image Read and Write Functions

6.11.9

Synchronization Functions—the
barrier synchronization function

Clarifications and exceptions:

If a kernel specifies the reqd_work_group_size or
max_work_group_size attribute, barrier supports the
corresponding number of work-items.

If neither attribute is specified, a barrier is instantiated with a
default limit of 256 work-items.

The work-item limit is the maximum supported work-group size
for the kernel; this limit is enforced by the runtime.

6.11.1

Async Copies from Global to
Local Memory, Local to Global
Memory, and Prefetch

The implementation is naive:

Work-item (0,0,0) performs the copy and the
wait_group_events is implemented as a barrier.

If a kernel specifies the reqd_work_group_size or
max_work_group_size attribute, wait_group_events
supports the corresponding number of work-items.

If neither attribute is specified, wait_group_events is
instantiated with a default limit of 256 work-items.

Related Links

e Intel FPGA SDK for OpenCL Best Practices Guide

e Argument Types for Built-in Geometric Functions on page 145
The Intel FPGA SDK for OpenCL supports scalar and vector argument built-in
geometric functions with certain limitations.

A.1.2 OpenCL C Programming Language Restrictions

Warning:

The Intel FPGA SDK for OpenCL conforms with the OpenCL Specification restrictions
on specific programming language features, as described in section 6.8 of the OpenCL

Specification version 1.0.

The Intel FPGA SDK for OpenCL Offline Compiler does not enforce restrictions on
certain disallowed programming language features. Ensure that your kernel code does
not contain features that the OpenCL Specification version 1.0 does not support.

Intel FPGA SDK for OpenCL Programming Guide

144

https://documentation.altera.com/#/link/mwh1391807516407/mwh1391807494883/en-us

A Support Statuses of OpenCL Features

intel.

Feature Support Notes
Status

pointer assignments between address . Arguments to __kernel functions declared in a program that are

spaces pointers must be declared with the __global, __constant, or
__local qualifier.
The offline compiler enforces the OpenCL restriction against
pointer assignments between address spaces.

pointers to functions X The offline compiler does not enforce this restriction.

structure-type kernel arguments X Convert structure arguments to a pointer to a structure in global
memory.

images X The SDK does not support images.

bit fields X The offline compiler does not enforce this restriction.

variable length arrays and structures X

variable macros and functions X

C99 headers X

extern, static, auto, and register X The offline compiler does not enforce this restriction.

storage-class specifiers

predefined identifiers . Use the -D option of the aoc command to provide preprocessor
symbol definitions in your kernel code.

recursion X The offline compiler does not enforce this restriction.

irreducible control flow The offline compiler does not enforce this restriction.

writes to memory of built-in types less O Store operations less than 32 bits in size might result in lower

than 32 bits in size memory performance.

declaration of arguments to __kernel X The offline compiler does not enforce this restriction.

functions of type event_t

elements of a struct or a union X The offline compiler does not enforce this restriction.

belonging to different address spaces

Warning: Assigning elements of a struct or a union to
different address spaces might cause a fatal error.

A.1.3 Argument Types for Built-in Geometric Functions

The Intel FPGA SDK for OpenCL supports scalar and vector argument built-in
geometric functions with certain limitations.

Function Argument Type
float double
Ccross . .
dot .
distance .
length .
normalize .

fast_distance

fast_length

fast_normalize

Intel FPGA SDK for OpenCL Programming Guide
145

] ®
l n tel A Support Statuses of OpenCL Features

A.1.4 Numerical Compliance Implementation

Section 7 of the OpenCL Specification version 1.0 describes features of the C99 and
IEEE 754 standards that OpenCL-compliant devices must support. The Intel FPGA SDK
for OpenCL operates on 32-bit and 64-bit floating-point values in IEEE Standard
754-2008 format, but not all floating-point operators have been implemented.

The table below summarizes the implementation statuses of the floating-point
operators:

Section Feature Support Notes
Status

7.1 Rounding Modes O Conversion between integer and single and half precision
floating-point types support all rounding modes.

