TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC7SA04F,TC7SA04FU

Inverter with 3.6 V Tolerant Input and Output

Features

- Low voltage operation : $V_{CC} = 1.8 \sim 3.6 V$
- High speed operation $: t_{pd} = 2.8 \text{ ns} (\text{max}) (V_{CC} = 3.0 \sim 3.6 \text{ V})$
 - $t_{pd} = 3.7 \text{ ns} (\text{max}) (\text{V}_{CC} = 2.3 \sim 2.7 \text{ V})$
 - $: t_{pd} = 7.4 \text{ ns} (max) (V_{CC} = 1.8 \text{ V})$
- High Output current $: I_{OH}/I_{OL} = \pm 24 \text{ mA (min)} (V_{CC} = 3.0 \text{ V})$ $: I_{OH}/I_{OL} = \pm 18 \text{ mA (min)} (V_{CC} = 2.3 \text{ V})$
 - $IOH/IOL = \pm 6 \text{ mA (min) (VCC = 2.3 V)}$ $IOH/IOL = \pm 6 \text{ mA (min) (VCC = 1.8 V)}$
- Latch-up performance : ±300 mA or more
- ESD performance : Human body model > ±200 V : Machine model > ±200 V
- Power down protection is provided on all inputs and outputs.
- TC74VCX04FT equivalent.

Weight SSOP5-P-0.95 : 0.016 g (typ.) SSOP5-P-0.65A : 0.006 g (typ.)

Characteristics	Symbol	Rating	Unit	
Power supply voltage	V _{CC}	-0.5~4.6	V	
DC input voltage	V _{IN}	-0.5~4.6	V	
DC output voltage	Vout	-0.5~4.6 (Note 1)	V	
DC output voitage	VOUT	-0.5~V _{CC} + 0.5 (Note 2)	v	
Input diode current	I _{IK}	-50	mA	
Output diode current	I _{OK}	±50 (Note 3)	mA	
DC output current	I _{OUT}	±50	mA	
Power dissipation	PD	200	mW	
DC V _{CC} /ground current	ICC	±100	mA	
Storage temperature range	T _{stg}	-65~150	°C	

Maximum Ratings (Ta = 25°C)

Note 1: $V_{CC} = 0 V$

Note 2: High or low state. IOUT absolute maximum rating be observed.

Note 3: V_{OUT} < GND, V_{OUT} > V_{CC}

TOSHIBA

Marking

Pin Assignment (top view)

Logic Diagram

Iruth	lable

. .

А	Y
L	Н
Н	L

Recommended Operating Range

Characteristics	Symbol	Rating	Unit
Dewer eventy veltage	Mar	1.8~3.6	V
Power supply voltage	V _{CC}	1.2~3.6 (Note 4)	v
Input voltage	V _{IN}	-0.3~3.6	V
Output voltage	V _{OUT}	0~3.6 (Note 5)	V
Oulput voltage		0~V _{CC} (Note 6)	v
		±24 (Note 7)	
Output current	I _{OH} /I _{OL}	±18 (Note 8)	mA
		±6 (Note 9)	
Operating temperature range	T _{opr}	-40~85	°C
Input rise and fall time	dt/dv	0~10 (Note 10)	ns/V

Note 4: Data retention only

Note 5: $V_{CC} = 0 V$

Note 6: High or low state

Note 7: V_{CC} = 3.0~3.6 V

Note 8: $V_{CC} = 2.3 \sim 2.7 \text{ V}$

Note 9: $V_{CC} = 1.8 V$

Note 10: $V_{IN} = 0.8 \sim 2.0 \text{ V}, \text{ V}_{CC} = 3.0 \text{ V}$

Electrical Characteristics

DC Characteristics (Ta = –40~85°C, 2.7 V < V_{CC} \leq 3.6 V)

