

5V/3.3V TTL-TO-DIFFERENTIAL PECL TRANSLATOR

FEATURES

- 3.3V and 5V power supply options
- 300ps typical propagation delay
- Low power
- Differential PECL output
- PNP TTL input for minimal loading
- Flow-through pinouts
- Available in 8-pin SOIC package and in die form

Precision Edge®

DESCRIPTION

The SY10/100ELT20V is a single TTL-to-differential PECL translator. Because PECL (Positive ECL) levels are used, either +5V or +3.3V and ground are required. The small outline 8-lead SOIC package and low skew single gate design make the ELT20V ideal for applications that require the translation of a clock or data signal where minimal space, low power, and low cost are critical.

The ELT20V is available in both ECL standards: the 10ELT is compatible with positive ECL 10H logic levels, while the 100ELT is compatible with positive ECL 100K logic levels.

PIN NAMES

Pin	Function
Q	Differential PECL Output
D	TTL Input
Vcc	+5V/+3.3V Supply
GND	Ground

Precision Edge is a registered trademark of Micrel, Inc.

PACKAGE/ORDERING INFORMATION

8-Pin SOIC (Z8-1)

Ordering Information⁽¹⁾

Part Number	Package Type	Operating Range	Package Marking	Lead Finish
SY10ELT20VZC	Z8-1	Commercial	HEL20V	Sn-Pb
SY10ELT20VZCTR ⁽²⁾	Z8-1	Commercial	HEL20V	Sn-Pb
SY100ELT20VZC	Z8-1	Commercial	XEL20V	Sn-Pb
SY100ELT20VZCTR ⁽²⁾	Z8-1	Commercial	XEL20V	Sn-Pb
SY10ELT20VZI	Z8-1	Industrial	HEL20V	Sn-Pb
SY10ELT20VZITR ⁽²⁾	Z8-1	Industrial	HEL20V	Sn-Pb
SY100ELT20VZI	Z8-1	Industrial	XEL20V	Sn-Pb
SY100ELT20VZITR ⁽²⁾	Z8-1	Industrial	XEL20V	Sn-Pb
SY10ELT20VZG ⁽³⁾	Z8-1	Industrial	HEL20V with Pb-Free bar-line indicator	Pb-Free NiPdAu
SY10ELT20VZGTR ^(2, 3)	Z8-1	Industrial	HEL20V with Pb-Free bar-line indicator	Pb-Free NiPdAu
SY100ELT20VZG ⁽³⁾	Z8-1	Industrial	XEL20V with Pb-Free bar-line indicator	Pb-Free NiPdAu
SY100ELT20VZGTR ^(2, 3)	Z8-1	Industrial	XEL20V with Pb-Free bar-line indicator	Pb-Free NiPdAu

Notes:

1. Contact factory for die availability. Dice are guaranteed at $T_{\rm A}$ = 25°C, DC Electricals only.

2. Tape and Reel.

3. Pb-Free package is recommended for new designs.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Paramter	Value	Unit
Vcc	Power Supply Voltage	-0.5 to +7.0	V
Vi	TTL Input Voltage	-0.5 to Vcc	V
li	TTL Input Current	-30 to +5.0	mA
Ιουτ	PECL Output Current –Continuous –Surge	50 100	mA
TLEAD	Lead Temperature (soldering, 20sec.)	+260	°C
Tstore	Storage Temperature	–65 to +150	°C
Та	Operating Temperature	-40 to +85	°C

TRUTH TABLE

D	Q	Q
Н	Н	L
L	L	Н
Open	Н	L

DC ELECTRICAL CHARACTERISTICS

VCC = $+3.3V \pm 10\%$ or $+5.0V \pm 10\%$

		TA = −40°C		TA = 0°C		TA = +25°C			TA = -	⊦85°C		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	Unit	Condition
Icc	Power Supply Current		20		20			20		20	mA	—