Conversions between integer and double precision floating-
point types support all rounding modes on a preliminary
basis. This feature might not conform with the OpenCL
Specification version 1.0.

7.2 INF, NaN and Denormalized O Infinity (INF) and Not a Number (NaN) results for single
Numbers precision operations are generated in a manner that
conforms with the OpenCL Specification version 1.0. Most
operations that handle denormalized numbers are flushed
prior to and after a floating-point operation.

Preliminary support for double precision floating-point
operation. This feature might not conform with the OpenCL
Specification version 1.0.

7.3 Floating-Point Exceptions

7.4 Relative Error as ULPs O Single precision floating-point operations conform with the
numerical accuracy requirements for an embedded profile of
the OpenCL Specification version 1.0.

Preliminary support for double precision floating-point
operation. This feature might not conform with the OpenCL
Specification version 1.0.

7.5 Edge Case Behavior .

A.1.5 Image Addressing and Filtering Implementation

The Intel FPGA SDK for OpenCL does not support image addressing and filtering. The
SDK does not support images.

A.1.6 Atomic Functions

Section 9 of the OpenCL Specification version 1.0 describes a list of optional features
that some OpenCL implementations might support. The Intel FPGA SDK for OpenCL
supports atomic functions conditionally.

e Section 9.5: Atomic Functions for 32-bit Integers—The SDK supports all 32-bit
global and local memory atomic functions. The SDK also supports 32-bit atomic
functions described in Section 6.11.11 of the OpenCL Specification version 1.1 and
Section 6.12.11 of the OpenCL Specification version 1.2.

— The SDK does not support 64-bit atomic functions described in Section 9.7 of
the OpenCL Specification version 1.0.

Intel FPGA SDK for OpenCL Programming Guide
146

A Support Statuses of OpenCL Features

Attention:

intel)

The use of atomic functions might lower the performance of your design. The
operating frequency of the hardware might decrease further if you implement more
than one type of atomic functions (for example, atomic_add and atomic_sub) in
the kernel.

A.1.7 Embedded Profile Implementation

Section 10 of the OpenCL Specification version 1.0 describes the OpenCL embedded
profile. The Intel FPGA SDK for OpenCL conforms with the OpenCL embedded profile
with clarifications and exceptions.

The table below summarizes the clarifications and exceptions to the OpenCL

embedded profile:

Clause Feature Support Notes
Status
1 64-bit integers .
2 3D images X The SDK does not support images.
3 Create 2D and 3D images with X The SDK does not support images.
image_channel_data_type
values
4 Samplers X
5 Rounding modes . The default rounding mode for
CL_DEVICE_SINGLE_FP_CONFIG is
CL_FP_ROUND_TO_NEAREST.
6 Restrictions listed for single X
precision basic floating-point
operations
7 half type X This clause of the OpenCL Specification version 1.0 does not
apply to the SDK.
8 Error bounds listed for . Refer to the table below for a list of allocation limits.
conversions from
CL_UNORM_INTS,
CL_SNORM_INTS,
CL_UNORM_INT16 and
CL_SNORM_INT16 to float

A.2 Support Statuses of OpenCL 1.2 Features

The following sections outline the support statuses of the OpenCL features described
in the OpenCL Specification version 1.2.

A.2.1 OpenCL 1.2 Runtime Implementation

The Intel FPGA SDK for OpenCL supports the implementation of sub-buffer objects
and image objects. For more information on sub-buffer objects and image objects,
refer to sections 5.2 and 5.3 of the OpenCL Specification version 1.2, respectively.

The SDK also supports the implementation of the following APIs:
e clSetMemObjectDestructorCallback

e clGetKernelArglnfo
e clSetEventCallback

Intel FPGA SDK for OpenCL Programming Guide
147

®
l n tel A Support Statuses of OpenCL Features

For more information on these APIs, refer to sections 5.4.1, 5.7.3, and 5.9 of the
OpenCL Specification 1.2, respectively.