Characteristics		Symbol	Tos	Test Condition		Min	Мах	Unit
Charac	clensues	Symbol	Test Condition		V _{CC} (V)	IVIIII	IVIAX	Onic
Input voltage	High level	V _{IH}		_	2.7~3.6	2.0	_	V
Input voltage	Low level	V _{IL}			2.7~3.6	_	0.8	v
			I _{OH} = −100 μA	2.7~3.6	V _{CC} - 0.2	_		
	High level	V _{OH}	$V_{IN} = V_{IL}$	I _{OH} = -12 mA	2.7	2.2	_	V
Output voltage				I _{OH} = -18 mA	3.0	2.4	_	
				I _{OH} = -24 mA	3.0	2.2	_	
		V _{OL}	V _{OL} V _{IN} = V _{IH}	I _{OL} = 100 μA	2.7~3.6		0.2	
				I _{OL} = 12 mA	2.7	_	0.4	
	Low level			I _{OL} = 18 mA	3.0	_	0.4	
				I _{OL} = 24 mA	3.0	_	0.55	
Input leakage curre	ent	I _{IN}	I _{IN} V _{IN} = 0~3.6 V		2.7~3.6		±5.0	μA
Power off leakage	current	I _{OFF}	V _{IN} , V _{OUT} = 0~3.6 V		0	_	10.0	μA
		laa	$V_{IN} = V_{CC}$ or C	$V_{IN} = V_{CC}$ or GND			20.0	
Quiescent supply of	Surrent	Icc	$V_{CC} \leq (V_{IN}, V_{OUT}) \leq 3.6 \text{ V}$		2.7~3.6		±20.0	μ A
Increase in I _{CC} pe	r input	Δlcc	$V_{IH} = V_{CC} - 0.$	6 V	2.7~3.6	_	750	

DC Characteristics (Ta = $-40 \sim 85^{\circ}$ C, 2.3 V \leq V_{CC} \leq 2.7 V)

Characteristics		Symbol	Symbol Test Condition			Min	Max	Unit
		Symbol	Te	st Condition	V _{CC} (V)	IVIIII	wax	Unit
Input voltage	High level	V _{IH}		_	2.3~2.7	1.6		v
input voltage	Low level	VIL			2.3~2.7	_	0.7	v
			I _{OH} = -100 μA	2.3~2.7	V _{CC} - 0.2	_		
	High level	V _{OH}	$V_{IN} = V_{IL}$	I _{OH} = -6 mA	2.3	2.0		- v
	_			I _{OH} = -12 mA	2.3	1.8		
Output voltage				I _{OH} = -18 mA	2.3	1.7		
			$V_{IN} = V_{IH}$	I _{OL} = 100 μA	2.3~2.7	_	0.2	
	Low level	V _{OL}		$I_{OL} = 12 \text{ mA}$	2.3	_	0.4	
				I _{OL} = 18 mA	2.3		0.6	
Input leakage curr	ent	I _{IN}	V _{IN} = 0~3.6 V		2.3~2.7		±5.0	μA
Power off leakage	current	I _{OFF}	V _{IN} , V _{OUT} = 0~3.6 V		0		10.0	μA
Quiescent supply current			$V_{IN} = V_{CC}$ or ($V_{IN} = V_{CC}$ or GND		_	20.0	
		Icc	$V_{CC} \leq (V_{IN}, V_{IN})$	$V_{CC} \leq (V_{IN}, V_{OUT}) \leq 3.6 \text{ V}$			±20.0	μA

DC Characteristics (Ta = -40~85°C, 1.8 V \leq V_{CC} < 2.3 V)

