

www.vishay.com

TCLT101. Series

Vishay Semiconductors

Optocoupler, Phototransistor Output, SOP-6L4, 110 °C Rated, Long Mini-Flat Package

DESCRIPTION

The TCLT101. series consists of a phototransistor optically coupled to a gallium arsenide infrared-emitting diode in a 4-lead SOP-6L package.

APPLICATIONS

- Switchmode power supplies
- Computer peripheral interface
- Microprocessor system interface

FEATURES

- SMD low profile 4 lead package
- High isolation 5000 V_{RMS}
- CTR flexibility available see order information
- Special construction
- Extra low coupling capacitance
- Connected base
- DC input with transistor output
- Temperature range -55 °C to +110 °C
- Creepage distance > 8 mm
- Material categorization: For definitions of compliance please see <u>www.vishay.com/doc?99912</u>

AGENCY APPROVALS

- UL1577, file no. E76222
- cUL file no. E76222, equivalent to CSA bulletin 5A
- DIN EN 60747-5-5, available with option 1
- FIMKO: EN 60950

ORDERING INFORMATION										
T	С	L	Т	1	0	1	#		SOP-6L4	h
			PART	NUMBER					▲ 10.2 mm	
AGENCY						CTR (%)				
CERTIFIED/PACKA	GE	5 mA		10 mA				5 mA		
UL, cUL, VDE, FIMP	ко	50 to 600	63 to 125	100 to 200	160 to 320	50 to 150	100 to 300	80 to 160	130 to 260	200 to 400
SOP-6L4		TCLT1010	TCLT1012	TCLT1013	TCLT1014	TCLT1015	TCLT1016	TCLT1017	TCLT1018	TCLT1019

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)									
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT					
INPUT									
Reverse voltage		V _R	6	V					
Forward current		١ _F	60	mA					
Forward surge current	t _p ≤ 10 μs	I _{FSM}	1.5	A					
Power dissipation		P _{diss}	100	mW					
Junction temperature		Тj	125	°C					
OUTPUT									
Collector emitter voltage		V _{CEO}	70	V					
Emitter collector voltage		V _{ECO}	7	V					
Collector current		Ι _C	50	mA					
Collector peak current	$t_p/T = 0.5, t_p \leq 10 \text{ ms}$	I _{CM}	100	mA					
Power dissipation		P _{diss}	150	mW					
Junction temperature		Tj	125	°C					
COUPLER									
Isolation test voltage (RMS)		V _{ISO}	5000	V _{RMS}					

For technical questions, contact: optocoupleranswers@vishay.com

Document Number: 81256

COMPLIANT HALOGEN

GREEN (5-2008)

TCLT101. Series

Vishay Semiconductors

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)									
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT					
Total power dissipation		P _{tot}	250	mW					
Operating ambient temperature range		T _{amb}	-55 to +110	°C					
Storage temperature range		T _{stg}	-55 to +125	°C					
Soldering temperature ⁽¹⁾		T _{sld}	260	°C					

Notes

• Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute maximum ratings for extended periods of the time can adversely affect reliability.

⁽¹⁾ Wave soldering three cycles are allowed. Also refer to "Assembly Instruction" (<u>www.vishay.com/doc?80054</u>).

Fig. 1 - Total Power Dissipation vs. Ambient Temperature

ELECTRICAL CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)									
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT			
INPUT									
Forward voltage	I _F = 50 mA	V _F		1.25	1.6	V			
Junction capacitance	$V_R = 0 V$, f = 1 MHz	Cj		50		pF			
OUTPUT									
Collector emitter voltage	I _C = 1 mA	V _{CEO}	70			V			
Emitter collector voltage	I _E = 100 μA	V _{ECO}	7			V			
Collector emitter leakage current	$V_{CE} = 20 \text{ V}, I_F = 0 \text{ A}$	I _{CEO}		10	100	nA			
COUPLER									
Collector emitter saturation voltage	I _F = 10 mA, I _C = 1 mA	V _{CEsat}			0.3	V			
Cut-off frequency	V_{CE} = 5 V, I_F = 10 mA, R_L = 100 Ω	f _c		110		kHz			
Coupling capacitance	f = 1 MHz	C _k		0.3		pF			

Note

 Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluation. Typical values are for information only and are not part of the testing requirements.

www.vishay.com

TCLT101. Series

Vishay Semiconductors

CURRENT TRANSFER RATIO (T _{amb} = 25 °C, unless otherwise specified)									
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT		
	$V_{CE} = 5 \text{ V}, \text{ I}_{F} = 5 \text{ mA}$	TCLT1010	CTR	50		600	%		
		TCLT1012	CTR	63		125	%		
	$V_{CE} = 5 \text{ V}, I_F = 10 \text{ mA}$	TCLT1013	CTR	100		200	%		
		TCLT1014	CTR	160		320	%		
		TCLT1012	CTR	22	45		%		
	$V_{CE} = 5 \text{ V}, \text{ I}_{F} = 1 \text{ mA}$	TCLT1013	CTR	34	70		%		
I _C /I _F		TCLT1014	CTR	56	100		%		
		TCLT1015	CTR	50		150	%		
		TCLT1016	CTR	100		300	%		
	$V_{CE} = 5 \text{ V}, \text{ I}_{F} = 5 \text{ mA}$	TCLT1017	CTR	80		160	%		
		TCLT1018	CTR	130		260	%		
		TCLT1019	CTR	200		400	%		