Related Links
OpenCL Specification version 1.2

A.2.2 OpenCL 1.2 C Programming Language Implementation

The Intel FPGA SDK for OpenCL supports a humber of OpenCL C programming
language features that are specified section 6 of the OpenCL Specification version 1.2.
The SDK conforms with the OpenCL C programming language with clarifications and
exceptions.

Attention: The support status "e" means that the feature is supported, and there might be a
clarification for the supported feature in the Notes column. The support status "[0"
means that the feature is supported with exceptions identified in the Notes column.

Table 15. Support Statuses of OpenCL 1.2 C Programming Language Features

Section Feature Support Notes
Status

6.1.3 Other Built-in Data Types . Preliminary support. This feature might not conform with the
OpenCL Specification version 1.0.

6.12.12 Miscellaneous Vector ° The SDK supports implementations of the following additional

Functions built-in vector functions:

e vec_step
o shuffle
e shuffle2

6.12.13 printf O Preliminary support. This feature might not conform with the

OpenCL Specification version 1.0. See below for details.

The printf function in OpenCL has syntax and features similar to the printf function in C99, with a few exceptions. For
details, refer to the OpenCL Specification version 1.2.

To use a printf function, there are no requirements for special compilation steps, buffers, or flags. You can compile
kernels that include printf instructions with the usual aoc command.

During kernel execution, printf data is stored in a global printf buffer that the Intel FPGA SDK for OpenCL Offline
Compiler allocates automatically. The size of this buffer is 64 kB; the total size of data arguments to a printf call should
not exceed this size. When kernel execution completes, the contents of the printf buffer are printed to standard output.
Buffer overflows are handled seamlessly; printf instructions can be executed an unlimited number of times. However, if
the printf buffer overflows, kernel pipeline execution stalls until the host reads the buffer and prints the buffer contents.
Because printf functions store their data into a global memory buffer, the performance of your kernel will drop if it
includes such functions.

There are no usage limitations on printf functions. You can use printf instructions inside if-then-else statements,
loops, etc. A kernel can contain multiple printf instructions executed by multiple work-items.

Format string arguments and literal string arguments of printf calls are transferred to the host system from the FPGA
using a special memory region. This memory region can overflow if the total size of the printf string arguments is large
(3000 characters or less is usually safe in a typical OpenCL application). If there is an overflow, the error message cannot
parse auto-discovery string at byte offset 4096 is printed during host program execution.

Output from printf is never intermixed, even though work-items may execute printf functions concurrently. However,
the order of concurrent printf execution is not guaranteed. In other words, printf outputs might not appear in program
order if the printf instructions are in concurrent datapaths.

Related Links
OpenCL Specification version 1.2

Intel FPGA SDK for OpenCL Programming Guide
148

http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf

] ®
A Support Statuses of OpenCL Features < l n tel)

A.3 Support Statuses of OpenCL 2.0 Features

The following sections outline the support statuses of the OpenCL features described
in the OpenCL Specification version 2.0.

A.3.1 OpenCL 2.0 Headers

The Intel FPGA SDK for OpenCL provides both the OpenCL 1.0 and OpenCL 2.0
headers by the Khronos Group.

Attention: The SDK currently does not support all OpenCL 2.0 APIs. If you use the OpenCL 2.0
headers and make a call to an unsupported API, the call will return with an error code
to indicate that the API is not fully supported.

A.3.2 OpenCL 2.0 Runtime Implementation

The Intel FPGA SDK for OpenCL offers preliminary support for shared virtual memory
implementation, as described in section 5.6 of the OpenCL Specification version 2.0.
For more information on shared virtual memory, refer to section 5.6 of the OpenCL
Specification version 2.0.

Important: Refer to your board's specifications to verify that your board supports shared virtual
memory.

Related Links
OpenCL Specification version 2.0 (API)

A.3.3 OpenCL 2.0 C Programming Language Restrictions for Pipes

The Intel FPGA SDK for OpenCL offers preliminary support of OpenCL pipes.The
following table lists the support statuses of pipe-specific OpenCL C programming
language implementations, as described in the OpenCL Specification version 2.0

Attention: The support status "e" means that the feature is supported. There might be a
clarification for the supported feature in the Notes column. A feature that is not
supported by the SDK is identified with an "X".