Charao	teristics	Symbol	Test Condition			Min	Max	Unit
					V _{CC} (V)			
Input voltage	High level	V _{IH}			1.8~2.3	$0.7 \times V_{CC}$		v
input voltage	Low level	V _{IL}			1.8~2.3		$0.2 \times V_{CC}$	v
	High level V _{OH}		VIN = VII	I _{OH} = -100 μA	1.8	V _{CC} - 0.2	_	
Output voltage	-			I _{OH} =6 mA	1.8	1.4	_	V
		M	$V_{IN} = V_{IH}$	I _{OL} = 100 μA	1.8	_	0.2	
	Low level	V _{OL}		I _{OL} = 6 mA	1.8	_	0.3	
Input leakage curre	ent	l _{IN}	V _{IN} = 0~3.6 V		1.8		±5.0	μA
Power off leakage	current	I _{OFF}	V _{IN} , V _{OUT} = 0~3.6 V		0	_	10.0	μA
Quiescent supply current			$V_{IN} = V_{CC}$ or GND		1.8		20.0	μA
Quescent supply (Juneni	Icc	$V_{CC} \leq (V_{IN}, V_{OUT}) \leq 3.6 \text{ V}$		1.8		±20.0	μΑ

AC Characteristics (Ta = -40~85°C, input: $t_r = t_f = 2.0 \text{ ns}$, $C_L = 30 \text{ pF}$, $R_L = 500 \Omega$)

Characteristics	Symbol	Test Condition	V _{CC} (V)	Min	Max	Unit
Propagation delay time		Figure 1, Figure 2	1.8	1.0	7.4	
			2.5 ± 0.2	0.8	3.7	ns
	t _{pHL}		$\textbf{3.3}\pm\textbf{0.3}$	0.6	2.8	

For $C_L = 50 \text{ pF}$, add approximately 300 ps to the AC maximum specification.

Dynamic Switching Characteristics (Ta = 25° C, input: $t_r = t_f = 2.0$ ns, $C_L = 30$ pF)

Characteristics	Symbol	Test Condition		_	Turp	Unit
Characteristics	Symbol	Test Condition		$V_{CC}(V)$	Тур.	Unit
		$V_{IN} = 1.8 \text{ V}, V_{IL} = 0 \text{ V}$	(Note 11)	1.8	0.25	
Quiet output maximum dynamic V_{OL}	V _{OLP}	$V_{IN} = 2.5 \text{ V}, V_{IL} = 0 \text{ V}$	(Note 11)	2.5	0.6	ns
		$V_{IN} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$	(Note 11)	3.3	0.8	
	V _{OLV}	$V_{IN} = 1.8 V, V_{IL} = 0 V$	(Note 11)	1.8	-0.25	
Quiet output minimum dynamic V_{OL}		$V_{IN} = 2.5 \text{ V}, V_{IL} = 0 \text{ V}$	(Note 11)	2.5	-0.6	ns
		$V_{IN} = 3.3 \text{ V}, \text{ V}_{IL} = 0 \text{ V}$	(Note 11)	3.3	-0.8	
		$V_{IN} = 1.8 \text{ V}, V_{IL} = 0 \text{ V}$	(Note 11)	1.8	1.5	
Quiet output minimum dynamic V_{OH}	V _{OLP}	V _{IN} = 2.5 V, V _{IL} = 0 V	(Note 11)	2.5	1.9	ns
		$V_{IN} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$	(Note 11)	3.3	2.2	

Note 11: Parameter guaranteed by design.

Capacitive Characteristics (Ta = 25°C)

Characteristics	Symbol	Symbol Test Condition			Тур.	Unit
Characteristics	Symbol	Test Condition	V _{CC} (V)	тур.	Unit	
Input capacitance	C _{IN}	—		1.8, 2.5, 3.3	5	pF
Power dissipation capacitance	C _{PD}	f _{IN} = 10 MHz	(Note 12)	1.8, 2.5, 3.3	18	рF

Note 12: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation.

 $I_{CC (opr)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}$

AC Test Circuit

AC Wareform

Symbol	V _{CC}						
Symbol	$3.3 \pm 0.3 \ V \qquad 2.5 \pm 0.2 \ V$		1.8 V				
VIH	2.7 V	V _{CC}	V _{CC}				
VM	1.5 V	V _{CC} /2	V _{CC} /2				

TOSHIBA

Package Dimensions

SSOP5-P-0.95

Unit : mm

Weight: 0.016 g (typ.)

TOSHIBA

Package Dimensions

Unit : mm

Weight: 0.006 g (typ.)

RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.