SAFETY AND INSULATION RATED PARAMETERS									
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT			
Partial discharge test voltage - routine test	100 %, t _{test} = 1 s	V _{pd}	1.6			kV			
Partial discharge test voltage -	t _{Tr} = 60 s, t _{test} = 10 s,	V _{IOTM}	8			kV			
lot test (sample test)	(see figure 2)	V _{pd}	1.3			kV			
	V _{IO} = 500 V	R _{IO}	10 ¹²			Ω			
Insulation resistance	$V_{IO} = 500 \text{ V}, \text{ T}_{amb} = 100 ^{\circ}\text{C}$	R _{IO}	10 ¹¹			Ω			
	V _{IO} = 500 V, T _{amb} = 150 °C (construction test only)	R _{IO}	10 ⁹			Ω			
Forward current		I _{si}	130			mA			
Power dissipation		P _{so}	265			mW			
Rated impulse voltage		V _{IOTM}	8			kV			
Safety temperature		T _{si}	150			°C			
Clearance distance			8.0			mm			
Creepage distance			8.0			mm			
Insulation distance (internal)			0.40			mm			

Note

 According to DIN EN 60747-5-2 (VDE 0884) (see figure 2). This optocoupler is suitable for safe electrical isolation only within the safety ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits.

Fig. 2 - Derating Diagram

Fig. 3 - Test Pulse Diagram for Sample Test According to DIN EN 60747-5-2 (VDE 0884); IEC 60747-5-5

Rev. 1.	7, 08	Jan-14
---------	-------	--------

3 For technical questions, contact: <u>optocoupleranswers@vishay.com</u>

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

www.vishay.com

TCLT101. Series

Vishay Semiconductors

SWITCHING CHARACTERISTICS ($T_{amb} = 25 \text{ °C}$, unless otherwise specified)								
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT		
Delay time	$\label{eq:VS} \begin{array}{l} V_S = 5 \ V, \ I_C = 2 \ mA, \ R_L = 100 \ \Omega, \\ (see \ figure \ 3) \end{array}$	t _d		3		μs		
Rise time	$\label{eq:VS} \begin{array}{l} V_{S} = 5 \; V, \; I_{C} = 2 \; mA, \; R_{L} = 100 \; \Omega, \\ (\text{see figure 3}) \end{array}$	t _r		3		μs		
Fall time	$\label{eq:VS} \begin{array}{l} V_{S} = 5 \; V, \; I_{C} = 2 \; mA, \; R_{L} = 100 \; \Omega, \\ (\text{see figure 3}) \end{array}$	t _f		4.7		μs		
Storage time	$\label{eq:VS} \begin{array}{l} V_S = 5 \ V, \ I_C = 2 \ mA, \ R_L = 100 \ \Omega, \\ (see \ figure \ 3) \end{array}$	ts		0.3		μs		
Turn-on time	$\label{eq:VS} \begin{array}{l} V_S = 5 \ V, \ I_C = 2 \ mA, \ R_L = 100 \ \Omega, \\ (see \ figure \ 3) \end{array}$	t _{on}		6		μs		
Turn-off time	$\label{eq:VS} \begin{array}{l} V_{S} = 5 \; V, \; I_{C} = 2 \; mA, \; R_{L} = 100 \; \Omega, \\ (\text{see figure 3}) \end{array}$	t _{off}		5		μs		
Turn-on time	$\label{eq:VS} \begin{array}{l} V_S = 5 \ V, \ I_F = 10 \ mA, \ R_L = 1 \ k\Omega, \\ (see \ figure \ 4) \end{array}$	t _{on}		9		μs		
Turn-off time	$\label{eq:VS} \begin{array}{l} V_S = 5 \ V, \ I_F = 10 \ mA, \ R_L = 1 \ k\Omega, \\ (see \ figure \ 4) \end{array}$	t _{off}		10		μs		

95 10804

Fig. 4 - Test Circuit, Non-Saturated Operation

Fig. 5 - Test Circuit, Saturated Operation

Fig. 6 - Switching Times

4

TCLT101. Series

Vishay Semiconductors

TYPICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

Fig. 7 - Forward Voltage vs. Forward Current

Fig. 8 - Collector Current vs. Collector Emitter Voltage (NS)

Fig. 9 - Leakage Current vs. Ambient Temperature

Fig. 10 - Collector Current vs. Collector Emitter Voltage (saturated)

Fig. 11 - Normalized Current Transfer Ratio (non-saturated) vs. Ambient Temperature

Fig. 12 - Normalized Current Transfer Ratio (saturated) vs. Ambient Temperature

5

For technical questions, contact: <u>optocoupleranswers@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

1.4 0 °C N_{CTR} - Normalized CTR (NS) 1.2 55 1.0 25 0.8 0.6 111 T_{amb} = 100 °C Normalized to: 0.4 0.2 $I_F = 5 \text{ A}, V_{CE} = 5 \text{ V},$ $T_{omb} = 25 \text{ °C}$ = 25 0 0.1 10 100 1 I_F - Forward Current (mA)

Fig. 13 - Normalized CTR (non-saturated) vs. Forward Current

Fig. 14 - Normalized CTR (saturated) vs. Forward Current

Fig. 15 - CTR Frequency vs. Phase Angle

TCLT101. Series

Vishay Semiconductors

Fig. 16 - CTR Frequency vs. Collector Current

Fig. 17 - Switching Time vs. Load Resistance

Fig. 18 - Collector Emitter Voltage vs. Ambient Temperature (saturated)

Rev. 1.7, 08-Jan-14

6

For technical questions, contact: <u>optocoupleranswers@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

TCLT101. Series

Vishay Semiconductors

www.vishay.com

PACKAGE DIMENSIONS in millimeters

PACKAGE MARKING (Example of TCLT1013)

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.