Table 16. Support Statuses of Built-in Pipe Read and Write Functions

Details of the built-in pipe read and write functions are available in section 6.13.16.2 of the OpenCL
Specification version 2.0.

Function Support Status
int read_pipe (pipe gentype p, gentype *ptr) o
int write_pipe (pipe gentype p, const gentype *ptr) .
int read_pipe (pipe gentype p, reserve_id_t reserve_id, uint index, gentype X
*ptr)
int write_pipe (pipe gentype p, reserve_id_t reserve_id, uint index, const X
gentype *ptr)
reserve_id_t reserve_read_pipe (pipe gentype p, uint num_packets) X

continued...

Intel FPGA SDK for OpenCL Programming Guide
149

https://www.khronos.org/registry/cl/specs/opencl-2.0.pdf

Table 17.

] ®
l n tel A Support Statuses of OpenCL Features

Function

Support Status

reserve_id_t reserve_write_pipe (pipe gentype p, uint num_packets)

bool is_valid_reserve_id (reserve_id_t reserve_id)

void commit_read_pipe (pipe gentype p, reserve_id_t reserve_id) X
void commit_write_pipe (pipe gentype p, reserve_id_t reserve_id)
X

Support Statuses of Built-in Work-Group Pipe Read and Write Functions

Details of the built-in pipe read and write functions are available in section 6.13.16.3 of the OpenCL

Specification version 2.0.

void work_group_commit_write_pipe (pipe gentype p, reserve_id_t reserve_id)

Function Support Status
reserve_id_t work_group_reserve_read_pipe (pipe gentype p, uint num_packets) X
reserve_id_t work_group_reserve_write_pipe (pipe gentype p, uint num_packets)
void work_group_commit_read_pipe (pipe gentype p, reserve_id_t reserve_id) X

Table 18. Support Statuses of Built-in Pipe Query Functions

Details of the built-in pipe query functions are available in section 6.13.16.4 of the OpenCL Specification

version 2.0.
Function Support Status

uint get_pipe_num_packets (pipe gentype p) X
uint get_pipe_max_packets (pipe gentype p) X

Related Links

OpenCL Specification version 2.0 (C Language)

A.4 Intel FPGA SDK for OpenCL Allocation Limits
Item Limit

Maximum number of contexts Limited only by host memory size
Minimum global memory allocation by The runtime allocates 64 kB of device memory when the context is
runtime created. This memory is reserved for program variables in global address

desired value in bytes.

additional 64 kB of device memory.

space and for static variables inside functions. You may overwrite the
amount of this memory, to as low as 0 bytes, by setting the environment
variable CL_CONTEXT_PROGRAM_VARIABLES_TOTAL_SIZE_ALTERA to the

If the OpenCL kernel uses the printf function, the runtime allocates an

Maximum number of queues 256

Attention: Each context uses two queues for system purposes.

Maximum number of program objects per 20

context

Maximum number of even objects per Limited only by host memory size
context

Maximum number of dependencies between 1000
events within a context

continued...

Intel FPGA SDK for OpenCL Programming Guide
150

https://www.khronos.org/registry/cl/specs/opencl-2.0-openclc.pdf

A Support Statuses of OpenCL Features

Item

Limit

Maximum number of event dependencies per
command

20

Maximum number of concurrently running
kernels

The total number of queues

Maximum number of enqueued kernels

1000

Maximum number of kernels per FPGA device

Hardware: no static limit
Emulator: 256

Maximum number of arguments per kernel

128

Maximum total size of kernel arguments

256 bytes per kernel

A.5 Document Revision History

Table 19. Document Revision History of the Intel FPGA SDK for OpenCL Programming
Guide Appendix A: Support Statuses of OpenCL Features

Date Document
Version

Changes

October 2016 2016.10.31

Rebranded the Altera SDK for OpenCL to Intel FPGA SDK for OpenCL.
Rebranded the Altera Offline Compiler to Intel FPGA SDK for OpenCL
Offline Compiler.