TTL DC ELECTRICAL CHARACTERISTICS

 $VCC = +3.3V \pm 10\% \text{ or } +5.0V \pm 10\%$

		TA = −40°C		TA = 0°C		TA = +25°C			TA = ·	⊦85°C		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	Unit	Condition
Vih	Input HIGH Voltage	2.0		2.0	—	2.0		_	2.0	—	V	_
VIL	Input LOW Voltage	_	0.8	_	0.8	_		0.8	_	0.8	V	_
Ін	Input HIGH Current	_	20 100	_	20 100	_		20 100	_	20 100	μΑ	VIN = 2.7V VIN = VCC
lı∟	Input LOW Current	_	-0.2	_	-0.2	_		-0.2	_	-0.2	mA	VIN = 0.5V
Vik	Input Clamp Voltage	_	-1.2		-1.2	_		-1.2	_	-1.2	V	lın = −18mA

PECL DC ELECTRICAL CHARACTERISTICS

 $VCC = +3.3V \pm 10\% \text{ or } +5.0V \pm 10\%$

		Ta = −40°C		TA = 0°C		TA = +25°C			TA = +	⊦85°C		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	Unit	Condition
Vон	Output HIGH Voltage ⁽²⁾ 10ELT		4110	3980	4160	4020	_	4190	4090	4280	mV	
Vol	100ELT Output LOW Voltage ⁽¹⁾ 10ELT 100ELT	3050	4120 3350 3445	3975 3050 3190	4120 3370 3380	3975 3050 3190		4120 3370 3380	3975 3050 3190	4120 3405 3380	mV	

Note 1. Permanent device damage may occur if absolute maximum ratings are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note 2. These values are for V_{CC} = 5.0V. Level Specifications will vary 1:1 with V_{CC} .

AC ELECTRICAL CHARACTERISTICS⁽³⁾

$VCC = +3.3V \pm 10\% \text{ or } +5.0V \pm 10\%$	1%
---	----

		TA = ·	TA = −40°C		TA = 0°C		TA = +25°C			⊦85°C		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	Unit	Condition
tplh tphl	Propagation Delay ⁽³⁾	100	600	100	600	100	_	600	100	600	ps	50Ω to Vcc – 2.0V
t skpp	Part-to-Part Skew ⁽⁴⁾		500	_	500	—	_	500	_	500	ps	50Ω to Vcc – 2.0V
fmax	Maximum Input Frequency	350	_	350	_	350			350		MHz	50Ω to Vcc – 2.0V
tr tf	Output Rise/Fall Time (20% to 80%)	200	500	200	500	200	_	500	200	500	ps	50Ω to Vcc – 2.0V

Note 1. Permanent device damage may occur if absolute maximum ratings are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note 2. These values are for V_{CC} = 5.0V. Level Specifications will vary 1:1 with V_{CC}.

Note 3. Input Rise Time < 1.0ns.

Note 4. Guaranteed by design. Not tested in production.

TOPOGRAPHY AND PAD COORDINATES

Figure 1. Chip Topography

PAD COORDINATES TABLE

Pad Number	Coordinates (μm) ⁽⁴⁾
1	619.5, –344.5
2	396.5, -344.5
3	130.5, –344.5
4	-135.5, -344.5
5	-401.5, -344.5
6	-619.5, -344.5
7	-619.5, 344.5
8	-427.5, 344.5
9	427.5, 344.5
10	619.5, 344.5

CHIP INFORMATION

Transistor Count:	98
Substrate:	Connect to GND
Process:	Bipolar

Notes:

1. Contact factory for die availability. Dice are guaranteed at T_A = 25°C, DC Electricals only. Shipped in waffle pack.

- 2. Recommended for new designs.
- 3. Tape and Reel.

4. Coordinates reference from the center of the die.

8-PIN SOIC .150" WIDE (Z8-1)

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

теь + 1 (408) 944-0800 FAX + 1 (408) 474-1000 web http://www.micrel.com

The information furnished by Micrel in this datasheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2006 Micrel, Incorporated.