Modified information in the Intel FPGA SDK for OpenCL Allocation Limits
section:

— Updated information regarding minimum global memory allocation by
runtime.

— Updated the maximum number of queues from 70 to 256.

— Updated the maximum number of kernels per FPGA device from 64 to
no static limit when compiling to hardware and 256 when compiling to
emulator.

In OpenCL 1.0 C Programming Language Implementation, under the

Description column for half-precision float, added a note that this feature

is supported in the Emulator. In addition, updated the support status of

half-precision float from X to 0.

Under Support Statuses of OpenCL 2.0 Features, added the topic OpenCL

2.0 Headers to explain that using the OpenCL 2.0 headers to call

unsupported APIs will result in an error.

May 2016 2016.05.02

In OpenCL 1.2 Runtime Implementation, noted that AOCL supports the
clSetEventCal lback, clGetKernelArglnfo, and
clSetMemObjectDestructorCallback APIs.

November 2015 2015.11.02

Categorized feature support statuses and limitations based on OpenCL
Specification versions.

Added the following functions to the list of OpenCL-conformant double
precision floating-point functions:

sinh / cosh / tanh / asinh / acosh / atanh / pow / pown / powr / tanh /
atan / atan2 / Idexp / loglp / sincos

In OpenCL 1.2 Runtime Implementation, added sub-buffer object support.
In OpenCL 2.0 Runtime Implementation, added preliminary shared virtual
memory support.

In Altera SDK for OpenCL Allocation Limits, added a minimum global
memory allocation limit by the runtime.

May 2015 15.0.0

Listed the double precision floating-point functions that the Altera SDK for
OpenCL supports preliminarily.

Added OpenCL C Programming Language Restrictions for Pipes.

continued...

Intel FPGA SDK for OpenCL Programming Guide
151

intel.

Intel FPGA SDK for OpenCL Programming Guide

152

A Support Statuses of OpenCL Features

Date Document Changes
Version

December 2014 14.1.0 e In AOCL Allocation Limits, updated the maximum number of kernels per
FPGA device from 32 to 64.

June 2014 14.0.0 e Updated the following AOCL allocation limits:
— Maximum number of contexts
— Maximum number of queues
— Maximum number of even objects per context

December 2013 13.1.1 e Modified support status designations in Appendix: Support Statuses of
OpenCL Features.

e Removed information on OpenCL programming language restrictions from
the section OpenCL Programming Language Implementation, and
presented the information in a new section titled OpenCL Programming
Language Restrictions.

November 2013 13.1.0 Maintenance release.
June 2013 13.0 SP1.0 e Renamed Optional Extensions to Atomic Functions, and updated its
content.

e Removed Platform Layer and Runtime Implementation.

May 2013 13.0.1 Maintenance release.

May 2013 13.0.0 e Added updated information on allocation limits and OpenCL language
support.

November 2012 12.1.0 Initial release.

	 Intel FPGA SDK for OpenCL Programming Guide
	Contents
	1 Intel FPGA SDK for OpenCL Programming Guide
	1.1 Intel FPGA SDK for OpenCL Programming Guide Prerequisites
	1.2 Intel FPGA SDK for OpenCL FPGA Programming Flow
	1.3 Intel FPGA SDK for OpenCL Offline Compiler Kernel Compilation Flows
	1.3.1 One-Step Compilation for Simple Kernels
	1.3.2 Multistep Intel FPGA SDK for OpenCL Design Flow

	1.4 Obtaining General Information on Software, Compiler, and Custom Platform
	1.4.1 Displaying the Software Version (version)
	1.4.2 Displaying the Compiler Version (--version)
	1.4.3 Listing the Intel FPGA SDK for OpenCL Utility Command Options (help)
	1.4.3.1 Displaying Information on an Intel FPGA SDK for OpenCL Utility Command Option (help <command_option>)

	1.4.4 Listing the Intel FPGA SDK for OpenCL Offline Compiler Command Options (no argument, --help, or -h)
	1.4.5 Listing the Available FPGA Boards in Your Custom Platform (--list-boards)
	1.4.6 Displaying the Compilation Environment of an OpenCL Binary (env)

	1.5 Managing an FPGA Board
	1.5.1 Installing an FPGA Board (install)
	1.5.2 Uninstalling the FPGA Board (uninstall)
	1.5.3 Querying the Device Name of Your FPGA Board (diagnose)
	1.5.4 Running a Board Diagnostic Test (diagnose <device_name>)
	1.5.5 Programming the FPGA Offline or without a Host (program <device_name>)
	1.5.6 Programming the Flash Memory (flash <device_name>)

	1.6 Structuring Your OpenCL Kernel
	1.6.1 Guidelines for Naming the Kernel
	1.6.2 Programming Strategies for Optimizing Data Processing Efficiency
	1.6.2.1 Unrolling a Loop
	1.6.2.2 Specifying Work-Group Sizes
	1.6.2.3 Specifying Number of Compute Units
	1.6.2.4 Specifying Number of SIMD Work-Items

	1.6.3 Programming Strategies for Optimizing Memory Access Efficiency
	1.6.3.1 Specifying Pointer Size in Local Memory
	1.6.3.2 Specifying Buffer Location in Global Memory

	1.6.4 Implementing the Intel FPGA SDK for OpenCL Channels Extension
	1.6.4.1 Overview of the Intel FPGA SDK for OpenCL Channels Extension
	1.6.4.2 Channel Data Behavior
	1.6.4.3 Multiple Work-Item Ordering for Channels
	1.6.4.3.1 Work-Item Serial Execution of Channels

	1.6.4.4 Restrictions in the Implementation of Intel FPGA SDK for OpenCL Channels Extension
	1.6.4.5 Enabling the Intel FPGA SDK for OpenCL Channels for OpenCL Kernel
	1.6.4.5.1 Declaring the Channels OPENCL EXTENSION pragma
	1.6.4.5.2 Declaring the Channel Handle
	1.6.4.5.3 Implementing Blocking Channel Write Extensions
	Implementing Nonblocking Channel Write Extensions

	1.6.4.5.4 Implementing Blocking Channel Read Extensions
	Implementing Nonblocking Channel Read Extensions

	1.6.4.5.5 Implementing I/O Channels Using the io Channels Attribute
	1.6.4.5.6 Implementing Buffered Channels Using the depth Channels Attribute
	1.6.4.5.7 Enforcing the Order of Channel Calls
	Defining Memory Consistency Across Kernels When Using Channels

	1.6.4.6 Use Models of Intel FPGA SDK for OpenCL Channels Implementation

	1.6.5 Implementing OpenCL Pipes
	1.6.5.1 Overview of the OpenCL Pipe Functions
	1.6.5.2 Pipe Data Behavior
	1.6.5.3 Multiple Work-Item Ordering for Pipes
	1.6.5.3.1 Work-Item Serial Execution of Pipes

	1.6.5.4 Restrictions in OpenCL Pipes Implementation
	1.6.5.5 Enabling OpenCL Pipes for Kernels
	1.6.5.5.1 Ensuring Compatibility with Other OpenCL SDKs
	1.6.5.5.2 Declaring the Pipe Handle
	1.6.5.5.3 Implementing Pipe Writes
	1.6.5.5.4 Implementing Pipe Reads
	1.6.5.5.5 Implementing Buffered Pipes Using the depth Attribute
	1.6.5.5.6 Implementing I/O Pipes Using the io Attribute
	1.6.5.5.7 Enforcing the Order of Pipe Calls
	Defining Memory Consistency Across Kernels When Using Pipes

	1.6.6 Using Predefined Preprocessor Macros in Conditional Compilation
	1.6.7 Declaring __constant Address Space Qualifiers
	1.6.8 Including Structure Data Types as Arguments in OpenCL Kernels
	1.6.8.1 Matching Data Layouts of Host and Kernel Structure Data Types
	1.6.8.2 Disabling Insertion of Data Structure Padding
	1.6.8.3 Specifying the Alignment of a Struct

	1.6.9 Inferring a Register
	1.6.9.1 Inferring a Shift Register

	1.6.10 Enabling Double Precision Floating-Point Operations
	1.6.11 Single-Cycle Floating-Point Accumulator for Single Work-Item Kernels
	1.6.11.1 Programming Strategies for Inferring the Accumulator

	1.7 Designing Your Host Application
	1.7.1 Host Programming Requirements
	1.7.1.1 Host Machine Memory Requirements
	1.7.1.2 Host Binary Requirement
	1.7.1.3 Multiple Host Threads
	1.7.1.4 Out-of-Order Command Queues
	1.7.1.5 Requirement for Multiple Command Queues in Channels or Pipes Implementation

	1.7.2 Allocating OpenCL Buffer for Manual Partitioning of Global Memory
	1.7.2.1 Creating a Pipe Object in Your Host Application

	1.7.3 Collecting Profile Data During Kernel Execution
	1.7.4 Accessing Custom Platform-Specific Functions
	1.7.5 Modifying Host Program for Structure Parameter Conversion
	1.7.6 Managing Host Application
	1.7.6.1 Displaying Example Makefile Fragments (example-makefile or makefile)
	1.7.6.2 Compiling and Linking Your Host Application
	1.7.6.2.1 Displaying Flags for Compiling Host Application (compile-config)
	1.7.6.2.2 Displaying Paths to OpenCL Host Runtime and MMD Libraries (ldflags)
	1.7.6.2.3 Listing OpenCL Host Runtime and MMD Libraries (ldlibs)
	1.7.6.2.4 Displaying Information on OpenCL Host Runtime and MMD Libraries (link-config or linkflags)

	1.7.6.3 Linking Your Host Application to the Khronos ICD Loader Library
	1.7.6.3.1 Linking to the ICD Loader Library on Windows
	1.7.6.3.2 Linking to the ICD Loader Library on Linux

	1.7.6.4 Programming an FPGA via the Host
	1.7.6.4.1 Programming Multiple FPGA Devices
	Probing the OpenCL FPGA Devices
	Querying Device Information
	Loading Kernels for Multiple FPGA Devices

	1.7.6.5 Termination of the Runtime Environment and Error Recovery

	1.7.7 Allocating Shared Memory for OpenCL Kernels Targeting SoCs

	1.8 Compiling Your OpenCL Kernel
	1.8.1 Compiling Your Kernel to Create Hardware Configuration File
	1.8.2 Compiling Your Kernel without Building Hardware (-c)
	1.8.3 Specifying the Location of Header Files (-I <directory>)
	1.8.4 Specifying the Name of an Intel FPGA SDK for OpenCL Offline Compiler Output File (-o <filename>)
	1.8.5 Compiling a Kernel for a Specific FPGA Board (--board <board_name>)
	1.8.6 Resolving Hardware Generation Fitting Errors during Kernel Compilation (--high-effort)
	1.8.7 Defining Preprocessor Macros to Specify Kernel Parameters (-D <macro_name>)
	1.8.8 Generating Compilation Progress Report (-v)
	1.8.9 Displaying the Estimated Resource Usage Summary On-Screen (--report)
	1.8.10 Suppressing Warning Messages from the Intel FPGA SDK for OpenCL Offline Compiler (-W)
	1.8.11 Converting Warning Messages from the Intel FPGA SDK for OpenCL Offline Compiler into Error Messages (-Werror)
	1.8.12 Removing Debug Data from Compiler Reports and Source Code from the .aocx File (-g0)
	1.8.13 Disabling Burst-Interleaving of Global Memory (--no-interleaving <global_memory_type>)
	1.8.14 Configuring Constant Memory Cache Size (--const-cache-bytes <N>)
	1.8.15 Relaxing the Order of Floating-Point Operations (--fp-relaxed)
	1.8.16 Reducing Floating-Point Rounding Operations (--fpc)

	1.9 Emulating and Debugging Your OpenCL Kernel
	1.9.1 Modifying Channels Kernel Code for Emulation
	1.9.1.1 Emulating a Kernel that Passes Pipes or Channels by Reference

	1.9.2 Compiling a Kernel for Emulation (-march=emulator)
	1.9.3 Emulating Your OpenCL Kernel
	1.9.4 Debugging Your OpenCL Kernel on Linux
	1.9.5 Limitations of the Intel FPGA SDK for OpenCL Emulator

	1.10 Reviewing Your Kernel's report.html File
	1.11 Profiling Your OpenCL Kernel
	1.11.1 Instrumenting the Kernel Pipeline with Performance Counters (--profile)
	1.11.2 Launching the Intel FPGA SDK for OpenCL Profiler GUI (report)

	1.12 Conclusion
	1.13 Document Revision History

	2 Intel FPGA SDK for OpenCL Advanced Features
	2.1 OpenCL Library
	2.1.1 Understanding RTL Modules and the OpenCL Pipeline
	2.1.1.1 Stall-Free RTL
	2.1.1.2 RTL Reset and Clock Signals
	2.1.1.3 XML Syntax of an RTL Module
	2.1.1.3.1 XML Elements for ATTRIBUTES
	2.1.1.3.2 XML Elements for INTERFACE

	2.1.1.4 Interaction between RTL Module and External Memory
	2.1.1.5 Order of Threads Entering an RTL Module
	2.1.1.6 OpenCL C Model of an RTL Module
	2.1.1.7 Potential Incompatibility between RTL Modules and Partial Reconfiguration

	2.1.2 Packaging an OpenCL Helper Function File for an OpenCL Library
	2.1.3 Packaging an RTL Component for an OpenCL Library
	2.1.3.1 Restrictions and Limitations in RTL Support for the Intel FPGA SDK for OpenCL Library Feature

	2.1.4 Verifying the RTL Modules
	2.1.5 Packaging Multiple Object Files into a Library File
	2.1.6 Specifying an OpenCL Library when Compiling an OpenCL Kernel
	2.1.7 Using an OpenCL Library that Works with Simple Functions (Example 1)
	2.1.8 Using an OpenCL Library that Works with External Memory (Example 2)
	2.1.9 OpenCL Library Command-Line Options

	2.2 Kernel Attributes for Configuring Local Memory System
	2.2.1 Restrictions on the Usage of Local Variable-Specific Kernel Attributes

	2.3 Kernel Attributes for Reducing the Overhead on Hardware Usage
	2.3.1 Hardware for Kernel Interface
	2.3.1.1 Omit Hardware that Generates and Dispatches Kernel IDs
	2.3.1.2 Omit Communication Hardware between the Host and the Kernel

	2.4 Kernel Replication Using the num_compute_units(X,Y,Z) Attribute
	2.4.1 Customization of Replicated Kernels Using the get_compute_id() Function
	2.4.2 Using Channels with Kernel Copies

	2.5 Document Revision History

	A Support Statuses of OpenCL Features
	A.1 Support Statuses of OpenCL 1.0 Features
	A.1.1 OpenCL1.0 C Programming Language Implementation
	A.1.2 OpenCL C Programming Language Restrictions
	A.1.3 Argument Types for Built-in Geometric Functions
	A.1.4 Numerical Compliance Implementation
	A.1.5 Image Addressing and Filtering Implementation
	A.1.6 Atomic Functions
	A.1.7 Embedded Profile Implementation

	A.2 Support Statuses of OpenCL 1.2 Features
	A.2.1 OpenCL 1.2 Runtime Implementation
	A.2.2 OpenCL 1.2 C Programming Language Implementation

	A.3 Support Statuses of OpenCL 2.0 Features
	A.3.1 OpenCL 2.0 Headers
	A.3.2 OpenCL 2.0 Runtime Implementation
	A.3.3 OpenCL 2.0 C Programming Language Restrictions for Pipes

	A.4 Intel FPGA SDK for OpenCL Allocation Limits
	A.5 Document Revision History

